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Abstract 

Due to their high specificity against target antigens, monoclonal antibodies (mAbs) 
have proven to be a very powerful tool for diagnostic and therapeutic purpose against 
several diseases. Currently there are over 26 mAb approved for therapeutic use by 
the FDA. The manufacture of mAbs is a complex process where purification plays a 
key role. This project proposes and simulates a purification process based on an 
array of chromatographic columns. The different employed columns were modelled 
by kinetic dispersive models using parameters from available bibliography as well as 
some assumptions. The proposed method consists of five columns connected in 
series and offered arguably good results with a purity and yield of the target mAb 
of~90% and ~85% respectively. 
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Summary 

Monoclonal antibodies are a group of molecules with growing interest in the 
pharmaceutical industry. The different variations of this biomolecules are capable of 
identifying and binding to a wide variety of targets such as viruses, cancer cells or 
other agents causing diseases. This makes monoclonal antibodies a very powerful 
tool for diagnosis and therapy of diseases. 

One of the critical steps in the manufacture of monoclonal antibodies is the 
purification process. The purpose of this work is to define a purification process and 
simulate it to predict the expected results. 

In order to purify the target antibody it must be separated from the impurities present 
in the initial solution, which is achieved by using chromatographic columns which 
retain the different components more or less time depending on physical and 
chemical interactions, this means that some components will leave the column earlier 
while others will take longer allowing us the separate the target antibody from the 
impurities. 

These different columns separate the components on the basis of their different 
charge, affinity to bind to a biomolecule and the different size of the components. 

The simulated purification process consists of five different columns connected in 
series where the outflow of one column continuously feeds the next one.  

This simulation showed promising results as over 90% purity was reached with a high 
yield of product and there is margin to refine the process. 

  



vi 

 

Table of contents 

1. Introduction ..................................................................................................................... 1 

1.1. Aim .......................................................................................................................... 1 

1.2. Immunoglobulin G .................................................................................................... 1 

1.2.1. Aggregation ...................................................................................................... 2 

1.2.1.1. Aggregation during cell culture ................................................................... 2 

1.2.1.2. Aggregates during purification ................................................................... 2 

1.2.1.3. Aggregate removal by means of chromatography ...................................... 3 

2. Separation methods ........................................................................................................ 4 

2.1. Non-chromatographic methods ................................................................................ 4 

2.1.1. Precipitation ...................................................................................................... 4 

2.1.2. Liquid-Liquid extraction ..................................................................................... 4 

2.1.3. High performance tangential flow filtration ........................................................ 4 

2.2. Chromatographic methods ....................................................................................... 4 

2.2.1. Fluidized bed and fixed bed chromatography .................................................... 4 

2.2.2. Size exclusion chromatography ........................................................................ 4 

2.2.3. Anionic ion exchange chromatography ............................................................. 5 

2.2.4. Cationic ion exchange chromatography ............................................................ 5 

2.2.5. Hydrophobic interaction chromatography .......................................................... 5 

2.2.6. Affinity chromatography .................................................................................... 5 

2.3. Proposed purification setup...................................................................................... 6 

3. Theory and mathematical modelling ............................................................................... 8 

3.1. Affinity Chromatography .......................................................................................... 9 

3.1.1. Affinity Chromatography Model ......................................................................... 9 

3.1.2. Affinity Chromatography Parameters .............................................................. 10 

3.2. Size exclusion chromatography ............................................................................. 12 

3.2.1. Size Exclusion Chromatography Model .......................................................... 12 

3.2.2. Size Exclusion Chromatography Parameters .................................................. 12 

3.3. Ion Exchange ......................................................................................................... 14 

3.3.1. Cationic Ion Exchange .................................................................................... 14 

3.3.2. Cationic Ion Exchange Parameters ................................................................. 14 

3.3.3. Anionic ion exchange ...................................................................................... 15 

3.3.4. Anionic Ion Exchange Parameters .................................................................. 16 

3.4. Alternative models ................................................................................................. 17 

3.5. Connections between columns .............................................................................. 18 

3.5.1. Pool definition ................................................................................................. 18 

3.5.1.1. Pool based on main component purity ..................................................... 18 

3.5.1.2. Pool based on pH .................................................................................... 18 



vii 

 

3.5.1.3. Pool based on salt concentration ............................................................. 18 

3.5.2. Load definition ................................................................................................ 19 

3.5.2.1. Polynomial Interpolation: ......................................................................... 19 

3.5.2.2. Linear spline ............................................................................................ 20 

3.5.2.3. Cubic spline ............................................................................................. 21 

3.5.2.4. Gaussian function .................................................................................... 23 

3.5.2.5. Implementation ........................................................................................ 24 

4. Results and discussion ................................................................................................. 25 

4.1. First step (AC) ....................................................................................................... 25 

4.2. Second step (SEC) ................................................................................................ 27 

4.3. Third step (CIEX) ................................................................................................... 28 

4.4. Forth step (SEC) .................................................................................................... 30 

4.5. Last step (AIEX) .................................................................................................... 31 

4.6. Further work .......................................................................................................... 32 

4.6.1. Process optimization ....................................................................................... 32 

4.6.2. Adopting an heterogeneous model ................................................................. 32 

4.6.3. Develop the first SEC to resemble a virus deactivation step ........................... 32 

4.6.4. Scale up ......................................................................................................... 32 

4.6.5. Add mixing tanks in the process ..................................................................... 32 

4.6.6. Developing anion exchange model ................................................................. 32 

4.6.7. Modelling aggregation effects ......................................................................... 32 

5. Conclusion .................................................................................................................... 33 

6. References ................................................................................................................... 34 

7. Appendices ................................................................................................................... 36 





1 

 

1. Introduction 

1.1. Aim 

The aim of this work is to define, model and simulate a method of purification of monoclonal 

immunoglobulin G (IgG). The entire process is to be based on chromatographic methods and 

the solution is expected to produce a good yield of IgG with high purity. 

1.2. Immunoglobulin G 

Antibodies or immunoglobulin are Y-shaped proteins which form part of the immune system. 

Their role is to identify and neutralize pathogens. They are rather big proteins with a 

molecular weight that can be estimated to 150kDa.  

All the immunoglobulins have a common structure with two identical heavy chains and two 

identical light chains. A disulphide bond, binds each light chain with one of the heavy chains, 

the heavy chains are also joint together by disulphide bonds [1]. 

The molecule can be divided into two fragments, the Fab-fragments which contains variable 

region of the light chains and the heavy chains, and the Fc-fragment. 

The tip at the end of the heavy and light chains in the Fab-fragment combine to form two 

identical antigen binding sites, this is the part of the antibody that binds to the target antigen. 

This variable region allows for many possibilities thus the immune system is capable identify 

a wide range of antigens due to the great diversity of antibodies. The part of the antigen where 

the antibody binds is named epitope [1]. 

Depending on the heavy chains of the antibody they can be classified into isotypes. The 

isotype which is object of this study is IgG. This immunoglobulin is the most abundant 

antibody found in humans and they are generated by plasma cells. 

 

Figure 1 Immunoglobulin G structure 

The purpose of this project is purifying monoclonal IgG. Monoclonal antibodies (mAbs) are 

those who are made by identical immune cells. The distinct feature of mAbs is that they have 

affinity to a single antigen this means they can target disease causing organism with high 

selectivity. This means different mAbs can be used to treat or diagnose a wide range of 

diseases such as cancer or auto immune diseases. 
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1.2.1. Aggregation 

Protein aggregation is a phenomenon that occurs during the different steps of protein 

production and affects the quality, safety and efficacy of the product. The mechanism of 

aggregation is poorly understood [2]. These aggregates appear initially as dimers and then 

grow into larger structures. 

The difference between the biological activity between the aggregates and the monomeric 

protein can significantly affect the potency of the protein based drug [3]. Also proteins 

aggregates can result in immune responses to the therapeutic product. [4]. 

There are no defined limits for the maximum allowable aggregate levels in protein-based 

drugs since the effect of these aggregates on final product depends on the product itself. The 

only limitation described in the US pharmacopeia and European pharmacopeia refers to sub-

visible particles “Solutions for injection must be clear and practically free from particles”. [2] 

Therefore those limits must be specified for each product drug. 

As they are proteins mAbs also suffer from aggregation. Aggregates can form during the 

various steps of monoclonal antibody manufacturing processes. 

1.2.1.1. Aggregation during cell culture 

Cell culture is the step where cells are grown to produce target molecule. Aggregation in this 

step is a common phenomenon; the aggregate levels during this step for monoclonal 

antibodies have been reported up to 30% in some cases [6]. 

1.2.1.2. Aggregates during purification 

In order to purify monoclonal antibodies they go through a variety of steps based on different 

methods: this incur in variations of pH, ionic strength, concentration but the proteins also 

suffer mechanical stresses and are in contact with different materials. All of this has different 

effects on protein aggregation. 

 pH conditions: A widely used step in antibody purification is protein A 

chromatography. This method requires a low pH. At low pH proteins might undergo 

structural changes that could contribute to product aggregation [7]. 

Another during the antibody purification that requires low pH is the virus inactivation 

step. 

 Salt buffers: Salt buffers have complex effects on protein stability. Depending on the 

concentration, salt type and ionic strength this might have a stabilizing or destabilizing 

effect on the protein. 

 Agitation also increases the effect of aggregation. 

 Pumping: During the purification of the antibodies the use of pumps is quite 

extensive especially in steps that require flow control such as chromatography [2]. 

This leads to mechanical stresses that might enhance the effect of protein aggregation. 

 Ultrafiltration, Final filling, Freeze-Thaw and Storage: During the last steps of the 

manufacture aggregation might also occur and since the aggregates are to be removed 

in the previous purification steps it’s important to reduce the formation of aggregates 

in these last steps. 
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1.2.1.3. Aggregate removal by means of chromatography 

Chromatography is the mean by which aggregates are to be removed. The first 

chromatographic column in the antibody purification process is normally an affinity 

chromatography column. This step is not capable of removing aggregates since they might 

bind to the column similarly to antibody. 

The methods that have been demonstrated useful for the removal of aggregates are anionic 

and cationic ion exchange [2]. 

As the aggregates form bigger molecules than the monomer, size exclusion chromatography 

might also be a valid method for the removal of aggregates, but it is considered inefficient due 

the poor resolution of aggregates from the monomer. [8]. 

It is also possible to separate aggregates based on hydrophobicity using hydrophobic 

interaction chromatography methods, as the hydrophobicity of the antibody molecules 

increases with aggregation [2]. 
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2. Separation methods 

2.1. Non-chromatographic methods 

Even though, the process described in this work is based entirely in chromatographic methods 

it might also be worth mentioning the trends in the different non-chromatographic methods 

that are employed in antibody purification processes. 

2.1.1. Precipitation 

Monoclonal antibodies can be purified by precipitation; this process is based on the addition 

of polyethylene glycol (PEG) and ammonium sulphate to separate the mAb from the liquid 

phase. This is an interesting method since it concentrating an antibody with such a method 

offers the best volume reduction any purification method can offer. 

This process is used in lab-scale purification of IgG from bovine, human serum and 

mammalian cell culture supernatants [9]. 

2.1.2. Liquid-Liquid extraction 

Liquid-Liquid extraction is a technique based on transferring objective antibody from one 

solvent into another. This method can be used as IgG has a tendency to transfer from an 

aqueous solutions into a hydrophobic PEG-rich phase, this can achieve a purity of IgG up to 

70-95% and a yield of IgG higher than 95% [9]. 

2.1.3. High performance tangential flow filtration 

A method proposed by van Reis [10] consist on a charged ultrafiltration (100-300kDa) that 

can be used to purify IgG in acidic conditions, the proposed membrane would repel the 

positively charged IgG even if it were able to pass the membrane. 

2.2. Chromatographic methods 

2.2.1. Fluidized bed and fixed bed chromatography 

In a fluidized bed chromatography the particles are dispersed in a liquid medium as opposed 

to fixed bed chromatography. Operation of fluidized bed is more complex than that of fixed 

bed but it has the benefit that it allows the purification from unclarified feed stocks such as the 

cell culture media or fermentation broths [11]. 

On the other hand fixed bed chromatography remains the most widely used method [9]. 

Applications are normally run with a single bed whose dimensions can be increased if more 

capacity is required. These report simulated fixed be chromatography columns as these are 

less complex systems and it was assumed that the feed stock was previously clarified. 

2.2.2. Size exclusion chromatography 

Size exclusion is purification method based on the different size on the molecules to be 

separated. A size exclusion column is filled with porous particles of a determined pore size, 

which means that if the pore size is small enough it should allow separating molecules 

between those big enough to fit into the pores and those that cannot enter them. The smaller 

particles will diffuse through more space into the column and therefore will have a higher 

retention time. 
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Since monoclonal antibodies such as IgG have large molecular weight (about 150kDa) size 

exclusion is an effective method to separate these particles from smaller impurities. The 

problem with the size exclusion method is that since it is not an adsorption based method the 

productivity is low, and feed volumes are also required to be low >4%(column volume)[12] in 

order to produce effective separation. 

Due to the different size nature of antibodies and its aggregates it could be expected that size 

exclusion (SEC) would be a good method to separate them but this process offers low 

productivity [9] and resolution [8]. 

In this project however, size exclusion chromatography columns are used in the purification 

process in order to increase the pH after the protein A column and to reduce the salt content 

after the Ion exchange column. 

2.2.3. Anionic ion exchange chromatography 

Depending on the product to be purified anionic ion exchange (AIEX) column can be run two 

different modes. For example Murine IgGs are run in bind-elute mode since good binding 

conditions can be achieved at pH 8-8.5 , for Human and chimeric IgGs flow-through mode is 

used instead since they do not bind to the column[9]. 

In this project anionic ion exchange was used as the last step in flow-through mode in order to 

eliminate the remaining aggregate concentration, as the aggregates were assumed to bind 

more strongly to the column. 

2.2.4. Cationic ion exchange chromatography 

Antibodies have a relatively high isoelectric point that means they are protonated and have a 

positive charge at not to low pH values.  For that reason cationic ion exchange is (CIEX) 

normally used in bind-elute mode. 

In industrial antibody manufacture processes, cationic ion exchange is a commonly used 

method as a second purification step following protein A affinity chromatography [12]. 

In order to enhance the elution, salt gradients are the most commonly used, but elution by 

means of pH gradients are also possible, or even a combination of both. 

In this project the process flow was driven through a cationic ion exchange column after an 

affinity chromatography column and a size exclusion column to settle the pH. 

2.2.5. Hydrophobic interaction chromatography 

As opposite to the other chromatographic methods based on adsorption, hydrophobic 

interaction chromatography (HIC) is entropically driven [12] and is used to separate the 

antibody from its aggregate forms based on hydrophobicity as the aggregate forms are more 

hydrophobic. This method is not used in the setup studied at this work as an AIEX column is 

used as a final step to remove the aggregates instead of HIC column. 

2.2.6. Affinity chromatography 

Affinity chromatography separates proteins on the basis of interaction between proteins and a 

specific ligand linked to the chromatographic matrix.  It can be used as long as a suitable 

ligand is available for the protein. 

The target protein is bound to a complementary substance, the ligand. The material which is 

not bound is washed away and once that is done the conditions are changed to enhance 
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desorption, by changes in pH, ionic strength or polarity. In this project, desorption is 

enhanced by a pH reduction. 

In order to purify IgG both Protein A and Protein G based columns can be used as IgG is able 

to bind to both, in this Protein A affinity column was modelled as it is the most widely used. 

However this method is not effective when separating antibodies from its aggregates or 

fragments containing the Fab region. 

2.3. Proposed purification setup 

The setup studied consisted of a series of chromatography columns, in this setup the process 

flow is run continuously from a column to the next which means that the product from a 

column is the fed into the next column without an intermediate mixing step. 

The purification consists of five steps; all of them based on chromatographic methods, and 

can be seen in the following picture. 

Protein A Affinity

Size exclusion 

Cationic Ion 
exchange

Size exclusion

Anionic ion 
exchange

 

Figure 2 Process setup 

The first step is an affinity chromatography column; this column is feed with the fresh feed 

containing the solution of IgG. It is assumed to be previously clarified so there are not cell 

debris and lipids present. 

The column is expected to efficiently separate the IgG from impurities but not from the 

aggregates. It runs in bind-elute mode which means that the feed is loaded with binding 

conditions i.e. pH 5 and then the eluting is driven by decreasing the pH which leads to worse 

binding of the molecules to the column and the elution of these. 
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The affinity chromatography column is followed by a size exclusion column, the purpose of 

which is to stabilize the pH so that the following cationic ion exchange column is not fed with 

an acidic pH gradient. This is important since the binding on the molecules to the cationic ion 

exchange column depends not only on the salt concentration but also on the pH. 

In normal manufacturing processes a virus deactivation step follows the affinity 

chromatography. In the virus deactivation the process flow is held during residence times 

longer than an hour at acidic conditions (pH~3). This virus simulation step can be 

implemented in the size exclusion step as long as the residence time at low pH is equal to at 

least one hour. 

The third step is a cationic ion exchange column; this column further increases the separation 

of the components, allowing higher purity of the product IgG or better yield. This column also 

runs in bind-elute mode which means that the feed from the previous column first to bind to 

the column, and then start eluding when a salt gradient is applied. 

The forth step is another size exclusion column the purpose of which is to reduce the salt 

concentration at the outlet of the cationic ion exchange. This is done by means of a size 

exclusion column as the salt ions are expected to elute later than the product due to their much 

smaller particle size. 

The last step is an anionic ion exchange column running in flow-through mode where the 

aggregates and impurities are expected to bind to the column and elute later than the product. 
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3. Theory and mathematical modelling 

There were five components modelled in this project, these are: 

 IgG: The monoclonal antibody to be purified 

 Aggregates: Dimers and other oligomers formed by IgG aggregation. Note that effect 

of aggregation during the purification process was not modelled, instead an initial 

quantity of aggregates was assumed to be loaded at the start of the purification process 

that had to be removed. 

 Other impurities: The other impurities present, were modelled as a single component. 

 Na
+
: Salt ions that form the salt buffer used in the CIEX column. 

 H
+
: pH was modelled as the concentration of H

+
 ions 

All the mathematical models were based on the dispersion model for packed beds and are in 

the form of: 

𝜕𝐶

𝜕𝑡
= 𝐷𝑎𝑥𝑝

𝜕2𝐶

𝜕𝑧2
−

𝑣

𝜀𝑇

𝜕𝐶

𝜕𝑧
−

1−𝜀𝑇

𝜀𝑇

𝜕𝑞

𝜕𝑡
       (1) 

Equation (1) takes into account the effect of dispersion, convection and adsorption. The 

adsorption term and the convection term are calculated differently for each column. But the 

dispersion is calculated the same way in all the cases. 

This dispersion term corresponds to: 

𝐷𝑎𝑥𝑝
𝜕2𝐶

𝜕𝑧2          (2) 

In order to include this dispersion term into the simulation the apparent dispersion coefficient 

must be known. This was calculated based on 

𝐷𝑎𝑥𝑝 =
𝑣·𝐿

𝑃𝑒
          (3) 

The characteristic length 𝐿 in a packed bed is the particle diameter, Peclet number was 

assumed to be 𝑃𝑒~0.35 for all the columns. 

Therefore apparent axial dispersion could be calculated as equation 4 shows: 

𝐷𝑎𝑥𝑝 =
𝑣·𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

0.35
         (4) 

The total porosity 𝜀𝑇 is defined as 

𝜀𝑇 = 𝜀𝑐 + (1 − 𝜀𝑐) · 𝜀𝑃        (5) 

Where 𝜀𝑐 is the column porosity and 𝜀𝑃 is the packing porosity. 
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3.1. Affinity Chromatography 

The affinity chromatography column separates the target IgG from the impurities based on 

their affinity to protein A. The binding of IgG to the chromatographic column is modified by 

the pH value. 

This method is not effective in order to separate the antibody from its aggregates, as both are 

expected to bind similarly to the column. Also the low pH inside the affinity column might 

enhance the effect of aggregation however this effect is not modelled. 

3.1.1. Affinity Chromatography Model 

In order to simulate the affinity chromatography column a transport-dispersive model 

proposed by Candy K.S and others [13] was used. This model is a lumped parameter model 

that considers diffusion which is often the rate-limiting step in protein separation [14, 15]. 

The model used is a dispersion model that assumes homogeneity in the radial axis, isothermal 

adsorption and lumped coefficients for axial dispersion and mass transfer resistances [16]. 

The employed kinetic equation for the column can be described as: 

𝜕𝐶

𝜕𝑡
= 𝐷𝑎𝑥𝑝

𝜕2𝐶

𝜕𝑧2 −
𝑣

𝜀𝑇

𝜕𝐶

𝜕𝑧
−

1−𝜀𝑇

𝜀𝑇

𝜕𝑞

𝜕𝑡
       (6) 

𝜕𝑞

𝜕𝑡
= 𝑘𝑚(𝑞∗ − 𝑞)         (7) 

The mass transfer coefficient was to be calculated following the empirical correlation: 

𝑘𝑚 = 𝑘𝑚𝑎𝑥 [𝑆1 + (1 − 𝑆1) (1 −
𝑞𝑅

𝑞𝑚𝑎𝑥,𝑅
)

𝑆2

]      (8) 

In order to calculate the absorption isotherm two different approaches were taken into 

consideration. 

For the target component IgG and the aggregates, it was defined as a Langmuir adsorption 

isotherm with pH as a modifier: 

𝑞𝑖𝑔𝐺
∗ =

𝑞𝑚𝑎𝑥·𝐾𝐴·(
𝑝𝐻

𝑝𝐻𝑟𝑒𝑓
)

𝑛

𝐶𝐼𝑔𝐺

1+𝐾𝐴·(
𝑝𝐻

𝑝𝐻𝑟𝑒𝑓
)

𝑛

𝐶𝐼𝑔𝐺

        (9) 

However for the impurities a linear adsorption isotherm is considered instead: 

𝑞𝑖𝑚𝑝
∗ = 𝐻 · 𝐶𝑖𝑚𝑝         (10) 

The boundary conditions were defined as a no-flux boundary condition on the right end 

eq.(11) of the column and a Dirichlet condition on the other end eq.(11) where the 

concentration in that boundary is set to the concentration of the feed to the column. 

𝐶|𝑍=0 = 𝐶𝑓𝑒𝑒𝑑          (11) 

𝜕𝐶

𝜕𝑡
|

𝑍=𝐿
= 0          (12) 
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The initial conditions for the column defined as a solute concentration of 0 and a pH of 5 

which is also the pH of the load. 

3.1.2. Affinity Chromatography Parameters 

The physical parameters of the column to be simulated were set to match the manufacturer 

specification of “HiTrap MAb Select SuRe” columns [16]. 

Therefore the average diameter of the particles 𝑑𝑝 was set to 85μm, the column length and 

column diameter were also set to 25mm and 7mm respectively. 

The required empirical parameters for the model were taken from Candy K.S, and others 

article [13]. 

Table 1 Affinity chromatography parameters 

Parameter Symbol Units Value 

Total porosity εT 

 

0.8 

Maximum binding capacity qmax g·L
-1

 73 

Association equilibrium constant KA L·g
-1

 6.1 

Linear isotherm constant H 

 

1.6 

Maximum lumped mass transfer 

coefficient kmax s
-1

 1.6 

Saturation dependent kinetic constant S1 

 

0.26 

Saturation dependent kinetic order S2 

 

4 

pH dependent equilibrium order n   16.6 

 

The AC column is the first column in the purification process, and therefore the only column 

where fresh feed was simulated. The running conditions for the simulation were based on 

Thomas Müller-Spath and Massimo Morbidelli article [7]: 

The feed into this column consist of 0.1 column volumes of a solution with the following 

characteristics: 

 0.4 g/L IgG 

 0.1 g/L Aggregates 

 0.1 g/L Other impurities 

 pH 5 

 0 g/L of Na
+
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The flow velocity in the column was set to 300 cm/h the concentration of IgG in the feed was 

set to 0.4 g/L the amount of feed loaded into the column was defined as 0.1 CV and the pH 

gradient during the elution was set from 5 after the load to 3 on a linear function over 300 

seconds. 
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3.2. Size exclusion chromatography 

In this work, size exclusion columns were employed in the purification process to stabilize 

and increase the pH from the AC column to the CIEX column and to reduce the salt 

concentration after the CIEX. 

3.2.1. Size Exclusion Chromatography Model 

The size exclusion columns were also modelled by means of a dispersion model. The main 

difference between the size exclusion column and the other kinds modelled (IEX and AC) is 

that there is no adsorption occurring in the column. This means that the separation is purely 

based on the total porosity of the column for each component and rate of diffusion into the 

particles. 

Since the model used in this project for the size exclusion is dispersion model that means 

homogeneous concentration in the radial axis is assumed. The dispersion equation describing 

the model follows: 

𝜕𝐶

𝜕𝑡
= 𝐷𝐿

𝜕2𝐶

𝜕𝑧2 −
𝑣

𝜀𝑇

𝜕𝐶

𝜕𝑧
         (13) 

It’s important to note that in this model that even though the column void is the same for all 

components the total porosity is different for each one as the packing porosity is also varying. 

This is done in order to reflect that the smaller particles can also get inside the particles 

whereas the bigger particles cannot. 

Similarly to the affinity chromatography the boundary conditions for the model are set to no-

flux (Von Neuman) to the right end, and Dirichlet condition on the left end, so the 

concentration of each component on the boundary are set to the values of the feed. 

𝐶|𝑍=0 = 𝐶𝑓𝑒𝑒𝑑          (14) 

𝜕𝐶

𝜕𝑡
|

𝑍=𝑍
= 0          (15) 

The initial conditions are set as an absence of solutes and a pH of 7, which is inside the 

working range for this kind of column [3-12]. 

3.2.2. Size Exclusion Chromatography Parameters 

For this column the physical parameters are set to match those of “Superdex 200 Increase 

10/300 GL” specified by the manufacturer [18].  That is a column length of 300mm, a column 

diameter of 16mm and an averaged particle diameter of 8.6μm. 

The void volume of the column was assumed as 0.3 of the total volume. And the packing 

porosity was also set to different values for each component. 

The packing porosity for the IgG was assumed to 0.2 since it has a molecular weight of 

150kDa it should not be able to diffuse properly into the pores. 

For the first impurity considered which the molecules are smaller than IgG this value was 

estimated to 0.6. 

The third impurity was meant as the molecules bigger than IgG such as dimer and other 

oligomers formed as a result of the aggregation, for that case the packing porosity was set to 

0.15 as they shouldn’t be able to enter the particles properly. 
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Lastly the packing porosity for the Na
+
 and H

+
 ions was set to 1 as these are expected to small 

enough to diffuse into all the pores present in the particles of this column. 

The flow rate speed was set to the optimum flow rate defined by the manufacturer [18] of 

57cm/hr. 
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3.3. Ion Exchange 

Ion exchange chromatography is a method that allows the separation of components based on 

ionic interactions. This technique of separation can be used as long as we are treating with 

charged particles. 

Due to the low and high pI of IgG respective forms this method of purification can be used as 

IgG does require neither too low pH values to be positively charged nor too high pH values to 

be negatively or positively charged. 

3.3.1. Cationic Ion Exchange 

The anionic exchange column was modelled by means of a dispersion model. The proposed 

model is a lumped kinetic model [19]. The kinetic equation for the column follows: 

𝜕𝐶

𝜕𝑡
= 𝐷𝑎𝑥𝑝

𝜕2𝐶

𝜕𝑧2 −
𝑣

𝜀𝑇

𝜕𝐶

𝜕𝑧
−

1−𝜀𝑇

𝜀𝑇

𝜕𝑞

𝜕𝑡
       (16) 

A linear driving force is assumed for the mass transfer i.e. a constant lumped mass transfer 

coefficient "𝑘𝑚" is used in the equation that describes the adsorption. 

𝜕𝑞

𝜕𝑡
= 𝑘𝑚(𝑞𝑖

∗ − 𝑞𝑖)         (17) 

The adsorption equilibrium curve is defined by competitive Langmuir isotherm. 

𝑞∗ =
𝐻𝑖·𝐶𝑖

1+∑
𝐻𝑖

𝑞𝑠𝑎𝑡,𝑖
·𝐶𝑖

𝑛
𝑖=1

         (18) 

The Henry coefficients are defined as a power function based on the salt concentration [19]. 

𝐻𝑖 = 𝛼1,𝑖 · 𝑐𝑠𝑎𝑙𝑡

𝛼2,𝑖          (19) 

As in the other columns the boundary conditions were defined as a no-flux boundary 

condition on the right end of the column and a Dirichlet condition on the other end where the 

concentration in that boundary is set to the concentration of the feed to the column. 

𝐶|𝑍=0 = 𝐶𝑓𝑒𝑒𝑑          (20) 

𝜕𝐶

𝜕𝑡
|

𝑍=𝑍
= 0          (21) 

The initial conditions for the column defined as an initial concentration of 𝑁𝑎+ of 0.0025 mol 

L
-1

 and a pH of 6. 

3.3.2. Cationic Ion Exchange Parameters 

The column physical parameters were taken from the data provided by the manufacturer of 

“POROS HS 50” columns [21]. That is a column length of 10cm, a column diameter of 1.2 

cm and an average particle diameter of 50μm. 

The porosity, mass transfer and Henry coefficients found by T.Müller-Späth et al. [19] are set 

as: 
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Table 2 CIEX paramters 

Parameter Symbol Units Value 

Porosity for IgG and impurities εT 
 

0.58 

Mass transfer coefficient kM min
-1

 3.3 

Saturation capacity qsat g·L
-1

 110 

 

Table 3 CIEX Henry coefficients 

Component α1 α2 

IgG 94708 -6.34 

Impurity 1 312000 -6.34 

Impurity 2 6660 -6.34 

NaCl 2 0 

 

The concentration of salt in the load was defined as 0.0025 mol L
-1 

after the load is finished 

the salt gradient starts, that is linear increase from 0.0025 to 0.25 mol L
-1

 over 600 seconds. 

The flow rate of the column was set to 300cm/hr. 

3.3.3. Anionic ion exchange 

The anionic exchange column was modelled by means of a dispersion model. As we had no 

information about the adsorption occurring in the column, the model was simplified to that of 

a size exclusion column i.e. no adsorption effects are being considered. 

𝜕𝐶

𝜕𝑡
= 𝐷𝐿

𝜕2𝐶

𝜕𝑧2 −
𝑣

𝜀𝑇

𝜕𝐶

𝜕𝑧
         (22) 

The boundary and initial conditions are defined as in the other size exclusion column 

columns. 

𝐶|𝑍=0 = 𝐶𝑓𝑒𝑒𝑑          (23) 

𝜕𝐶

𝜕𝑡
|

𝑍=𝑍
= 0          (24) 

The initial conditions for the column defined as an absence of solutes and a pH of 6. 
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3.3.4. Anionic Ion Exchange Parameters 

The column physical parameters are the same that the ones used for the size exclusion column 

but the packing porosity is set to lower for the IgG, Na
+
, H

+
 and higher for the impurities, this 

is to represent the effect of the impurities binding to the column while the IgG is supposed to 

flow through. 

The difference in a flow through simulation is that since the product leaves first the entire 

outlet of the column is collected as part of the pool until the concentration of impurities 

reaches a certain value. 
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3.4. Alternative models 

An interesting alternative to the mentioned method would be to implement heterogeneous 

model for packed beds which would take into account the effect of diffusion into the particles. 

𝜕𝐶

𝜕𝑡
= 𝐷𝑎𝑥

𝜕2𝐶

𝜕𝑧2 −
𝑣

𝜀𝑐

𝜕𝐶

𝜕𝑧
−

1−𝜀𝑐

𝜀𝑐

3

𝑅𝑝
𝑘 (𝐶 − 𝐶𝑝|

𝑟=𝑅𝑝
)     (25) 

𝜕𝐶𝑝

𝜕𝑡
=

𝐷

𝜀𝑝
(

𝜕2𝐶𝑝

𝜕𝑟2
+

2

𝑟

𝜕𝐶𝑝

𝜕𝑟
)        (26) 

Note that this model uses dispersion coefficient instead of the apparent dispersion coefficient, 

and packing porosity instead of total porosity. 

With the following boundary conditions: 

𝐶|𝑍=0 = 𝐶𝑓𝑒𝑒𝑑          (27) 

𝜕𝐶

𝜕𝑡
|

𝑍=𝑍
= 0          (28) 

𝜕𝐶𝑝

𝜕𝑟
|

𝑟=0
= 0          (29) 

𝜕𝐶𝑝

𝜕𝑟
|

𝑟=𝑅𝑝
= 𝑘 (𝐶 − 𝐶𝑝|

𝑟=𝑅𝑝
)        (30) 

This model offers a more realistic description of the process in the packed bed and would be 

especially interesting to implement as an alternative to the current SEC model since in the 

SEC there is no adsorption happening and the separation is based only on the different rate of 

diffusion into the column particles. 

However model adds complexity and drastically increases calculation times since the total 

number of mesh points employed in the finite volume method is equal to the number of mesh 

points in the column multiplied by the number of mesh points in the particles. 
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3.5. Connections between columns 

3.5.1. Pool definition 

After each column only a part of the outflow is taken and loaded into the next column while 

the rest of the outflow is thrown away. The part that is to be loaded into the next column is the 

pool. Since the different steps of the setup have different purposes three different pool types 

were defined, all of them based on Niklas Andersson simplexpooling function. 

3.5.1.1. Pool based on main component purity 

This is the pool used for affinity chromatography and Ion exchange steps. Here a required 

purity of the objective component IgG is set. The pool is the larger amount of outflow that can 

fulfil that purity requirement. 

 
Figure 3 Purity pool example 

3.5.1.2. Pool based on pH 

After the affinity chromatography step the outflow has a very acidic pH (around 3), therefore 

a size exclusion column follows previous to the ion exchange step. 

The main purpose of this column is to set the pH value to that required by the following 

Cationic Ion exchange column, which is pH 6. 

The cationic ion exchange is dependent on the pH on the pool region should also be stable. 

After this step a pool is performed with the objective of obtaining the desired pH, the impurity 

for this pool is defined as the absolute value of the difference between the concentration of H
+
 

ions and the concentration of H
+
 ions at pH 6. 

𝑝𝑜𝑜𝑙𝑖𝑚𝑝 = |𝐶𝐻+ − 10−6|        (31) 

3.5.1.3. Pool based on salt concentration 

Similarly to the previous after the ion exchange column another size exclusion column 

follows in order to reduce the salt content. In this type the impurity is defined as the salt 

content.  
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3.5.2. Load definition 

As explained before the setup to be studied consists of a series of chromatography columns. 

The initial feed flow goes into the first column and then a pool of the outflow of this first 

column is fed into the second column continuously. This process is repeated until the last 

column. 

As a result of this the inflow or into all the columns (excluding the first one), will have the 

shape of different “peaks” for each component as a result of the chromatographic separation 

in the previous column. Figure 4 shows the outflow of the first AC column as an example. 

 
Figure 4 AC IgG outflow 

In Matlab environment the data of each component outflow comes in the form of discretised 

concentration values of each component for each time value. 

Since this data was to be used in the simulation of the following column it had to be 

interpolated into a continuous function that was named load function. 

For this problem four different interpolation methods were studied, those were: Polynomial 

interpolation, Piecewise linear interpolation (Linear spline), Piecewise polynomial 

interpolation (cubic spline) and Gaussian functions with multiple terms. 

3.5.2.1. Polynomial Interpolation: 

This is a well-known method of interpolation. It consists of interpolating the data to a function 

of the form of: 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛      (32) 

The higher the n value is, the better fit is to be expected, but this will also increase 

calculations time, therefore it’s recommended to keep this value as low as possible. 

The generic curve show before was interpolated for the main component using polynomial 

interpolations with different “n” values. 
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Figure 5 Polynomial interpolation 

The figure shows the interpolation with different grade equations. It can be observed that 

lower grade polynomial interpolation offer a bad fitting but higher grade polynomial 

interpolation also show a strong effect of Runge’s phenomenon, that is oscillation at the edges 

of an interval. 

3.5.2.2. Linear spline 

One way to avoid this Runge’s phenomenon is the use of spline interpolation. Spline 

interpolation uses a function for each time interval. The simplest case of spline interpolation is 

linear spline interpolation. It has the form of: 

𝑓(𝑥) =  𝑎00 + 𝑎01𝑥     𝑖𝑓 𝑥 ∈ [𝑥0, 𝑥1]       

𝑓(𝑥) =  𝑎10 + 𝑎11𝑥     𝑖𝑓 𝑥 ∈ [𝑥1, 𝑥2]       

… 

𝑓(𝑥) =  𝑎𝑛0 + 𝑎𝑛1𝑥     𝑖𝑓 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+1]      (33) 

When using this kind of interpolation a better fit is obtained: 



21 

 

 
Figure 6 Linear interpolation 

Even though the R
2
 of this kind of interpolation is the maximum R

2
=1 this is not to be 

interpreted as an indicator of the “goodness” of the fitting since by definition spline is forced 

to pass through all the data points but the fit is not perfect as it can be seen with a more on 

detail figure. 

 
Figure 7 Lspline detail 

As it can be seen the fit is not ideal since the area below the curve which is a crucial 

parameter (the total amount of component) might not be properly defined. 

3.5.2.3. Cubic spline 

This interpolation is similar to the linear spline; it is based on the same idea i.e. using 

different functions for each segment but in this case. This offers a best fit than linear spline 
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but it is also unaffected by Runge’s phenomenon and it is still faster to calculate than very 

high degree polynomial interpolations. 

 
Figure 8 Cubic spline 

This method used functions of the form: 

𝑓(𝑥) =  𝑎𝑖0 + 𝑎𝑖1𝑥 + 𝑎𝑖2𝑥2 + 𝑎𝑖3𝑥3     𝑖𝑓 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+1]    (34) 

In the detail view it can be see that this kind of interpolation offers a curve that bends to the 

point giving a smoother and better fit. See figure 9 

 

Figure 9 Cubic spline detail 
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3.5.2.4. Gaussian function 

The last method of interpolation which was tested was using Gaussian functions with multiple 

terms. The Gaussian curves might give a good fit to the peaks as long as they are symmetric. 

The advantages of using a Gaussian curve is that it helps to mitigate the effects of noise and 

are useful to predict the curve evolution if only a few points are known, but this offer no 

advantage in the current situation since the results of simulation are not affected by noise and 

do not require extrapolation. 

A one term Gaussian function has the form of: 

𝑓(𝑥) = 𝑎 exp (−
(𝑥−𝑏)2

2𝑐2 )        (35) 

The result can be seen in the following figure: 

 
Figure 10 Gaussian function 

 

It can be seen that a bad fit is obtained with a R
2
 of 0.975 

A fit to three term Gaussian function was also performed, which has the form of: 

  

𝑓(𝑥) = 𝑎1 exp (−
(𝑥−𝑏1)2

2𝑐1
2 ) + 𝑎2 exp (−

(𝑥−𝑏2)2

2𝑐2
2 ) + 𝑎3 exp (−

(𝑥−𝑏3)2

2𝑐3
2 )  (36) 

The result is: 
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Figure 11 Three term Gaussian function 

It can be observed that the fit is significantly better and the R
2
 of this example curve can be 

calculated to 0.996 

3.5.2.5. Implementation 

After the evaluation of the different interpolation methods it was decided to adopt the cubic 

spline as an interpolation method for the load function definition. This method was chosen 

since it does not suffer the same oscillation effect than a polynomial interpolation and it offers 

better fit than a linear spline, and a Gaussian fit. Also the benefits of employing a Gaussian 

curve (noise reduction and better extrapolation) are not expected to be useful in this case. 
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4. Results and discussion 

All the different models were solved using the finite volume and Matlab® ode15s function. 

Also a three point central approximation and a two point backward approximation were used 

for the first and second order derivatives discretization respectively. 

4.1. First step (AC) 

As stated before, the first step in the purification and hence the first step in the calculation 

process is an affinity column. At this step is expected to provide good separation of the IgG 

from the small impurities but not from the aggregates. 

 
Figure 22 AC chromatogram 

As the aggregates are not at separated from IgG the pooling on this step is based on the 

amount of other impurities. This are set to a maximum of 0.05 the concentration of IgG in the 

pool. That produces a pool with the following concentrations (if it were to be homogeneously 

mixed). 

Table 4 AC pool concentration 

 
Concentration g/𝐿 

IgG 0.0356 

Aggregates 0.0089 

Other 

impurities 
0.0023 

 

As expected this step provides very good separation of IgG from a range of the impurities, 

while keeping IgG productivity high. The IgG yield from this step was calculated to 0.9992. 
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In order to plot everything in the same plot the pH value was scaled down 100 times, a closer 

look can show how the pH gradient enhances the elution of the different components. 

 
Figure 13 AC chromatogram detail 
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4.2. Second step (SEC) 

This step is included to stabilize the pH of the solution that is to be loaded to the next column. 

As it could be seen from previous column, the pool obtained from this column has a pH in the 

range from 5 to 4. That load would provide bad conditions for the CIEX column as the pH 

would affect the binding to the column. 

The purpose of this column is to “displace” the pH gradient from the IgG peak. The column is 

initially loaded with a solution at pH 6 and the separation can be achieved through size 

exclusion chromatography as the H
+
 are expected to elute later than the other components 

since they can go through more space in the column due to their much smaller size. 

 

Figure 14 Size exclusion chromatogram 

As it can be seen in the previous figure, the increase in H
+
 concentration that represent a pH 

drop is displaced from the IgG concentration peak. This of course assumes that H
+ 

ions 

behave as larger molecules do in a size exclusion bed which might not be strictly true. 

As a side effect the elution volume is greatly increase due to the length of the column (30cm) 

and the slow flow rate compared to the other chromatographic methods. 

As the pH gradient has been significantly displaced the pool is capable of containing the 

totality of the IgG. This means that they yield of IgG in this purification step is ~1. 

However the concentration of all the components drop equally, since the elution volume has 

increase largely as a result of the dispersion in method that uses a much larger column (30cm) 

with slower flow rate than the other chromatographic methods. 
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4.3. Third step (CIEX) 

The cationic chromatography purification step follows. Here, IgG is expected to bind first at 

low salt buffer conditions and then elute with the salt gradient. The pH of the feed solution is 

now adequate, since a varying pH might induce variations in the binding of to the column. 

First this was simulated using a salt concentration on the initial buffer of 0.05, which lead to 

improper separation of the different components: 

 
Figure 15 CIEX chromatogram 1 

As it can be observed from fig 15 the high volume of load combined with relatively high 

initial buffer led to the components eluding even before the load had ended. This result in 

improper purification as the products elude at the same time. 

In order to avoid so the simulation was set to more strongly binding conditions i.e. an initial 

salt buffer of 0.0025 mol/L Na
+
. 

 
Figure 16 CIEX chromatogram 2 

From this last figure it can be see that a high percentage of the aggregates can be pooled 

away, and almost the totality of the other impurities can be eliminated. The reason for the 

aggregates not being able to separate completely is probably due to the fact that these might 

be positively charged similarly to the IgG at pH 6 conditions. 
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An interesting effect of this purification step is that the aggregates and other impurities peaks 

switch their respective positions towards the IgG peak. In contrast to the other methods the 

aggregates now elute later whereas the other impurities elute earlier. 

As the following columns (SEC, and AIEX in flow through mode) might displace the “other 

impurities” peak to the right (longer elution times than IgG), they are to be effectively 

removed in this step. 

Therefore the pooling requirements for this step were defined as 0.97 purity of IgG, and a 

limit of 0.005 of the non-aggregate impurities. The obtained yield of IgG was 0.952 and the 

pool elution time was reduced 588 seconds. 
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4.4. Forth step (SEC) 

As explained in the introduction the forth step is another size exclusion chromatography 

column but this one yields a different purpose. Instead of stabilizing the pH which is already 

6, this column is meant to eliminate the salt content in the pool. 

Similarly to the H
+
 ions, Na

+
 ions should be separated from the IgG in a size exclusion 

column. 

However a negative effect from the SEC column is to be expected as the aggregates might 

have shorter residence time than the IgG, and therefore elute closer than they did in the 

previous CIEX step. 

 
Figure 17 Second SEC column chromatogram 

As expected the salt gradient can be effectively separated whereas the aggregates peak is 

slightly moved towards the centre of the IgG peak. 

The pool for this step was defined so that the concentration of salt in the pool would be lower 

than 5.6·10
-4

. The yield of IgG was 0.9993 and the elution time was equal to 1052 seconds. 
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4.5. Last step (AIEX) 

The last step consists of an anionic ion exchange column running in flow through mode but as 

explained in the mathematical modelling section it is simplified to the model of a SEC, with 

modified parameters. 

The idea behind the AIEX in flow through mode is that the IgG might elude first whereas the 

aggregates and impurities are retained. 

 
Figure 18 Anionic ion exchange chromatogram 

This results in a reasonably good separation. The pool is performed so that the concentration 

of aggregates in the pool is 0.0001. 

The defined pool elution time is 897 and the obtained yield of IgG is 0.9. The concentration 

of the different components in the pool is: 

Table 5 Purification results 

 
Concentration g/L % of total 

IgG 0.0011 90.8% 

Aggregates 0.0001 8.25% 

Other 

impurities 
0.0000115 0.95% 

Salt 0.000001 0.01% 

 

The yield of IgG produced from the entire purification process can be described as: 

𝑌𝑖𝑒𝑙𝑑𝑡𝑜𝑡𝑎𝑙 = 𝑌𝑖𝑒𝑙𝑑𝑆𝑡𝑒𝑝1 · 𝑌𝑖𝑒𝑙𝑑𝑆𝑡𝑒𝑝2 · 𝑌𝑖𝑒𝑙𝑑𝑆𝑡𝑒𝑝3 · 𝑌𝑖𝑒𝑙𝑑𝑆𝑡𝑒𝑝4 · 𝑌𝑖𝑒𝑙𝑑𝑆𝑡𝑒𝑝5 = 0.856 (37) 
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4.6. Further work 

There are several points from where this project could be further developed, the most 

interesting option would be: 

4.6.1. Process optimization 

There are several parameters that could be optimized; first the pH and salt buffers and 

gradients could be optimized for either most yield or highest purity. 

Also a multivariable optimization could be performed being the purity requirements on each 

step the variables and total yield of IgG the objective. 

4.6.2. Adopting an heterogeneous model 

As mentioned in the alternatives to the mathematical models, a general model could be useful 

to implement especially for the size exclusion chromatography, as it might provide more 

accurate results. 

4.6.3. Develop the first SEC to resemble a virus deactivation step 

It was mentioned that a virus deactivation step usually follows the affinity chromatography, 

that is because a virus deactivation step requires a long residence time~1h at low pH~3. This 

step is not modelled but the first size exclusion column could be modified to accomplish this 

requirements. 

4.6.4. Scale up 

The simulation is developed around lab-scale parameters from bibliography. The work could 

be scaled up to design an industrial production level purification. 

4.6.5. Add mixing tanks in the process 

In the current process there some steps where the position of the different concentration peaks 

change position. This happens in the steps before and after the cationic ion exchange column. 

Adding a continuous stirred tank (CSTR) before the CIEX might increase the separation in 

this step on the other hand adding a CSTR after the CIEX might increase the separation in the 

following steps.  

This might however increase the overall time consumed by the process so effect on 

productivity should also be studied. 

4.6.6. Developing anion exchange model 

The anion exchange column was modelled as a modified size exclusion column, since the 

effect of adsorption into this column was unknown. Developing and implementing an anionic 

exchange model would provide more accurate results. 

4.6.7. Modelling aggregation effects 

As it was previously mentioned, aggregate formation is not implemented in the simulation. 

An initial concentration of aggregates is assumed in the first load instead. It would be 

interesting to model the effect of aggregates in the different chromatographic columns as well 

as the effect during the pumping of product from one column to another. 
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5. Conclusion 

 The purification process was successfully modelled and the results showed an IgG 

purity of 90.8% and yield of 0.856. 

 Size exclusion columns proved an effective method to stabilize the pH gradient and 

remove the salt content. 

 Some steps separate the components in different directions. In the first SEC column 

the aggregates elute faster than the IgG whereas in the following CIEX aggregates 

elute later. Adding a mixing step between the two columns instead of a continuous 

feed from one to the other is to be considered. 

 The anionic ion exchange step provides a separation of IgG from its aggregates worse 

than it was expected. Implementing a more accurate model is probably required for 

better results.  
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7. Appendices 

Table of symbols 

Latin symbols 

Symbol Definition Unit 

C Concentration g/L 

t Time s 

Daxp Apparent axial dispersion coefficient cm^2/s 

L Characteristic Length cm 

km Lumped mass transfer coefficient 1/s 

q Adsorbed solute g/L 

q* Adsorbed solute at equilibrium g/L 

kmax Maximum lumped mass transfer coefficient 1/s 

S1 Saturation dependent kinetic constant  

S2 Saturation dependent kinetic order  

qmax Maximum binding capacity g/L 

qmaxR Maximum binding capacity of all the retained solutes g/L 

qR Sum of all the retained solutes concentrations in the stationary phase g/L 

qsat Saturation capacity g/L 

H Henry coefficient  

KA Association equilibrium constant L/g 

z Spatial dimension z cm 

n Ph dependet equilibrium order  

Rp Particle radius cm 

k Mass transfer coefficient cm/s 

anm Interpolation coefficients  

a,b,c Gaussian interpolation coefficients  

   

Greek symbols 

Symbol Definition Unit 

ν Velocity cm/s 

ε Porosity  

α1 Empirical constant for Henry function  

α2 Empirical constant for Henry function  

 


