
Selective Quantification of Co-Eluting
Proteins by means of Partial Least Squares

Sofia Henryson 880504

12 november 2014

Abstract
The aim of this thesis is to create a model of the correlation between

absorbance and concentration of co-eluting proteins. A separation us-
ing the chromatograph system ÄKTA from GE-Health care of BSA,
Lysozyme and IgG was performed. Absorbance was measured at three
different wave lengths. Since the mentioned proteins do not co-elute in
a neutral pH the experiments were performed at a high pH-level which
rendered the experiments unsuccessful. A PLS-function was written in
Matlab. The attempt to create a model of the correlation was found
futile since the data obtained from experiments did not contain enough
information about the proteins. The written PLS-model was evaluated
using an old data set and was found to be an useful and fast algorithm.

Sammanfattning
Arbetets syfte är att skapa en modell för sambandet mellan absor-

bans och koncentration av sam-eluerurande proteiner. En separation
av BSA, lysozym och IgG med hjälp kromatografi systemet ÄKTA
från GE-Heathcare utfördes. Absorbans mättes vid tre olika vågläng-
der. Eftersom de nämnda proteinerna inte sameluerar i ett neuturalt
pH-värde utfördes experimentet vid ett högt pH-värde vilket gjorde att
försöken misslyckades. En PLS-function skrevs in Matlab och användes
i ett försök att skapa en modell av korrelationen. Modellen bedömdes
som oanvändbar eftersom de data som erhållits från försök inte innehöll
tillräckligt med information om proteinerna.PLS-modellen utvärdera-
des med hjälp av en gammal datauppsättning och vilket visade sig
vara en användbar och snabb algoritm
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1 Introduction
The aim of this thesis was to evaluate the possibility to describe the relation
between concentrations of co-eluting proteins and the absorbances of the
mixture using chemometric tools as Partial Least Squares method, PLS, also
known as Projection to Latent Structures by the means of Partial Least
Squares. Brestrich et al. (2014) and Hansen et al.(2011) showed that PLS
have been used to quantify proteins.

2 Background

2.1 Co-eluting proteins and Real Time Pooling

PLS has been proven a successful tool for selective quantification of co-eluting
proteins. The article “A tool for selective inline quantification of co-eluting
proteins in chromatography using spectral analysis and partial least squares
regression” describes how PLS is used for inline quantification of co-eluting
proteins. Protein solutions consisted of Lysozyme, Ribonuclease A and Cy-
tochrome C in buffer solutions with pH 7. The separation of proteins were
preformed in the liquid chromatography system ÄKTA purifier on an SP
Sepharose FF column and a Diode Array Detector, DAD, was used to detect
the absorbance spectra. The PLS-model was based on a four-level D-optimal
design consisting of 29 samples and the concentrations levels ranged from 0
to 0.7 g/L. The model was validated by using a three-level D-optimal design
consisting of 25 samples with the same concentration span as calibration ex-
periments. The absorbance was measured in the band of 240-300 nm with
1 nm resolution for each sample. The results showed that PLS-modeling
was useful for inline quantification compared with offline analytical methods
based on collected fractions. This showed that PLS is an useful tool for inline
quantification and real time pooling decisions.(Brestrich et. al, 2014)

2.2 Principal Component Analysis- PCA

Principal Component Analysis uses the covariance to create a new base that
describes the material better. The principal components are orthogonal and
the first components holds the most information about the material. The
principle of PCA is shown i equation (1)

X = T · P + E (1)
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2.3 Partial least squares- PLS

The general idea of PLS is to find the latent structures describing the material
in order to reduce the amount of dimensions by finding a new base, principal
components, that describes the material better than the measured variables.
PLS origins from Principal Component Analysis, PCA, developed by Pear-
son (1901) for applications in biomectric studies. PCA is based on eigenvalue
decomposition of the covariance matrix or singular value decomposition of
covariance matrix and is mainly used for exploratory data or prediction mod-
eling. PLS was developed by Horst in 1961 and beares resemblance with PCA
but PLS maximizes the covariance in the common structures of both the pa-
rameters and the responses. (Fonville et. al, 2010) Historically PLS was a
method used for only one response but an extension of PLS was suggested
often called PLS2. Further on in this thesis the concept PLS aims primary
at PLS2 since several responses is used.

One of the advantages with the PLS model is the ability to predict with
a smaller risk of random correlation between matrices. PLS also has the
ability to handle several responses and describe more variables than observa-
tions which might lead to over prediction when using other linear regression
methods. (Cramer, 1993)

2.3.1 Principle of PLS

The principle of PLS is shown in Equation (2) and (3) below. X is the
measures parameters and the input parameters in the future model, C is the
calculated responses and output in future model. The number of rows in C
should be equal to the number of rows in X.

X = T · P + E (2)

C = T ·Q+ F (3)

T are called scores and P and Q are called loading even though the names
are the same as in principal component analysis the scores and loading ma-
trices in PLS differs from the one in PCA. The scores are orthogonal but
the loading are neither orthogonal or normalized. The importance of an PLS
component is based on both the scores and loading matrices and are defined
as the product of the sum of squares of both scores and loadings.

The algorithm used in this thesis also calculates the weight matrix W,
which is a normalized vector proportional to Q. Equation (4) shows the
matrix W and the diagonal matrix b.

C = T · b ·W + F (4)
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2.3.2 PLS-method used

The algorithm used in the created model is a straight forward iterative algo-
rithm and follows the same method as in Brereton (Brereton, 2003).

The input matrices might be centered and standardized in advance de-
pending on the material. If X is centered with regards to rows C needs to be
centered too.

Calculate a vector h using Equation (5)

h = X ′ · u (5)

where u is a vector and initially a guess that can be chosen as one of the
columns in the response matrix, C, to maximize the covariance between X and
C. Scores are calculated as in Equation (6) using the initial guess. Loadings
for both responses and parameters are calculated as in Equation (7) and (8)
below.

t̂ =
X · h√∑

h2
(6)

p̂ =
t̂ ·X√∑

t2
(7)

q̂ =
C ′ · t′√∑

t2
(8)

The sum of squares of the score vectors are calculated. For the first
iteration or if the calculated score is unsatisfying the score will be discarded.
A new score vector will then be calculated using the same approach as above
using a new guess for u. Otherwise the calculated scores and loadings will
be saved and the next components will be calculated.

In Equation (9) the effect of the new PLS-component is substracted from
the data-matrix so that it is not calculated again. The residual data matrix
is obtained

residX = X − t · p (9)

The estimated responeses are determined in Equation (10) and the resid-
ual data matrix for responses are calculated using Equation(11).

Ĉ = t · q (10)

residC =true C − C (11)

This is an iteration model and the next component is calculated using
the same method with a new guess for u returning to Equation (5).
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3 Materials and Methods
The aim of the experiments were to get a data set to be able to create a
model of the relation between abs/s and concentration of specific protein/s.
The input data is the absorbance measured at three different wavelengths
and the output is the concentration of proteins.

Three rounds of experiments were performed, the first round using two
proteins, the second round referred to as scouting experiments and the final
round of experiments using a ternary proteins solution on which the data
analysis is based upon.

3.1 Materials

The experiments were carried out on an ÄKTA purifier from GE Healthcare.
Column used was an anion exchange column, HiTrap Q FF 1 ml from GE
Healthcare.

The first round of experiments was performed using Bovine Serume Al-
bumin and lysozyme. Loading buffer, Buffer A, 20mM sodium phosphate.
Elution buffer, Buffer B, 20mM sodium phosphate and 500 mM sodium chlo-
ride

Scouting experiments were performed to find a pH-level and salt con-
centration in which the proteins would co-elute. A fullfactorial design of
experiments was used, pH varied at three levels and the salt concentration
of the elution buffer varied at two levels. The protein solution consisted of
lysozyme, Bovine Serum Albumin and Immunoglobulin G. Loading buffer,
Buffer A was 20mM potassium phosphate and elution buffer, Buffer B, 20
mM potassium phosphate and 500 or 100 mM potassium chloride. pH varied
at three levels between 8-12.

The final experiments were executed with the same buffer solutions as
scouting experiments using the ternary proteins solution at pH-level 11.5
and with a salt concentration of 500 mM in the elution buffer.

3.2 Methods

3.2.1 Experimental work

For the first round of experiments a 2-factor full factorial design was used
using two center points. 5 different ratios and the maximum concentration
were 0.9 g/L. There were no mixing constraints. Absorbance was measured
at wavelengths 562 nm, 280 nm 527 nm. Although six experiments were
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planned only three was executed using the center points and the maximum
concentration of lysozyme, and max of BSA.

The scouting experiments were planned to find an optimal pH and salt
concentration so that the proteins would co-elute. A full factorial design with
two factors, pH and salt concentration, pH was varied at 3 levels and the salt
concentration at 2 levels. Absorbance was measured at wavelengths 280 nm,
254 nm 320 nm since no response was registred at wavelengths around 500
nm. Due to the fact that the proteins are not co-eluting in a neutral pH the
experiments was designed so that the proteins would co-elute based on the
isoelectric points of Lysozyme, BSA and IgG the pH-levels was 8, 10 and
11.5 which did not seam to be outside of the pH constraints of the column.

A three-level D-optimal design with three center points was used for the
final experiments. Based on scouting experiments the pH of buffer solutions
was 11.5 and the salt concentration in elution buffer was 500 mM. The pro-
teins were weighed and mixed into the buffer solution and then mixed in
different ratios for the samples. The total protein concentration was con-
stant at 1.8 g/L and the ratios varied. The experimental design is shown
in Appendix A.1. The experiments were performed in a randomized order
during the course of three days. In order to divide the test into two groups
a dummy factor was used.

3.2.2 Data analysis

The experimental data matrix was constructed so that each row represented
a run and the columns consisted of the chromatograms for each measured
wavelength. The response matrix consisted of corresponding rows and the
protein concentrations in columns.

The data set was analyzed using principal component analysis. The prin-
cipal components was calculated using singular value decomposition and the
covariance matrix, the two algorithms used are shown in Appendices A.2 and
A.3. The raw data was centered prior to analysis. The RMS-error and the
degree of explanation was calculated in order to establish the validity of the
principal component analysis.

A new PLS algorithm was written, shown in Appendix A.4 based on
the method described in background. The written algoritm uses the input
values X, the parameters, and C, the responses to calculate the scores (T),
loadings (P and Q) and the weight matrix W. The parameters are the ab-
sorbance chromatogram and the responses are the concetrations of proteins.
The Root Mean Square-errors were calculated and the predicted values of
concentrations was compared to the calculated values.

The execution of the experimental plan was tested using the high heel
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factor to test for difference between groups.
The data was analyzed again using the chromatograms at wavelengths

254 nm and 280 nm and the concentration for BSA and Lysozyme.

4 Results and Discussion

4.1 Experimental work

The experimental work was over all failed, mainly due to poor experimental
planning. The first round of experiments using a binary protein solution was
discarded since the proteins did not co-elute and just went right through the
separation column. When a new experimental plan was suggested it was
changed to fit a ternary protein solution instead.

The scouting experiments and the theory behind isoelectric points ap-
peared to show that the optimal pH level for this separation was between
11-12. Since the columns could handle pH-levels up to 12 the high pH was
assessed to not be a problem. The injection of the protein solutions in scout-
ing experiments was preformed inaccurately since the syringe was removed
from the inlet resulting in air pumping thruogh the column hence results
could not be trusted. Even though the constraints of the columns were in
the pH range of 2-12 this is not equivalent with that the ligand in column is
operational at high pH. And therefore no separation of the protein solution
was obtained. For the first round of final experiments using BSA, lysozyme
and IgG the injections were made in the same manner as for the scouting
experiments resulting in chromatograms with only air spikes. Using the same
experimental planning the experiments was done again with proper injection.
However the experiments were not executed so that the proteins were able
to bind to the ligand due to the high pH resulting in that the proteins eluted
before gradient started and no separation was possible.In constrast to pro-
teins eluting before gradient the pressure alarm went off for the final four
experiments, number 14,7,8 and 3 in A.1, which raised the question whether
one of the proteins did not elute at all and accumulated i column. When the
column was rinsed through with sodium hydroxide no proteins were detected.

4.2 Data analysis

The data analysis was found unsuccessful since the absorbance measurements
made at 320 nm did not contain any information which is visible in Figure 1
and Figure 2. Figure 1 shows the first run which in the experimental design,
Figure A.1, is equivalent to experiment number 4. Figure 2 shows the final
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run which in the experimental design, Figure A.1, is eqvivalent to experiment
number 3.

Figure 1: The chromatogram for the three different wavelengths for the first
run, experiment 4 according to experimental design.

9



Lunds Tekniska Högskola 4 RESULTS AND DISCUSSION

Figure 2: The chromatogram for the three different wavelengths for the last
run, experiment 3 according to experimental design.

In the PCA the scores form a vertical line and the loadings forms a clutter
close to origo indicating that nothing in the material was significant. The
Bi-plot with both scores and loading from PCA with the ternary protein
solution is shown i Figure 3. Principal component 1 and 2 has the highest
degree of explaination hence no further information can be expected in the
pther principal components. The PCA for the binary protein solution give
the same result as for the ternary solution.
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Figure 3: Bi-plot from PCA with ternary protein solution.

Using PLS to create a model between the concentrations in protein solu-
tion and absorbances are unsuccesful. The algorithm needs at least as many
parameters as responses therefore is is not possibly to predict the concentra-
tions of the three proteins with chromatograms at given wavelengths. When
the data was reanalyzed using chromatograms at 280 nm and 254 nm to
predict the concentrations of two proteins the results was still inconclusive.

The graphical interpretation of PLS called a W*q-plot is not possible to
obtain for neither binary or ternary protein solutions since the data matrices
are singular.

The dummy factor set to test for variation between groups and to help de-
termine the magnitude of noise showed no obvious difference between groups.
The magnitude of the noise was not established since the result of analysis
did not bear any results.

4.2.1 Case

The written algorithm, ownpls2 A.4, was tested using a different data mate-
rial that previously successfully has been described by the PLS-model. The
data material consisted of an NMR-analysis of 40 wines in regards to content
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of e.g. ethanol, glycerol, lactic acid, methanol and malic acid. A com-
parison was made using an algorithm written by Andreas Håkansson for the
Chemometric course,FMS210, this algortihm is shown in Appendix A.5. The
RMS-error showed no difference between the different algorithms. Figure 4
and 5 shows the RMS-error plotted against number of principal components.

Figure 4: Root Mean Square error calculated for the C-matrix containing
17 chemical properties for the different wines. The RMS-error is calculated
using both ownpls2 and pls2.
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Figure 5: Root Mean Square error calculated for the X-matrix containing
the NMR-spectra of 40 different wines. The RMS-error is calculated using
both ownpls2 and pls2.

Even though the old and the new algorithm presents the same result there
is a big difference in how fast the algorithms are. The difference in speed
might not be a problem in calculations for the case study but with bigger
matrices the speed of the function matters. The C-matrices in the case study
and the protein quantification data are 40 × 17 respectivly 18 × 3, and the
X-matrix in case study is 40×273 while it for the protein quantification data
is 18× 2649.

When using pls2, A.5, for the protein quantification data the speed has a
great impact because of the larger matrices. The calculations running time
makes the old algorithm impractial to use and the need for a faster algorithm
is of necessity. Hence a new algorithm had to be written in order to handle
the chromatographic data set.Figure 6 shows the calculation time in regards
to the number of columns in the X-matrix. It it obvious that there is a big
difference in calculation time between ownpls2 ans pls2. When the algorithms
was used on the wine data calculations using pls2 took 25.1864 seconds while
it only took 0.3505 seconds with ownpls2.
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between functions.png

Figure 6: Comparisson between the calculations time for ownpls2 and pls2
in regards to number of columns in X-matrix.

The new algorithm ownpls2, shown in Appendix A.4, tests for convergence
as if the component is satisfying i.e. the total variation is under 0.1 % the
component is saved and no further iterations are necessary for that particular
component and the algorithm starts over and calculated the next component.
pls2, shown in Appendix A.5, on the other hand uses 1000 iterations for each
calculation of a component which will take longer time.

ownpls2 follows the algorithm presented background while pls2 differs
a little bit. The calculated loading matrices P and Q from pls2 are the
transponates of the loadings matrices according to the principle of PLS.

A loophole with ownpls2 on the other hand is if the convergence is unsat-
isfying for more than 1000 iterations ownpls2 will break the loop and simply
move on to calculate the next component without saving the unsatisfying
one. This might lead to a matrix with to few dimensions. When tested for
number of iterations per component the maximum amount using this data
set was 165 and the maximum is set to 1000 in the algorithm. This leaves
quite a small risk of this problem actually occur however it can be fixed by
adding an if-clause saving the vector of the final iteration even though it does
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not meet expectations. However this might not be the optimal solution.
The test for convergence was set to be under 0.1% in this case though

it does not really appear to affect the result of the calculated scores and
loadings in regard to RMS-error. A value even up to 106 is possible before
any noticeable chance is observed in the RMS-errors. When the estimated
values of responses with the two different algorithms are compared the results
show that the predictability of models are equal for both algorithms. Figure
7 shows the predicted values plotted against calculated values for responses
using both pls2, A.5, and ownpls2, A.4.

Figure 7: Predicted values of C plotted against the calculated values for C.

4.3 Future Work

Since PLS has been useful in previous studies, (Brestrich et. al, 2014) and
(Fonville et. al, 2010), it is an interresting field to continue exploring. The
main thing to improve from this thesis is the experimental plan.With an
experimental plan using proteins that co-elute in a neutral pH i.e. lysozyme,
cythochrome C and Ribonuclease A and measurements at wavelengths that
gives a reading a data set could be obtained that is valid to work as a basis for
a PLS-model. Using a DAD can assure that the the data set is big enough and
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contains enough information to describe a ternary protein solution. Using
a different data set to validate the model increases the significance of the
model.

5 Conclusion
The experimental work did not give the desired results and therefore protein
quantification was not possible. The PLS2-algorithm written in Matlab was
found to be functional and fast. PLS has been found useful before in protein
quantification previously and using an improved experimental plan to find
proper data to use as model basis is promising.

6 Bibliography
Richard G. Brereton, 2003, "Chemometrics: data analysis for the laboratory
and chemical plant" "upplaga (om ej 1:a uppl.)", West Sussex England,
John Wiley Sons Ltd

Nina Brestich, Till Briskot, Anna Osberghaus, Jürgen Hubbuch, 2014, "A
Tool for Selective Inline Quantification of Co-Eluting Proteins in Chro-
matography Using Spectral Analysis and Partial Least Squares" "Biotech-
nology and Bioengineering Vol. 9999, No. xxx", förlagsort, förlag

Richard D. Cramer III, 1993, "Partial Least Squares (PLS): its strengths and
limitations" "Pespectives in drug discovery and design, ", förlagsort, förlag

Judith M. Fonville, Selena E. Richards, Richard H. Barton, Claire
L. Boulange, Timothy M. D. Ebbels, Jeremy K. Nicholson, Elaine
Holmes, Marc-Emmanuel Dumas, 2010, "The evolution of Partial Least
Squares models and related chemometric approaches in metabonomics and
metabolic phenotyping" "Journal of Chemometrics Vol. 9999, No. xxx",
förlagsort, förlag

Sigrid K. Hansen, Erik Skibsted, Arne Staby, Jürgen Hubbuch, 2011, "A
Label-Free Methodology for Selective Protein Quantification by Means of
Absorption Measurements" "Biotechnology and Bioengineering Vol. 108,
No. 11", förlagsort, förlag

16



Lunds Tekniska Högskola A APPENDIX

A Appendix

A.1 Experimentalplan

The non-randomized experimental plan. The proteins are described as ratios

Experiment BSA Lys IgG
1 0 1 0
2 0,25 0,5 0,25
3 0,33 0,33 0,33
4 0,4 0,2 0,4
5 0,45 0,1 0,45
6 0,5 0 0,5
7 1 0 0
8 0,5 0,25 0,25
9 0,3 3 0,33 0,33
10 0,2 0,4 0,4
11 0,1 0,45 0,45
12 0 0,5 0,5
13 0 0 1
14 0,25 0,25 0,5
15 0,33 0,33 0,33
16 0,4 0,4 0,2
17 0,45 0,45 0,1
18 0,5 0,5 0
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A.2 ownprincomp

%OWNPRINCOMP uses s i n gu l a r va lue f a c t o r i z a t i o n to c a l c u l a t e P, the load ing
%matrix , and uses . . . . . to c a l c u l a t e T, the s co r e matrix . S ingu la r va lue
%f a c t o r i z a t i o n c a l u l a t e s Xh(X∗) , the hermit ian conjugate , mu l t i p l i e d with
%X, the data matrix , to c r e a t e a qudrat i c matrix . The e i g enva lu e s o f Xh∗X
%are c a l c u l a t ed and determines the order o f the p r i n c i p a l components . The
%e igen vec t o r s o f the Xh∗X−matrix are the p r i n c i p a l components and the
%f i r s t component i s the one with the l a r g e s t e i gen value .

% The hermit ian conjugate are the transponate o f the matrix and then the
% s i gn s o f the complex par t s o f the matrix are changed . In r e a l i t y the
% hermit ian conjugate w i l l be the same as the transponate s i n c e the
% X−matrix w i l l not conta in any complex numbers .
[m, n]= s i z e (X) ;
A=ze ro s ( s i z e (X) ) ;
%cente r X with a for−loop us ing the s i z e o f the matrix X.
f o r k=1:n

A( : , k )=X( : , k )−mean(X( : , k ) ) ;
end
%A i s the new centered ve r s i on o f the data−matrix
Aherm=A’ ; %the hermit ian conjugate
AhermA=Aherm∗A;
[ e i g envec to r s , e i g enva lu e s ]= e i g (AhermA) ;

[ s o r t ed e i g enve c t o r s , s o r t ed e i g enva l u e s ] = sortem ( e i g envec to r s , e i g enva lu e s ) ;

%the e i g enva lu e s are made in to a vec to r
% and so r t ed in descending order
%l a t e n t=so r t ( diag ( e i g enva lu e s ) , ’ descend ’ ) ;
l a t e n t = diag ( s o r t ed e i g enva l u e s ) ;
%so r t the e i gen ve c t o r s so that the e igen va lue s de c r ea s e s f o r each column
%so r t ed e i g env e c t o r s= e i g env e c t o r s ( end :−1:1) ;
P=so r t ed e i g env e c t o r s ;
%the score−matrix i s c a l c u l a t ed by mul t ip ly ing the data−matrix with the
%loading−matrix
T=A∗P;
%Ho t e l l i n g s Tsquare
%so r t the e igenva lue s−matrix in descending order
%so r t ed e i g enva l u e s= e i g enva lu e s ( end :−1:1) ;
Tsquare=ze ro s ( l ength (X( : , 1 ) ) , 1 ) ;
f o r k=1:m

Tsquare (k , : )=T(k , : ) ∗ inv ( s o r t ed e i g enva l u e s ) ∗ transp (T(k , : ) ) ;
end
end
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A.3 ownpcacov

%OWNPCACOV uses the covar iance matrix to c a l c u l a t e the p r i n c i p a l components
% Returns l oad ing s (P) , l a t ent , and exp la ined
% input X matrix
%So f i a Henryson
[m, n]= s i z e (X) ;
A=ze ro s ( s i z e (X) ) ;
%cente r X with a for−loop us ing the s i z e o f the matrix X.
f o r k=1:n

A( : , k )=X( : , k )−mean(X( : , k ) ) ;
end

%A i s the new centered ve r s i on o f the data−matrix
Aherm=A’ ; %the hermit ian conjugate
%The covar iance matrix ,C, i s c a l c u l a t ed us ing the centered data and the
%hemrit ian conjugate .
% A i s an m∗n−matrix .

C=(1/(m−1) ) ∗(Aherm∗A) ;

%c a l c u l a t e the e i g env e c t o r s and e i g enva lu e s o f the covara ince−matrix
[ e i g envec to r s , e i g enva lu e s ]= e i g (C) ;
%so r t the e i gen ve c t o r s so that the e igen va lue s de c r ea s e s f o r each column

%so r t the e igenva lue s−matrix in descending order
% so r t the e i g envec to r s−matrix in descending order in regard to e i g enva lu e s
[ s o r t ed e i g enve c t o r s , s o r t ed e i g enva l u e s ] = sortem ( e i g envec to r s , e i g enva lu e s ) ;

%The p r i n c i p a l components are the e i g env e c t o r s o f the covar iance matrix

P=so r t ed e i g env e c t o r s ;
%l a t e n t=so r t ( diag ( e i g enva lu e s ) , ’ descend ’ ) ; % output , the so r t ed e i g enva lu e s
l a t e n t = diag ( s o r t ed e i g enva l u e s ) ;

% c a l c u l a t e the exp lanat ion o f each PC
%add a l l the e i g enva lu e s toge the r to get the t o t a l var i ance
l a t e n t t o t=sum( abs ( l a t e n t ) ) ;

ex=ze ro s ( l ength (X) ,1 ) ;

f o r k=1:n
ex (k , 1 )=abs ( l a t e n t (k ) ) / l a t e n t t o t ;

end

% expa la ined g i v e s the degree o f exp lanat ion o f each p r i n c i p a l component
exp la ined=ex ;
end
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A.4 ownpls2

%Uses Pa r t i a l Least Square r e g r e s s i o n to c a l c u l a t e s co r e and load ing
%matr i ce s . Uses X and C to return the sco re s− (T) load ings− (P) (Q) and

weight matrix− (W) in the model :
%X=T∗P’+E
%C=T∗Q’+F
% So f i a Henryson 2014

d i sp ( ’ S ta r t : ownpls2 . . . ’ )
X=Xorg ;
C=Corg ;
%I n i t i a t e s the matr i ce s
T = [ ] ;
P = [ ] ;
Q = [ ] ;
W = [ ] ;

maxIter = 1000 ; %maximum number o f i t e r a t i o n s
a=0.001; %l im i t f o r acceptab l e convergance
Chat = ze ro s ( s i z e (Corg ) ) ; %p r e l o c a t e Chat
f o r i =1: l ength (X)

u=C( : , 1 ) ; %Step 3
t i n i t=ze ro s ( s i z e (Xorg ( : , 1 ) ) ) ;
%a lgor i tm f o l l ow s Breretons A. 2 . 3 .
f o r j =1:maxIter

h=X’∗u ; % Step 4
that=X∗h/(sum(h .^2) . ^ . 5 ) ; %step 5
phat=that ’∗X/sum( that .^2) ; % step 6
qhat=C’∗ that /sum( that .^2) ; %step 7
w=h/(sum(h .^2) . ^ . 5 ) ;

%c a l c u l a t e a new u i f i=1 or i f the r e s i d u a l quadrat i c sum i s
too big

i f ( j==1) | | (norm( t i n i t−that )>a ) %check f o r convergence
u=C∗qhat/sum( qhat .^2) ;
t i n i t = that ;

e l s e %save the va lue s in matr i ce s
T( : , i )=that ;
P( : , i )=phat ’ ;
Q( i , : )=qhat ;
W( i , : )=w;
break ;

end
end

Xres id=X−that ∗phat ; % removes the e f f e c t o f the new pls−component
Chat=Chat+that ∗qhat ’ ; %determines a new concent ra t i on es t imate
Cres id=Corg−Chat ; %removes the e f f e c t o f the new pls−component
X=Xres id ; %r ep l a c e X with Xres id
C=Cres id ; %r ep l a c e C with Cres id

end
d i sp ( ’ F in i shed : ownpls2 ’ ) ;

end
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A.5 pls2

f unc t i on [T,P,Q,W] = p l s2 (X,C)
% Beräknar matr i se rna T, P och Qs[U+FFFD]at t
% X = T∗P’ + E och
% C = T∗Q’ + F
% (E och Fsm[U+FFFD])
% X har s t o r l e k ( I ∗J ) och C ( I ∗N) .
% W är v ik t smat r i s en .
% Centrer ing och s t anda rd i s e r i n g
% av X och C m[U+FFFD]ste ske f ö re denna funkt ion .
% ( Stegen i kommentarerna hä nv i s a r t i l l
% a lgor i tmen i Brereton A. 2 . 3 )
% Andreas H[U+FFFD]kansson, 2011
T= [ ] ; P= [ ] ; Q= [ ] ; W= [ ] ; %I n i t i e r a r T, P och Q
NItte r = 1000 ; %Maximala an t a l e t i t t e r a t i o n e r per komponent
i f s i z e (XOrg , 1 ) ~= s i z e (COrg , 1 )

e r r o r ( ’ Fel d imens ioner p[U+FFFD]X och C, se he lp p l s 2 f ö r i n s t r u k t i o n e r ’ )

end
X=XOrg ; C=COrg ;
CHatt=ze ro s ( s i z e (C) ) ; %Gissar CHatt som bara n o l l o r
f o r j =1: s i z e (X, 2 ) %Beräknar komponenterna en e f t e r en

u=C( : , 1 ) ; %Gissar u som C %Steg 3
f o r i =1: NIt te r

h=X’∗u ; %Steg 4
w = h/(h ’∗h) ^0 . 5 ;
%tHatt=X∗h/(h ’∗h) ^0 . 5 ; %Steg 5
tHatt = X∗w;
pHatt=tHatt ’∗X/( tHatt ’∗ tHatt ) ; %Steg 6
qHatt=C’∗ tHatt /( tHatt ’∗ tHatt ) ; %Steg 7
u=C∗qHatt /( qHatt ’∗ qHatt ) ; %Steg 8
tHattGammal=0;
%Kont ro l l e r a r f ö r kovergens Steg 9
% (hä r används 0.5% av den t o t a l a va r i a t i on en som gr äns f ö r a t t

bryta )
i f ( tHatt−tHattGammal ) ’∗ ( tHatt−tHattGammal ) /( tHatt ’∗ tHatt ) <0.005 &&

i >1
T=[T, tHatt ] ;
P=[P, pHatt ’ ] ;
Q=[Q, qHatt ] ;
W=[W,w ] ;
break ;

end
tHattGammal=tHatt ; %tHatt som den ber äknades i f ö r ra i t t e r e r i n g e n
i f i == NItte r %Om i t t e r e r i n g e n i n t e konvergerat t i l l r ä c k l i g t

T=[T, tHatt ] ;
P=[P, pHatt ’ ] ;
Q=[Q, qHatt ] ;
W=[W,w ] ;

end
end
X = X−tHatt∗pHatt ; %Steg 10
CHatt= CHatt+tHatt∗qHatt ’ ; %Steg 11
C = COrg−CHatt ; %Steg 11
%Residualkvadratsumma

end
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