
DEVELOPING A SET OF

FORTRAN-TO-PYTHON

WRAPPERS FOR

RHEINBOLDT’S PACKAGE OF

DAE SOLVERS

OSCAR UTTERBÄCK

Bachelor’s thesis
2014:K12

Faculty of Engineering
Centre for Mathematical Sciences
Numerical Analysis

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M



Bachelor’s Theses in Mathematical Sciences 2014:K12

ISSN 1654-6229

LUTFNA-4002-2014

Numerical Analysis

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/



D E V E L O P I N G A S E T O F F O RT R A N - T O - P Y T H O N W R A P P E R S
F O R R H E I N B O L D T ’ S PA C K A G E O F D A E S O LV E R S .

oscar utterbäck

Department of Numerical Analysis
Faculty of Engineering

Lund University

Spring 2014



A B S T R A C T - E N G L I S H

Assimulo is a Python-based workbench for solving differential
equations with the goal of making a multitude of solver meth-
ods available through a higher-level interface. By generalizing
the problem description, a user is able to apply any solver of
their choice without having to redefine the original problem. Fol-
lowing these guidelines, a set of wrappers have been developed
to extend Assimulo with Werner Rheinboldt’s solvers for quasi-
linear differential-algebraic equations of index 1 to 3. The solver
library, written in Fortran, is linked to Python with the help
of F2Py, a Fortran to Python interface generator, and then inte-
grated with Assimulo’s original code. In addition to the solvers,
Assimulo is extended with a new set of problem classes describ-
ing quasilinear problems of first and second order.

A B S T R A C T - S W E D I S H

Assimulo är ett Python-baserat ramverk för lösning av differ-
entialekvationer med målet att låta användaren välja från en
mängd olika lösningsmetoder oberoende av problem. Målet med
denna avhandling är att utöka Assimulo med Werner Rhein-
boldts metod för att lösa differential-algebraiska ekvationssys-
tem. Detta har skett i form av utveckling av ett kommunikation-
slager mellan Rheinboldt’s metoder, skrivna i Fortran, och As-
simulo, samt ett flertal nya klasser för att beskriva de problem
denna metod riktar sig till.

ii



C O N T E N T S

1 introduction 1

2 theory 2

2.1 Definition of a DAE system 2

2.2 Index of a DAE system 3

2.3 Numerical treatment of DAE’s 4

2.4 DAE systems as ODE’s on manifolds 5

2.5 Problem formulations 6

2.6 Solver details 7

3 wrapper design and implementation 8

3.1 Wrapper outline 8

3.2 Problem classes 9

3.3 Solver classes 10

3.4 Callback functions 11

4 usage instructions and examples 13

4.1 Installation 13

4.2 Usage example 13

5 result 17

5.1 Functionality provided 17

5.2 Suggestions for future development 18

5.2.1 Integration with special_system 18

5.2.2 Integration with the library 18

5.2.3 Examine the need for multiple solver and
problem classes 18

5.2.4 Handle the result of the second derivative 19

5.2.5 Develop an installation script 19

i appendix 20

bibliography 21

iii



L I S T O F F I G U R E S

Figure 1 Inheritance between the problem classes. 9

Figure 2 Relationship between the solver classes. 11

Figure 3 Pendulum states. 14

Figure 4 Pendulum states derivatives. 15

L I S T I N G S

../../Code/RBDAE/euler_pend.py 15

iv



1
I N T R O D U C T I O N

Assimulo is a package for solving differential equations aimed
at providing a high-level interface for a wide variety of solver
methods. By using a common interface, Assimulo allows the user
to try a multitude of solver methods and compare them from
different perspectives.

The solver in question is Werner Rheinboldt’s solver of quasi-
linear DAE system of index 1, 2 and 3. Using theory from differ-
ential geometry, viewing DAE systems as differential equations
on implicitly defined manifolds, existence proofs are presented
in a way that exhibits a directly algorithmic approach. The the-
ory was developed in the 1980’s but lacked the computational
tools for practical usage. This was however solved in the mid-
90’s, and the algorithm package was published online in 2000

where it has remained largely unnoticed.
The aim of this thesis is to make this set of solvers available for

use within Assimulo. Some research has been devoted to achieve
a brief understanding of the algorithm used in the solver routine.
The core of the work has been dedicated to developing a Fortran
wrapper to make the library available from Python. To describe
the problems and customize the usage of the solver, correspond-
ing Python classes have been developed. The glue tool F2Py has
been used to enable intercommunication between the two lan-
guages.

Chapter 2 begins with a brief theoretical overview of DAE sys-
tems and some related concepts such as the index parameter
needed to understand what types of problems the solver deals
with. Then follows a brief description of the solver with some
history.

Chapter 3 details the design of the wrapper, the problem classes
created to hold the problem data as well as the solver classes.

Chapter 4 contains usage instructions and an example of how
to run the solver, and what results it presents.

Chapter 5 summarizes the thesis and presents the achieved
results of the development as well as propositions for future de-
velopment.

1



2
T H E O RY

Differential-algebraic equations (DAE’s) is the common name
for a system consisting of a mixture of differential and non-
differential, popularly called algebraic, equations. DAE’s are a
generalization of the concept of differential equations and they
arise naturally from the mathematical modeling of a variety of
problems: multibody dynamics, electrical engineering and chem-
ical engineering to name a few.

2.1 definition of a dae system

A first-order implicit DAE has the general form

F(t, y, y′) = 0. (1)

This definition makes no claims regarding linearity or whether
a differential term is part of a particular row in the system. This
form encapsulates every form of first-order differential equation,
including linear, explicit ODE’s, as well as fully algebraic sys-
tems. As our interest lies in systems of mixed differential and
algebraic systems, the following partitioning seems natural:

F1(t, y, y′) = 0

F2(t, y) = 0.
(2)

This separation leaves us with two sets of functions. F1 is a col-
lection of differential equations and F2 is called the system of
constraint equations. This part of the system imposes a set of
constraints that the solution of the differential equations F1 must
satisfy. For demonstration we use the example of the pendulum
modeled in cartesian coordinates (with length and mass normal-
ized to 1), documented in [EES08]:

ṗ1 = v1

ṗ2 = v2

v̇1 = −λp1

v̇2 = −λp2 − ggrav

0 = p2
1 + p2

2 − 1

(3)

2



2.2 index of a dae system 3

The first four rows correspond to F1 where the equations of mo-
tion for the pendulum are given as four first order ODE’s. The
last row is F2, the constraint equation in question. λ is an al-
gebraic variable, denoting the string tension, and results from
coupling with the constraint equation. The physical interpreta-
tion of this constraint defines the length of the pendulum to be
constant. Any solution to the system of differential equations
must also satisfy this condition. This is equally relevant for the
initial conditions of the system, and as such we refer to defini-
tion 5.1.1 in [EES08], that states: A function x : [t0, te] → Rn,
x(t) = (p(t), v(t), λ(t)) fulfilling the smoothness requirement
p ∈ C2[t0, te], v ∈ C1[t0, te], λ ∈ C0[t0, te] is called a solution of
(3) if it satisfies (3). The value x(t0) is then called a consistent
initial value. Because of the set of constraints we are no longer
free to choose (to some degree) arbitrary initial conditions, as is
the case for pure ODE systems.

2.2 index of a dae system

The index is a parameter used to measure the complexity and
difficulty of working with a certain DAE system. It varies from
system to system, between different solution methods and can
even vary between different parts of the solution region within
one system [CLP08]. However, there are a few details shared
among the definitions [PJR02]. Considering a DAE system that
is eventually reducible to an explicit ODE system, then:

• the reduction is performed via a number of recursive oper-
ations,

• the index is defined as the number of operations required
for the reduction,

• the system has an index of 0 iff the system is an ODE.

One of the more common definitions used is the differenti-
ation index. Through repeated differentiation of the algebraic
equations, substituting with the differential equations as needed,
one will eventually end up with a system of nothing but differ-
ential equations. In this case the index is defined as the number



2.3 numerical treatment of dae’s 4

of differentiations. Applying this procedure to the last row of (3)
results in the following:

0 = p2
1 + p2

2 − 1 (4)

0 = p1v1 + p2v2 (5)

0 = v2
1 + v2

2 − λ(p2
1 + p2

2)− p2ggrav (6)

From top to bottom, the three constraint equations are of in-
dex 3, 2 and 1 respectively. Differentiating (6) again and sub-
stituting where necessary will yield an explicit ODE of the form
λ̇ = f (p, v). This is the underlying ODE to the DAE system(3).

2.3 numerical treatment of dae’s

"Differential-algebraic equations are not ODE’s" - Linda R. Pet-
zold

The solver package developed by Rheinboldt stems from a se-
ries of articles written in the 1980’s. Historically, the numerical
handling and solution of differential-algebraic systems has been
left to methods originally designed for systems of ODE’s. It has
been shown that DAE’s in certain cases can be solved by slight,
or advanced, modification of methods designed for systems of
stiff ODE’s. This procedure is far from ideal and becomes in-
creasingly difficult with higher index systems.

The quote by Petzold is the title of one of her papers [Pet82]
on the subject of working on the general first order equation
systems of the form

F(t, y, y′) = 0. (7)

In her paper she outlines several causes of difficulties that may
arise when working with DAE systems as if they were ODE sys-
tems. To discussion is brought not only difficulties that occur
when working with problems with discontinuities but even with
very simple, higher-index systems consisting of smooth func-
tions. The following example is presented in Petzold’s article.
Applying Euler’s backward differentiation formula (BDF)

y′(t) =
y(tn)− y(tn−1)

h
(8)

on the simple index 3 system

y′2(t) = y1(t) y′3(t) = y2(t) 0 = y3(t)− g(t) (9)



2.4 dae systems as ode’s on manifolds 5

it is found that taking a single step from the exact solution results
in an error that is independent of the step size, and as such it
is impossible to keep the error small after taking a single step
from the exact solution. A naïvely implemented ODE integrator
would fail on the first step.

In another example demonstrating variable step size methods
on the same system, the order of the error is worse than expected
unless very specific sequences of step sizes are used. In a third
example using an index 2 system, the order of the error is again
worse than expected, without any obvious remedies.

2.4 dae systems as ode’s on manifolds

In [Rhe84] a new approach is presented. Instead of treating the
system as a special case of ODE’s, focus is placed on the con-
straint equations. Under certain conditions the system of con-
straint equations implicitly define a manifold on which the solu-
tion to the differential equations are consistent. On this manifold,
the DAE locally reduces to a ODE, and the solution to this ODE
gives the solution to the DAE. The local ODE is obtained via a
parametrization of the constraint manifold.

Following is a short pseudocode outline of the solver routine.

at initial point y_0:

compute initial parametrization of constraint manifold

let y_i be the computed solution at time t_i

while t_i < t_final:

solve local ODE system

use solution to compute y_i

if chosen point is outside area of validity:

compute new parametrization\todo{add caption?}

Along with the algorithm, some interesting details are brought
to light when revisiting problems mentioned in Petzold’s paper.
One of the theorems used to motivate the algorithm defines the
term ’algebraic incompleteness’. In essence, certain systems are
only reducible to an ODE if the constraint manifold is restricted
to a lower-dimensional space. This is the case for the pendulum
in (3). If only the original system is regarded, the existence the-
orem does not hold for the pendulum, unless certain conditions
are met. The first of these is that p1v1 + p2v2 = 0, which is



2.5 problem formulations 6

exactly the equation obtained in the first index reduction pro-
cess using the differentiation index. Augmenting the pendulum
with this equation yields a new system with a new condition:
v2

1 + v2
2 − λ(p2

1 + p2
2) − p2ggrav = 0. This is again the same re-

sult obtained via the differentiation reduction. It is only if these
additional constraints are fulfilled that the system has a solution.

2.5 problem formulations

The solver package comes with routines for solving six types of
DAE systems. The solver routine is able to handle implicit first-
order index 1 systems:

F(t, y, y′) = 0, (10)

quasilinear index 1 and 2 systems:

A(t, y)y′ + B(t, y)λ = f (t, y)

g(t, y) =0,
(11)

where index 1 and 2 corresponds to B = 0 and B 6= 0 respec-
tively, and quasilinear index 3 systems:

A(t, y, y′)y′′ + B(t, y, y′)λ = f (t, y, y′)

g(t, y, y′) =0.
(12)

The solver also contains routines for working with two special
cases of (12), namely problems with non-holonomical constraints
of index 2 as well as Euler-Lagrange equations of index 3. These
correspond to systems where the matrix B has a certain relation
to the constraint equations. In the case of non-holonomical prob-
lems, the system takes the form

A(y)y” +
dgT

dy′
λ = f (t, y, y′),

g(t, y, y′) =0.
(13)

In the second case, the system is usually given by

A(y)y” +
dgT

dy
λ = f (y, y′),

g(y) =0.
(14)



2.6 solver details 7

These systems frequently arise from the modeling of multibody
systems. In the case of Euler-Lagrange problems the system typi-
cally has a different form, and the interested reader may find the
derivation from the original equations in [CKL12]. This system is
generally of index 3 making it extra interesting as higher-index
problems are typically more difficult to deal with compared to
their lower-index counterparts.

2.6 solver details

The solver performs computations using the different parts of
the DAE system separately, so it requires access to A, f , g, and
B. It also works with the derivative of the constraint equation dg,
and in the case of index 3 problems it uses the second derivative
with the state derivative applied twice: d2g(y)(y′, y′). The sec-
ond derivative, d2g(y), is a rank 3 tensor where the elements are
d2gijk =

∂2gi
∂yj∂yk

. The application of the state derivative yields first
a rank 2 tensor, and subsequently the second application yields
a rank 1 tensor.

The solver also requires a certain structure regarding the deriva-
tive matrices. Regardless of whether or not the system is time-
invariant, the solver requires the derivative with regard to time.
As such, time-invariant problems will end up with matrices con-
taining columns of zeros. In a theoretical, time-independent sys-
tem with three constraint equations and two state variables, the
matrix would take the following form:

∂g1
∂t

∂g1
∂y1

∂g1
∂y2

∂g2
∂t

∂g2
∂y1

∂g2
∂y2

∂g3
∂t

∂g3
∂y1

∂g3
∂y2

 =


0 ∂g1

∂y1

∂g1
∂y2

0 ∂g2
∂y1

∂g2
∂y2

0 ∂g3
∂y1

∂g3
∂y2

 (15)

In a similar manner, the derivative vector applied to the tensor
will contain dt

dt in the first position as either a 1 or a 0 depending
on if the problem is time-dependent.



3
W R A P P E R D E S I G N A N D I M P L E M E N TAT I O N

Rheinboldt’s solver package comes as a freestanding Fortran mod-
ule with the intention that the user writes a Fortran program
containing the necessary functions and data pertaining to the
problem. Following is a brief outline of the prerequisites needed
for the solver to work. This exists in a more detailed description
in the readme[Rhe00] .

• A main program that:

– sets problem data (i.e. number of dimensions, initial
state)

– sets solver settings (e.g. tolerance, initial step, final in-
tegration time)

– calls the solver routine

– calls the cleanup routine

• A module for global data pertaining to the problem

• A subroutine daefct that takes a function name and the
state vectors as input, and returns the computed function
value as output

• A subroutine solout that handles output at intermediate
points during the integration

Once the solver routine is called, it runs from the initial state
until termination. A fully successful integration runs until the
final integration time. It may however be terminated earlier, for
example due to inconsistent initial values or singularities at some
point in the solution.

3.1 wrapper outline

The above mentioned prerequisites give a general idea of how
the wrapper should be implemented. The wish is to perform a
function call from Python, supplying problem information and
solver settings as input parameters. This function should return

8



3.2 problem classes 9

information and statistics regarding the simulation, as well as
a multidimensional array containing the solutions for each time
step.

To enable communication between Fortran and Python, the
Fortran-to-Python interface generator F2Py is used which allows
us to compile fortran modules into python modules. F2Py is in-
cluded in the package numpy. F2Py takes a number of Fortran
files, both source files and compiled modules, and generates a
callable Python module which allows the user to reach variables
and functions contained within the Fortran module.

The main program is embodied in the file rbdae_wrapper.f95.
This is compiled into a Python module by F2Py and enables ac-
cess to a method main that takes solver options, problem callback
functions and initial states as input, and returns the simulation
statistics as output. The resulting simulation states are available
in the nsteps × nvars array x_sol inside the module.

3.2 problem classes

Figure 1: Inheritance between the problem classes.

To represent the problems outlined in section 2.5 a set of prob-
lem classes have been created in Python. These are

• QuasiFirstOrderProblem

• QuasiSecondOrderProblem



3.3 solver classes 10

• QuasiLagrangeProblem

QuasiFirstOrderProblem is used for the index 1 and 2 problems
in (11), QuasiSecondOrderProblem is the base class for all the
quasilinear second order problems corresponding to (12) and is
inherited by QuasiLagrangeProblem as shown in figure 1. The
topmost base class is Assimulo’s cProblem.

To make use of these classes, the user needs to specify the
problem functions, the initial states and the number of algebraic
variables in the problem. To identify the algebraic variables in the
problem, use is made of Assimulo’s algvar construct which is
saved as a member variable. If this is omitted in the initialization
of the class, all variables are treated as differential. algvar is
a boolean vector where True at position k denotes that yk is a
differential variable, whereas False would denote an algebraic
variable.

In certain cases certain problem functions are unused. For ex-
ample in the non-holonomic and the Euler-Lagrange case, the
solver does not use B explicitly. In this case, the callback sent to
the wrapper is replaced with the private function _no_cb_defined.
This is a technicality which lets the wrapper accept any combi-
nation of callback functions without complaining.

The solver requires the user to specify which problem type is
being worked with. This is done through the member variable
index which as of now can take the values 1, 2, 3, eulag cor-
responding to the quasilinear problems of these indices. This is
done automatically by the problem class upon initialization.

3.3 solver classes

To use the solvers, a set of classes are developed to handle the
different problem classes.These are

• RBDAEImplicit

• RBDAEQuasi

• RBDAELagrange

The solvers inherit from Assimulo’s Implicit_ODE as can be
seen in figure 2. This class contains a method simulate that is
used to perform a simulation. The calling of the solver is done in-
side simulate via an internal function integrate which takes the



3.4 callback functions 11

Figure 2: Relationship between the solver classes.

current state and the final integration time as input and returns
the resulting computed states for all points in time. To incorpo-
rate the solver in Assimulo, each of the solvers are provided with
their own implementation of integrate that calls the wrapper.
The inheritance of Implicit_ODE gives access to a multitude of
functionality. Of these, the solvers use Assimulo’s plotting and
statistics functions.

The solvers are initialized with their corresponding problem
class via the factory class RBDAE. This class examines the problem
type and returns the proper solver.

The solver for implicit systems does not need a special prob-
lem class. It may make use of Assimulo’s Implicit_Problem. It
does however at minimum require the jacobian of the problem
function.

3.4 callback functions

The solver requires certain components of the DAE system sup-
plied as callback functions. These are the functions specified in
section 2.5. For quasilinear index 3 problems:

A(t, y, y′)y′′ + B(t, y, y′)λ = f (t, y, y′)

g(t, y, y′) =0.
(16)

In this case we require the functions A, g, dg and f . In the event
that the problem is of index 3, the solver uses the second deriva-



3.4 callback functions 12

tive of the constraint equations d2g with the state derivative y′

applied twice.
The solver routine is programmed in such a way that that it

always assumes the variable t to be a part of the state vector. This
imposes two demands on the callback functions.

• dg and d2g must contain the derivative of t regardless of
the problems dependence on t.

• The state vector applied to d2g contains dt
dt in the first posi-

tion.

If the problem is independent of the time, dt
dt is defined to be 0,

otherwise 1. The column with derivatives with regards to t will
be entirely zeros.



4
U S A G E I N S T R U C T I O N S A N D E X A M P L E S

4.1 installation

The wrapper package was developed on a 64bit OSX platform
using the following packages and softwares:

• gfortran 4.8.1

• Python 2.7.6

• numpy 1.8.0

• Assimulo 2.6

It has been tested to work with Assimulo 2.5 and 2.6. To compile
the program from source, precompile the modified files contain-
ing the solver routines before using F2Py to create the module:

$ gfortran -c dae_lib.f95 dae_solver.f95

$ f2py -m rheinboldt -c rbdae_wrapper.f95 dae_lib.o dae_

solver.o �
The -m flag decides the module name to be included in Python.
Place the resulting rheinboldt.so in the same directory as RBDAE.py
and QuasiLinearProblem.py.

4.2 usage example

To enable the usage of the solvers, import the solver factory
class RBDAE from RBDAE.py, and the problem class corresponding
to the problem from QuasiLinearProblem.py.

from RBDAE import RBDAE

from QuasiLinearProblem import QuasiFirstOrderProblem,

QuasiSecondOrderProblem, QuasiLagrangeProblem �

13



4.2 usage example 14

Following is an example of simulating the Pendulum as an Euler-
Lagrange system. The first order system in (3) written in its orig-
inal second order form:

p̈1 + λp1 = 0

p̈2 + λp2 = −ggrav

(p2
1 + p2

2 − 1)
1
2
= 0.

(17)

A, f , g, and dg can all be identified directly. The differentia-
tion of g yields the vector [0, p1, p2] where the first element is ∂g

∂t .
The multiplication of the constraint equation by 0.5, handles the
factor of 2 in front of the derivative without changing the solu-
tion. The constant ggrav is given the value 13.7503671 to make the
period of the pendulum as close as possible to 2.

The second derivative d2g is also required, and results in a 3×
3 matrix with zeros in the first column. This is then multiplied
twice with the extended derivative vector [ dt

dt , y′] with dt
dt = 0.

Using the command sim.plot() we have easy access to plot-
ting the resulting figures.

Figure 3: Pendulum states.



4.2 usage example 15

Figure 4: Pendulum states derivatives.

The following code shows how the example above is imple-
mented in Python.

from RBDAE import RBDAE

from QuasiLinearProblems import QuasiLagrangeProblem

from matplotlib import pyplot as plt

import numpy as np

def a(t, y):

return np.eye(2)

def h(t, y, yd):

rhs_0 = 0.

rhs_1 = -13.7503671

return np.array([rhs_0, rhs_1])

def g(t, y):

ind_3 = (y[0]*y[0] + y[1]*y[1] - 1.) * 0.5

return np.array([ind_3])

def dg(t, y):

dg_mat = np.zeros((1, 3))

dg_mat[0, 0] = 0. # dg/dt

dg_mat[0, 1] = y[0]



4.2 usage example 16

dg_mat[0, 2] = y[1]

return dg_mat

def d2g(t, y, yd):

d2g_mat = np.zeros((3, 3))

d2g_mat[2, 2] = 1.

d2g_mat[1, 1] = 1.

yd = np.concatenate(([0.], yd))

return np.dot(np.dot(d2g_mat, yd), yd)

y0 = np.array([1., 0., 0.])

yd0 = np.array([0., 0., 0.])

t0 = 0.0

tf = 4.0

algvar = [True, True, False]

euler_prob = QuasiLagrangeProblem(h, g, dg, d2g, a, t0, y0,

yd0, None, algvar)

euler_prob.name = ’Pendulum− Index 3 Euler−Lagrange
formulation ’

sim = RBDAE(euler_prob)

print ’ Starting simulation ’
t, y, yd = sim.simulate(tf)

print ’Simulation complete ’ �



5
R E S U LT

The solver package discussed in this thesis originally came in a
format that required the user to write a surrounding program
for handling input and output in an way dependent on this par-
ticular package. The documentation has in some cases been less
than helpful in describing the intention of certain parts of the
code as well as the mathematics surrounding it. It is clear that
the intended audience of this package is not a large one and this
may be one of the reasons why this solver has remained largely
unnoticed on the netlib repository.

The resulting wrapper has enabled access to the solver pack-
age from Python, and as such the need to write and compile a
surrounding program handling the input and output has been
removed. Python’s high-level functionality and easily readable
syntax make the solvers easily accessible.

5.1 functionality provided

The wrapper developed for this thesis provides the following
functionality:

• High-level access to 5 out of 6 solver routines

• Access to Assimulo’s plotting commands

• Access to simulation statistics

• Access to choose number of result points within the inte-
gration interval.

By giving Assimulo access to the solver the simulation results
may now be plotted, saved and reused as needed. The original
code wrote the results to a file that would then have to be read
manually or parsed, and any data in the memory was discarded
as the program terminates. The implementation of the solver for
non-holonomical problems should be trivial but was left out in
favor of prioritizing other tasks.

17



5.2 suggestions for future development 18

5.2 suggestions for future development

The solvers were developed in a stand-alone manner. Full inte-
gration with Assimulo is still on the todo-list, and following is a
set of suggestions for future development.

1. Integrate the problem classes with special_system

2. Adding the solver class into the library

3. Examine whether three separate problem classes are neces-
sary to cover all the cases

4. Examine the solver classes with the same intention

5. Handle the result of the second derivative in index 3 cases

6. Develop an installation script

5.2.1 Integration with special_system

The problem classes are suitable to include in the problem gener-
ator special_system. This means Assimulo can keep it’s general-
ized problem description so that the user can obtain the problem
form suitable for the solver they want to use. Doing this will also
remove further obligation from the user with regard to choosing
the correct problem class, and they may focus on the mathemat-
ical model.

5.2.2 Integration with the library

The solver is developed as a stand-alone class. To make it a part
of Assimulo it needs to be fitted into the solver library under the
package assimulo.solvers.

5.2.3 Examine the need for multiple solver and problem classes

During the development, the classes describing the problems
and the classes handling the solvers have taken various forms as
details surrounding both the extension of Assimulo and working
with the solver code have emerged. In its current state, the prob-
lem classes describe problems from a mathematical point of view
with one class for first order problems, one class for second order



5.2 suggestions for future development 19

problems and one for the special case of Euler-Lagrange. It might
be of interest to keep the amount of classes as few as possible, es-
pecially with regard to the interest of using the special_system

class to generate the correct problem.

5.2.4 Handle the result of the second derivative

In the index 3 cases, the solver also returns results for the second
derivative of the state vector, y′′. Assimulo does not as of now
handle these results in any way, and they are left forgotten.

5.2.5 Develop an installation script

The compilation of the solver and the generation of the wrapper
is as of now done manually via the commands outlined in sec-
tion 4.2. Fortran is platform-dependent and should preferably be
compiled from source. An installation script should be created
which can be used by Assimulo.



Part I

A P P E N D I X



B I B L I O G R A P H Y

[CKL12] Sumit Jain C. Karen Liu. A Quick Tutorial on Multi-
body Dynamics. Online tutorial, June 2012. (Cited on
page 7.)

[CLP08] S. L. Campbell, V. Hoang Linh, and L. R. Petzold.
Differential-algebraic equations. Scholarpedia, 3(8):2849,
2008. revision 91199. (Cited on page 3.)

[EES08] Claus Führer Edda Eich-Soellner. Numerical Methods in
Multibody Dynamics. Self-published, 2008. (Cited on
pages 2 and 3.)

[Pet82] Linda R. Petzold. Differential-Algebraic Equations are
not ODE’s. SIAM J. Sci. Stat. Comput., 3(3):367–384,
1982. (Cited on page 4.)

[PJR02] Werner C. Rheinboldt Patrick J. Rabier. HAND-
BOOK OF NUMERICAL ANALYSIS, VOL VIII, chap-
ter Theoretical and Numerical Analysis of Differential-
Algebraic Equations, pages 183–540. Elsevier Science
B.V., 2002. (Cited on page 3.)

[Rhe84] Werner C. Rheinboldt. Differential-Algebraic Systems
as Differental Equations on Manifolds. Mathematics of
Computation, 43(168):473–482, October 1984. (Cited on
page 5.)

[Rhe00] Werner C. Rheinboldt. Solver package readme, Novem-
ber 2000. (Cited on page 8.)

21



Bachelor’s Theses in Mathematical Sciences 2014:K12

ISSN 1654-6229

LUTFNA-4002-2014

Numerical Analysis

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/


