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Abstract

The Narrative Clip is a small wearable camera that takes an image
every 30 seconds. By wearing the clip a whole day a user captures a
long image sequence of the day’s events. In this thesis we will segment
such a sequence into the individual events automatically.

Multiple sequences are segmented by humans in order to find a
groundtruth for each sequence. The groundtruth will be used to de-
termine the performance of the algorithm and also how well individual
humans are able to segment a sequence.

The method presented here takes a sequence of images and tries
to find the location where the mean of the descriptors changes. The
images are described using various image descriptors that capture col-
ors, lines, textures and similar low level features. We also introduce
an indoor/outdoor classification method that combines a SVM and a
HMM. The classification method is combined with the segmentation
for each descriptor in order to create a combined segmentation.

The indoor classification method achieves an accuracy of 97% which
is to be considered very good results. The best human segmenta-
tion has an Fl-score of 0.82 while the best automatic segmentation
method’s Fl-score is 0.43. The conclusion is that the current system
is not suitable for any practical usage.
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1 Introduction

Recent developments in consumer electronics have sparked a huge interest in
wearable technology. As the name suggests this branch consists of products
that in one way or another are attached to someones clothes or body and
carried through out the day. Multiple products have already reached the
market and the epithet is now describing a wide range of products, for
example Google Glass, Motorola Moto 360, Fitbit Flex and Narrative Clip.

This category can be further divided into a ”lifelogging” segment for
products with the purpose to collect information during a user’s day. One
such product is the Narrative Clip, a small camera that takes one image
every 30 seconds with the purpose of creating a photographic memory. The
camera is attached to a shirt and will automatically takes pictures during
the user’s day. The images are later uploaded to the Narrative Cloud Service
and divided into moments which lets the user review segments of their day.

1.1 Aim of the thesis

Using the Narrative Clip generates a huge amount of images, a full day can
result in over 1500 images, few users have the time to even scroll through
that amount of images each day. In order to make the product useful the
data has to be automatically both limited and structured to only show the
essential parts of a day. A natural approach, for an algorithm like that,
would be to automatically divides each day into the separate moments or
events that characterize the day. This is actually already being done today
but unfortunately with various amount of success. A reliable segmentation
would be very beneficial and make it possible to calculate a moment’s class
or relevance. Information crucial when searching for a moment or deciding
which moments that should be displayed. The goal of this thesis is to further
develop this segmentation that automatically divide a day into moments.

This segmentation will be done by reviewing multiple approaches for
scene recognition and incorporating these features into a time-series seg-
mentation algorithm. Training data have been collected throughout the
thesis work providing means to both train and evaluate the result of the
algorithm. The goal is to create a system that outperforms the current one
and provides a start for a system to classify moments.

1.2 Moment definition

A moment is a rather loose concept, it perfectly defines both playing soccer
as well as kicking the ball. In this context the correct definition is playing
football due to our interest in collecting numerous images that are 30 seconds
apart. This limit our definition of a moment to a certain time resolution, a
moment is neither too short nor is it too long. It is troublesome to define



an exact range since the limit is both subjective as well as dependent on the
variance of a day. This problem combined with that the number of different
moments are virtually infinite prevents us from explicitly defining a moment.
Instead we embrace a simplified but still somewhat vague definition of a
moment:

Definition. A moment is a sequence of time-consecutive images that are
visually coherent in the sense that they have similar color, texture or other
characteristics. The length of the sequence is in proportion to the sampling
rate and thus allows for a certain amount of outliers in the sequence.

This definition is vague in the sense of coherence and length but it is
implementable if we allow for some leeway in these parameters. Not only is
the definition vague but it also comes with limitations, for example it could
be difficult to differentiate between playing soccer and American football
since both are played outside in the grass. Luckily most of these limitations
are avoided due to events like these being separated in time, for example
most of the times you don’t start playing American football right after a
football practice.

If two images have the same color mean that would indicate that the two
images are similar or coherent. Extending this reasoning to moments would
imply that the images in the moment must have a somewhat constant mean
in order to be considered coherent. Humans use the same approach but at
a much higher abstraction level than simple colors. A constant mean for a
human might be interpreted as doing the same thing even though the colors
changes.

1.3 Constraints

The whole thesis should be viewed as a proof of concept rather than an
optimization problem. This results in a thesis that will be restricted in
multiple ways.

e Limited dataset, the datasets will not be representative for the average
user. Although the total number of images will be rather large, the
number of days will be limited. This is a result of computational
constraints as well as the time-consuming work of collecting multiple
days with various settings.

e Limited number of people have segmented the data, a real project
would require a lot more people to get a good statistical foundation.

e Various computational limitations, such memory and processing power.
The work has been done on a 16-core machine with plenty of memory.
Yet there exists situations when this is not enough, in particular when
using the k-means clustering algorithm or training the SVM classifi-
cation algorithm.



e Time limitations, the thesis is a time-limited project and multiple
methods and algorithms have been ignored due to time-constraints.

e Any extra image data, for example the GPS-data, have been ignored
due to various circumstances.

1.4 Thesis structure

This thesis will outline an algorithm to segment a sequence of images into
moments. We start by introducing the Narrative Clip and the images that
the algorithm was tested on. This is followed up with the theory section 3
where we introduce all the methods used in our algorithms. The methods
are further divided into different subsections, the most important being the
feature subsection 3.5 where we introduce the features used in this thesis.
Other important subsections here are the classification subsection 3.6, the
changepoint subsection 3.7 and the evaluation methods subsection 3.8.

The algorithms presented in the method section are used in the following
three sections. In the indoor/outdoor classification section 4 we explain how
to classify our sequences as either indoors or outdoors. In the segmentation
strategies section 5 we introduce our way to segment different features sep-
arately as well as combined. In the evaluation section 6 we show the results
of our classification and segmentation algorithms.

Finally we discuss all the different results in the discussion section 7 and
conclude how the results could be improved in the conclusion section 8.



2 Setup

2.1 Narrative Clip

The Narrative clip is a small camera, it weights about 20 gram and is only
36x36x9 mm large. In addition to the five megapixel camera the clip also has
a GPS, magnetometer and an accelerometer. In this thesis we will only use
the images even though the extra information in the GPS could be useful.
The size of the camera allow a user to clip it onto a shirt and wear it a whole
day without any obstruction or thought.

Figure 1: A narrative clip attached to a shirt.

The camera takes one image every 30 seconds resulting in well over 1500
images if worn a full day. The images are stored on the camera and later
uploaded via a computer to the cloud. No image processing is done in the
camera or on the users computer other than what is needed when taking and
storing an image. The images are stored using the Narrative Cloud Service
(NCS) which allows mobile access using the Narrative app. All the image
processing is performed using the NCS, this includes three processes that
are particularly relevant for this thesis.

e The images are rotated using the accelerometer data, a process that
minimizes problems caused by rotations.

e All images are resized which is a crucial task in order to run our
algorithms quickly.

e All bad images are removed, which includes images with that are too
dark or has too much motion blur. This process removes extreme
outliers that might cause problems with our algorithms.



The NCS is also used for other major image processing tasks that is not
relevant for this thesis, like the current method segment a sequence into
moments. For a visual representation of the flow, see figure 2.

Capture Connect & Upload Safe storage in our Library
The Clip takes one 5 megapixel Effortlessly upload your images with All images are securely stored in
picture every 30 seconds. Double our PC or Mac client. your private online library.

tap to take an extral

—

Share Browse Photos analyzed
Share your favorites with friends via Explore your photos, beautifully Algorithms analyze your images to
Instagram, Twitter, Facebook or presented in our app for iPhone and group them together in moments and
email. Android. elevate the best ones automatically.

Figure 2: A flow chart of how the Narrative system works.

Since no image processing is done in real-time the algorithms are fairly
unconstrained. This means that they can use all the images in a sequence
and they don’t need to conform to a particular performance requirement,
although faster is better. This is why no particular interest have been given
to the speed of any algorithms in this thesis. This also why the algorithm
presented here should be viewed as a proof of concept rather than a working
algorithm.



2.2 Images

All images used in this thesis have been acquired using the Narrative clip.
At the start of the thesis no suitable dataset existed that captured multiple
days with a time-resolution and perspective similar to that of the Narrative
clip. Instead we created a smaller set consisting of about 34 longer photo-
sets which sums to about 24 000 images in total. The photo-sets aren’t
necessarily complete days but they are guaranteed to be more than two
hours apart. The images were captured by two persons during the spring
and summer at different locations in Sweden and Europe. The images were
mostly captured in situations where most people would use the Narrative
clip. For example, it is more likely to use the clip when meeting your friends
rather than sitting in front of a computer. We tried to capture this behavior
in our dataset but it is fairly safe to say that the clip will be used in a lot
more varying situations than our test data. Although the variety in the
dataset is limited it should be suitable for a proof of concept.

Dividing a sequence into smaller pieces is a highly subjective procedure
and even for a human a rather hard problem. It is in particular hard to deter-
mine the resolution of a moment, for example consider the following actions:
”Walking to the car”, ”"Driving the car” and ”Walking to the apartment”.
Should a segmentation be split into the three different actions or should
they be merged into one moment describing the complete transportation?
In order to find the ”optimal” answer and limit the subjective reasoning
we had more than one person segment the data. This is however a time
consuming task and would require a lot of people to be done properly. The
photo-sets was therefor, for the most parts, segmented by two people with
a good understanding of the Narrative Clip. However three photo-sets were
chosen to be segmented more extensively. These photo-sets were segmented
by four people with a good understanding of the Narrative clip and 8 people
with minor or no understanding of the Narrative Clip. The three photo-sets
will be referred to as ”Summerday”, ”Night festival” and ”Golf”. We will
in particular pay attention to the ”Summerday” photoset.

The different segmentations where combined for each sequence using the
sequence averaging method described in section 3.1. This results in one
single segmentation per photoset and will be referred to as the groundtruth
segmentation. This sequence is considered as the correct one and is the
primary sequence that the segmentation algorithm will be compared against.

In this thesis an indoor/outdoor classification algorithm will be pre-
sented. This algorithm has also been trained using the same images above.
For this application we annotated all the images as either indoor or outdoors.
It turned out that approximately 52% of the images were taken indoors thus
confirming that the clip is used everywhere. This annotated set was divided
into two random subsets. A training set with 40% of the images and the
test set with the remaining 60% of the images.

10



3 Theory

3.1 Sequence averaging

Consider a sequence X = Xp, Xo, ..., Xy that has been segmented into U
number of segments. FEach location where the sequence has been segmented
is called a segmentation point, we will have U-1 segmentation points in a
segmentation. Segmenting a sequence can be done in multiple ways with
a different number of segmentation points and with different segmentation
point locations. Consider M such different ways. We are interested in find-
ing a complete segmentation of X that combine the M different ways into
one optimal segmentation. We do not know the number of segments in
the complete segmentation, everything has to be inferred using M segmen-
tations. In this approach we are interested in finding the locations where
the majority of the segmentations have segmentation points that agree with
each other. Different segmentations might not agree with each other per-
fectly which is why we allow for some offset.

Consider that each X is replaced with a binary vector of the same length
with ones before the location of a segmentation point and the rest zeros.
Since we have M different segmentations we have M different binary vectors.
As an example we use the following vectors:

M; : [0100001000000000100100000000]
M5 : [0100010000001000000000010000]
M3 : [0100000100000000100000000001]

By adding these vectors together we get a new vector with a maximum value
of M in those locations where all the binary vectors agree with each other.

Summed : [0300011100001000200100010001]

By sliding a window and summing the content inside the window we create
a vector that allows for some offset in the segmentation points. In this
example we use a window with a length of three.

Windowed : [3330123210011102221110111011]

We find the local maximums or plateaus of this vector but add the require-
ment that these have to be above a certain threshold and further apart than
the width of the sliding window. In our example we require the threshold
to be above one to ensure we select only the segmentation points where the
majority agree with each other.

Thresholded : [0300003000000000200000000000]

All the points that are not zero are the most relevant points for these par-
ticular M segmentations and will be considered segmentation points.

11



3.2 Color space models

An image is a mathematical representation of the real world seen through a
camera. For this representation to be useful we need a transformation from
the physical world to the mathematical. One such transformation could be
to represent an image using the different wavelengths. Multiple color spaces
have been created since different applications have different needs. Some are
focusing on the human perception while other take a more physical approach.
Here we present the color spaces that have been used in this thesis:

3.2.1 RGB

One of the most commonly used color spaces is the RGB space. The idea is
to use different amount of red, green and blue light in order to create various
colors. This concept is based on the human visual system, a human eye has
three types of cones, each sensitive to different wavelength corresponding
to blue, green and red. By shining at the cones with three different colors
we stimulate them differently and a certain color can be experienced. The
RGB model can be represented with a Cartesian coordinate system, similar
to figure 3. Each axis represent the intensity of red, green and blue thus
creating a color cube.

1/5
3/5
4/5

Figure 3: An illustration of the RGB colorspace.

The RGB is straight forward with clear connection to the human visual
system but it is not without problems. The largest one being that it is
not perceptually linear. For example, humans are more sensitive to green
colors [3]. The RGB space doesn’t reflect this and thus using the euclidean
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distance between two colors might not be the same as the perceived distance.
This can cause problems in scene recognition due to the algorithm might
prioritize, for human, nonessential details.

3.2.2 HSV

Few humans describe a color by adding different amounts of red, green and
blue. Instead we tend to use descriptions like hue, saturation and brightness.
With this in mind another very common color space was created, the Hue-
Saturation-Value (HSV) color space. The HSV is a simple transformation
of the RGB into a cylindrical representation. In this cylinder the angle
describes a particular hue, the distance to the z-axis is the saturation and
the height is the value or intensity. The strength of this representation is
that the color is decoupled from the intensity. This makes it possible to
select a color independently of the brightness, for example selecting a red
apple is possible no matter what time of the day it is.

anjep

Figure 4: An illustration of the HSV colorspace.

The transformation from RGB to HSV preserves multiple properties of
the RGB space, among those the perceived linearity problem. The HSV
seem to solve the intensity problem of the RGB model but unfortunately it
doesn’t. The euclidean distance is still not equal to the perceived distance.
For examples in figure 4, the yellow part seems brighter than the blue even
though they have the same value. Gonzalez [4] describes it as ”perceived
brightness is not a simple function of intensity”.

13



3.2.3 LAB

The CIELAB color space was created as a perceptually uniform color space.
It is a perceptually linear color space in the sense that a change in one
color doesn’t necessarily alter the intensity in the same way as a change in
another color. Instead it is the perceived change that stay the same. These
properties make the LAB suitable when measuring the euclidean distance
between images. The measured distance between two images should be equal
to the distance a human perceive.

3.2.4 Grayscale

Grayscale transformation strips the image of its colors and is a simplification
of the real world. Since humans only experience colors there are no correct
way to convert an image into grayscale. We could use either the red channel
in RGB or lightness channel in CIEL*a*b. The generally accepted, and pos-
sible also the most natural, definition of grayscale is the human perception
of intensity. In this thesis we’ll be using the transformation

Y’ =0.299R' 4 0.587G" 4+ 0.114B'". (1)

This is the gamma corrected luma channel and is the standard grayscale
component of the PAL television encoding. It is a weighted sum of the RGB
channel which takes into account that humans are more sensitive to green
colors.

3.3 Principal Component Analysis

Principal component analysis (PCA) [19] is a statistical method that can be
used to reduce the number of dimensions of a feature vector. It is a lossy
method in the sense that data is removed in order to limit the dimensions
and reduce the size of the data. The goal is to only save the ”good” data and
remove the useless and redundant parts. These parts are of course unwanted
if we intend to decrease the data size. Most signals contain some level of
noise and it is important that a dimension reduction saves the data and not
the noise. By applying a transformation to the data using a set of linear
uncorrelated variables that maximizes the variance for each dimension we
get a maximum signal-to-noise ratio. A large signal-to-noise ratio is key
to limit the effects of noise. Summarized we are looking for a set of linear
uncorrelated variables that also maximizes the variance for each dimension.
The first dimension, or principal component as it is called in PCA, has
the most variance and the last the least. This transformation diagonalizes
the covariance matrix since in a set of linear uncorrelated variables the
covariance matrix is diagonal.

14



Our data is represented by X which is a m x n matrix. m is the number
of features that we want to reduce and n is the number of observations used
to find the principal components. The mean of the observations have been
removed for each feature. We get the following problem, find a orthogonal
matrix P that diagonalizes

1
Sy = — 1YYT (2)
where
Y = PX (3)
thus resulting in
Sy = ﬁPXXTPT. (4)

X X7 can be proven to be a symmetric matrix. All symmetric matrices
can be diagonalized as

xxT=EDE". (5)

Here E is a matrix where the columns are the eigenvectors of X X7 and
D is the diagonalized matrix.
Substituting equation 5 into equation 4 we get

Sy = PEDETPT. (6)

n—1
E~!' = E" since E is a orthogonal matrix. Thus by choosing P = ET
in equation 6 we get

1

Sy =
Y n—1

E'EDE'E (7)

shortened to )

n—1

Sy = D. (8)

By making a smart choice of the transformation P we can prove that
the covariance matrix will be diagonal. Thus we simply have to calculate
the eigenvectors of X X7 to get the required transformation.

Figure 5 illustrates a transformation from a two-dimensional space into
the new principal component space. As expected the first principal compo-
nent has the most variance.

In practice the last dimensions usually have a very small amount of vari-
ance and are not contributing much when describing the image. Removing
these dimensions would therefor not affect the overall representation very
much and has the benefit that it reduces the size of the data. It can be
viewed as a lossy compression method, the least relevant data is discarded

15



2nd Principal Component

Figure 5: The two principal components of a two-dimensional space

in order to obtain a lower dimensional space. In figure 5 this would mean
dropping the second principal component.

PCA requires a large training set in order to properly calculate the cor-
rect transformation. If the training data isn’t complete risks are that the
principal components are not the maximized variance at different levels.
This might cause noise to be more pronounced and that we throw away
critical data during the dimension reduction.

3.4 K-means clustering

Clustering is an essential non-supervised procedure that is used to find un-
known structures in large amount of data. By looking at the similarity be-
tween multiple observations we can constructs groups, called clusters, that
are all similar in a mathematical sense. For each cluster we can calculate a
cluster center point that captures all the essential properties of that group.
These cluster centers are usually a fictive point that is statistical relevant in
some way. The points are fictive in the sense that they are not the same as
any of the observations but rather created using the observations. Although
the point usually is fictive it still understandable, for example clustering on
multiple open landscapes images will generate a cluster center that, when
reconstructed into an image, resemble an image of an open landscape.

16



K-means clustering [10] is a common clustering algorithm that tries to
minimize the euclidean distance between the observations and the k cluster
centers. Given the following N x d observations, (1, @2, ...,xy) and k sets,
(51,52, ..., Sk). The k-means objective is to find

k
argminy Y |z — p]*. (9)
S sl azes;

To fulfill the objective the algorithm is comprised of two steps that are
iterated until convergence, the assignment step and the update step. From
a given starting set of cluster centers, (m%, m%, - mi), the assignment step
assigns the observations to the cluster center to which the euclidean distance

is the smallest,

S =y« o, — m|P< w, —mP |2, vy, 1< <k} (10)

During the update step each cluster centers location is updated by taking
the mean of the observations assigned to that particular cluster center,

1
m. = xXr;.
A > (11)

’S’L(t)| :B]'ESE

This iteration is continued until convergence which is defined as when
the assignment step stays the same. This can be proven to happen in a finite
number of steps but it is not guaranteed to be a global optima. To counter
this the k-means is usually run multiple times with different starting centers
and the best choice is selected.

One of the main issues is selecting the number of cluster centers, k.
This number can be selected and analyzed in multiple ways but it is not
something that is discussed in this thesis. In our case we are limited by our
computational power and will thus select the maximum number of clusters.

3.5 Image features

An image contains a massive amount of data. In order to run classification
algorithms in a reasonable amount of time we need to reduce this data. The
goal of the following algorithms is to reduce an image into a rather small
feature vector, also called image descriptor. This descriptor should some
sense capture the most important characteristics of the images, for example
the colors or the textures.

3.5.1 Color histograms

Color is the most obvious way to describe a scene without explicitly treating
the objects. Similar scenes should have similar colors, for example playing
football should result in multiple green images while sailing should mostly

17



consist of blue images. A pixel has three dimension where each take 256
different value, this results in over 16 million different colors. This is too
many dimensions to describe an image if we also want the calculations to be
feasible. By taking a 64-bin histogram in each dimension and concatenate
these we get a 192-feature vector.

We do this using the three different color space models. Thus resulting
in three different feature vectors:

e 192-bin RGB histogram feature vector
e 192-bin HSV histogram feature vector

e 192-bin LAB histogram feature vector

3.5.2 ECOH

ECOH is short for edge and color orientation histogram and is a holistic
feature that tries to capture the distribution of lines and color in an image.
The basic idea is that a certain type of scene should have a typical distri-
bution of edges and color, for example a city image should contain more
vertical lines than a more natural environment. The same should be true
for colors as described in the previous section.

ECOH was introduced by Kim et al. [6], as a modification and extension
to EOH [8] applied to indoor-outdoor segmentation. The basic ECOH theory
could be implemented in various ways but in this thesis we will use the
original implementation as follows:

We divide the image into blocks as the scheme described in figure 6. We
will compute the ECOH for each block separately and then concatenate the
blocks into one full length feature. During the concatenation we introduce
different weights for the blocks in order to focus on the areas of interest,
in particular more emphasized will be placed on block one, two and five.
The original reason in [6] for this scheme was that humans are usually in
the middle of a photo. It doesn’t matter if the image was taken inside or
outside, if a human is in the image it is likely they are in the middle. Thus,
focus are concentrated on areas that carries information about the scene.

The same argument cannot be made by images taken by the Narrative
Clip since no active choice was made while taking the image. To really un-
derstand and improve this process we should test multiple block formations
and different weights. This will not be done due to the time limitations
described in the section 1.3, instead we will make the following argument:

Narrative Clip is normally worn in a way such that the images are taken
at shoulder height and pointing forward. Due to Narrative Clip’s accelerom-
eter all images taken will have a horizontal horizon. This mean that a city
scene will have a higher likelihood for sky in block one, buildings in block
two and five and possibly a street in block three and four. With the same

18



Block 1 H/8

2 3 4 5 |7H/8

W/4 W/4 W/f4 w/4

Figure 6: An image divided into blocks of a specific size.

reasoning and numbering, an indoor scene might consist of roof, walls and
an object. Skimming through the images confirms the importance of block
1, while the distinction between the border blocks (2 and 5) and the cen-
ter blocks (3 and 4) is not particular obvious. That is why we choose the
following weights for the different sections:

w1 = 1,’LU2 = 0.5,11)3 = O.5,w4 = 0.5,W5 =0.5 (12)

First the image, I, is convolved separately with a horizontal Sobel filter
Gz(x,y) = Sobely x I(x,y) (13)

and a vertical Sobel filter
Gy(x,y) = Sobel, * I(x,y). (14)

A sobel filter detects edges in a certain direction, in this case the x and
y direction. By combining these we are able to detect the edge strength
independent of the direction.

G(w,y) = \/Galw,9)? + Gy(z,y)? (15)

This enables us to remove noise and other edges that are not strong enough
by simple thresholding,

G(z,y) G(x,y)>T

. (16)
0 otherwise

G(:Ea y) = {

The orientation of the line can be found by calculating the angle. We don’t
make any difference between opposite angles, that is any angle between 7
and 27 is mapped to the corresponding angle between 0 and 7. This is done
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because the same edge can have a different sign depending on the lightning,
shining from one direction or the other should not affect the edge detection.

0(z,y) = mod(arctan2(Gy(z,y), Gx(z,y)), 7) (17)

In order to better handle the data we limit the number of orientations to
Kpg and only save the edge strength for these orientations

k. k+1
G(z,y) Ky < 0(z,y) < e where 0 <k < K (18)

0 otherwise

For each block we now want to calculate the amount of edge strength in
each direction. That is, we want to create a histogram for each block where
the bins are the k orientations and the height the cumulative edge strength.

Ex= Y oulzy), 1<i<5 (19)
(z,y)eBlock;

Since all the 9 (x,y) are positive we can speed up these calculations using
integral images introduced in [2].

Thus far we have only created the edge oriented histogram for each
block. We are now interested in doing a similar transformation for the colors,
the HSV colorspace already provides an appropriate coordinate system as
described in section 3.2.2. The hue, H, is equivalent to the angle and the
saturation, S, is equivalent to the strength. The only difference is that we
use the complete rotation from 0 to 27 for the hue channel since the angle
represent different colors. We limit the number of colors by segmenting H
into K¢ different orientations. The corresponding color oriented histogram
is thus described by

where 0 < k < K¢. (20)

S(z,y) 2mE- < H(z,y) < 2wkl
,Yk(xa y) = ( ) Ko . ( ) Ko
0 otherwise

Which we collect for each block,

Ci=>_, wlzy), 1<i<s. (21)
(z,y)€Block;

Finally we concatenate all the histograms from all the blocks using different
weights for each block. We chose K = Kg = 8 and concatenated the
results according to this scheme

F = (wlfl, w2f2, w3f3, w4f4, ’LU5f5),

(22)
fi = (B, Ci1, Ei2, Cia, ..., Eik, Cikc).
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3.5.3 GIST

Oliva and Torralba [14] approached scene analysis by looking at how humans
characterize a scene. They found that concepts like naturalness, openness,
roughness, expansion and ruggedness played a vital roll in humans’ scene
understanding. They explained it as capturing the gist of the scene. These
concepts are quite abstract, for example man-made objects tend to have
straighter lines than natural objects.

Oliva and Torralba used spectral information to estimate and train an
algorithm to distinguish the different characteristics. A more naive gist
descriptor was proposed in [13] and is what we have used in this thesis.
This approach uses a set of gabor filters [12], visualized in figure 7, to filter
an image into a number of filter responses. The image is then divided into
patches each being 4 x 4 pixels, for each patch the mean filter response is
calculated for each filter response. Various structures will be captured by
each filter depending on the size and rotation, for example a vertical filter
will capture buildings better than an angled filter. The Gabor filter was
chosen specifically for its similarities with cortical cells responsible for the
human visual system [11]. The hope is that these filters will resemble the
spectral approach presented in the original gist implementation.
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Figure 7: The power spectrum of the different filters used in the GIST
implementation. The 32 filters are all Gabor filters but at four different
sizes and eight different angles.



3.5.4 Centrist

Centrist features aim to find a distribution of smaller structures that to-
gether form a description of a larger scene. The idea is that a scene have a
higher likelihood of certain structures than other scenes. For example some
scenes might have more circle or rectangle shaped structures than other
scenes. The centrist algorithm does not explicitly look for structures like
circles or rectangles. Instead it takes the census transform of the image and
calculate a histogram. Circles tend to generate certain histogram structures
and the goal is to capture these different local structures. Together should
these structures generate a histogram that is characteristic for a particular
scene.

Census Transform Census Transform is a transformation that uses its
local surroundings to calculate a pixels value. It is done in a non-parametric
way that prevents the use of convolution. Instead it is calculated in the
following manner.

Starting from the top-left corner of a three by three pixels larger patch
the neighboring pixel is compared with the middle pixel. If the middle is
greater than or equal to the neighbor a one is saved, otherwise a zero is saved
instead. This is done for each of the eight pixels around the middle pixel
going left to right and top to bottom. In the process an eight bit large array
is created. The array can be seen as a binary number between 00000000
and 11111111. The first bit is considered the most significant, that is the
upper left corner. This binary number be converted into a decimal number
ranging between 0 and 255. This value is saved in a new matrix at the same
location as the middle pixel. See 8 for an example.

10 | 40 | 90 (1) 1 0 bith
50 [50 [ 90 = 1 0 4 = (11010010); = 205
70 |20 | 80 0 1 0

Figure 8: An example of how to calculate the census transform for a single
pixel, in this case the middle pixel, 50.

Doing this transformation for all pixels in the image will generate a
new image where the global structures are intact but the local details like
the textures are suppressed. The key to this behavior is constraints that
are applied during the census transform. The main constraint is that each
pixel have a complement pixel in another patch. Consider the following
transformation, which is one step to the right from example 8.

Bit 5 in figure 8 is the middle pixel in figure 9 and bit 4 in figure 9
is the middle pixel in figure 8. Bit 4 and 5 is connected between different
patches and unless they have the same pixel value the two bits are opposite
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40 | 90 | 120 bitd 1 1 0
5 (9020 = L 1 1 = (11011110)y = 222
20 [ 80 | 100 1 1 0

Figure 9: Similar example as figure 8 except one pixel to the right. This
shows the relationship between the bit 4 here and bit 5 in figure 8. The bits
are bold to show that they are the opposite of each other.

of each other. There are other constraints like these as well, some are less
direct by taking paths through multiple pixels. The concept is that the
pixels are constrained by each other and taking the histogram an census
transformed image captures more than a simple gray-level distribution. In
[22] it was shown that the histogram also carries parts of the global structure,
a shuffled image could be reconstructed to a certain extent just by trying to
match the histograms.

The histogram is calculated using 254 different pixel values as bins. We
remove the complete white and black pixels since they are too common due
to how the census transform is calculated. As such they do not provide
much information. Due to the constraints discussed above multiple bins in
the histogram are correlated thus making a principal component analysis
suitable in order to limit the amount of dimensions. In [22] the number of
dimensions were reduced to 40, we used the same in this thesis.

/Dcwnsample

Downsample

Figure 10: Tlustration over how the spatial pyramid segments are divide
and downsampled.

In [22] a spatial pyramid was presented, it works by first dividing the
original image into 25 overlapping segments as seen in 10. The image is
down-sampled to 1/4th of the original size and another 5 segments are cre-
ated. Finally the image is once again down-sampled to 1/16th of the original
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size and one single segment is created. The purpose for this scheme is to in-
crease sensitivity to different sizes and frequency components. By using this
scheme we find structures at different sizes that could increase the perfor-
mance in scene recognition. For example, a scene looks different depending
on how far away the image was taken.

For the centrist descriptor we calculate the census transform for each
level and compute the histogram for each different segment. We reduce the
dimensions of each by using a unique PCA for each segment. Finally we
concatenate all the histograms into one feature vector, resulting in a vector
containing 40 * (25 + 5+ 1) = 1240 elements.

3.5.5 SIFT

Objects are vital for scene recognition and especially how the relate to each
other. For example recognizing a boat is almost a guarantee that the image
is taken close to water, recognizing multiple boats and the image is likely
taken close to a marina. The main issue with objects is the vast amount
of objects that exists, especially at different scales. A human can be seen
as one object but also as an object made up out of different body parts.
Large amount of data is needed to recognize even the basic objects and is
thus outside the scope of this thesis. Instead we will use a naive approach
in order to describe a scene using objects. The idea is that similar scenes
should contain similar objects, the most prominent features of these objects
should also be similar. Images depicting the same scene should thus have
a similar distribution of these prominent features and could thus be a good
scene descriptor. Using this approach avoids detecting any object explicitly
and thus removing the necessity of training the algorithm for each object.
Instead we train the data on the distribution of the most relevant points
and hope to capture the underlying objects.

An object can be viewed from different distances, at different rotations
and at different illuminations. We are interested in detecting certain charac-
teristic points on the object and thus need a method that detect these points
independent of how the object is viewed. Scale-invariant-feature-transform
(SIFT) is one method for this task and is also fairly robust to the various
changes, in particular to scaling and rotating the object. SIFT was devel-
oped by David Lowe and has been a popular local-feature detector since it
was introduced 1999 [9].

The SIFT-algorithm The first stage of the SIFT-algorithm is to detect
the interesting points, called keypoints. Laplacian of Gaussian (LoG) has
a strong response to blobs, that is, areas that have similar range of values.
The blobs comes at multiple different scales and we need to calculate the
LoG for each. The LoG is fairly expensive to calculate and Lowe introduced
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an approximation in order to reduce the runtime. The Gaussian (G) of an
image at different scales is defined as

1 — (T g
G(x,y,0) = W@ (@®+y*)/20% (23)

The LoG is defined as

oG
L(z,y,0) = B oV3G. (24)

The left-hand side can be approximated as

% ~ G(.’L’,y7 k‘O’) — G(Jﬁ,y, J)

~~ 25
Jo ko —o ’ (25)

which can be rewritten as
D(ﬂ?,y, U) = G(JI,y, kg) - G(.’IJ‘, Y, U) ~ (k - 1)02v2G' (26)

The left hand side is a Difference of Gaussian (DoG) and is an approxi-
mation to the LoG. Thus by calculating multiple Gaussians and taking the
difference between two adjacent scales we are able to approximate the LoG
at certain scales. We are interested in finding points where we have a strong
local response to the DoG, that is where we either have a local maximum
or minimum, a so called extremum. These points should be local extreme
points not only at the current scale but also looking at the two adjacent
scales as visualized by figure 11.

By doing this for all the different pixels and scales we get numerous
keypoint candidates. In order to improve the stability of the local extreme
points a Taylor expansion of D(x,y, o) is used. The derivative of this func-
tion determines the location of the extremum. A thresholding of the value
at these points removes any low-contrast keypoints and thus increases the
invariance towards illumination changes. Lowe proposed that the keypoint
should have a |D(z)| > 0.03 which is what has been used in this thesis.

The DoG response well to blobs and corner but also edges, an edge is
not a good local feature since it can be shifted along the edge and still give
an almost identical response. In order to remove these points an Hessian
matrix is created

D D
H = e xy] ) (27)
[Dﬂcy Dy,
It can be shown that Tl E )
1
Det(H) T

where 7 is the ratio between the two eigenvalues of H. An edge has a large
ratio between the two eigenvalue while a corner has similar eigenvalues.
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Figure 11: Hlustration over which pixels we check to see if the pixel, marked
with an X, is a local extreme point.

Lowe proposed to remove all keypoints where r > 10 which is what has
been used in this thesis.

We have now removed all the questionable keypoints that either lacked
contrast or stability. In order to achieve rotation invariance we now assign
an orientation for each keypoint, the remaining task of creating a descriptor
will use this orientation as a base in order to ensure rotation invariance.
The orientation assessment is done in a Gaussian-weighted circular window
with a o 1.5 times larger than the current keypoints scale. In this window
we calculate the magnitude and orientation for each location.

m(z,y) = V(L(x +1,y) — Lz — 1,9))? + (L(z,y + 1) — L(z,y — 1))?

(20)
. (Lz,y+1) - L(z,y—1)
Ol y) = tan™ <L<x+ Ly)— Liz— 1,y>> (30)

The orientations are binned to 36 different bins and we simply add the
magnitude to each bin depending on the orientation. This is done for all the
pixels and we get a histogram for each keypoint. The orientation with the
largest magnitude is chosen as a keypoint. There might be other large peaks
as well, if any of these are more than 80% of the maximum peak we create
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keypoints for these as well. Thus it is possible for one keypoint location to
generate one or more keypoints. Although it doesn’t happen in most cases.

Finally we construct the actual local feature descriptor. This is done
by breaking down a 16 x 16 pixels larger window around the keypoint into
4 x 4 blocks. As before we calculate the magnitude and orientation for
each pixel. We rotate these results using the keypoints orientation, this
is done to ensure rotation invariance. For each block 4 x 4 we calculate
an orientation histogram with 8 bins. The difference here compared to
previously is that we add the gaussian window adjusted magnitude for each
pixel to the corresponding orientation bin. This limit errors that is more
common to arise further away from the keypoint. In total we get 16 blocks
with 8 orientations each thus resulting in a 128-dimensional local feature
vector.

Creating an image descriptor The SIFT algorithm generates multiple
local feature vectors. They are highly discriminative and can generate an
unknown number of features. Although the discriminative nature makes
it possible to distinguish between two different but similar keypoints there
should still be certain similarities. Considering an object is made up by
multiple keypoints it should be possible to capture this correlation. Therefor
we apply the K-means clustering method as described in section 3.4. The
goal is to capture the most common local feature vectors, these hopefully
make up important aspects of an image that could be suitable for scene
recognition.

The K-means algorithm generates a number of cluster centers, all the
local feature vectors are assigned to the closest cluster center. We simply
count how many of each cluster center exists in a new image and thus cre-
ating a histogram of the local feature vectors. After dividing by the number
of vectors we get an image descriptor suitable for detecting object distribu-
tion changes in our images. The length of the descriptor is the same as the
number of cluster centers. As stated in section 3.4 we select the largest com-
putational feasible number of cluster centers, in this case that is 95 cluster
centers.

3.5.6 Textons

Textures have a vital role in scene understanding, giving us a way to dis-
tinguish the sky from the ground if the color channel is missing. Textures
comes in a wide range of shapes and sizes making it hard to define a partic-
ular texture mathematically. For example, a chair is normally not a texture
but if we view it at a distance it could be viewed as one. The chair is a
rather complex texture that can be broken down into simpler parts. The
simplest textures are bars and blobs at different sizes and rotations, these
textures are the basic building blocks of textons [7].
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By filtering an image with a wide range of different filters we get a unique
response for a particular texture. Similar textures, like grass at different
locations, will have a similar response to the filters. In this thesis we used
the 48 filters shown in figure 12 but multiple other filters could also be used.
The filters used are:

First derivative of Gaussian: A total of 18 filters at six different orien-

tations, 0 = (F, %’T, %”, %’r, %”, m) and at three different scales with an

elongation factor of 3, o, = (v/2,2,2v/2) and o, = 30,.

Second derivative of Gaussian: A total of 18 filters at six different ori-

entations, 0 = (, %’r, %’T, %T, %“,W) and at three different scales with

an elongation factor of 3, o, = (v/2,2,2v/2) and oy = 305.

Laplacian of Gaussian: Eight filters with different scales,

o= (12,2,2v/2,4,32,6,6v2,12).
Gaussian: Four filters with different scales, o = (v/2,2,2v/2,4.)

16 first derivative of Gaussian filters, 6 with

ESNIAEENNDNZEZ
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Figure 12: The 48 different filters used to create the different textons [7].
Row 1-8, column 1-6: Derivative of Gaussian filters
Row 1-83, column 7-12: Second derivative of Gaussian filters
Row 4, column 1-8: Laplacian of Gaussian filters
Row 4, column 9-12: Gaussian filters

If we apply the filters to multiple images at all the different pixel locations
we get a large set of filter responses. We use this set to find multiple cluster
centers using a k-means algorithm as described in section 3.4. The goal is to
gather similar textures into one cluster, for example should all grass textures
be in the same cluster. Since a cluster center describes the same texture it
has in literature been defined as a texton. In other words the textons are
the most essential textures of the training set.

For a new image we calculate the filter responses for all the pixels. Each
filter response are then compared with the textons, the closest texton gets
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assigned to the specific pixel. This generates a new image consisting only
of the texton designations. The new image has a smaller filesize but the
primarily benefit is that each pixel is more meaningful since it describes a
texture not only a gray value. Similar to the SIFT, we collect the number of
each textons and divide by the number of pixels. This histogram will be a
suitable image descriptor to detect texture changes in our images. The size
of the descriptor is equal to the number of textons or cluster centers. Like
the SIFT-feature we chose 95 cluster center simply due to computational
limitations.

3.6 Classification methods

Classification methods are used to classify data in a supervised setting. The
goal is to construct algorithms that take a new observation and classify it
correctly. The algorithms need a set of annotated observations to adjust
or train the parameters in order to be able to classify a new observation
correctly.

3.6.1 Support Vector Machine

Support Vector Machine [1] is a supervised non-probabilistic machine learn-
ing method used to label data into two different classes. It takes a supervised
training set, consisting of pairs of labels and feature vectors, and constructs
a hyperplane that separates the two classes. To classify a new feature vector
the model simply check at which side of the hyperplane the feature can be
found and classify it accordingly.

Imagine a linear separable training set consisting of two-dimensional fea-
ture vectors as depicted in figure 13. The goal of the SVM is to find the line
that best separates the two classes, that is, the distance from the line to the
closest feature vector should be as large as possible for both classes. This
is equivalent to saying that the distance from the line to the closest feature
vector is the same for both classes. These vectors that define this distance
are called the support vectors.

Given a linear separable training set

H={(@i,yi) | z: € R?, yi € {1, 1}}}4 (31)

we can construct a hyperplane, (w,b), such that any point « on the hyper-
plane will satisfy
w-x—b=0. (32)

In order for the hyperplane to separate the training set we need to constrain
it. In other words we need to define w and b. Since we know the data is
separable one way would be to force all the positive samples to be larger
or equal to one and all the negative samples to be less than or equal to
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Figure 13: Example of a SVM classification for two classes. The black dot
belong to one class and the white dots to another. The filled line is the
optimal hyperplane.

negative one. It is out of mathematical convenience we choose equal to one,
the main point is that different samples should have different signs. This is
mathematical equivalent to

yi(w-x; +0) > 1, Vi (33)

which creates two new hyperplanes as shown in Figure 13.
It can be shown that the distance between the two constraining hyper-
planes is equal to 2/ ||w|| and thus the problem is equivalent to finding

1 9
min = ||w||
whb 2 (34)

subject to:  yi(w-x; +b) > 1, Vi.

Equation 34 is not, in its current form, trivial to solve due to the quite com-
plex constraints. We have two unknowns inside a linear constraint and we
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want to minimize a convex function. This limits where the minimum can be
found, it either has to be located at the global minimum or somewhere along
the constraint. This class of problems are called quadratic programming op-
timization problem and can be solved using appropriate techniques. For
these kind of problem we can usually simplify the quadratic programming
by reformulate the problem using Lagrange multipliers

1 n
min L, = 5||'w||2—2ai[yi('w-mi+b)—1] (35)
i=1

subject to: a; >0, Vi.

This technique removes the complicated constraints and replace them with
a far more simple one; the Lagrange multipliers a; must be positive. The
price for this operation is a more complicated minimization function. A
fairly small price considering that a minimum requires the derivative to be
equal to zero,

oL, =

T w — ;:1 oy =0 (36)
0L,
761) = i:E - ;Y = 0 (37)

Using the results from 36 and 37 in 35 and reformulating into a maximization

problem,
n 1 n n
max Lg = Zl oy — B lelaiajyiiji " Ty
= == (38)

n
subject to : Zoz,-yi =0, «a; >0, VY,
i=1

It is still a quadratic programming problem but a much easier one to since
we only have rather simple constraint left. This problem can be solved by
standard quadratic programming solvers that will not be covered here. The
solver will return the different Lagrange coefficients which can be used to
find the hyperplane parameters. w is found using equation 36 and b is found
using equation 32 and the support vectors that define the hyperplane.

In most cases the data is not fully separable. To handle this we introduce
an error on each observation that depends on the distance to the hyperplane.
The derivation is similar as before and will not be shown here, instead we
refer to [1] for a detailed derivation.

Furthermore, the data might not be linearly separable. It is possible the
data is better separated by a polynomial function or perhaps radial function.
In equation 38 the term x; - «; appeared, this term is called a linear kernel
and belongs to a family called Kernel Functions. It defines the behavior of
the hyperplane, in this case a linear function. By replacing this term with
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k(x;, ;) we can use different kernels that live in a higher dimensional space.
Structures that previously weren’t separable by a plane might now be and
we can use this to get a better classification. Without going into to any
detail, one of the most common kernels is the radial basis kernel,

2

I

[|2i—=;

k(:l}z . :Bj) =e 22 (39)
In this thesis this kernel will be used exclusively. Time-constraints restricted
proper comparison against the linear kernel and the radial basis function for
no particular reason. The complete derivation using kernels will not be
performed here, for a complete derivation see [1].

Given an observation the SVM classification generates the distance to
the hyperplane. Depending on the sign it classifies the observation as one
of the two classes. In some cases it is more useful to have the probability
that an observation belong to a class rather than a distance. In [17] Platt
fitted a logistic regression to the distances generated by the training set in
order to get a probabilistic-SVM. This modification makes the SVM able to
return the probability that an observation belong to a certain class. We will
not explain this method further and refer to [17] for a full explanation.

3.6.2 Hidden Markov Models

Hidden Markov Model (HMM) [18] is a way to determine the class or state
of multiple time consecutive observations. Consider M consecutive observa-
tions

O ={01,0a3,...,0p} where O € R (40)
and the following N states

S:{Sl,SQ,...,SN}- (41)
where each observation belongs to a certain state that is unknown or hidden

Q = {qlanv 7QM} where qr € S. (42)

We are interested in finding this unknown state sequence @ given an
observation O, a problem well suited for a Hidden Markov Model. Since the
observations have a certain degree of noise the problem turns into finding
the optimal state sequence given the observation, in this context optimal
means most likely.

A new observation usually depends on the previous one, for our usage
this means that if the previous images was taken outside it is likely that the
next image will be as well. The Markov property in the HMM takes this
further, instead of looking at all the previous observations only the latest
observation’s state is taken into account.
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In order to calculate the HMM we will need the following variables. The
state transition probability distribution

aij = Plgt+1 = Silage = Si], 1<14,5,< N. (43)

This property describes how likely certain states are to transition into others,
for example it might be more likely that the next day after a sunny also is
sunny rather than rainy.

The observation probability distribution for each state

bj(k‘):P[Ok|qk:Sj], 1<j<N, 1<k<M. (44)

Certain observations are more probable for some states than others. If we
see the sun in the morning it might be more likely that the day will be sunny
rather than rainy.

The initial state distribution

TI'jZP[(h:Sj], 1§]§N (45)

Each sequence has a starting state, m describes the likelihood for each. All
these variables can be group as A = (a,b, 7). A is essential as it defines
all the required properties that needs to be configured in order to have a
properly working HMM. A can either be chosen or, more common, trained
using multiple training sequences.

Consider the probability that a certain state sequence @ generates the
observation O. This can be written as

M
P(0|Q, ) = [] P(Oklg:, ) = b4, (01) - by, (O2) - b, (O1) (46)
k=1

The probability for Q is

P(QIN) = Tq;Qq1q2Qq2q3 ** " Aqr_1q7 (47)

This allow us to calculate the joint probability distribution using conditional
probability.
P(0,Q|)) = P(O]Q, ) - P(Q[A) (48)

These calculations are completely impractical for anything but the smallest
datasets. The problem with this approach is that for each state the algo-
rithm needs to calculate all the possible state changes. Most of these changes
are the same for all the states thus resulting in multiple unnecessary calcu-
lations. This can be solved by using a dynamic programming approach that
solves the problem by saving each step and thus eliminating unnecessary
calculations. This is possible due to the Markov property, when calculating
the probability at time ¢ we are only interested in the N different states at
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time t — 1, any previous knowledge is irrelevant. In fact we can use the
dynamic programming in two ways, calculating from the beginning or from
the end. The forward variable is defined as

Oét('i) :P(017O27"' 7Otaqt :SZ‘)\) (49)
and can be calculated as follows,

Oél(i) = mbi(Ol), 1 S ) § N (50)

N
aa1(j) = <Zat(i)aij)bj(ot+1), 1<t<T-1, 1<j<N. (51)
i=1
The backward variable is defined slightly differently
Bi(i) = P(Ot41,0¢42, -+ ,O7|q = S;, \) (52)
and can be calculated in a similar but slightly different manner,

Br(i)=1, 1<i<N (53)

N

80 = (3 oot (Oudiin(i), T-12021 1<iSN. (8
j=1
We are interested in finding the most likely state sequence @ given an

observation and parameter \. We want to calculate this in a dynamic pro-
gramming manner and thus the following is of interest

o () B (7)

(1) = Pg = Si|O, \) = o (55)
3oLy (i) (i)
The most likely state for a given time, ¢, can then be found as,
g = argmaz[y(i)], 1<t <T. (56)

1<i<N

The Viterbi algorithm The problem with the approach in 56 is that
it calculates each step independently. In certain situations we might have
state transitions with zero probability which can’t be handled by equation
56. Instead we try to find the ”single best state sequence”, that is, maxi-
mizing P(Q|O, \) or equivalently maximizing P(Q, O|)). This is done by
the Viterbi algorithm and starts by defining

5:(i) = max [P(ql,qg,--~ ,q = 1,071,092, - ,Ot])\)}, (57)

41,92, " qt—1

which can be reformulated using induction

0r41(4) = maz[di(i)aij)] - bj(Ors1), (58)

35



0¢(7) describes the highest probability to generate the state i at time t. It
takes into account all the previous path but only saves the optimal one. In
other words equation 58 is used to calculate the best state sequence and is
implemented and used

51(i) = mbi(01), 1<i< N (59)

P1(i) = 0 (60)

The v variable is used to store the best state sequence when we use recursion
to calculate the different states

6:(j) = maz [0i-1(i)aij] - bj(Oy), 2<t<T, 1<j<N  (61)

1<i<N

P (j§) = argmazx [5t_1(i)aij], 2<t<T, 1<j<N (62)
1<i<N

The final step saves the results separately

P = mag, [07(3)], (63)
qr = argmaz [5T(z)] (64)
1<i<N

Finally we backtrack to find the optimal state sequence

@ = Vi1(qyq), T—1>2t2>1, (65)

where ¢; is the final result and gives us the single best state sequence given
a certain observation.

3.7 Changepoint detection

Changepoint detection is used to detect distribution changes in a sequence.
Various changes can be detected depending on the method, it could be
a change in distribution type or perhaps the same distribution but with
parameter variations, for example a change in mean. In this thesis the
interest is limited to the last one, we want to detect changes in the mean
value. This will be done by using a distribution independent method based
on cumulative sum control chart (CUSUM) first presented by Page [15]. This
method have been improved since, in particular by Hinkley and Schechtman
[5] who proposed a bootstrap method to detect a change and Taylor [21]
who proposed a method to detect multiple changes in an iterative way. In
this thesis we extend Taylor’s method to work at multiple dimensions and
thus detect multiple mean changes on multivariate data.

The CUSUM method takes the cumulative sum of the difference between
the mean and the datapoints. Consider a sequence X = X1, Xo, ..., Xy with
mean
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o Xi+Xo+ ..+ X
X = 1+ 2]—1\; + AN (66)

The CUSUM method is defined as

So=0
Si=Si-1+ (X; — X)
The CUSUM will always sum to zero since we are subtracting the mean
N times. Thus what the chart is actually saying is how far away from the

mean we are given a sequence number. Now consider we have two different
means with the following relation,

(67)

%, - Xi+Xo+ ...+ X, S X1+ Xmgo + .+ XN

=X 68
! m N —m 2 (68)
Thus the mean, X, is in the middle between X; and Xs,
. X1+ X
X = % (69)

This mean that any X; up to the point m + 1 probably is larger than X
and thus having a positive contribution to S. While any point after m is
probably smaller than X and thus having a negative contribution. This
mean that S will increase in the beginning up to the point m after which it
will decrease. If we instead had a situation where X; < X», S would first
decrease and then increase. In other words, the maximum of the absolute
value of S is where the changepoint probably is located. For a graphical
example see figure 14.

All CUSUMSs have a maximum value but that doesn’t necessary equal a
changepoint. If we randomly shuffle X we get a situation where the CUSUM
increases and decreases randomly and thus creating multiple local maxi-
mums or minimums. None of these are a relevant changepoint though since
the data is random. The easiest way to see this is that the difference between
the minimum and the maximum value is small compared to the difference
for the original X. This gives us an idea how to use bootstrapping in order
to decide if a sequence has a changepoint or not.

1. Calculate Sgirf = max(S) — min(S)

2. Generate a bootstrap sequence, Xttra by randomly shuffle X
3. Calculate the CUSUM, Sbootstrap_ of Xbootstrap

4. Calculate SZ?}’;“MP = max(So0srar) — mjn(Sboctstrap)

5. Redo step 2-4 a 1000 times and count how many times Sg;rf > SZ?;?;Stmp
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Figure 14: Example of a CUSUM for a one dimensional case. All the number,
the stars, are normal distributed but the first ten number comes from a
distribution with a different mean than the last ten numbers. The mean is
shown as the horizontal line. For each step the difference between the mean
and the current number, the vertical lines, is added to the CUSUM, the line.
The top aligns with the tenth number as expected.

6. Calculate a confidence level, r, of how many times Sg;rf > Ssgﬁﬁftm”

If 7 is larger than a certain threshold the sequence is considered to have a
changepoint.

After it has been determined that a changepoint exists it also has to be
found. To find a changepoint we try two different changepoint estimators.
The first one has already been presented as:

m = argmaz|S;| (70)
i=1,2,..,N

That is, the point where the cumulative sum is furthest away from the mean.
At this point the difference between the value and the mean must change
sign in order to reach zero in the final step. A sign change at the point
furthest away from the mean is probably equal to a changepoint.

A changepoint divide the sequence into two smaller sequences. One
method to choose were to place the changepoint is to look at the variance in
the two sequences. By minimizing the variance in each sequence we ensure
that the two sequences have optimal means. If we shift the changepoint by
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one from the true value, we increase the variance in both sequences as well
as decrease or increase the mean value in one of the sequences. Since we
want to decrease the overall variance we simply sum the variance of the two
sequences and find the point that minimizes this sum,

m N
m = argmin(Z(Xi - X1) + Z (X — Xz)) (71)
i=1,2,..N \“— .
i=1 i=m+1
where N
_ m X, _ L X;
X = @ and Xo = @ (72)
m N-—m

So far X has been a vector of length IV but we are interested in the case
when X is a matrix of size N x K. That is each X is actually a vector of size
K. We are interested in changes that take all these dimensions into account.
We do this by calculating the CUSUM separately, as explain above, for each
dimension, we then sum the absolute value of each CUSUM into one final
CUSUM. We are not interested if the distance to the mean is negative or not
but rather the size of this distance. Summing all the CUSUM into one gives
us the total distance to the means, thus giving us a way to detect changes in
this distance. Finally we detect a changepoint in the same way as described
above.

Once we have detected a changepoint the sequence is split into two
smaller sequences. The same CUSUM-method is carried out on both se-
quence and if necessary they are divided into even smaller sequences. Each
changepoint is saved and sorted depending on the certainty on each change-
point. When no more changepoints can be found the algorithm stops and
return a vector with all the valid changepoints.
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3.8 Evaluation methods
3.8.1 Confusion matrix

A confusion matrix is a way to visualize the performance of a classification
method. It takes the class prediction for each observation and compare it
with the observation’s true class. This is done for all the observation and
the result is collected in a confusion matrix.

In the two-class case the confusion matrix is made up by a 2 x 2 matrix
in the following way:

Actual \ Predicted D=Positive D=Negative
C=Positive True Positive (TP) | False Negative (FN)
C=Negative False Positive (FP) | True Negative (TN)

Table 1: Confusion matrix.

The observations has two possible classes, ”positive” and ”negative”.
This give us four different outcomes:

True Positive (TP) = The observation predicted the ”positive” class when
the actual class also was ”positive”.

False Positive (FP) = The observation predicted the ”positive” class when
the actual class was ”"negative”.

False Negative (FN) = The observation predicted the ”negative” class
when the actual class was ”positive”.

True Negative (TN) = The observation predicted the ”negative” class
when the actual class also was "negative”.

The confusion matrix helps us define the following probabilities:

P(D = Positive|C = Positive) = Tl'}—ji—PFN (73)
P(D = Negative|C = Positive) = ITF_EVFN (74)
P(D = Positive|C = Negative) = TNF—iDFP (75)
P(D = Negative|C = Negative) = ]Wjik]\IITJD (76)
Using the confusion matrix we can create a couple of key indicators:
Recall = 7;:;,]\7 (77)
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Recall is the ratio of how many of the true positive the classification method
found. It gives us a measurement of how many true values we miss and the
goal is of course to not miss any value.

TP
P ,StON = —————— 78
recision TP FP (78)

Precision gives us a ratio of how many of our positive predicted values are
actual correctly predicted. It gives us a measurement of how sure we can be
on our predicted values.

Precision and recall are connected, we could easily achieve a perfect
recall ratio by simply predict all values to be positive. This would hurt the
precision ratio since the false positive values would increase.

2T P
Fl1— -
ST = OTP Y FP+ FN (79)

The F1-score is the harmonic mean of the precision and recall. It weights
the two errors equally and a large value mean low errors in both the recall
and the precision.

TP+TN
TP+TN+ FP+FN

Accuracy is a measurement using the complete matrix giving us a ratio of
how correct the overall performance of the classification algorithm. That is,
what is the probability for us being correct.

Indoor/outdoor classification tend to have a rather even distribution
between the two classes and the distinction between the two are relatively
clear. An image can be classified as either indoors or outdoors thus making
it relevant to talk about recall and precision.

For the segmentation problem it is not quite as easy to define two differ-
ent classes. We have a lot more locations where no segmentation should be
performed than we have segmentation points. It depends on the situation
but on average more than a hundred image are collected into a segment.
This causes some issues with the normal definition of the confusion matrix.
Even a small error when selecting a segmentation point might cause a false
positive/false negative pair. In order to avoid this we accept small errors
between the real segmentation point and the predicted one. We construct
an alternative confusion matriz with the following definitions for the seg-
mentation problem:

(80)

accuracy =
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True Positive (TP) = An estimated segmentation location is within 5
images of a real segmentation location that has not already been used.

False Positive (FP) = An estimated segmentation location is not within
5 images of a real segmentation location that has not already been
used.

False Negative (FN) = A real segmentation location is not within 5 im-
ages of an estimated segmentation location that has not already been
used.

The "has not already been used” part is used to ensure that a location is
not counted multiple times. This could otherwise happen if we would have
two segmentation locations within 5 images of each other. For example
consider a situation where two estimated segmentation points are close to
each other and close to a real segmentation point. In a case like this we
would not want both of the estimated points to be considered true positives.
Instead we would want to consider one of the points as true positive while
the other should be considered a false positive.

This definition has a major issue, we are unable to define true negative
locations, we do not know which estimated negative class correspond to the
real negative class. This is the cost for accepting non-perfect segmentations
but it is an acceptable cost.

3.8.2 Jaccard similarity

Jaccard index is a way to determine the similarity between two sets, A and

B. It is defined as:
B |AN B

- |AUB|

The maximum similarity is one since two exact sets have the same length,
the minimum similarity is zero since the length of the intersection of two
independent sets is zero.

Our segmentation sets will be made up by the segmentation point in-
dexes, for example [100, 200, 300]. The sets will be small compared to how
many different values the sets actually can take. Consider another set,
[99,199,299], in other words an almost identical set. This is however not
reflected in the Jaccard index, non of the values in the set are the same and
thus the Jaccard index is zero. The Jaccard index doesn’t take any consid-
eration of how close the values in the two set are. Thus a small error in the
segmentation algorithm might alter the Jaccard index to look the same as
a much larger error.

To fix this problem we alter our usage of the Jaccard index. In our
context set A and B are actually sorted sets of integers. This allow us to
create new sets for each consecutive pair of integers in original set. The new

J(A, B) (81)
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sets consist of the integers between and including the two values in each
pair. Each new set from set A is then compared with all the new sets in set
B using Jaccard index. If set B original had M values, M — 1 comparisons
will be made for each pair in set A. All of these comparisons are summed
and thus we get N — 1 sums if the length of set A is N. Finally we take the
average of these sums to get a final similarity value, S.

As previously, 0 < § < 1 since each sum will be one if the two sets are
the same. This algorithm takes into account the size of an error making
it suitable for our needs. The algorithm is fairly quick to compute since
we don’t actually need to create new sets, it can easily be computed using
simple arithmetics.

3.8.3 Edit Distance

Edit distance is based on strings to evaluate how many operations that are
required to make two strings equal. This method can be extended to se-
quences and instead measure the dissimilarity between two sequences. The
idea is to punish three different operations differently, add a value, delete
one or "move” one. The number and type of each operation is reflected to
the dissimilarity score where a lower score is better. The problem is finding
the lowest score for each sequence given the cost of each operation. In prac-
tice we also have a problem of finding well suited costs for each operation,
we want a good result to be equal a low dissimilarity score and vice versa.
The optimal score can efficiently be computed by a dynamic programming
method called WagnerFischer algorithm. This procedure removes any du-
plicated calculations making it suitable even for very long sequences.

We will introduce the edit distance using an example, but the method
is in no means restricted to this particular situation. Consider two integer
sequences, A = [6,10,40,53] and B = [1,5,35,40,55]. We want to make
B equal to A with the use of three operations, add a value to B, remove a
value or "move” a value. We construct a matrix X of size (5) x (6) that has
some special properties. A movement X (i,5) — X (i,j + 1) equals deleting
value Bj, a movement X (7,5) — X (i + 1, j) equals adding A; and finally a
movement X (4,j) — X (i+1, j+1) equals moving B; to be equal to A;. The
first row is thus equal to deleting all the values from B and the first column
to add all A’s value to B. We now consider the most efficient operation to
reach X (1,1), that is, to make A; equal to B;. For this we need to know
the cost of each operation, in this thesis we chose the following:

Cost to add a value: 50

Cost to delete a value: 50

0 if b—al <5

Cost to move a value from b to a: )
|b—al otherwise
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In our example the cost of moving from B to A is 5 since |6 — 1| = 5.
This is more efficient than deleting By and then adding A; or to first add
A; and then delete B;. We thus save 5 to X(1,1). Now consider the cost
of moving from By to A;. This can be done in three ways,

e Delete By then move Bo
e Delete Bq, delete By then add A;
e Make By equal A; then delete Bo

Delete B; has already been computed in X (0,1). Delete By, delete By has
already been computed as X (0,2). Make B; equal to A; has already been
computed in X (1,1). In fact, we only need to do three calculations, X (1,1)
+ delete By, X(0,2) + add A; and X (0,1) + move By. These procedures
can be applied to the remaining parts of the matrix, we get:

X (4,5 — 1) + delete cost
X (i,j) =min ¢ X(i —1,7) + add cost (82)
X(i—1,7 —1) 4 cost to move B; to A;

This operation is carried out step by step for the other positions in the
matrix until we reach the end, that is X (m,n). This value is the optimal
cost to make B equal to A. See figure 15 for the complete example.

A\B - 1 5 35 40 55
- 0 50 100 150 200 250
6 50 5 50 100 150 200
10 100 55 10 60 110 160

40 150 105 60 15 60 110
53 200 155 110 65 28 60

Figure 15: The complete example of how to calculate edit distance.
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4 Indoor/Outdoor classification

The transition between indoor and outdoor plays a vital role when a se-
quence is segmented into moments. In most situations moving from inside
to outside signifies a major change in both the environment and the activ-
ities. The same is obviously true the other way around. A large change
like this is of major interest and should probably be considered to be a seg-
mentation point. Although being a strong separation cue, care needs to be
taken due to the nature of indoor/outdoor classification. The classification
is insufficient in a couple of situations, it would fail to distinguish any mo-
ment that is completely indoors or outdoors. There also exist situations
that should be considered to belong to the same moment even though they
contain both indoor and outdoor images. In particular situations when the
user is moving back and forth from an indoor and an outdoor environment.

Multiple methods have been constructed for indoor/outdoor classifica-
tion [20][6][16] with various results. The majority of the methods uses differ-
ent low-level features like color, textures or edges but methods using higher
level features also exists. All of these algorithms are used to classify a single
image rather than longer sequences. These methods could of course be used
in sequence by classifying one image at a time but results could be improved
by using knowledge from the previous images when classifying a new image
in a sequence.

4.1 Our indoor/outdoor classification method:

Descriptors In our indoor/outdoor classification we will try multiple low
level features, the RGB histogram, the HSV histogram, the LAB histogram,
the ECOH features and the Texton features. We also try the SIFT features
in order to test a slightly higher level feature. We compute all the features
on all the images in the indoor/outdoor dataset described in section 2.2.

SVM As stated previously we select 40 % of these images and use these
to train one radial basis function probabilistic-SVM for each descriptor as
described in section 3.6.1.

In order to avoid overfitting we incorporated a cross-validation scheme
and used a gridsearch to optimize the parameters of each SVM. The end
result is one SVM per descriptor that has been trained on data separate
from the evaluation data. We are interested in finding the optimal feature
for indoor/outdoor classification and is thus not interested in combining
multiple SVMs.

HMM Consider a sequence of images in chronological order. If the pre-
vious image was inside it is much more likely that the next image also is
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inside. The average day tend to have few transitions from indoor to out-
door or vice versa. Thus by looking at the previous image we usually get
a reasonable guess of the state of the current image. We could of course
instead use the last two images but that is not something that have been
done in this thesis. The previous image provides enough information about
the past without introducing too much computations making the algorithm
too expensive.

The hidden markov model described in section 3.6.2 combines the like-
lihood estimates from the probabilistic-SVM with the probability of transi-
tioning between states and initial state probability. The hidden states are in
this context indoor and outdoor and the observations consist of our descrip-
tors. The observation probability distributions b is the trained probabilistic-
SVM method. It provides a probability of being indoors or outdoors given
an observation. In order to provide a good classification the HMM requires
knowledge of the state transitioning as well as the starting probability. Both
of these value are estimated using the notations from all the datasets.

For the state transitions, a, we simply count the number of transitions
between the states and divide by the number of transitions. That is, we
count how many transitions going from indoor to indoor and indoor to out-
door and divide each by the sum of the two. The same procedure is carried
out for outdoor to indoor and outdoor to outdoor. We now have a transition
probability that gives us the likelihood for each transition.

The initial state probability is estimated by looking at the first image in
each sequence. We count how many of these are indoors and outdoor and
divide by the number of sequences. This gives us a probability of where a
user starts using the clip.

The HMM provides a binary classification of the sequence. The hope
is that the extra information from the previous images should improve the
classification over the original stand-alone probabilistic-SVM classification.
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5 Segmentation strategies

The problem of segmenting a sequence into moments is actually a two-parted
problem. Given a sequence we need to find the number of moments as well as
where the moment boundaries are located. In this thesis we primarily deal
with the later of the two problems but they are interconnected and thus we
will also touch upon the first problem. According to our moment definition
a moment is coherent in the sense that the mean is fairly consistent through
out the moment. A fair assumption is thus that different moments should
have different means if they are to be distinguished between each other.
For example, playing football should result in multiple green images while
sailing should mostly consist of blue images. The green color mean of these
moments are different and thus distinguishable. This argument extends
to our segmentation problem, given a sequence with presumably multiple
moments we should be able to find multiple segments with different means.
This reasoning simplifies our problem, by finding all the place where the
mean changes with a reasonable magnitude we actually find the moment
boundaries that we are looking for.

The mean can be calculated in multiple ways. The goal is as stated in
the moment definition that the moment is visually coherent. In this thesis
we interpret that as taking the mean of the descriptors used to describe the
images. A combination of these descriptors could be used to find changes in
multiple different image characteristics.

Defining a good segmentation strategy will require optimizing multiple
parameters, such as sensitivity to mean changes and how to consider different
descriptor. For this we use he images described in section 2.2.

We arrive at the following segmentation strategy where part 1. to 5.
only needs to be run once.

1. Descriptors
Calculate all the descriptors for the training set.

2. Indoor classification
Classify all the image in the training set as either indoor or outdoor.

9

. Changepoints
Calculate the changepoints at various sensitivity for each sequence and
descriptor separately.

4. Optimize segmentation points
Select the best settings in order to optimize the segmentation points
for a specific measurement metric.

5. Combine segmentation points
Combine the indoor classification and the segmentation points from
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the multiple descriptors into a single set of segmentation points opti-
mized for a specific measurement metric.

6. Segment new sequence
Calculate the descriptors and indoor classification, calculate the seg-
mentation points using the optimal settings and combine them using
the optimal combining procedure.

5.1 Descriptors used

In this thesis we will try the following descriptors:

e Color variations will be detected using three different 192-bin color
histograms as defined in section 3.5.1, that is a RGB-histogram, a
HSV-histogram and a LUV-histogram.

e Texture changes will use the Texton descriptors as defined in section
3.5.6

e Two different global scene descriptor will be used, Centrist described
in section 3.5.4 and GIST outlined in section 3.5.3

e The ECOH descriptor, section 3.5.2, will be used to detect changes in
a combination of color and lines.

e Finally we hope to detect object distribution changes with the SIFT
descriptor as described in section 3.5.5

5.2 Indoor/outdoor segmentation

All the images are classified as either indoors or outdoors using the HMM
model described in section 4. The actual class of the images is not of inter-
est here, instead we are interested in when the classes changes. That is the
transition from indoors to outdoors or outdoors to indoors. These transi-
tion are located and saved as the indoor/outdoor segmentation points. Our
assumption is that these locations has a high correlation with the actual
segmentation points.

5.3 Changepoints

Estimating the changepoints will be done by the method described in sec-
tion 3.7. This method takes a sequence of multivariate data, that is our
descriptors, and finds the points where the mean changes. The certainty for
a change in mean needs to be above a certain confidence value in order to be
determined significant. We will try three different confidence values, 85%,
90% and 95%. In order to actually find the changepoints we try the two
different estimators outlined in section 3.7. Finally we also want to choose
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the maximum number of changepoints in a sequence. Certain days might
have more changes in mean than what is reasonable. In these cases we want
to select the most significant changepoints and remove the rest. Longer se-
quences can have more changepoints than smaller ones simply because more
time allows for more changes. The maximum number of changepoints is
determined using a ratio of the total number of images in a sequence. In
our case we limit the number of changepoints to either 0.5%, 1.0%, 1.5%
or 2.0% of the sequence length. All the remaining changepoints are then
considered to be estimated segmentation points.

To summarize, the segmentation points are dependent on the parameter
0 = (confidence level, changepoint estimator, mazimum ratio).

5.4 Segmentation point optimization

In order to optimize the parameter § we need a measurement to determine
the performance. Two such metrics have been presented, the Jaccard simi-
larity in section 3.8.2 and the edit distance in section 3.8.3. Both of these
distance measurements generate a similarity measurement for a sequence
given a set of estimated segmentation points and the groundtruth segmen-
tation points.

We calculate the distance measurements for each sequence. We then
calculate the average of these numbers and get two different total similarity
value, one for each metric, that determines the overall performance of the
parameter 6. For the Jaccard similarity a higher number is better while the
opposite is true for the edit distance.

The actual optimization is done by comparing the total similarity mea-
surement for all the possible values of . The 6 with best total similarity
measurement is selected. This is done for all the descriptors resulting in 16
different values of 6 (eight descriptors with a different 6 for each of the two
similarity measurement).

5.5 Combine descriptors

A human uses a wide range of cues to determine what an image describes
and allows us to distinguish a wide range of situations and objects. In order
to some extent mimic this behavior we want to combine our descriptors in
order to capture different aspects of the images. We will try to combine the
descriptor using three different methods:

5.5.1 Add descriptors

The easiest method is to simply add the descriptors’ segmentations and use
the sequence averaging method described in section 3.1. We optimize the
threshold using all the photo-sets and the distance measurements. In other
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words we require a certain amount of different segmentation to agree on a
specific point in order to select it as a combined segmentation point.

5.5.2 Probability of a segmentation point

Some of the descriptors might perform better than others and we it would be
beneficial to incorporate this behavior when combining the descriptors. This
can be done by taking a probabilistic approach to the combining problem:

For a certain location we want to determine the probability for a segmen-
tation point given how the descriptors estimates the specific point, mathe-
matically it can be written as

P(S|Dy, Ds, ..., Dy). (83)

S stands for segmentation point and indicates the interest of a segmentation
point. D; indicates the prediction of the descriptors, that is if D; = 1
it would indicate that the i:th descriptor believe the location to have a
segmentation point. We can rewrite this as

P(S)P(D1, Dy, ...,Dy|S)
P(Dy, Da,...,Dy) ’

Changing S doesn’t change the indications from the descriptor and we can
reduce further to

P(S|D1, Dy, ..., Dy) = (84)

P(S|Dy, Dy, ..., Dy) o< P(S)P(Dy, Dy, ..., Dy|S). (85)

Using naive conditional independence we can simplify our algorithm. This
is a simplification in order to remove any joint probability distribution. This
could be a good simplification if the correlation between the descriptors is
small, that might not be the case here since multiple descriptors relies on
colors. But due to time-constraints we are unable to construct a proper joint
probability distribution.

P(S|D1, Ds, ..., Dx) ox P(S)P(D1|S)P(Da|S) - ...- P(Dy|S)  (86)

Finally we take logarithm and arrive at the final equation
N
P(S|Dy, Dy, ..., Dy) o< In(P(S)) + Y _ In(P(D;]S)). (87)
i=1

To fully describe this equation we need four values for each descriptor,
P(D;=1|S=1), P(D; =0|S =1), P(D; =1|S =0) and P(D; = 0|S = 0)
where one represents the presences of a segmentation point while zero does
not. As described in section 3.8.1 our alternate definition of the confusion
matrix makes it troublesome to define the last probabilities satisfactory.
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That is, we are able to define the probability that a point is a segmentation
point but not able to define that a position is not a segmentation point.

P(D;=1C=1)= true positive

true positive + false negative
false negative

(83)

P(D;=0|C=1)= — -
true positive + false negative

The result is not complete useless, we can use this result as an indicator for

a position to be a segmentation point and simply threshold it in order to

actually make the decision.

5.5.3 F1l-score

The probability combination method does not take any consideration to the
false positive segmentation points as can be seen in equation . This mean
that this method might prioritize descriptors that select multiple segmenta-
tion points rather than correct ones. The F1l-score as described in section
3.8.1 takes both the false positives as well as the false negative into account
and thus give us a value that weight the two errors equally. Instead of sim-
ply taking sum of all the descriptors as we do in section 5.5.1 we take the
sum of each descriptor’s Fl-score. That is each position where a descriptor
estimates a segmentation point is now weighted with the F1l-score and all
other positions have value of zero. We then threshold this value like we did
in the add combination method by using the sequence averaging method.
This method doesn’t have as strong theoretical background as the prob-
ability method but does on the other hand not favor descriptors with an
abundance of false positive segmentation points.
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6 Evaluation

6.1 Human segmentation points

The human segmentation points are mostly used to create a groundtruth
for the computer based algorithms. But it can also be used to understand
the complexity of the problem and give us a baseline to compare against.
That is why we have selected the best and worst humans compared to the
groundtruth and presented the results for the ”Summerday” photoset.

Alternative confusion matrix for ”Summerday”

Edit Jaccard
Best | Worst Best | Worst
True positive 9 10 True positive 9 2
False positive 3 20 False positive 3 1
False negative 1 0 False negative 1 8

Table 2: Alternative confusion matrix for the best and worst human seg-
mentation compared to the groundtruth using the ”Summerday” photoset.
The two distance measurements prioritize differently, we show both.

Keyvalues for ”Summerday”

Edit Jaccard
Best | Worst Best | Worst
Edit distance | 105 | 1000 Jaccard similarity | 0.92 | 0.27
Recall | 0.9 1 Recall | 0.9 0.2
Precision | 0.75 0.3 Precision | 0.75 | 0.67
Fl-score | 0.82 0.5 Fl-score | 0.82 | 0.31

Table 3: The different keyvalues and measurement distances for the best and
worst human segmentation compared to the groundtruth using the ”Sum-
merday” photoset.
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Figure 16: A graphical view of how the different users segmented the ”Sum-
merday” photoset. Each block represent a, according to the user, coherent
segment. The number inside each block is the length of the block. The first
four users, the is user 2,14,1 and 30 Ate all experienced with the Narrative

Clip and its usage. The remaining users have limited or no experience with
the Clip.



6.2 Indoor/outdoor classification

The indoor classification is the foundation to the indoor/outdoor segmenta-
tion algorithm. Here we present the results for both the SVM and the HMM
giving us a way to compare the effect of adding the HMM.

Mean accuracy

SVM | HMM
RGB | 88% 94%
HSV | 93% 97%
LAB | 83% 94%
ECOH | 84% 95%
Texton | 89% | 97%
SIFT | 88% 96%

Table 4: The accuracy when classifying the images as either indoor or out-
doors using different descriptors and classification methods.

To get a better understanding of both the difference between different
descriptors and the effect of the HMM we present the confusion matrices
for the two best descriptors, the HSV and the Texton, as well as one of the
worst descriptors, the RGB.

Confusion matrix HSV

SVM HMM
True \ Predicted | Indoor | Outdoor True \ Predicted | Indoor | Outdoor
Indoor 11753 | 744 Indoor 12174 | 323
outdoor 840 10702 Outdoor 354 11188

Table 5: The confusion matrix for the indoor/outdoor classification using
the HSV descriptor, here presented using the two different classification

methods.

Confusion matrix Texton

SVM HMM
True \ Predicted | Indoor | Outdoor True \ Predicted | Indoor | Outdoor
Indoor 11208 | 1289 Indoor 12014 | 483
outdoor 1380 10162 Outdoor 349 11193

Table 6: The confusion matrix for the indoor/outdoor classification using
the Texton descriptor, here presented using the two different classification

methods.
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Confusion matrix SIFT

SVM HMM
True \ Predicted | Indoor | Outdoor True \ Predicted | Indoor | Outdoor
Indoor 11276 | 1221 Indoor 12101 | 396
outdoor 1588 9954 Outdoor 469 11073

Table 7: The confusion matrix for the indoor/outdoor classification using
the SIFT descriptor, here presented using the two different classification
methods.

To visualize the issues with the SVM method as well as the HMM method
we present the same descriptors above except now as a visualization of the
indoor /outdoor segmentation of the ”Summerday” photoset.
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Figure 17: The true indoor/outdoor classification of the ”Summerday” pho-
toset as annotated by a human.
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Figure 18: The indoor/outdoor classification for the ”Summerday” photoset
using the HSV descriptors and the SVM classification method. The dotted
line is the HSV-SVM method while the filled line is the true classification.
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Figure 19: The indoor/outdoor classification for the ”Summerday” photoset
using the HSV descriptors and the HMM classification method. The dotted
line is the HSV-HMM method while the filled line is the true classification.
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6.3 Indoor outdoor as segmentation points

In order to see how the indoor/outdoor classification work as segmentation
points we create the alternative confusion table, presented in section 3.8.1,
using all the photo-sets.

Alternate confusion matrix

True positive | 100
False positive | 179
False negative | 76

Table 8: The alternate confusion matrix calculated for the HSV-HMM in-
door/outdoor segmentation. All photo-sets were used, that is, the alternate
confusion matrix for each photoset was summed.

Keyvalues and distance measurements

Mean Edit distance 324
Mean Jaccard similarity | 0.64
Recall 0.57
Precision 0.36
F1l-score 0.44

Table 9: The keyvalues and distance measurements for the HSV-HMM in-
door/outdoor segmentation using all the photo-sets.

To visualize the pros and cons of this method, we present the groundtruth

segmentation points as well as the indoor/outdoor segmentation points with
the norm of the RGB descriptor as a basic reference.
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Figure 20: The HSV-HMM indoor/outdoor segmentation are visualized as
the dotted vertical lines, while the true segmentation are the filled vertical
lines. The graph represent the euclidean norm of the RGB descriptors, this
is used in order to get some understanding of how system develops.
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6.4 Segmentation points optimzed over all photo-sets

The changepoint analysis is calculated for each descriptor and photoset. The
mean value of the two distance measurements are calculated and presented:

Average distance measurements

Edit distance | Jaccard similarity
RGB 241 0.54
HSV 219 0.57
LAB 221 0.54
ECOH 216 0.57
Texton 221 0.56
GIST 227 0.59
SIFT 216 0.57
Centrist 221 0.55

Table 10: The average distance measurements for the different descriptors
changepoint segmentations calculated using all photo-sets.

To better understand the consequence of the different distance measure-
ments the alternate confusion matrix is populated. Using this matrix we
also calculate the key values to get an understanding of the performance for
each descriptor and distance measurement.

Alternate confusion matrices

Edit changepoints Jaccard changepoints

TP | FP | FN TP | FP | FN
RGB 31 | 74 | 145 RGB 53 | 151 | 123
HSV 44 | 61 | 132 HSV 64 | 146 | 112
LAB 30 | 75 | 146 LAB 48 | 167 | 128
ECOH |34 |71 | 142 ECOH |53 | 165 | 123
Texton | 31 | 74 | 145 Texton | 51 | 175 | 125
GIST 30 | 74 | 146 GIST 47 | 158 | 129
SIFT 33 | 72 | 143 SIFT 53 | 167 | 123
Centrist | 35 | 70 | 141 Centrist | 59 | 168 | 117

Table 11: The alternate confusion matrices for the different descriptors
changepoint segmentations calculated using all photo-sets.
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Keyvalues

Edit changepoints Jaccard changepoints

Recall | Precision | Fl-score Recall | Precision | Fl-score
RGB | 0.18 0.30 0.22 RGB | 0.30 0.26 0.28
HSV | 0.25 0.42 0.31 HSV | 0.36 0.30 0.33
LAB | 0.17 0.29 0.21 LAB | 0.27 0.22 0.25
ECOH | 0.19 0.32 0.24 ECOH | 0.30 0.24 0.27
Texton | 0.18 0.30 0.22 Texton | 0.29 0.23 0.25
GIST | 0.17 0.29 0.21 GIST | 0.27 0.23 0.25
SIFT | 0.19 0.31 0.23 SIFT | 0.30 0.24 0.27
Centrist | 0.20 0.33 0.25 Centrist | 0.34 0.26 0.29

Table 12: The keyvalues for the different descriptors changepoint segmen-

tations using all the photo-sets. Caluclated from table 11.

Instead of calculating the above values on all photo-sets we can also

calculate the same information using only the ”Summerday” photoset.

Distance measurements for ”Summerday”

Edit distance

Jaccard similarity

RGB 572 0.38
HSV 619 0.32
LAB 563 0.37
ECOH | 359 0.42
Texton | 364 0.32
GIST 250 0.32
SIFT 452 0.34
Centrist | 486 0.39

Table 13: The distance measurements for the different descriptors change-
point segmentations calculated using the ”Summerday” photoset.
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Alternate confusion matrix for ”Summerday”

Edit changepoints Jaccard changepoints
TP | FP | FN TP | FP | FN

RGB 0 5 10 RGB 0 8 10
HSV 1 4 9 HSV 1 7 9
LAB 1 4 9 LAB 2 8 8
ECOH | 3 2 7 ECOH |3 2 7
Texton | 3 2 7 Texton | 3 7 7
GIST 4 1 6 GIST 3 5 7
SIFT 2 3 8 SIFT 2 8 8
Centrist | 1 4 9 Centrist | 3 7 7

Table 14: The alternate confusion matrices for the different descriptors
changepoint segmentations calculated using the ”Summerday” photoset.

Keyvalues for ”Summerday”

Edit changepoints

Jaccard changepoints

Recall | Precision | Fl-score Recall | Precision | Fl-score

RGB 0 0 0 RGB 0 0 0

HSV 0.10 0.20 0.13 HSV 0.10 0.13 0.11
LAB 0.10 0.20 0.13 LAB 0.20 0.20 0.20
ECOH 0.30 0.60 0.40 ECOH 0.30 0.60 0.40
Texton | 0.30 0.60 0.40 Texton | 0.30 0.50 0.38
GIST 0.40 0.80 0.53 GIST 0.30 0.38 0.33
SIFT 0.20 0.4 0.27 SIFT 0.20 0.20 0.20
Centrist | 0.10 0.20 0.13 Centrist | 0.30 0.30 0.30

Table 15: The keyvalues for the different descriptors changepoint segmen-
tations using the "Summerday” photoset. Caluclated from table 14.
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To better visualize the difference between the different descriptors we also
present the actual segmentation of the ”Summerday” photoset. We present
the results as both indexes as well as in graphs using the corresponding norm
as a baseline of how the image sequence changes.

Segmentation points for ” Summerday”

Edit Jaccard
RGB | 45 74 294 353 776 27 45 74 294 353 591 635 776
HSV | 46 76 294 298 824 39 46 76 294 298 375 649 824
LAB | 42 76 293 354 824 27 42 61 76 200 293 354 477 598 824
ECOH | 79 369 472 769 824 79 369 472 769 824
Texton | 76 363 495 770 824 | 46 76 184 294 363 399 495 770 802 824
GIST | 79 363 617 769 824 27 46 78 294 343 368 690 823
SIFT | 78 296 641 822 1004 | 44 78 165 211 296 476 641 822 940 1004
Centrist | 78 363 544 788 947 | 44 78 245 294 363 479 544 788 824 947

| Groundtruth | 367 481 572 618 641 694 734 768 821 1035

Table 16: The actual segmentation points as estimated by each descriptor
as well as the true segmentation points for the ”Summerday” photoset.
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Figure 21: Visulization of the GIST segmentation points calculated using
the edit distance measurement and the ”Summerday” photoset. This seg-
mentation is the dotted vertical lines while the true segmentation is the filled
vertical lines. The graph is the euclidean norm of the GIST descriptor.
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Figure 22: Visulization of the GIST segmentation points calculated using
the Jaccard similarity measurement and the ”Summerday” photoset. This
segmentation is the dotted vertical lines while the true segmentation is the
filled vertical lines. The graph is the euclidean norm of the GIST descriptor.
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6.5 Combined segmentation points optimzed over all photo-
sets

The combined segmentation points are presented much in the same way
as the previous section with the difference that the descriptors have been
replaced with the different combination methods.

Distance measurements

Edit distance | Jaccard similarity
Add 208 0.62
Prob 229 0.58
F1-prob 185 0.64

Table 17: The average distance measurements for the different combination
methods’ segmentations calculated using all photo-sets.

Alternate confusion matrix

Edit changepoints Jaccard changepoints
TP | FP | FN TP | FP | FN
Add | 62 | 87 | 114 Add | 93 | 199 | 83
Prob | 34 | 85 | 142 Prob | 65 | 221 | 111
Fl-prob | 52 | 49 | 124 Fl-prob | 79 | 131 | 97

Table 18: The alternate confusion matrices for the different combination
methods’ segmentations calculated using all photo-sets.

Keyvalues
Edit changepoints Jaccard changepoints
Recall | Precision | Fl-score Recall | Precision | Fl-score
Add | 0.35 0.42 0.38 Add | 0.53 0.32 0.40
Prob | 0.19 0.29 0.23 Prob | 0.37 0.23 0.28
Fl-prob | 0.30 0.51 0.38 Fl-prob | 0.45 0.38 0.41

Table 19: The keyvalues for the different combination methods’ segmenta-
tions using all the photo-sets. Caluclated from table 18.

As before we present the results for the ”Summerday” photoset since it
gives us a way to visualize and analyze the behavior of the different methods.
In the following figures the dotted vertical lines represent the method’s
segmentation points while the filled vertical lines represent the groundtruth’s
segmentation points. To get some understanding of where in the system a

certain segmentation point take place we show the euclidean norm of the
RGB descriptor.
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Keyvalues for ”Summerday”

Edit distance | Jaccard similarity
Add 555 0.40
Prob 514 0.53
F1-prob 400 0.32

Table 20: The distance measurements for the different combination methods’
segmentations calculated using the ”Summerday” photoset.

Alternate confusion matrix for ”Summerday”

Edit changepoints Jaccard changepoints
TP | FP | FN TP | FP | FN

Add | 2 5 8 Add | 2 7 8

Prob | 1 5 9 Prob | 2 9 8

Fl-prob | 3 1 7 Fl-prob | 2 4 8

Table 21: The alternate confusion matrices for the different combination
methods’ segmentations calculated using the ”Summerday” photoset.

Keyvalue for ”Summerday”

Edit changepoints

Jaccard changepoints

Recall | Precision | Fl-score Recall | Precision | Fl-score
RGB | 0.20 0.29 0.24 RGB | 0.20 0.22 0.21
Prob | 0.10 0.17 0.13 Prob | 0.20 0.18 0.19
Fl-prob | 0.30 0.75 0.43 Fl-prob | 0.20 0.33 0.25

Table 22: The keyvalues for the different combination methods’ segmenta-

tions using the ”Summerday” photoset. Caluclated from table 21.
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Figure 23: Visulization of the F1-score combination method calculated using
the edit distance measurement and the ”Summerday” photoset.
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Figure 24: Visulization of the F1-score combination method calculated using
the jaccard distance measurement and the ”Summerday” photoset.
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7 Discussion

7.1 Human segmentation points

At a first glance it sounds pretty easy to divide a day into moments. First
you do one thing and then you do another and the distinction between the
two is natural. To some extent that is actually true, dividing your own
images is not a complicated process. You have experienced the day, you
know which parts are connected even though the images might not show it.
There exists some situations that might be somewhat unclear but those are
few in comparison. The situation becomes a lot more complex when you
ask other people to do the segmentation. In figure 16 we see a wide range of
segmentations, some people segment rather coarsely while others are a lot
more precise. In part this a result of somewhat unclear instructions as well
as unfamiliarity with the Narrative Clip. Perhaps a better measurement
would be the users that were familiar with the Clip, these users are also
shown in figure 16. The users have less variations but there is still quite a
lot of variations.

All though the variations are large we can still find similarities. At some
locations almost all users agree with each other and at other locations most
of the users agree. These are the locations that have been detected when we
created the groundtruth using the sequence averaging method. Comparing
the humans’ segmentation we notice that the result is not very good, even the
best human only has a precision of 0.75. That is every fourth segmentation
point is not actually a real segmentation point.

These results should of course be used with great care due to the lack
of testing data but nevertheless it gives an indication to hard this problem
actually is, even for humans.

7.2 Indoor/Outdoor classification

The indoor/outdoor classification using only the SVM method performs very
well, it is better than most equivalent algorithms presented in previous pa-
pers. In fact, it is probably too good. In this thesis we have used data
collect by two people doing a limited range of activities. Due to the image
taking multiple pictures at the same location further limits the variety in
the training data. The reality is much more complex and the algorithm is
probably severely over-fitted even though care was taken to prevent this.
The different descriptors varies quite substantially, up to as much as
10%. This is to be expected as some algorithm are more complex than
others. What was not expected is that the LAB-histogram performed worse
than both the RGB and the HSV. The LAB was constructed to represent
human vision better than the other two yet it performs worst of all the
descriptors. Another interesting observation is that the ECOH performs
worse than the HSV even though the HSV, in part, is used in the ECOH.
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The most reasonable explanation is that the HSV must carry important
information in the value channel that is not used in the ECOH.

Adding the HMM improves the result and reaching as high has 97% for
some descriptors. 97% would be a very good result for an indoor/outdoor
classification but in this case the algorithm is not used on separate images
and can not be compared with standalone algorithms. We have not found
any previous work on this kind of problem and thus can not compare the
method with alternative approaches. That said, 97% can be understood
as one wrong classified image out of 33 images. This is a very good result
and even though these algorithms are over-fitted the method should provide
satisfactory results.

In fact, for our application the actual result may be even better than 97%.
Consider the following example, you are playing football in the garden and go
inside for a quick drink. During this time the camera takes a couple of photos
indoors before you go back out and continue playing. This moment can be
considered irrelevant when segmenting a long day but would be captured by
a perfect indoor/outdoor segmentation. An HMM trained like ours might
actually remove these results due to the small likelihood to change from
indoors to outdoors. In other words, the error of a HMM is usually clustered
and might actually in some situations improve our segmentation results.

7.3 Indoor/outdoor classification as segmentation points

Using the indoor/outdoor classification as segmentation points is not opti-
mal. It is very easy to generate false positives as can be seen table 8. The
issue is that some situations might be counted twice. Consider for example
figure 19 in which a short segment of images around index 370 are correctly
classified as indoors. But when we study figure 20 we see that it actually gen-
erates two segmentation points, one going from outdoors to indoors and the
other from indoors to outdoors. One of these are correct but the other one is
a false positive generated by the indoor/outdoor segmentation. These errors
are quite frequent in this segmentation algorithm as can be seen in table 8,
the false positives are a lot more frequent than the false negatives. The false
negatives arise because of segmentation points that are located completely
indoors or outdoors, the indoor/outdoor segmentation algorithm can not
simple capture these points. All that said, there is definitely a correlation
between indoor/outdoor changes and the actual segmentation points.
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7.4 Segmentation points

Looking at the performance measurements in table 10 we notice that the
difference between the descriptors are rather small, at least when we compare
the average distance measurements. The Texton and SIFT descriptors are
slightly better when using the edit distance while the GIST descriptor is
the better one using the Jaccard similarity. The difference is well inside the
margin of error and we can’t really make any quality assumptions among
the different descriptors except possibly that the RGB descriptor is not as
good as the others.

The alternate confusion matrix in table 11 and its keyvalues in table
12 gives us bit more information. The HSV has more true positives, fewer
false positive and fewer false negative than any other descriptor no matter
which distance measurement that was used. This of course reflects in the
performance of the recall, precision and Fl-score. This is actually some-
what strange, the HSV’s distance measurements are worse than the SIFT
yet the confusion matrix is better. This must mean that the HSV has a ten-
dency to find segmentation points that are far away from the groundtruth
segmentation points.

Another interesting behavior is the difference between the Edit distance
and the Jaccard similarity. The Fl-score is very similar between the two
but the recall of one is similar in size to the precision of the other. This
can be understood better in table 11, the Jaccard is much more forgiving to
false positives and is much less conservative with its segmentation. This has
the benefit of finding more true positives and by that decreasing the false
negatives but the consequences are that we also find more false positives.

Applying these algorithms to the ”Summerday” photoset we see a steep
increase in the distance measurements. This photoset is fairly large and
larger photo-sets are more prone to errors due to the length increasing the
likelihood for false segmentation points. As such the increased error is ex-
pected. What is more surprising is which descriptors that changed the most,
suddenly the HSV is the worst and the GIST is the best descriptor. Due to
the lack of data it is hard to tell if this a normal result or just an outlier.
A potential explanation could be that the HSV’s tendency to select false
segmentation points is more prominent in longer photo-sets than in shorter
ones. It could be a result of the optimization that affect the HSV more than
the GIST.

Comparing the groundtruth with the estimated results in table 16 we
see a couple of things. At certain locations almost all of the descriptors
agree with each other, for example at 824 all but two descriptors agree with
each other. What is more interesting is that these points are very close to
some of the groundtruth’s values. There is a strong correlation between the
groundtruth and when almost all of the descriptors agree with each other.
There exists some points where this is not true, for example index 79 can be
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found in most descriptors yet it can not be found in the groundtruth. But
if we take a closer look at figure 16 we see that four people actually thought
that point 79 was a real segmentation point.

A manual comparison between the edit distance and the jaccard sim-
ilarity tend to favor the former. But the results are subjective and only
based on the ”Summerday” photoset, thus no major distinction can really
be made.

7.5 Combined segmentation points

Combining the descriptors improves the distance measurement results with
up to 14 — 20% which is a substantial amount. The improvement is even
greater in the alternative confusion matrix. The true positives are improved
by 18% and at the same time the false positives have decreased by ap-
proximately 20%. Altogether increasing the Fl-score by as much as 22%.
Combining the segmentation points is an important task that improves the
results making it worth the extra computation time. It is however impor-
tant to use the correct combination method. As can be seen in table 17 the
quasi-probabilistic method didn’t improve the results at all while both the
F1 and the add combination methods improved the results. This is to be
expected, the quasi-probabilistic method lacked any information about the
false positives due to the limitations in the alternate confusion matrix.

Although the F1 combination method improves the result for the ” Sum-
merday” photoset it is hard to actually see any improvement. This is ex-
pected since the combination method is built on the descriptor segmentation
points. If descriptors struggle to find most segmentation points, the com-
bination m that have not been discovered by the descriptor segmentations.
The combination methods merely improve the results by limiting the amount
of false positives.

That said, we should be able to improve the result quite a bit. The F1
combination method is the best method we tried but it does not have a
solid theoretical background. The optimization was done in parts. First we
optimized each descriptor separately and then we optimized the combina-
tion method. This could be combined into one single optimization method
and which would probably improve the result further but this is a time-
consuming task and has not been done in this thesis.
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8 Conclusion

The overall results are on average quite bad. Our best segmentation is done
by the F1 combination method and we still only reach a recall of 0.3 with
a precision of 0.51. This means that we will not find 70% of all the possi-
ble segmentation points and of those we find only half will actually be true
segmentation points. This is unfortunately not good enough to be used in
an application. The main issue is that we are unable to find certain seg-
mentation points, in particular those that are similar in colors and textures.
The issue is that our changepoint detection is unable to detect these small
changes. This is not a bad thing since otherwise the false positives would
be overwhelming. Instead we need to find other descriptors that distinguish
these small changes better.

That said, we still found someone interesting correlations between the
final segmentation and the real segmentation. We were in this thesis only
interested in finding the segmentation points that optimized a certain dis-
tance measurement. We could have been a lot more restrictive in order to
limit the amount of false positives. This would mean we would only get the
values that we were sure to be real segmentation points. This could be used
as a first step in order to find the more complicated segmentation points
with another method.

Although we lack more extensive user segmentation data we can still
compare our method with the human segmentation. The best human reached
an edit distance of 105 which puts our average of 185 in new light. Sure these
numbers are not fully comparable but it gives us at least some insurance that
our algorithm still performance somewhat reasonable.

If the segmentation algorithm was a slight disappointment the indoor/outdoor
classification method was a success. Reaching 97% accuracy is a good result
even if it the algorithms might be overfitted. This could easily be imple-
mented in a live setting with good results.

Throughout the thesis we used two different distance measurements, the
edit distance and the Jaccard similarity. The results were somewhat differ-
ent, the Jaccard similarity was more likely to predict a segmentation point
at the cost of false positives, but none of the two distance measurements
presented better results than the other. The edit distance does however
provide more freedom with its three parameters compared to the zero of the
Jaccard similarity.
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8.1 Future work

Any future work would need to foremost focus on finding descriptors that
better describes the scene. The indoor/outdoor segmentation described in
this thesis is on of those more complicated descriptors. We believe that
these kind of descriptors add a new dimension to the solution compared
to just using various low-level features. Some relevant descriptors could be
the distribution of explicit objects or perhaps a more complex classification
system with classes like city, garden, living room etc.

Combine this with better optimization, a more complex changepoint
detection and a better method to combine the different descriptors and you
could potentially get a method that are similar to humans in performance.
Of course you will need a lot more data in order to make a solid statical
analysis of the performance.
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