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Abstract

ECDS, Environment Climate Data Sweden, is a commitment that SMHI rendered
the Science Council of Sweden. Their purpose is to assist with search, documentation
and publication of data regarding environment and climate. ECDS offer services
for data stored in their database. One such service that very useful is THREDDS,
Thematic Realtilme Enviromental Distributed Data Service, which is a tool to
make sections from large data sets and visualize data. The purpose of this
Master’s Thesis is to combine data from different sources in ECDS portal and
create added value by co-evaluation. The essay is then used as a showcase for
ECDS.

SMHI, the Swedish Meteorological and Hydrological Institute, monitors the
deposition of many different pollutants using direct measurements and model
calculations. Data from measurement stations are often very accurate but there
are too few stations to provide knowledge about the geographic distribution
of pollutants. Therefore an important compliment to measurements are model
calculations, although these are less accurate.

SMHI uses a deterministic hierarchical model to predict deposition. The most
important component of this model is the atmospheric transport of substances
model, called MATCH, Multi-scale Atmospheric Transport and Chemistry.

To use data from a model it is important to know how well the predictions
reproduce reality. The aim of this Master’s Thesis is to perform an error analysis
of the deposition model in wet-deposition of nitrate, NO3, by comparing model
calculations with real measurements. The error is constructed as the ratio
between the model predictions and measurement data. To be able to explain the
model error a linear regression model, using a subset of the input-parameters
in MATCH as covariates, is constructed. At each observation site the same set
of covariates is used but the regression parameters are re estimated. Building a
second linear model in the spatial variation in the regression coefficient makes
it possible to predict and analyze the error everywhere in Europe. Combining
the two models results in a mixed-effect model.

Measurements data, model calculations and explanatory variables were mostly
found in the ECDS’s database. The error analysis is developed based on 149
different measurement stations and the 85×95 model grid of MATCH over
Europe. The Mixed-effect model is tested at 9 randomly selected station sites
and the results are promising.
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Populärvetenskaplig sammanfattning

Efter Tjernobylkatastrofen 1987 utvecklade SMHI en modell, MATCH, för att
sp̊ara kemikalier i atmosfären. Syftet var att studera förorenat regn i Sverige.
Idag används MATCH för att studera konsekvenser av luftföroreningar s̊a som
försurning och övergödning.

Modelldata används alltid som komplement till riktig mätdata. Mätdata fr̊an
mätstationer är exaktare men mer kostsamma än modelldata. För att använda
modelldata är det viktigt att veta hur trovärdig datan är. För att utvärdera
detta jämförs modelldata med mätdata.

Genom att använda en statistisk regressions modell, best̊aende av klimatparametrar
som kovariat, för att prediktera prediktionsfelet av MATCH kan man utvärdera
vilka och hur mycket olika klimatparametrar inverkar p̊a modellfelet.

För att använda felmodellen som en efterberarbetningsmodell m̊aste man dock
vid varje plats ha tillg̊ang till depositions mätdata och klimatdata för att beräkna
koefficienterna till kovariaten. Genom att konstruera en andra regressionsmodell
som berskriver hur koefficienterna beror av spatiala variabler, kan prediktionsfelet
av MATCH predikteras även där det inte finns deposition mätdata.

Den sammansatta felmodellen är en s̊a kallad mixed effect model och parametrarna
till denna modell har beräknats med hjälp av mätdata fr̊an 140 mätstationer
spridda över Europa, climatdata och modelldata fr̊an MATCH. Felmodellen har
sedan testats vid 9 mätstationer och resultatet är lovande.

Resultat fr̊an felanalysen visar att nederbörd är den största bidragande faktorn
till prediktionsfelet av MATCH, sedan vind, luftfuktighet och temperatur. Genom
att använda felmodellen för efterbearbetning förbättras prediktionerna avsevärt.

En vidareutveckling av examensarbetet vore att införa fler kovariat till koefficientmodellen.
Det verkar nämligen som att koefficienterna beror av mer regionala parametrar.
Landskapets utseende kan vara en avgörande faktor, är plattsen ett öppet fält,
en skogsmiljö, en bergsmiljö eller en stadsmiljö.
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tack till det akademiska bidraget och stödet i processen att skriva detta examensarbete.





Preface

This Master’s Thesis was written during the second spring term, summer and
first autumn term of 2014 at the SMHI (Swedish Meteorological and hydrological
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Chapter 1

Introduction

During the the late eighties SMHI begin development of a limited-area atmospheric
transport model called MATCH, Multiple-Scale Atmospheric Transport and
Chemistry Modeling System, to trace chemicals in the atmosphere. The development
was motivated by the accident at Chernobyl in 1987 and by the need to study
the deposition of acid rain in Sweden. In MATCH the atmosphere is divided
in to a large number of gridboxes. In each gridbox an Eulerian framework is
used to calculate the quantity of several different chemicals. Using discrete time
step the quantities of these chemicals are updated by calculation of chemical
transformations, inflow from surrounding gridboxes surface emissions from the
outflow to surrounding gridboxes or deposition to the surface.[1]

Today MATCH is a tool to study the consequences of air pollution such as
fertilization, acidification and greenhouse. The model traces components of
chemicals in a three dimensional space and predicts where they are being deposited.

In order to evaluate a deterministic model’s ability to describe reality the model
predictions are compared to measurements. Building a statistical model using,
e.g. regression, for the prediction errors allows us to evaluate how much of the
error that can be explained by each covariate . In this Master’s Thesis an error
analysis is done on MATCH. The analysis is based on a model run of MATCH
from 1980 to 2010 and measurements from 149 measurement stations in Europe.
The substance that is studied is wet-deposition (deposition by precipitation such
as rain or snow) of nitrogen.

The prediction error at each measurement station is modeled using a linear
regression model with climate covariates that are input to MATCH. The spatial
variation in regression coefficients at different stations of the covariates are then
modeled as a stochastic field with a mean depending on spatial data and a
covariance function depending on the distance between the sites. The purpose
of the coefficients model is to be able to comment on the error where there are
no measurement stations, making it possible to analyze the error everywhere in



Europe.

1.1 Outline of the report

Initially a general description of the measurement stations and the MATCH
model is accounted together with data in Chapter 2. Then a theory Chapter
follows, describing the MATCH prediction error model, variable selection and
spatial dependence. In Chapter 3 the results are presented. Discussion, conclusions
and further work are given in Chapter 4. Finally some appendices are attached;
they contain additional results which are too detailed to be included in the
results section.
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Chapter 2

Data

In this Chapter the available data is presented. Data in this report consists
of MATCH predictions, measurement data, climate data such as temperature,
pressure, humidity, wind, cloudiness and spatial data regarding the measurement
stations such as longitude, latitude, altitude and distance to coast. The climate
data make up a subset of the input parameters used by MATCH and are
here used as covariates to explain errors between MATCH predictions and
observational data.

Measurements data, model calculations and explanatory variables were mostly
found in the ECDS database. ECDS, Environment Climate Data Sweden, is a
commitment that SMHI rendered the Science Council of Sweden. Their purpose
is to assist with search, documentation and publication of data regarding enviroment
and climate. ECDS offer services for data stored in their database. One such
service that was very helpful is THREDDS, Thematic Realtilme Enviromental
Distributed Data Service, which is a tool to make sections from large data sets
and visualize data.

Lastly we explain how MATCH’s prediction error is constructed.

2.1 MATCH predictions

MATCH predictions consists of daily data within the period 1980-01-01 to
2010-12-31 from a 85 × 95 grid covering Europe as seen in Figure 2.1. The
predictions are mean nitrate deposition per square meter (g/m2) of a grid box.
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Figure 2.1: Grid of MATCH which has rotated −39.3◦ latitude and 18◦ south
pole

As seen in Figure 2.1 the longitudinal and latitudinal lines of the MATCH
gird do not comply with the bigger grid which is the ordinary coordinate system.
This is because the MATCH grid is given in a rotated coordinate system. The
surface dimensions of the grid boxes are defined in a polar coordinate system.
The atmosphere is divided uniformly according to these coordinates which
means that the boxes will not have the same euclidean size. Using the ordinary
polar coordinate system will for example result in mush smaller boxes in Sweden
than in Greece. To avoid complications in the model the base coordinates are
in a rotated coordinate system making the boxes more equally sized. All grid
boxes have surfaces smaller than 49km× 49km and do not differ much in size.
The height of the boxes depends on the pressure where the box is placed. There
are 61 levels of boxes, level one is at surface.
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2.2 Measurement

The measurement data is from EMEP’s measurement net, which consists of 315
MISU-samplers. A MISU-sampler is a lid-sampler designed to avoid dry-deposition
[4]. The measurements are given as daily concentration of nitrate in precipitation,
gram of nitrate per kilogram of water (g/kg), and the precipitation in millimeters
(mm). Given this the concentration in gram per square meter is calculated.
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Figure 2.2: Map of the stations.

Out of 315 measurement stations from EMEP only 149 stations contained
useful data of wet-deposited nitrate. The excluded stations contained either
no data at all, too little data, too little data within the period of the MATCH
simulation (1980-2010), just weekly or monthly data. There were also stations
positioned too far from the MATCH grid. Figure 2.2 shows all the stations
used for the study. A table of data regarding longitude, latitude and distance
to sea is attached in the Appendix.
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Figure 2.3: Time period when stations were active according to meta data. The
black lines are the years 1980 and 2010.

As seen in Figure 2.3 the duration of the sampling at each station varies a
lot. The periods in Figure 2.3 are according to the meta data.
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Figure 2.4: Wet deposition of NO3 at station GB06.

Within these periods there are a lot times of gaps. An example of this is
seen in Figure 2.4 where observations end in 1994, due to no rainfall or errors.
The reason why the curve in Figure 2.4 is not continuous is because no data
was captured at that time due to no rain or errors. The error analysis is only
done on captured data which means blank spaces are not concerned.

2.2.1 Climate data

The climate data is originally from a re-analysis from ECMWF called ERA40. It
contains daily data on a 96×99×61 gird in the same rotated coordinate system
as MATCH. The third dimension represents the height above surface defined
through constant pressure levels, level 61 is the lowest level, i.e the surface. The
climate data is from model calculations and represents the mean of each grid
box.

The precipitation data is given at surface level in millimeters (mm). There
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are three levels from where there is data of the temperature, surface level, level
60 and level 59. The temperature is given in Kelvin. The pressure (ps) is given
as

p = p0 + ph (2.1)

where p0 is the pressure at surface level and ph is the difference between the
surface level pressure and the pressure at level h. The unit is Pascal (Pa).
The mean humidity (qh) during a day is given at surface in kilogram water
per kilogram air (kg/kg). Wind is given as mean daily value, in meters per
second (m/s), and divided into two components, an easterly u-component and
a northerly v-component. Cloud water contents (CWC) is given in kilogram
water per cubic meter (kg/m3) at level 60. Cloud cover (CC) is the fraction of
the grid box that is covered by cloud at level 60. Total cloud cover (TCC) is
the cloud cover for all the levels together.

2.2.2 Spatial data

Longitude, latitude and altitude for the stations are given as meta data in the
EMEP and ERA40 data. Distance to coast is the smallest distance between
the station and the coast line. Coordinates for the coast line were found on
MathWorlds home page together with the altitude for sites where there are no
stations.

2.3 Constructing the prediction error

Attempts of using a linear regression model to describe the additive error were
made but variance of the residuals tended to be larger for larger errors. A
better approach is to assume that the prediction error is multiplicative and
constructing the prediction error as the ratio between the measurement data
and the prediction.
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Figure 2.5: Example of the multiplicative error (measurement data divided with
MATCH prediction) at station DE02 (prediction errors from other stations looks
similar).

As seen in Figure 2.5 the distribution is skewed and has a heavy right tail
which is hard to capture using only linear regression. To make the prediction
error easier to model Box and Cox transformation is used [5]. To evaluate
how the prediction error should be transformed the Box and Cox parameter is
calculated for the prediction error at all stations.
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In accordance with Figure 2.6 the transformation parameter is chosen to
zero, i.e the log-transform is used, at all stations.
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Chapter 3

Theory

This chapter contains theory necessary to construct the mixed-effect model used
to predict the MATCH error as well as comments on how to chose covariates.

3.1 Prediction error model

In this section the hierarchic model is presented. It consists of a site model (or
station model) and spatial models for the coefficients in the site model. The
site model is a linear regression model that describing how the log-transformed
prediction error depends on climate covariates at a each site. The spatial models
describes how the coefficients of the covariates in the site model depends on
spatial covariates. Both the models are linear for simplicity and only a selection
of the climate covariates and the spatial covariates presented in the data chapter
are used. The nonselected covariates are significantly proven to not depend
on the prediction error or the coefficients. How this selection is done will be
explained later in this chapter. Before we start we need some notations. Let t
denote the time (in days) and let s denote the position on the earth in a three
dimensional cartesian coordinate system (in mil) given by

s = f(α, φ, λ) =

(R+ α)cos(λ)cos(φ)
(R+ α)sin(λ)cos(φ)

(R+ α)sin(φ)

 (3.1)

where R is the radius of the earth, α the altitude, λ the longitude and ρ the
latitude.
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Site model

At position s the site model is given by

Y (t, s) =a(t, s)Θ(s) + ε(t, s)

=
[
a1(t, s) a2(t, s) . . . ap(t, s)

]


Θ1(s)
Θ2(s)

...
Θp(s)

+ ε(t, s)
(3.2)

where Y (t, s) is the log-transformed prediction error, a1(t, s), a2(t, s)...ap(t, s)
the climate covariates, Θ1(s),Θ2(s)...Θp(s) their coefficients and ε(t, s) a Gaussian
independent errors with variance σ(s). This is just a linear regression model
only depending on the temporally varying climate covariates and noise.

Spatial model

The spatial model is given by

Θ(s) = b(s)β + u(s) =


b1(s) 0 . . . 0

0 b2(s) . . . 0
...

...
. . .

...
0 0 . . . bp(s)



β1

β2
...
βp

+


u1(s)
u2(s)

...
up(s)

 (3.3)

where

bi(s) =
[
b1(s) . . . bmi

(s)
]

and βi =

 βi,1...
βi,mi

 (3.4)

contains the spatial covariates for the i:th coefficient and corresponding coefficients.
The number of spatial covariates regarding the i:th coefficient of the site model
is mi. u(s) is a zero mean stochastic error vector. The errors at different sites
have spatial dependence given by

C(u(s),u(s′)) =M(‖s− s′‖)

=


M1(‖s− s′‖) 0 . . . 0

0 M2(‖s− s′‖) . . . 0
...

...
. . .

...
0 0 . . . Mp(‖s− s′‖)

 (3.5)

where ‖•‖ is the L2-norm. The covariance between the coefficients that regards
different covariates is thus zero and the covariance between the coefficients that
regards the same covariate depends only of the distance. All the functions
M1(‖s − s′‖) . . .Mp(‖s − s′‖) belongs to the same family of functions and we
will come back to them later in this chapter.
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Composite model

Inserting the equation for the spatial model (3.3) into the equation for the site
model (3.1) gives

Y (t, s) = a(t, s)(b(s)β + u(s)) + ε(t, s)

= a(t, s)b(s)β + a(s)u(s) + ε(t, s) = x(s)β + a(s)u(s) + ε(t, s) (3.6)

where x(s) = a(t, s)b(s). The model has a random effect coming from ε(t, s)
which is random in time as well as space and a random effect coming from u(s)
which is only random in space. The random effects can not be interpreted as
one random effect without loss of generality. This is called a mixed (random)
effect model. Both ε(t, s) and u(s) are normally distributed and independent
of each other.

3.1.1 Prediction error model on matrix form

Lets denote the number of measurement stations with r and the number of
observations at the i : th station with ni. The position of the stations are
s1 . . . sr and the prediction error is observed at times t1,i, . . . , tni,i for the i:th
station. The log-transformed prediction error at the i : th station of the j:th
observation time is Yi,j = Y (tj , si). Combining all observations at site i into a
vector Y i we have:

Y i = AiΘi + εi (3.7)

where

Ai =


a(t1, si)
a(t2, si)

...
a(tni

, si)

 (3.8)

is a matrix whose columns’ consist of each climate covariates for all observations
times and Θi = Θ(si) the coefficient vector at station i. The error vector εi is
stacked in the same way as Y i. Combining all the site models leads to a joint
model, which can be expressed as

Y =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ar




Θ1

Θ2

...
Θr

+


ε1
ε2
...
εr

 = AΘ + ε (3.9)

where the error term ε is stacked in the same way as Y . The covariance matrix
for ε is

R =


Iσ1 0 . . . 0
0 Iσ2 . . . 0
...

...
. . .

...
0 0 . . . Iσr

 (3.10)

where σi = σ(si) is the variance of the error at station i.
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3.1.2 Spatial model

The k : th coefficient at the i : th station is given by

Θk,i = bk,iβk,i + uk,i (3.11)

where bk,i = bk(si) is a column vector containing spatial covariates and uk,i =
uk(si) is the spatial noise. Since the coefficients do not depend on the same
covariates the length of bk,i varies with k. The coefficient vector for the i : th
stations is then given by

Θi =


b1,i 0 . . . 0
0 b2,i . . . 0
...

...
. . .

...
0 0 . . . bl,i



β1

β2
...
βl

+ ui = Biβ + ui (3.12)

where ui = [uT1,i, ...,u
T
l,i]

T. For all stations the model can be expressed as

Θ = Bβ + u =


B1

B2

...
Bl

β +


u1

u2

...
ul

 (3.13)

where Θ = [ΘT
1 , ...,Θ

T
r ]T . The covariance matrix of u is denoted by

D =


M1,1 M1,2 . . . M1,r

M2,1 M2,2 . . . M2,r

...
...

. . .
...

M r,1 M r,2 . . . M r,r

 (3.14)

where M i,j = M(‖si − sj‖).

3.1.3 Assembled model

The hierarchic model can now be summarized as{
Y = AΘ + ε, ε ∼ N(0,R)

Θ = Bβ + u,u ∼ N(0,D).
(3.15)

The coefficient model inserted in the prediction error gives

Y = A(Bβ + u) + ε = ABβ +Bu+ ε = Xβ +Bu+ ε. (3.16)

where X = AB.
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3.2 Mixed effects

Mixed random effects models or mixed models provide a powerful tool for
analysis of grouped data which arise in many areas such as biology, economics,
manufacturing and geophysics[8] and was developed by C. R. Henderson together
with S. R. Searle in the fifties [5].

The prediction errors can be divided into groups consisting of prediction error
from the same sites or stations. The data within a group is then exposed to the
same random effect from u(s).

3.2.1 Mixed effect model

In general the mixed effect model is given by

Y = Xβ +Bu+ ε. (3.17)

where β is a deterministic vector which represents the fixed effects, u is a
stochastic vector representing the random effect [5]. u and ε are assumed
independent, zero mean, multivariate normal random variables with covariance
matrices D and R.

3.2.2 Henderson’s mixed model equations

The conditional distribution of Y given u is multivariate normal with expectation
Xβ +Bu and variance R. The joint distribution of Y and u is then

f(Y ,u) = f(Y |u)f(u) ∝ e− 1
2 (Y −Xβ−Bu)

TR−1(Y −Xβ−Bu)e−
1
2u

TD−1u.
(3.18)

The maximum likelihood estimates of β and u are then given as the solution to
the minimization problem

arg min
β,u

(Y −Xβ −Bu)TR−1(Y −Xβ −Bu) + uTD−1u. (3.19)

Setting the gradient of this expression to zero gives{
XTR−1Xβ +XTR−1Bu = XTR−1Y

BTR−1Xβ +BTR−1Bu+D−1u = XTR−1Y
(3.20)

and the solution to these equations is{
β̂ = (XTV −1X)−1XTV −1Y

û = DBTV −1(Y −Xβ)
(3.21)

where V is the variance of Bu+ ε, i.e BTD−1B +R [5].
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3.3 Spatial dependence

The Matérn covariance function is a family of functions describing the covariance
between two points in a random field given the distance between them. It was
suggested by Bertil Matérn in 1960 in his doctoral dissertation about forestry
and has been used in spatial statistics, geostatistics, image analysis and other
applications. The Matérn covariance between two points (or sites) s and s′ is

M(‖s− s′‖) =
σ2

Γ(ν)
(κ‖s− s′‖)νKν(κ‖s− s′‖), σ ≥ 0, κ > 0, ν > 0 (3.22)

whereKν is a modified Bessel function [9]. The Matérn parameters are estimated
for each of the residual fields u1(s) . . . up(s) using a least square algorithm. Since
the fields are unknown they are estimated as

û = Θ̂− β̂X (3.23)

where Θ̂ is the estimate of Θ at each measurement station and β̂ the least
square estimate of β given Θ̂. Using the estimate of D, β and u, are estimated
using (3.20).

The MATCH prediction error at some unobserved stations/sites is given by

Y ′ = X′β +B′u′ + ε′. (3.24)

Let

U =

[
u′

u

]
(3.25)

and let

C = V(U) =

[
C1,1 C1,2

C2,1 C2,2

]
(3.26)

where C1,1 = V(u′), C1,2 = C(u′,u), C2,1 = C(u′,u) and C2,2 = V(u). The
prediction of Y ′ is then given by

Ŷ ′ = X′β̂ +B′û′ (3.27)

where
E(u′|u) = C2,1C

−1
1,1u (3.28)

[6].

3.4 Covariate selection

A linear hypothesis test can be used to select covariates in regression models
by testing if the total sum of squared error changes significantly when adding
or removing a covariate. There are three common approaches to select the
covariates, forward selection, backward selecting and stepwise fit.
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3.4.1 Decomposition of the error

In order to construct a test to determine whether or not the error of a linear
model has increased when one of the covariates is removed the error has to be
decomposed. To explain, the linear model is written as:

Y = Aβ + ε,

where A is the covariate matrix, β the coefficient vector ε ∼ N(0, Iσ), the

estimate of β is β̂. The total sum of squares is given by

SS = (Y −Aβ)T (Y −Aβ),

the sum of squares for regression is given by

SSR = (β̂ − β)TATA(β̂ − β),

and the sum of squares for error is given by

SSE = (Y −Aβ̂)T (Y −Aβ̂).

It holds that
SS = SSR+ SSE

which is easiest seen by subtracting SSE from SS and simplifying the result.
A linear hypothesis test of the regression coefficients can by formed as

Bβ = c. (3.29)

Say, for example, that one wanted to test the hypothesis β1 = 0, then B =
[1, ...., 0] and c = 0. β then has p− 1 degrees of freedom, i.e the rest of the p− 1
regression coefficients are not constrained. The best guess of the boldsymbolβ
under the hypothesis is then

β′ = arg min
β

Bβ=c

SS = arg min
β

Bβ=c

SSR (3.30)

and the sum of squares under the constraint becomes

SS′ = SSH + SSE (3.31)

where the sum of squares for the linear hypothesis is SSH = (β̂−β′)TATAβ̂−
β′) and it can be shown that

SS′ ∼ χ(n− p+ k), SSE ∼ χ(n− p), SSH ∼ χ(k).

The likelihood of the outcome of SS′ can now be examined. In order to avoid
uncertainty coming from the estimated variance σ2 the test is configured as in
Theorem 1.
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Theorem 1. The hypothesis can be tested using the F-statistic

F :=
SSH/k

SSE/(n− p)
(3.32)

with large values of F evidence against the hypothesis. Thus at significance level
α, we use critical region

F > Fα(k, n− p), (3.33)

where Fα is the survival function of the Fisher F-distribution. [5]

3.4.2 Stepwise selection

Forward selection

In the forward selection the initial model consists of only a constant term. For
each possible covariate the p-value of expanding the model is computed. The
covariate with lowest p-value is chosen as a candidate of being in the model. If
the p-value of the candidate is higher than the significance level the covariate is
rejected and no other covariate is selected since they all have higher p-values. If
the p-value is lower than the chosen significance level the covariate is included in
the model. The new model consists of the constant term and one covariate. The
procedure is then repeated with the new model and the remaining unselected
covariates. When no covareiates can be added to the model the selection is
complete.

Backward selection

The initial model consists of a constant term and all the covariates. First the
p-value of all covariates is calculated using the F-statistics. Then the covariate
with highest p-value is chosen as a candidate for removal from the model. If the
p-value of the candidate is lower than the significance level no covariate can be
removed. If the p-value of the candidate is higher than the significance level the
covariate is removed. The procedure is then repeated with the updated model
and the remaining not removed covariates. When no more covariate can be
removed the selection is done.

Stepwise fit

Once a variable is included in the forward selection procedure it can not be
removed similarly in the backward selection procedure, once a variable is rejected
it can not be selected again. The set of selected covariates will depend on the
method. For example, if a combination of two covariates is better then a third
covariate. In the Forward selection procedure only the third might be chosen
and in the Backward selection procedure the combination is selected. In general,
backward selection will take better account of the joint explanatory power of
multiple covariates but lead to larger models.
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A procedure to resolve these issues is to combine forward and backward selection.
The algorithm starts with the forward selection stage, then follows it with
a backward selection stage and alternates between the two until no further
variables are introduced at the forward selection stage. The significant levels
has to be chosen differently in the two stages which could make it easier for new
covariates to enter the model in order to make it possible to prefer a combination
of covariates over a single variable.
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Chapter 4

Results

In this chapter the result of the implemented composite model is presented. 140
sites are used for estimation and the remaining 9 sites are used for validation.
The validation stations, see Figure 4.1, are chosen randomly.
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Figure 4.1: The indexed dots are the measurement stations, blue dots are
stations used for estimation and red dots are stations for validation.

20



Seven of them are very close to the coast line and 5 of them are at high
altitudes, see table 4.1, which makes it hard to predict the model error at these
sites.

Name Number Long(deg) Lat(deg) Alt(m) Distance to sea(km)
DE08 21 11 81 937 35
DE09 22 13 80 1 1
EE09 27 26 79 32 0
ES01 29 -4 79 917 31
ES05 33 -9 78 683 4
ES12 40 -1 78 885 7
GB07 72 0 74 8 2

IS02 90 -21 74 66 3
SI08 140 15 73 520 6

Table 4.1: Data regarding the validation stations containing the name of the
station, station number, longitude, latitude, altitude and distance to the nearest
coast line.

In the first section the station model is constructed. Climate covariates
are selected at each measurement station using the stepwise fit method. The
number of times each covariate is selected for all the measurement stations are
counted. The most frequently selected covariates are selected to be covariates
in the station model. The coefficients are then calculated for each station by
least square.

In the second section the spatial models are constructed. Spatial covariates
are selected for each selected climate covariate in the site model. Here the
stepwise fit method can not be used since the residuals are assumed to be
dependent. Instead the spatial covariates for each of the climate covariate’s
coefficient model are selected by a so-called exploratory data analysis (EDA).
When the spatial covariates for a climate covariate’s model have been selected
their coefficients are calculated by least square. The residuals are then used
to estimate the parameters of the Matérn function describing the covariance
between the climate covariate’s coefficients.

In the third section, when the climate covariates in the station model and spatial
covariates in the coefficient models are selected and parameters in Mat’ern
functions are estimated, the mixed effect model is constructed by estimating
the coefficient vector β and the spatial noise vector u using (3.20).

In the fourth section the composite model is validated. Estimating the spatial
noise at the validation station given the spatial noise at the estimation station
the mixed effect model is used to calculate the log-transformed model prediction
error at the validation stations.
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Finely the model is used to evaluate how the errors in the MATCH predictions
depend on climate variables. How much of the log-transformed model error
that is explained by a climate covariate is evaluated by comparing the predicted
log-transformed model error to the predicted log-transformed model error when
the climate covariate is excluding.
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4.1 Station model

The variable selection varies a lot between the stations as seen in figure 4.2.
Stepwise fit sometimes selects a covariate in favor of a set of covariates which
could be the reason.

Temp surf Temp lev1 Temp lev2 Pres qh wind u−dir v−dir Tot cloud cover cwc cc Rain
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Chosen covariate at each station

Figure 4.2: The selected climate covariates are red and the unselected are blue.
qh stands air humidity, CWC stands for cloud water contents and cc stands for
cloud cover.

The selected covariates are temperature at surface, pressure, air humidity,
wind in u- and v- component, total cloud cover and rain. As seen in figure
4.3 this chose isn’t obvious. Just one of the temperature covariates is chosen
although the temperature at level 2 is selected at every third station. This is
because the temperature at all levels is highly correlated.
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Figure 4.3: On the vertical axis are the covariates where cc is cloud cover, cwc
is cloud water contents, qh is air humidity. The horizontal axis is the number
of stations where the covariate was selected as an explanatory variable.

To evaluate the generalized model performance the prediction errors are
examined. A good model should have residuals that are independent of the
regressors and the variance of the residual should be constant. Since it is
assumed that the noise is Gaussian and uncorrelated this should also be checked.
The residual analyze is done visually by plotting the residual against the regressor,
plotting the cross correlation between the residual and regressor, normal plot of
the residual, the cross correlation of the residual and the realization.
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Figure 4.4: From left to right: residual plot, cross correlation with the regressor,
cross correlation function, histogram and normplot of the residual. The sixth
plot are the realization of the log-transformed model error (blue) and the
prediction (green). The last subplot is the error of the predicted log-transformed
model error. This is done at station AT48, the estimation of the covariate
coefficients is done on 75 % of the data.

As seen in the first and sixth subplots of Figure 4.4 the residual is very
dependent on the regressor. One can try a model consisting of a higher order
polynomial but it want help much although making the model more complex.

4.2 Spatial model

Exploratory Data Analysis (EDA) is used to select spatial covariates for each
coefficient model. In EDA the covariates are selected by plotting the variable
of intreast together with the covariates. One wants to plot the variable of
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interest together with as many covariates as possible at the same time in order
to understand which effect each covariate gives. In this case each climate
covariate’s coefficients estimated at all stations are plotted on a map consisting
of coast lines and height counter lines. One can the ideate if the coefficients
depend on any of the spatial covariates.

Figure 4.5: Coefficients for the intercept and the temperature at surface
covariates

In the left subplot of Figure 4.5 the constant coefficients are plotted. It is
hard to see by looking at one angle but it seems like there are dependences with
the longitude and latitude. The value seems to be higher at stations more to the
north-west than to the south-east apart from stations near the Mediterranean in
Portugal and Spain. The chosen covariates are therefore longitude and latitude.
In the right subplot of Figure 4.6 the coefficients of the temperature at surface
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covariate are plotted. It seems like the values are lower near the coast line of the
Atlantic sea but not at the Mediterranean sea. The values seems to be lowest
in north-west and highest in south-east. The chosen covariates are therefore
longitude and latitude.

Figure 4.6: Coefficients for the pressure and the humidity both at surface

In the left subplot of Figure 4.6 the pressure coefficients are plotted. There
seems to be a latitude dependence and perhaps longitude dependence. The
values are likely to be higher for southerly stations. The chosen covariates are
longitude and latitude.
In the right subplot of Figure 4.6 the air humidity coefficients are plotted. It
appears that the coefficient depends on the longitude and latitude. The values
seem to be higher at stations more to the north-west than to the south-east.
The values differ dramatically from high to low when passing the north-west side
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to south-east side of the mountain chains of Caucasus and the Pyrenees. The
south-east side of these mountain chains are very mountainous so it is tempting
to consider the altitude as a covariate but at many sites such as the station in
Turkey and the stations in Norway the coefficients are high although they are
not at higher altitude. The chosen covariates are longitude and latitude.

Figure 4.7: Coefficients for the wind in u- and v-direction at surface

In the left subplot of Figure 4.7 the wind in u-component coefficients are
plotted. There is only dependency in altitude. The chosen covariate is therefore
altitude.
In the right subplot of figure 4.7 the wind in v-direction coefficients are plotted.
It is hard to sea any dependence at all.
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Figure 4.8: Coefficients for the total cloud cover and the rain

In left subplot of figure 4.8 the total cloud cover coefficients are plotted.
There are no obvious dependencies other than a very vague trend of higher
values to the south.
In right subplot of figure 4.8 the rain coefficients are plotted. Possible covariates
are longitude and latitude. The values also look higher near the coast so perhaps
distance to sea could be considerate as a covariate.

As said earlier, stepwise fit cannot be used but since the estimated correlations
between the coefficients are very small (which will be seen later on in this
chapter) the stepwise fit method is used to provide an indicator or hint of which
covariates that could be chosen. The maximum p-value for a term to enter the
model is set 0.05 and the maximum p-value for a term to be removed is set to
0.10.
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The stepwise fit method suggests longitude and latitude for the interception
coefficient and the temperature coefficients which also was the conclusion in
the EDA. For the pressure at surface stepwise fit suggests only latitude, not
longitude as selected in the EDA. For the humidity stepwise fit suggests latitude
and altitude. The selected covariates from the EDA were longitude and latitude.
Only altitude were selected as a covariate in the EDA of wind in u-component.
Stepwise fit suggest both latitude and altitude. No covariates were chosen in the
EDA of the wind in v-component coefficient but stepwise fit suggests altitude.
In the EDA of the seventh coefficient, total cloud cover, no covariates were
suggested. No covariate was suggested by stepwise fit. The rain coefficient
was beveled to depend on longitude, latitude and distance to sea in the EDA.
Stepwise fit only suggests longitude.

Taking the result from the stepwise fit method into account the conclusion,
which is seen in table 4.2, is a bit different.

Coefficient Lat Long Alt Dist. sea
Intercept • •
Temperature at sureface • •
Pressure • •
Humidity • • •
Wind in u-direction • •
Wind in v-direction • •
TCC •
Rain • • •

Table 4.2: Table of chosen spatial covariates where the dots indicates that the
chosen covariates.

4.3 Matérn covariance

The coefficient vectors, β1 . . .βp for each selected climate covariates’s coefficient
model is calculated by least square and the residuals are used as estimates of
u1 . . .up.
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Figure 4.9: Residual 1-4 of the selecte covariate’s coefficient models. These
residuals regards the intercept, temperature at surface, pressure and air
humidity covariate’s coefficients models from top to bottom.
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Figure 4.10: Residual 5-8 of the selecte covariate’s coefficient models. These
residuals regards the wind i u-component, wind in v-component, total cloud
cover and rain covariate’s coefficients models from top to bottom.

The estimate of each selected climate covariate’s coefficient noise is normally
distributed with zero mean as seen in the subplots of Figure 4.9 and Figure
4.9 (they are of course zero mean since least square is used).
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Figure 4.11: The green cuves are the estimated covariance function and the red
curves the covariances calculated for a number of distances. These regards u1,
u2, u3 and u4 from left to right.
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Figure 4.12: The green cuves are the estimated covariance function and the red
curves the covariances calculated for a number of distances. These regards u5,
u6, u7 and u8 from left to right.

In Figure 4.11 and Figure 4.14 the green curves are the estimated covariance
function and the red curves the covariances calculated at 40 distance intervals
of the selecte covariate’s coefficient model residuals. The cloud consists of
the residuals multiplied with each other other residual placed at the distance
between them on the x-axis. The star is the variance. The green curve shows
nearly any correlation between the coefficients at all while the red curves suggests
more correlation. This comparison is made since the estimates of the covariance
functions are rather doubtful with just 140 observations. It has been shown, by
testing, that the best result are obtained by setting the covariance between the
third covariate’s coefficient residuals to zero as the red curve suggests.
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4.4 Prediction of the coefficients

In this section the regression field for each selected covariate’s coefficient is
presented, first without using that the coefficients are correlated. The reason
why this is done is to show how much the correlation effects the final result.

Figure 4.13: Coefficient predictions without using the correlations 1-4.
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Figure 4.14: Coefficient predictions without using the correlations 5-8.

Figure ?? and Figure ?? are the predictions of the coefficients at all stations
and the prediction coefficients at all points of the MATCH grid. The non-filled
dots are the coefficients estimated at each station of the estimation set, the fillet
black dots are the estimated coefficients at each station of the validation set,
the red filled dots are predictions of the coefficient model and the surface are
the coefficients predicted by the coefficient model for all points in the MATCH
grid.
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Figure 4.15: Coefficient predictions using the correlations 1-4.
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Figure 4.16: Coefficient predictions using the correlations 5-8.

Figure 4.15 and ?? are the predictions using the correlation functions to
predict the the noise at the validation stations and at the points of the MATCH
grid given the estimated noise at the estimated stations. This effect can only
be seen in subplot 1 and 4 of ??.
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4.5 Prediction of the MATCH model error

In this section the model is validated by comparing the predictions with the
MATCH predictions error at the validation stations. A simpler version of the
MATCH prediction error model where the correlation between the coefficients
are assumed to be zero also compared with the MATCH prediction error model
and the MATCH prediction error to evaluate if we actually gain anything by
assuming that the coefficients are correlated. We will refer to these models as
model 1 and model 2 where model the last is the simpler model. At five of the
nine randomly chosen validation stations the more advanced model is better.
Only the result from station 33 and 140 are shown here, the others can be be
seen in Appendix A.
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4.5.1 Station 33
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Figure 4.17: Subplot 1 consists of the real log-transformed MATCH error (blue),
the prediction of model 1 (green), the prediction of model 2 (black) and the
mixed effect (red). subplot 2-4 is a normal, cross correlation function, cross
correlation with the real error of model 1 (from left to right). The last subplot
consists of two histogram of the residuals of model 1 (blue) and model 2 (black).

As seen in subplot 1 and 5 of figure 4.17, regarding station 33, the predictions are
very biased. The mixed effect makes the result worse, it pushes the estimates
down. Station 33 is close to station 44 and 122 which makes it possible to
calculate the mixed effect. The error of model 2 has 0.6% less mean quadratic
error than model 1.
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4.5.2 Station 140
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Figure 4.18: Subplot 1 consists of the real log-transformed MATCH error (blue),
the prediction of model 1 (green), the prediction of model 2 (black) and the
mixed effect (red). subplot 2-4 is a normal, cross correlation function, cross
correlation with the real error of model 1 (from left to right). The last subplot
consists of two histogram of the residuals of model 1 (blue) and model 2 (black).

Both the estimates are almost unbiased. The mean of the mixed effect is zero
and varies with time. The mean quadratic error of model 2 is 6.1 % less than
then mean quadratic error of model 1.
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4.6 Error analysis

The error analysis is done by comparing the predicted MATCH prediction error
with the predicted MATCH prediction error when one of the climate covariate is
absent, i.e the model constructed without one of the covariates. The difference is
then how much of the predicted MATCH prediction error that can be explained
by the covariate.

Each covariate is removed in turn and the error predicted by the reduced model
is compared to the complete model.

In this analysis the mean quadratic error is used. Let MQEj be the predicted
mean quadratic error at station j and MQEi,j be the predicted mean quadratic
error at station j when climate covariate i is absent. The relative change of
predicted mean quadratic error, at station j when climate covariate i is absent,
is

RMQEi,j =
|MQEi,j −MQEj |

MQEj
. (4.1)

Station nr Temp(%) Pressure(%) Humidity(%) Wind u(%) Wind v(%) TCC(%) Rain(%)
21 1.85 5.67 7.71 16.15 2.10 1.17 11.55
22 1.25 0.22 0.20 4.14 2.38 1.20 10.89
27 4.87 4.87 6.86 0.15 2.56 0.63 21.15
29 7.34 9.57 7.64 9.81 6.89 7.22 11.51
33 5.01 7.65 3.87 7.89 0.72 1.54 1.97
40 1.00 6.23 11.76 6.56 0.45 0.33 24.72
72 1.10 0.98 0.82 0.80 0.91 0.59 8.96
90 1.82 3.24 0.45 6.11 0.94 0.60 8.36

140 1.40 0.93 4.68 0.61 0.89 0.79 35.44

Table 4.3: Relative change in mean quadratic error for each selected climate
covariate at each station.

Rain gives the highest relative change in mean quadratic error with a mean
of 14.95% for all validation stations, wind in u-component the second (5.80%),
humidity the third (4.89%), pressure the fourth (4.37%), temperature the fifth
(2.85%), wind in v-component the sixth (1.98%) and total cloud cover the
seventh (1.56%).
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Chapter 5

Conclusion

5.1 Discussion

According to the error analysis precipitation effects the MATCH prediction error
most, then the wind in u-component, humidity, pressure, temperature, wind in
v-component and last total cloud cover.

A mixed effect model for the log-transformed MATCH prediction error has
been successfully implemented. Assumption of spatial dependence between the
coefficients in the site model did not give any significant improvement of the
model, maybe due to parameters of the covariance functions were not estimated
well enough. Model 1 is not always stable, it can give very wrong predictions.
Model 2 is therefore better.

5.2 Further work

The point was to do the error analysis at all the cell of the climate data grid
but due lack of time the error analysis was just done at the validation stations.
To be able to say how the error is effected by the climate covariates, and how
these effects depend on the position in Europe this must be done.

The best way of estimating all parameters in the mixed effect model would be
to maximize the assumed density function (3.18), given the data, with respect
to β, u and the parameters for the covariance functions. But this is a thesis
itself.

In order to improve the log-transformed MATCH prediction error model more
climate and spatial covariates must be found.

The model could be used as a post processing model to MATCH. The log-transformed
MATCH prediction error most then be transformed back.

43



List of Figures

2.1 Grid of MATCH which has rotated −39.3◦ latitude and 18◦ south
pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Map of the stations. . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Time period when stations were active according to meta data.

The black lines are the years 1980 and 2010. . . . . . . . . . . . . 5
2.4 Wet deposition of NO3 at station GB06. . . . . . . . . . . . . . 6
2.5 Example of the multiplicative error (measurement data divided

with MATCH prediction) at station DE02 (prediction errors from
other stations looks similar). . . . . . . . . . . . . . . . . . . . . . 8

2.6 The value of the Box and Cox transformation parameter given at
stations for valuation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Example of the log-transformed multiplicative error at station
DE02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 The indexed dots are the measurement stations, blue dots are
stations used for estimation and red dots are stations for validation. 20

4.2 The selected climate covariates are red and the unselected are
blue. qh stands air humidity, CWC stands for cloud water contents
and cc stands for cloud cover. . . . . . . . . . . . . . . . . . . . . 23

4.3 On the vertical axis are the covariates where cc is cloud cover,
cwc is cloud water contents, qh is air humidity. The horizontal
axis is the number of stations where the covariate was selected as
an explanatory variable. . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 From left to right: residual plot, cross correlation with the regressor,
cross correlation function, histogram and normplot of the residual.
The sixth plot are the realization of the log-transformed model
error (blue) and the prediction (green). The last subplot is the
error of the predicted log-transformed model error. This is done
at station AT48, the estimation of the covariate coefficients is
done on 75 % of the data. . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Coefficients for the intercept and the temperature at surface covariates 26
4.6 Coefficients for the pressure and the humidity both at surface . . 27
4.7 Coefficients for the wind in u- and v-direction at surface . . . . . 28
4.8 Coefficients for the total cloud cover and the rain . . . . . . . . . 29

44



4.9 Residual 1-4 of the selecte covariate’s coefficient models. These
residuals regards the intercept, temperature at surface, pressure
and air humidity covariate’s coefficients models from top to bottom. 31

4.10 Residual 5-8 of the selecte covariate’s coefficient models. These
residuals regards the wind i u-component, wind in v-component,
total cloud cover and rain covariate’s coefficients models from top
to bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.11 The green cuves are the estimated covariance function and the
red curves the covariances calculated for a number of distances.
These regards u1, u2, u3 and u4 from left to right. . . . . . . . . 33

4.12 The green cuves are the estimated covariance function and the
red curves the covariances calculated for a number of distances.
These regards u5, u6, u7 and u8 from left to right. . . . . . . . . 34

4.13 Coefficient predictions without using the correlations 1-4. . . . . 35
4.14 Coefficient predictions without using the correlations 5-8. . . . . 36
4.15 Coefficient predictions using the correlations 1-4. . . . . . . . . . 37
4.16 Coefficient predictions using the correlations 5-8. . . . . . . . . . 38
4.17 Subplot 1 consists of the real log-transformed MATCH error

(blue), the prediction of model 1 (green), the prediction of model
2 (black) and the mixed effect (red). subplot 2-4 is a normal,
cross correlation function, cross correlation with the real error
of model 1 (from left to right). The last subplot consists of two
histogram of the residuals of model 1 (blue) and model 2 (black). 40

4.18 Subplot 1 consists of the real log-transformed MATCH error
(blue), the prediction of model 1 (green), the prediction of model
2 (black) and the mixed effect (red). subplot 2-4 is a normal,
cross correlation function, cross correlation with the real error
of model 1 (from left to right). The last subplot consists of two
histogram of the residuals of model 1 (blue) and model 2 (black). 41

A.1 Subplot 1 consists of the real log-transformed MATCH error
(blue), the prediction of model 1 (green), the prediction of model
2 (black) and the mixed effect (red). subplot 2-4 is a normal,
cross correlation function, cross correlation with the real error
of model 1 (from left to right). The last subplot consists of two
histogram of the residuals of model 1 (blue) and model 2 (black). 49

A.2 Subplot 1 consists of the real log-transformed MATCH error
(blue), the prediction of model 1 (green), the prediction of model
2 (black) and the mixed effect (red). subplot 2-4 is a normal,
cross correlation function, cross correlation with the real error
of model 1 (from left to right). The last subplot consists of two
histogram of the residuals of model 1 (blue) and model 2 (black). 51

45



A.3 Sub plot 1 consists of the real error (blue), the prediction made
with out the mixed effect (black), the prediction med with the
mixed effect and the mixed effect Bu (red). subplot 2-5 is a
normal, cross correlation function, cross correlation with the real
error and a histogram of the mixed (blue) and fixed (black) effect
prediction errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.4 Subplot 1 consists of the real log-transformed MATCH error
(blue), the prediction of model 1 (green), the prediction of model
2 (black) and the mixed effect (red). subplot 2-4 is a normal,
cross correlation function, cross correlation with the real error
of model 1 (from left to right). The last subplot consists of two
histogram of the residuals of model 1 (blue) and model 2 (black). 53

A.5 Subplot 1 consists of the real log-transformed MATCH error
(blue), the prediction of model 1 (green), the prediction of model
2 (black) and the mixed effect (red). subplot 2-4 is a normal,
cross correlation function, cross correlation with the real error
of model 1 (from left to right). The last subplot consists of two
histogram of the residuals of model 1 (blue) and model 2 (black). 54

A.6 Subplot 1 consists of the real log-transformed MATCH error
(blue), the prediction of model 1 (green), the prediction of model
2 (black) and the mixed effect (red). subplot 2-4 is a normal,
cross correlation function, cross correlation with the real error
of model 1 (from left to right). The last subplot consists of two
histogram of the residuals of model 1 (blue) and model 2 (black). 55

A.7 Subplot 1 consists of the real log-transformed MATCH error
(blue), the prediction of model 1 (green), the prediction of model
2 (black) and the mixed effect (red). subplot 2-4 is a normal,
cross correlation function, cross correlation with the real error
of model 1 (from left to right). The last subplot consists of two
histogram of the residuals of model 1 (blue) and model 2 (black). 56

46



List of Tables

4.1 Data regarding the validation stations containing the name of the
station, station number, longitude, latitude, altitude and distance
to the nearest coast line. . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Table of chosen spatial covariates where the dots indicates that
the chosen covariates. . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Relative change in mean quadratic error for each selected climate
covariate at each station. . . . . . . . . . . . . . . . . . . . . . . 42

47



48



Appendix A

Test stations

A.0.1 Station 21
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Figure A.1: Subplot 1 consists of the real log-transformed MATCH error (blue),
the prediction of model 1 (green), the prediction of model 2 (black) and the
mixed effect (red). subplot 2-4 is a normal, cross correlation function, cross
correlation with the real error of model 1 (from left to right). The last subplot
consists of two histogram of the residuals of model 1 (blue) and model 2 (black).
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As seen in the first subplot of A.1 the mixed effect (the effect of the estimated
noise in the coefficient model) is not even visible. As seen in figure ?? station
21 is placed in the middle of Europe with no stations near by which explains
the absent mixed effect. The mixed effect model gives 2 % less mean quadratic
error than the fixed effect model. None of the errors are unbiased. The residuals
are uncorrelated and the cross-covariance with the MATCH error is very large
(as expected).
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A.0.2 Station 22
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Figure A.2: Subplot 1 consists of the real log-transformed MATCH error (blue),
the prediction of model 1 (green), the prediction of model 2 (black) and the
mixed effect (red). subplot 2-4 is a normal, cross correlation function, cross
correlation with the real error of model 1 (from left to right). The last subplot
consists of two histogram of the residuals of model 1 (blue) and model 2 (black).

Station 22 is placed near station 20, 24, 131 and 136. As seen in the first subplot
of Figure A.2 the mixed effect makes a difference. Model 1 gives approximately
3.6 % less mean quadratic error than model 2. The residuals are almost unbiased
as seen in the last subplot.
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A.0.3 Station 27
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Figure A.3: Sub plot 1 consists of the real error (blue), the prediction made
with out the mixed effect (black), the prediction med with the mixed effect and
the mixed effect Bu (red). subplot 2-5 is a normal, cross correlation function,
cross correlation with the real error and a histogram of the mixed (blue) and
fixed (black) effect prediction errors

Station 27 is placed near Estonia not far from the coast with no stations near
by. The mixed effect model gives more than 7.6 % less mean quadratic error
than the fixed effect model but not because of the mixed effect which is barely
apparent as seen in Figure A.2. The prediction of the mixed effect model is
almost unbiased.
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A.0.4 Station 29
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Figure A.4: Subplot 1 consists of the real log-transformed MATCH error (blue),
the prediction of model 1 (green), the prediction of model 2 (black) and the
mixed effect (red). subplot 2-4 is a normal, cross correlation function, cross
correlation with the real error of model 1 (from left to right). The last subplot
consists of two histogram of the residuals of model 1 (blue) and model 2 (black).

Station 29 and 43 are very close to each other. The correlation between the
coefficients are large enough to estimate the mixed effect. Model 1 gives 3% less
mean quadratic error than in model 2. As seen in Figure A.4 the mixed effect
is almost constant with a value of approximately -0.3. The prediction of model
1 is almost unbiased.
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A.0.5 Station 40
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Figure A.5: Subplot 1 consists of the real log-transformed MATCH error (blue),
the prediction of model 1 (green), the prediction of model 2 (black) and the
mixed effect (red). subplot 2-4 is a normal, cross correlation function, cross
correlation with the real error of model 1 (from left to right). The last subplot
consists of two histogram of the residuals of model 1 (blue) and model 2 (black).

The prediction error of model 1 is 8.6% less than the error of model 2. The
prediction error of model 1 is almost unbiased as seen in the last sub plot of
Figure A.5. The mixed effect makes not much difference, it is almost constant
around -0.25.
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A.0.6 Station 72
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Figure A.6: Subplot 1 consists of the real log-transformed MATCH error (blue),
the prediction of model 1 (green), the prediction of model 2 (black) and the
mixed effect (red). subplot 2-4 is a normal, cross correlation function, cross
correlation with the real error of model 1 (from left to right). The last subplot
consists of two histogram of the residuals of model 1 (blue) and model 2 (black).

The predictions at station 72 are both biased, model 1 less so than model 2.
Nonetheless model 2 has 0.2% less mean quadratic error.
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A.0.7 Station 90
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Figure A.7: Subplot 1 consists of the real log-transformed MATCH error (blue),
the prediction of model 1 (green), the prediction of model 2 (black) and the
mixed effect (red). subplot 2-4 is a normal, cross correlation function, cross
correlation with the real error of model 1 (from left to right). The last subplot
consists of two histogram of the residuals of model 1 (blue) and model 2 (black).

As seen in Figure reffig:station8 there is hardly any mixed effect helping model
1. Both prediction errors are unbiased. The prediction error of model 2 has 7%
less mean quadratic error than model 2.
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