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Abstract:  When a severe deleterious mutation appears in a population, it is 
expected to disappear through negative selection within a few generations. 
However, the variance of this number is significantly large to allow some 
deleterious mutations to exist for several generations. To extend the 
understanding about these dynamics can help to prevent and treat genetic disease 
in humans and other species. In order to understand this evolutionary process, 
computer simulations of deleterious mutations in populations have been 
performed. This will answer fundamental questions such as expected number of 
individuals affected by mutation, as well as number of generations until 
extinction. The approach of simulation will confirm results primarily calculated 
before, but will also outline completely new findings, such as how the average 
number of individuals in a mass of family lines with a deleterious mutation 
strives towards an equilibrium-like state, and how haplotype frequencies in a 
population can be used to find probable relationships between individuals with 
similar phenotype. 

 
 
INTRODUCTION 

The dynamics relating to how deleterious mutations can persist throughout a 
considerable number of generations has been studied through a number of 
mathematical models published during the 20th and 21st century. These have 
not been outright simulations but rather calculations, most notably the 
‘branching process’ based on the backward Kolmogorov equation and used 
by Fischer and Haldane, and later the ‘diffusion process’ by Kimura and 
Otha (1969). Both these were further used by Li and Nei in studies with 
incomplete dominance (1972).  In focus for these earlier studies has been 
the so called persistence, defined by Muller (1950) and is defined for how 
many generations a newly arisen deleterious mutated allele will exist before 
it is lost due to negative selection. The persistence is tightly coupled to what 
can be called the pervasiveness, stating how many individuals in total are 
carrying the allele over all generations. 
 
From these models some descriptive properties, such as variance of 
persistence, can be derived with relative ease. Some properties are however 
neither easily accessible nor comprehensively understood using only 
mathematics. 
 
Instead, this project will investigate the underlying evolutionary models 
through simulations with computer programs. The output from these 
programs will be samples from statistical populations of outcomes. There 
are several advantages with this approach, such as the convenience of only 
requiring mathematics of relatively low complexity. This offers 
transparency in how data is treated and processed, and also offers the ability 
to adjust or expand the model to accommodate for different variables. This 
study will focus on dominant alleles and recessive X-linked alleles, and the 
programming is done in the language ‘R’ .   
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THE PROBLEMS UNDER STUDY 

The problems in this study will be solved with simulations of adjusted 
Wright–Fisher models, were alleles in a generation are randomly drawn 
from the alleles from the former generation. In its simplest version, the 
assumptions are random mating, stable population size in Hardy-Weinberg 
equilibrium as well as non-overlapping generations. 
 
An individual who carries a dominant allele that affect the overall fitness of 
the individual will therefore result in a different average number of 
offspring. This can of course depended on various factors in the real world, 
but will be summarized into a single value; the selection coefficient, greatly 
simplifying the work of simulating the model. Since the selection coefficient 
is a summary of the selective force, it is sometimes simply referred to as 
‘selection’.  For the same reason, simulating a dominant allele is the natural 
first step when looking at deleterious mutations, since only individuals 
carrying the allele need to be considered in the simulation. When the diploid 
carrier produces offspring, the mate is assumed to be a non-carrier. The 
model for a recessive and X-linked allele is the next natural step and extends 
this study further. This is because it can be thought of as a special case of 
the dominant model. If a male is carrying the recessive deleterious allele, he 
will be hemizygote for the allele, lacking a ‘healthy’ X chromosome. The 
effect in this case will be as if the recessive deleterious mutant allele were in 
fact dominant. The females carrying the allele will not be affected for an 
allele that is completely recessive, but can pass it on to its offspring. With 
some modifications, it is also possible to simulate if the ‘healthy’ allele is 
not completely dominant over the new mutated allele. 
 
In a population of a species that reproduces asexually, each individual has 
an average number of offspring equal to one if a stable population is to be 
maintained. For species that reproduces sexually, each pair should of course 
have an average number of offspring equal to two. However, for a single 
neutral allele, this means that the average number of alleles in the next 
generation should be one, regardless of the way the specie reproduces, and 
this is what will be simulated in the programs. That means that only 
offspring were the allele is present needs to be considered, and non-carrying 
offspring can be excluded from the simulation. Therefore, what is actually 
simulated is the propagation of an allele in a population over generations, 
not the entire family lines of individuals per se, although for this somewhat 
abstract study, it is not damaging for the data points to be considered as 
individuals and not alleles.   
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Figure 1: Grey color represents carriers of the mutant allele. To the left what a family tree 
could look like in the real world, and to the right the minimalistic way they are simulated in 
the programs (excluding the non-carriers).  

 
In the programs, there are only heterozygotes (or hemizogots for males in 
the X-linked case). This is of course a simplification, but unless there is 
inbreeding, a newly arisen dominant mutation will almost never exist in 
homozygote form for many generations, and then the probability is still very 
low for an interbreeding population of considerable size. 
 
In a population that fulfills the given assumptions (steady population size, et 
cetera); new mutations will be inserted at random over generations. Each 
type of hypothetical deleterious mutation will have its own mutation 
frequency; the average number of new mutated alleles of that type in each 
generation. Also, because of selection there will be a number of older 
mutated alleles of this type that will disappear from the population each 
generation. Therefore, the mutations will be introduced at a steady rate, but 
the number of mutations that will disappear each generation will be a 
fraction of the mutated alleles present in the population at that specific time. 
This will result in the mutation-selection equilibrium, where new alleles of a 
specific type will be introduced by mutation at the same rate as alleles of 
that type disappears by selection (Crow 1986). 
 
What is considered a ‘type’ of mutation is not always clear and depends on 
the context. There is a distinction between identical by type (IBT) and 
identical by decent (IBD). Two or more alleles are IBD if they share 
common ancestor from which the mutated allele has been transmitted. The 
probability for two individuals sharing an IBD allele will be simply referred 
to as ‘identity’. IBT are mutations that are attributed with very similar 
phenotypes and where the actual DNA change is in the same locus for the 
allele. Therefore, if two alleles are IBD, they also have to be IBT, unless 
they have undergone further divergent evolution. For example, all types of 
hemophilia A is considered to be caused by the same type of mutations, 
since they give rise to similar phenotypes (reduced blood clotting) and have 
the DNA damage in the same locus (F8 gene). This is true even if the actual 
DNA changes can differ in different lineages. In contrast, hemophilia B is 
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considered to be caused be another type of mutation than A, even though the 
phenotypes can be similar. This is because it is caused by mutations in 
another locus (F9 gene).  
 
If we consider three individuals, there are three different constellations of 
IBD relationships: all of them share an IBD allele, two of them share it and 
the third one has a recurrent mutation, or all of them have recurrent 
mutations. Note that it is of course impossible for exactly two of the three 
individuals to have a recurrent mutation, since the third must have someone 
to have an IBD allele with. 
 
In the populations generated by these programs, there will be mutated 
alleles of the same type. Some will have the same origin and have alleles 
that are IBD, and all will be IBT for each specific setting of the program. 
Individuals enter the programs with a newly mutated allele and no further 
mutations will be simulated (including back mutations) in order to simplify 
the simulations. 
 
 
Aims 

The programs used in this study will be utilized for a statistical approach to 
investigate and examine the population dynamics of deleterious alleles. Of 
interest is the Persistence, which is for how many generations a newly 
arisen deleterious mutated allele will exist before it is lost due to negative 
selection. The persistence is tightly coupled to the Pervasiveness, how many 
individuals in total are carrying the allele over all generations. In figure 1, 
the persistence is 3 (generations), and the pervasiveness is 4 (individuals). In 
a population where deleterious mutations of a certain type appears and 
disappears all the time, there is an Expected age of that type of allele. That 
is, if a deleterious allele is drawn by random from the population of alleles 
of that type, what is the best guess of the number of generations since the 
mutation event for that allele? Also important in the context is Lineage, 
which will be used for describing the first individual carrying a mutation 
and its entire offspring in all future generations, living or not. 
 
In this study, there is information about which individuals have an IBD 
allele and which do not. This is not always the case in the real world, where 
distant kinship is not always known. What can be done in the real world is 
to haplotype the individuals of interest, if they share the underlying 
haplotype surrounding the allele, thus increasing the probability of IBD 
rising. If the haplotype is very uncommon, it is unlikely for that haplotype to 
have muted in a similar way twice, but if the underlying haplotype is 
common in the population, it is still possible that there are two or more 
independent mutation events. Since this kind of information will be 
available in this study, the probabilities for different kinds of constellations 
of IBD mutations and recurrent mutations can be calculated. It will also be 
investigated how the frequency of the underlying haplotype changes this 
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probability. In this study, these probabilities for constellations of people in 
small groups, of two, three or four individuals, will be calculated. 
 
 
METHODS &  RESULTS 
 
Programs & algorithms 

There are two main algorithms with different structures for the programs, 
each with different applications. Both algorithms are in turn applied on a 
dominant and an x-linked recessive inheritance pattern. The purpose of the 
algorithms is to be as simple as possible, while still mimic the real life 
process. 
 
The first algorithm: Double iteration loop  
This algorithm begins with a single individual. It belongs to generation zero 
and is carrying the new mutation. Step two is reproduction. The number of 
offspring with the mutation (putative non-carriers are excluded from 
simulation) is Poisson distributed according to standard population genetics 
� ∼ ��(�), where X is the number of offspring with the new mutation and 
λ is the expected value. The full formula for the Poisson function is: 

�(	) = ����
�!   were e is Euler’s number. In the programs it is assumed that 

the expected value is equal to the fitness ω. The fitness will be equal to one 
minus the selection coefficient λ=ω=1–s. Therefore: � ∼ ��(� − �). Next, 
each offspring in generation 2 will each get the same probability to 
reproduce and so on. This means that in the world of the program, each 
generation of individuals are completely replaced by the next, in the manner 
a population of annual plants would behave over several years. This is of 
course not the way humans and many other organisms reproduce, but the 
model works surprisingly well for most breeding patterns, including that of 
humans. 
 
As soon as all the offspring in a generation is equal to zero, the family 
lineage is gone. It could be that the linage only consisted of the first single 
individual who did not manage to get any offspring. Or it could be that the 
family linage existed for many generations and in total included many 
individuals, but finally came to an end. But no matter the genealogy, if a 
linage is gone the program leaves the generation loop and starts a new one 
with a new single individual. This process will go on for the specified 
number of iterations, maybe 10 000 or more.  
 
For the X-linked recessive version some things are a bit different. As in the 
dominant version the simulation starts with a single individual. This 
individual will be female with a probability of two thirds and male with one 
third. This is due to the assumption that the probability of any given X 
chromosome to mutate is the same regardless of sex. Males will be hemi-
zygotes for the mutation, but will not reproduce in the same manner as 
individuals in the dominant version. All female offspring from males will be 
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carriers. Since all male offspring from males will be healthy non-carriers, 
they will not be included in further simulation. Females will be 
heterozygotes and will have the heterozygote selective disadvantage hs 
when reproducing, were h is the coefficient of dominance. For example, if 
the selection coefficient is 0.2 and h=0.5, males will have a fitness of 0.8, 
and heterozygote females a fitness of 0.9. Therefore: 
 
�������� ∼ ��(� − ��) and ������ ∼ ��(� − �). 
 
 
Persistence 

A linage from a mutated allele will persist for a certain number of 
generations and then be lost. Depending on the strength of the selection 
affecting the allele, a population of alleles of the same type is expected to 
persist to a certain generation with a specific frequency. Therefore, the unit 
for persistence is number of generations. Important to have in mind is that 
for all alleles with a selection disadvantage, the very first generation will 
always have the highest frequency of lost alleles. This is true even though 
most alleles will persist to further generations. This is because the number 
of linages lost will be a fraction of the linages from the previous generation. 
In time, the number of linages will decrease and so will the fraction of 
linages lost to the next generation.   
 
Presented here are the outcomes for 10 000 individuals’ linages with newly 
mutated alleles of the same type. Here and throughout the report it should be 
kept in mind that the number of iterations, in this case for 10 000 
individuals, should not affect the frequency of e.g. persistence at a specific 
generation (provided there are sufficiently many to ensure a statistically 
significant output). On the other hand, the extreme value will be highly 
dependent of the number of iterations. The probability distribution of 
outcomes, that linages with different persistence are randomly “drawn” 
from, does not change depending on the number of outcomes drawn, but so 
does the probability of drawing a outcome with a very high persistence (or 
pervasiveness etc.). 
 
Then value at each generation will be the relative frequency of linages that 
persisted to that specific generation, and not the cumulative frequency of 
linages still alive at that generation. Values of a relatively low selection 
disadvantage of 0.02 and a relatively high of 0.2 will be displayed. In 
addition for the x-linked case, an h value of 0.5 has been used. 
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Figure 2a: Distribution of lineages with dominant mutation that 
persisted to a certain generation with a selection of disadvantage of 
s=0.2. 

 

 
Figure 2b: Distribution of lineages with dominant mutation that 
persisted to a certain generation with a selection of disadvantage of 
s=0.02. Note: The x-axis has been cut, and the longest existing 
linage persisted for 327 generations. 
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The striking difference lies not in the relative frequencies of persistence for 
the first few generations. Instead, it is the presence of relatively high relative 
frequencies of persistence for the later generations for the low selection 
disadvantage. 
 
Interestingly, but not surprisingly, for both the low and the high selective 
disadvantage, the number of mutations that only persisted for a single 
generation is about the same. Remember that the extreme values are very 
variable and therefore very dependent of the total number of iterations the 
program runs. 
 
 

 
Figure 2c: Distribution of linages with x-linked mutation that 
persisted to a certain generation with a selection of disadvantage of 
s=0.2 and h=0.5. 



THE FATE OF DELETERIOUS ALLELES   9 

 

CESARINI S 

 
Figure 2d: Distribution of linages with x-linked mutation that 
persisted to a certain generation with a selection of disadvantage of 
s=0.02 and h=0.5. Note: The x-axis has been cut, and the longest 
existing linage persisted for 455 generations. 

 
For the x-linked case the scenario is similar, but since females in these 
examples are less affected by the negative selection (have higher fitness), 
the alleles generally persist longer in comparison with the same selection 
disadvantage in the dominant case. 
 
For different degree of selection, there will be an expected value for the 
persistence, i.e. the mean persistence.  
 
Table 1: Mean Persistence. 

 

Persistence

Selection: Dominant X-linked (h=0.0) X-linked (h=0.5)

0.01 8.48 10.28 9.26

0.02 6.95 9.04 7.93

0.03 6.28 8.38 6.91

0.04 5.69 7.56 6.29

0.06 4.98 6.80 5.59

0.08 4.30 6.29 5.11

0.10 4.12 5.76 4.68

0.20 2.91 4.51 3.52

0.30 2.40 3.96 2.94

0.40 1.99 3.35 2.52

0.50 1.74 2.98 2.21
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Table 2: Variance of persistence 

 
 
There is not a big difference in persistence for the dominant case and the X-
linked even when h=0 and the allele is completely recessive and carrying 
females are not affected at all. The variance of persistence differ more 
drastically, with much higher variance for the X-linked case, and even more 
so when h=0. This indicates that even when the mean persistence is similar, 
the distributions of persistence for the different alleles are very different for 
the two cases. 
 
 
Pervasiveness 

The total number of individuals carrying a new allele from the mutation 
event through the generations to the extinction of the allele in the population 
can be called the pervasiveness. This means that the unit of pervasiveness is 
number of individuals. If the persistence is one, the pervasiveness should 
also be one since a new allele always starts with a single copy in a single 
individual. Therefore, the relative frequency of pervasiveness for generation 
one should be the equal to the relative frequency of persistence for 
generation one. Also, the pervasiveness for a single allele must be at least as 
high as the persistence; there must be at least one individual in each 
generation. This means that the variance of pervasiveness will always be 
higher than the variance of persistence. For this very reason, when 
pervasiveness is simulated more iterations need to be performed to get an 
even distribution. In the results presented here, the number of iterations is 
100 000 instead of the previously used 10 000. 

Variance of persistence

Selection: Dominant X-linked (h=0.0) X-linked (h=0.5)

0.01 600.57 2215.48 943.27

0.02 236.61 907.27 409.76

0.03 160.24 668.70 278.99

0.04 113.48 398.23 162.73

0.06 68.27 251.28 110.04

0.08 38.20 183.17 74.27

0.10 33.46 129.49 52.84

0.20 9.73 46.53 19.01

0.30 5.05 29.21 10.50

0.40 2.61 16.16 6.06

0.50 1.53 10.81 3.92
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Figure 3a: Distribution of pervasiveness for dominant mutations 
with a selection disadvantage of s=0.2. Note: The x-axis has been 
cut, and the largest existing linage had a pervasiveness of 271 
generations. 
 

 
Figure 3b: Distribution of pervasiveness for a dominant mutations 
with a selection disadvantage s=0.02. Note: The x-axis has been cut, 
and the largest existing linage had a pervasiveness of 12 669 
generations. 
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Most lineages only consisted of few individuals, but in some rare cases they 
could consist of many hundreds of individuals. As for the persistence, it is in 
the later generations that the main difference in relative frequency of 
pervasiveness lies.  
 
 

 
Figure 3c: Distribution of pervasiveness for X-linked mutations 
selection disadvantage of s=0.2 and h=0.5. Note: The x-axis has 
been cut, and the largest existing linage had a pervasiveness of 582 
individuals
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Figure 3d: Distribution of pervasiveness for  X-linked mutations 
selection disadvantage of s=0.02 and h=0.5. Note: The x-axis has 
been cut, and the largest existing linage had a pervasiveness of 22 
372Individuals. 

 
 
 
Again it is the length of the right tail of the distribution of relative 
frequencies that differ. Especially the extreme values are very far apart. 
 
 
Table 3: Pervasiveness  

 
 
 
 
 

Pervasiveness

Selection: Dominant X-linked (h=0.0) X-linked (h=0.5)

0.01 110.29 322.89 181.22

0.02 50.69 160.44 76.63

0.03 35.09 110.76 53.93

0.04 26.17 72.66 35.82

0.06 17.62 50.36 25.65

0.08 12.28 37.88 19.03

0.10 10.56 28.80 14.70

0.20 4.87 13.79 7.36

0.30 3.42 9.76 5.03

0.40 2.46 6.71 3.72

0.50 2.00 5.25 2.95
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Table 4: Variance of pervasiveness  

 
 
 
For high selection disadvantages, the difference in pervasiveness is not 
great, but for lower s-values, the pervasiveness becomes much higher for the 
lower s and h-values. This pattern is even clearer, with very high variance 
for the lower selection disadvantages. 
 
 
 
Individuals per generation 
Persistence and pervasiveness only describe the end result of mutations 
spread in a population. Here is shown the relative frequency of individuals 
living after a certain number of generations from when the mutation first 
occurred. 
In other words, an individual with a mutated allele is picked at random, 
what is the probability that that mutation have existed for a given number of 
generations? Looking at all those relative frequencies at the same time 
represents the steady state age distribution that a certain type of mutated 
allele would have in a population. This gives an idea of how probable it is 
for a mutation to exist in a certain generation. Represented in this way, the 
relative frequency of number of individuals living in a certain generation 
may or may not have offspring living in later generations; and if so 
contributing to the relative frequencies in later generations. In the small 
example in figure 1, the relative frequencies would be 0.25 0.50 and 0.25 for 
the first, second and third generation. In the results presented here, the 
number of iterations is 100 000. 

Variance of Pervasiveness

Selection: Dominant X-linked (h=0.0) X-linked (h=0.5)

0.01 1119107.00 22670817.00 3236206.00

0.02 119814.50 4052346.00 391489.70

0.03 32706.68 902410.70 135181.60

0.04 15309.92 401868.60 45501.76

0.06 3922.99 131180.30 13662.87

0.08 1742.87 46362.27 6976.90

0.10 885.21 23907.79 3138.31

0.20 100.02 2847.79 360.12

0.30 26.64 698.96 93.28

0.40 9.25 272.60 38.28

0.50 3.92 125.99 16.99
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Figure 4a: Distribution of number of individuals (per generation) 
after a mutation occurred for a dominant mutation with a selection 
disadvantage of s=0.2.  

 
Figure 4b: Distribution of number of individuals (per generation) 
after a mutation occurred for a dominant mutation with a selection 
disadvantage ofs=0.02. The x-axis has been cut, and the largest 
existing linage had a persistence of 458 generations.  

 



THE FATE OF DELETERIOUS ALLELES   16 

 

CESARINI S 

Given the low relative frequency of each bar, the probability for an 
individual with a mutation to exist in a given generation after first 
occurrence is usually very low. The relative frequencies become more 
informative if compared with relative frequencies for persistence. For 
s=0.02 for example, there are very few lineages that persisted for more than 
30 generations. During the same conditions, the relative frequency of 
individuals living in that generation is still relatively high. The decrease of 
individuals is not as drastic as the decrease in lineages. This means that in 
the surviving lineages, there are a considerable amount of individuals.  
 
For the x-linked case, the relative frequencies are subdivided in relative 
frequencies of females and males. The total relative frequencies are 
therefore divided in females and males and their sums are represented by the 
total heights of the bars. 

 
Figure 4c: Distribution of number of individuals (per generation) 
after a mutation occurred for an X-linked mutation with a selection 
disadvantage of s=0.2 and h=0.5.  
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Figure 4d: Distribution of number of individuals (per generation) 
after a mutation occurred for an X-linked mutation with a selection 
disadvantage of s=0.02 and h=0.5. The x-axis has been cut, and 
the largest existing linage had a persistence of 518 generations.  

 
In the X-linked scenario there is additional information about the gender 
ratio. About two thirds in every generation are female. Apart from that, the 
general pattern of high relative frequencies of individuals in later 
generations is seen again. This is because males carrying the mutated allele 
only have female carriers in their offspring, but females have both males 
and females. Should one gender be randomly overrepresented in one 
generation, the ratio will go back in the next. 
All this taken together, is possible to calculate the expected age of an allele. 
That is, if an allele from a population of mutated alleles, what is the best 
guess of the age in generations of that allele? This type of question still 
assumes that the age distribution of alleles does not change (much) from 
generation to generation in a continuous world. This can be calculated using 
the weighted arithmetic mean, where the expected value will be the 
expected age. Let G1, G2, G3…Gn be the relative frequencies of the number 
of individuals with the mutated allele in generation 1, 2… et cetera. The first 
individual in a generation is from generation one, its offspring from two, et 
cetera. 

����� �!	#$� = %&'
(

')�
∗ '	 

Using frequencies from figure one as an example: 
Expected	age = (0.25	 ∗ 	1) 	9 (0.5	 ∗ 	2) 	9 (0.25	 ∗ 	3) 	= 	2 
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Table 5: Expected age of mutant alleles. 
Expected age     

Selection: Dominant X-linked (h=0.0) X-linked (h=0.5) 

0,01 98,23 285,80 146,26 

0,02 50,11 147,87 74,91 

0,03 35,24 103,42 50,50 

0,04 24,71 74,91 37,79 

0,06 16,51 52,04 24,39 

0,08 12,60 34,57 19,03 

0,10 10,03 29,58 14,84 

0,20 4,99 14,17 7,50 

0,30 3,33 9,20 4,96 

0,40 2,51 6,82 3,68 

0,50 2,01 5,16 2,94 

 
 
 

 
The difference in expected generally big, especially for the lower selection 
disadvantages.  
 
 
Individuals in lineages per generation 
 
As mentioned, there seems to be a considerable amount of individuals with 
mutation living in later generation, even when most lineages are gone. The 
question is then, amongst the lineages that are not lost, how many 
individuals are there on average in each of those lineages? In the results 
presented here, the number of iterations is 1 000 000. 
 

 
Figure 5a: Mean number and variance of individuals in each lineage that still exists in a 
generation. For dominant mutation with a selection disadvantage of s=0.2. 
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Figure 5b: Mean number and variance of individuals in each lineage that still exists in a 
generation. For a dominant mutation with selection disadvantage of s=0.02. 

 
In the very first generation all lineages consist of a single individual and the 
mean will of course be 1 and the variance 0. In generation number 2, some 
lineages are already lost, but those that survived will consist of one person 
or more, and that is why the mean increases, even though the total number 
of individuals decreases. The mean continues to increase for later 
generations until what seems like a plateau is reached. At this point, there is 
a mixture of lineages on the verge of extinction with only a few (or one) 
individuals, and lineages on a temporary rise, with perhaps hundreds of 
individuals. The mean will then become unstable and fluctuate because 
there are too few lineages left to accurately represent the mean. In fact, 
already by generation 355 in the run with a dominant mutation and s=0.02 
(figure 5b) there are only 214 of the original one million lineages still not 
lost. In the very last generations there will be only one lineage in existence 
and therefore there will be no variance. Also, there is a big difference in 
variance for the high and the low selection, seen by looking at the rightmost 
axis for variance in the different graphs.   
 

 
Figure 5c: Mean number and variance of individuals in each lineage that still exists in a 
generation. For an x-linked mutation with a selection disadvantage of s=0.2 and h=0.5. 
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Figure 5d: Mean number and variance of individuals in each lineage that still exists in a 
generation.  For an x-linked mutation with a selection disadvantage of s=0.02 and h=0.5. 
 
The x-linked scenario shows similar pattern.  
 
Since the mean individuals per lineage and generation quickly become 
unstable, it is not entirely clear that there is indeed a plateau phase at all. It 
is possible that there would be a decline or increase of the values if there 
were enough lines left to contribute to a stable mean. In order to study the 
suspected plateau, the input of the program was changed to mimic a 
population which had already reached the plateau. Remember, in the 
original setup there were only one individual per lineage in the first 
generation. Instead, a population of lineages with a number of individuals 
Poisson distributed with the plateau value as the expected value was used as 
input.  
 
 

 
Figure 5e: Mean number and variance of individuals in each lineage that still exists in a 
generation. For an initially (X∼Po [plateau mean≈3]*1 000 000) individuals with a 
dominant mutation with a selection disadvantage of s=0.2. 
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Now, the suspected plateau is stable for more generations before the mean 
starts to fluctuate. The variance initially increases and then stabilizes; 
indicating that the distribution has changed even though its mean has not. 
 
At the plateau the mean of individuals per linage is at a steady state. Also 
the distribution of individuals will be steady at the plateau. 

 
Figure 5f. Steady state distribution of individuals per linage at 
plateau (see figure 5e) with a selection disadvantage of s=0.2.  
Note: The x-axis has been cut, and the highest number individuals 
in any generation in any linage at the plateau were 29.   

 
The distribution of individuals at plateau for s=0.02 is much skewed with 
almost a third of the linages with only a single individual.  
 
The distribution of individuals at the plateau in these simulations is only 
dependent of the selection coefficient s.  
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Figure 5g. Mean individuals at plateau for different selection 
coefficients.  
 

 

 
Figure 5h. Variance of individuals at different plateaus for 
different selection coefficients. 

 
As the s values decreases, the plateau mean increases rapidly and 
approaches infinity as s approaches zero. At very high selection on the other 
hand, the mean approaches one. The mean can never be lower than one 
since there have to be at least one individual in a linage unless it will be lost. 
The variance does not have a simple relation with the selection coefficient 
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and neither has the standard deviation which relation have a similar 
appearance (not shown). But the multiplicative inverse of the standard 
deviation (1/SD) has a simple linear relation with the selection coefficient. 
 
 

 
Figure 5j.1/SD for different selection coefficients with fitted line. Correlation coefficient= 
0.997, p-value: < 2.2*10^-16, slope 2.213, forced through (0,0). 
 
 
 
The second algorithm: Whole population equilibrium  
In the first algorithm, the iteration loop could be thought of as parallel 
universes, each with its own outcome. In this second algorithm, there is only 
one universe and we begin with zero individuals carrying the mutation. For 
each generation a Poisson distributed number of new mutations occur and 
those individuals with the new mutation is added to the population. Also, for 
each new generation the individuals from the previous generation produce 
offspring in the same manner as in the first algorithm. This is of course 
more similar to a real world situation. In this algorithm, each lineage is 
treated as separate and therefore, number of individuals, identity and 
expected age can be calculated at any given moment in the simulation. 
 
This scenario will result in the mutation-selection equilibrium mention 
earlier, where the frequency of individuals with mutation will fluctuate 
around a mean. This equilibrium is described by the well know population 
genetics formula: 
 

� = µ/� 
 
Were µ is the mutation rate, s is the selection coefficient and f is the 
frequency of the mutant allele in a haploid population. For a rare dominant 
allele, this will approximately be the same as the frequency of individuals 
carrying the mutation in a diploid population. For convenience, we don’t 
want to simulate an entire population, just the individuals carrying the 
mutant alleles. At any point the population of individuals with the mutant 
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allele will have a specific number. In the world of the program, there are no 
non carriers. To do this we have to convert the frequency of carriers into an 
actual number, called number of individuals.  This frequency is of course 
just the total number of individuals carrying the mutation (here called X) 
divided by the total number of alleles in the population (N). Then: X	/	N	 =
	µ	/	s. And if N shuffled to the right side: 
 
?	 = 	@µ	/	A.  
 
Now can we treat Nµ as a single value since it is the product of two 
constants. This value will be the number of new mutations in the population 
in each generation, i.e. the lambda for the Poisson distribution used in the 
simulation. Accordingly, when the equilibrium is reached, the number of 
individuals with mutation in the simulation should fluctuate around Nµ/s. 
 
To get a concept about the diversity of the origins of the alleles the identity 
is used. This is the probability that two individuals among those with the 
mutant allele have IBD alleles; the higher the identity, the lower the 
diversity.   
Let L1, L2, L3…Lk be the relative frequency of the number of individuals in 
arbitrarily numbered lineages with the mutant allele. The probability for 
individuals in the population to share IBD alleles here referred to as identity, 
can be calculated as: 

B!�C D E = %F'G
(

')�
 

 
The expected age will be calculated as before. The main difference with this 
algorithm is that there will be a time axis. Number of individuals with the 
mutant allele and the expected age of that type of allele will change from 
generation to generation. 

 
Figure 6a: Number of individuals with no mutation and their expected age and the identity 
by decent for the mutation, with s=0.0 and with Nµ=100 per generation. 
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To get a context of how this model works an introductory example with no 
selection is shown. This example can be thought of as an immigration of a 
new species to a new island. Each generation about a hundred new 
individuals immigrate to the island, while the population already 
immigrated on the island reproduces with a fitness of one. This scenario is 
not likely in the real world were the fitness usually are dependent of how 
close the population number are to the carrying capacity (Pianka 1970). If 
there is no selection, the number of individuals with mutant alleles will 
steadily increase as new individuals with mutant alleles are introduced in 
each generation. The identity for the alleles will start at 1/Nµ in the very 
first generation and then decrease. Because of genetic drift, the identity will 
not decrease indefinitely. Each generation the number of lost lineages 
increases (decreases identity) until the number approaches Nµ. The average 
number of new alleles will then be similar to the average number of lost 
alleles in each generation. In what first appears as a paradox, the expected 
age of an allele continues to increase even when the identity is momentarily 
increasing. 
 

Figure 6b: Number of individuals with a dominant mutation and their expected age and the 
identity by decent for the mutation, with s=0.02 and with Nµ=100 per generation. 
 

 
Figure 6c:Number of individuals with a dominant mutation and their expected age and the 
identity by decent for the mutation, with s=0.2 and with Nµ=100 per generation. 
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When there is selection, the total number of individuals will increase until 
the number reaches the mutation-selection equilibrium. At the equilibrium 
the number randomly fluctuates for the rest of the simulation. So does the 
identity as well as the expected age around their own equilibriums. Since all 
alleles behave independently of each other, the expected age at equilibrium 
will always be the same for certain selection strengths. If only the Nµ is 
changed, but not the s, the expected age at equilibrium will be the same.   
 
From this it is clear that there is some kind of dependence of these three 
factors. This is at least true for some extreme examples. Imagine a large 
population were only a single individual is carrying a certain mutated allele. 
The identity for that mutation would be 1, and the expected age would 
probably be very low. On the other hand, if all individuals in the same 
population carried the allele, the identity would be 1 and the expected age 
very high. The dependence could also be time lagged, were fore example 
the number of individuals compared to the expected age some generations 
later could be higher than a comparison for present numbers. 

 
Figure 7a: Expected age, and number of individuals plotted 
against each other at 400 generations at mutant-selection 
equilibrium, with a dominant mutation and s=0.2 Nµ=100 per 
generation. Line fitted with linear regression has correlation 
coefficient 0.37. 
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 Figure 7a: Expected age, and identity plotted against each other 
at 400 generations at mutant-selection equilibrium, with a 
dominant mutation and s=0.2 Nµ=100 per generation. Line fitted 
with linear regression has correlation coefficient 0.21 

 
Figure 7a: Identity and number of individuals plotted against each 
other at 400 generations at mutant-selection equilibrium, with a 
dominant mutation and s=0.2 Nµ=100 per generation. Line fitted 
with linear regression has correlation coefficient 
-0.32. 
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Interestingly, compared two by two, there are surprisingly low correlations 
between these factors. But as expected, there is a positive, though small, 
correlation between expected age and the number of individuals as well as 
between expected age and identities, and a negative correlation between 
identities and the number of individuals. The plots are comparing traits 
generation for generation. If the time axis were lagged for up to 10 
generations for any one of the traits, the correlations became poorer. This 
indicates that there is no lagged dependence for any of the traits. 
 
A Bayesian approach 
As mention, the identity (I) is the a priori probability of two individuals with 
a mutation of the same type to share an IBD allele. This probability changes 
if the underlying haplotype of the genomic area around the mutation is the 
same for both of the individuals. They cannot be IBD if the haplotype is 
different. So if the haplotypes are the same, the probability for IBD 
increases. It this case, the conditional probability that two individuals share 
an IBD allele if the haplotype is known to be the same, can be calculated 
using Bayes theorem.  
 
Using just generic events A and B, Bayes theorem has a simple appearance: 
 

�(H|J) = �(J|H)�(H)
�(J)  

 
It can be derived using the axiom that the probability for event A and B to 
happen together P(A and B�, can be thought of an event of its own. The 
axiom states that �P QRS T� = U�T�U�P|T�. P(A|B) means the probability 
of A if it is known that B is true, or A given B. It’s important to realize that 
even though that U�P QRS T� and U�P|T� represents the same event; their 
probabilities are different since they exist in different probability space. A 
simple example: we want to know the probability that a fruit that we pick at 
random in a fruit basket is a green banana. We cannot simply multiply the 
probability of a fruit being green with the probability of a fruit being a 
banana, the probabilities are obviously dependent. But if we know that the 
probability of randomly picking a banana in the basket P(banana), and we 
now the probability of a banana to be green P(green | banana). Then we 
know that the probability of picking a fruit that is green and is a banana is 
the product of the fraction of all fruits in the basket that are bananas and the 
fraction of all bananas that are green. P(banana) multiplied with P(green| 
banana) will be the fraction of all bananas that are green bananas, or P( 
green and banana) =P(banana) * P(green | banana) . If there are eight fruits 
in the basket and three of them are bananas and the probability of banana to 

be green is one third, then P(banana) * P(green | banana) = 
V
W ∗ X

V = X
W, and 

that is the probability of picking a green banana among all the eight fruits.  
 
 



THE FATE OF DELETERIOUS ALLELES   29 

 

CESARINI S 

This axiom can is also true for the reverse; P(A and B) = P(A)P(B|A). Since 
both are equal to P(A and B), then  U�T�U�P|T� =  P�A�P�B|A� . Moving 

P(B) to the other side and we have Bayes theorem: U�P|T� = Y�Z|[�Y�[�
Y�Z�  

The law of total probability allows the expansion the denominator; the 
probability for B is the sum of the probabilities when B happens in 
conjunction with other events, such as the event of A, or the event of not A, 

or A¬, therefore: P�A|B� = Y�\|]�Y�]�
Y�\|]�Y�]� ^ Y�\|¬]�Y�¬]�. The theorem is used to 

calculate the conditional probability of event A under the condition that B is 
true. In this study the following notations will be used:  
 
´2’ = two alleles in one group, i.e. two alleles that are IBD. 
I = identity 
‘1:1’  = two alleles in two groups, i.e. two alleles that have a recurrent 
mutation 
H = the specific underlying haplotype 
f(H) = the frequency of H 

 

Of interest is P(‘2’|  H) which is the conditional probability of two alleles 
being IBD if it is known that they share the haplotype. P(‘2’)  is the non-
conditional probability for the identity. Using the Bayes theorem, this will 

be calculated as following: P�′2′|H� = Y�b|cdc�Y�cdc�
Y�b|cdc�Y�cdc� ^ Y�b|¬ede�Y�¬cdc�. 

 
The event U�H|¬c2c�is in this case the same as U�H|1: 1′� since the event 
‘1:1’  is the complement to the event ‘2’.  U�¬′2′�can then be replaced with 
P(‘1:1’)  and P(H | ¬′2′ ) with P(H |’ 1: 1′ ) in the formula: P�′2′|H� =

Y�b|cdc�Y�cdc�
Y�b|cdc�Y�cdc� ^ �b| cX:Xc� Y�cX:Xc�For the event U�H|′2′� to happen, the specific 

haplotype have only mutated once. If a mutation event takes place, the 
probability for that mutation to hit a specific haplotype is here assumed to 
be equal to the frequency of that haplotype. Therefore, if two mutated 
alleles are considered, the probability for those to be IBD is equal to f(H). 
Remembers that (¬H| ‘2’)  is of course not possible; two IBD alleles have to 
share haplotype. For this event (H|’ 1: 1′) to take place, the haplotype must 
have mutated twice and this probability would then be f(H)2. The probability 
for the event P(‘1:1’)  is one minus the complement P(‘2’), i.e. the total 
probability minus identity (1-I). All this taken together: P�′2′|H� =

g�b�∗h
g�b�∗h^i�b�j∗�Xkh�. 
 
Or simpler:  
 

l�′G′|mD� = B
B^n�m�∗��kB�. 
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Figure 8: The probabilities for different IBD relationships for two 
individuals with mutant alleles of the same type, assuming the 
same underlying haplotype. Identities used are examples; they are 
not from generated data. The horizontal lines are the unconditional 
probabilities when the frequency of the underlying haplotype is 
one. 

 
The frequency of the underlying haplotype becomes increasingly more 
informative when it is rare, especially for higher identities. For higher 
identities, the haplotype must be exceedingly rare to add change to the 
probability to any but low extent. As can be seen in previous results (figures 
6b-c), the identities can be much lower than these examples.  
 
Bayes theorem can also be used when more than two events are 
complimentary to each other, and the sum of the multiple probabilities 
equals to one. This can be used when multiple individuals have the same 
type of mutated allele, but the IBD relationship of their mutated alleles is 
not known. 
 
If the generic event A in the original formula was a sum of multiple events 

A1, A2, A3…Ak, Bayes theorem can be written as:  U�Ao|T� 
 Y�Z|]p�Y�]p�

Y�Z�
 

And again using the law of total probability we can expand P(B) as the sum 
of all probabilities included:  
 

��H'|J� 

��J|qD���qD�

��J|H����H��	^	��J|HG���HG�^⋯^��J|Hs���Hs�
. 
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This general formula can be used to find the probability of any number of 
individuals to share any possible number of IBD alleles. For three 
individuals, the notation is expanded: 
 
‘3’ = the three mutated alleles are IBD 
‘2:1’  = two of the three alleles are IBD (the third is not, i.e. recurrent 
mutation on the same haplotype) 
‘1:1:1’ = all three alleles are recurrent mutation on the same haplotype 
 
If we let the event Ai represent either one of these, the formula can be 
written as:  
 

l�qD|m� = ��m|qD���m�
��m|ctc���ctc� ^ �m| cG:�c� ��cG:�c�^ �m| c�:�:�c� ��c�:�:�c�. 

 
As mentioned, probability for identity is calculated by adding up all the 
probabilities for randomly picking two IBD alleles in the population of 
mutated alleles. In a similar manner, the probabilities for any constellation 
of IBD/non-IBD alleles can be calculated. For a group of two:  

Identity = P�′2′� = % xyd
z

y)X
 

Or for: 
 
 P�′1: 1′� = ∑ ∑ xyz|)Xzy)X

|}y
∗ x|.  

 
Similarly for three: 
 

P�′3′� = % xyV
z

y)X
 

P�′2: 1′� = % % xyd
z

|)X

z

y)X
|}y

∗ x| 

 
P�′1: 1: 1′� = ∑ ∑ ∑ xy ∗ x| ∗ x~z~)X z|)X

zy)X
y}|}~

. 
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Figure 9a: The probabilities for different IBD relationships for three individuals 
with mutant alleles of the same type, assuming the same underlying haplotype. 
Horizontal lines indicate were the curves will converge when the underlying 
haplotype frequency is equal to one. Population at mutation-selection 
equilibrium with a dominant mutation with selection disadvantage of s=0.2 and 
Nµ=100 per generation. Only haplotype frequencies from 0 to 0.03 are shown. 

 

 
Figure 9b: The probabilities for different IBD relationships for three individuals 
with mutant alleles of the same type, assuming the same underlying haplotype. 
Horizontal lines indicate were the curves will converge when the underlying 
haplotype frequency is equal to one. Population at mutation-selection 
equilibrium with a dominant mutation with a selection disadvantage of s=0.2 and 
Nµ=10 per generation. Only haplotype frequencies from 0 to 0.4 are shown. 
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Again it can be seen that only when the haplotype is uncommon does the 
conditional probability differ much from the non-conditional probability. It 
is also evident that the information added by the haplotype frequency is 
much higher for the low Nµ of 10, than for the higher 100 (figures 9a-
b).Also noteworthy is that the ‘2:1’ group’s probability peaks at an 
intermediary haplotype frequency, though still at a very low frequency.  
 
Using the general formula the same thing can be done for four individuals:  
‘4’ = the four alleles are IBD 
‘3:1’  = three out of four alleles are IBD 
‘2:2’  = two separate groups of two who within the subgroup share IBD 
alleles 
‘2:1:1’  = two of the four alleles are IBD 
‘1:1:1:1’  = none of the four alleles are IBD 
 
 

l�qD|m� =
= ��m|qD���m�

��m|′�′���′�′�  +  �m| ′t: �′� ��′t: �′� +  �m|′G: �: �c���′G: �: �c� +  �m|′�: �: �: �′� ��′�: �: �: �′� 

 
 
Where: 

P�′4′� = % xy�
z

y)X
 

P�′3: 1′� = % % xyV
z

|)X

z

y)X
|}y

∗ x|  

P�′2: 2′� = % % xyd
z

|)X

z

y)X
|}y

∗ x|d 

P�′1: 1: 1: 1′� = % % % % xy
z

�)X
∗ x| ∗ x~ ∗ x�

z

~)X 

z

|)X

z

y)X
y}|}~}�
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Figure 10: The probabilities for different IBD relationships for 
four individuals with mutant alleles of the same type, assuming the 
same underlying haplotype. Horizontal lines indicate were the 
curves will converge when the underlying haplotype frequency is 
equal to one. Population at mutation-selection equilibrium with a 
dominant mutation with a selection disadvantage of s=0.2and 
Nµ=10 per generation. Only haplotype frequencies from 0 to 0.5 
are shown. 

 
As more individuals are added, less probability is distributed to each 
outcome. Now, at somewhat higher frequencies of the underlying haplotype, 
the conditional probabilities are further away from the unconditional 
probabilities. 
 
 
DISCUSSION 
 
This study provides striking evidence that even a severely deleterious allele 
can exist for many generations, which is especially interesting when 
considering species with a long reproduction cycle, such as humans. 20, or 
even 100 generation may not sound very much, but in a human context it 
means hundreds or even thousands of years. And remember, this study only 
considers alleles in steady populations. It is not hard to imagine how the 
rapidly increasing human population that has been experienced since the 
industrialization will effectively make any small difference in general 
fitness almost negligible. For an evolutionist this both confirms previous 
assumptions, but can also call for re-evaluations. It is clear from the overall 
high variance for both persistence and pervasiveness that in individual 
cases, it is random factors rather than fitness that is the main player. There is 
a paradox in a steady population with an average fitness of one, where 
random fluctuations should rapidly change the number of individuals, and 
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even if the population sometimes could, or even should, become very large, 
eventually it would hit zero. The answer to this of course lies in ecology, 
where a steady environment favors a steady population. If a population 
should decrease in numbers, it is not hard to imagine that the overall fitness 
would increase, because of now further accessible habitats, et cetera. This 
reasoning puts reliability to the genetic models that are available, since the 
discrepancy from the real world is not as extensive as the axioms imply. It 
could then be argued that there is no such thing as a stable environment, but 
at least that relocates the problem from population genetics. The high 
variance also puts a time scale to the change of allele frequencies. If an 
allele attributed with positive selection has to ‘compete’ with an allele that 
will go extinct because of negative selection, but that momentarily increases 
in frequency by random fluctuations, how can alleles with positive selection 
ever go to fixation? The answer is of course time, where for every allele 
attributed with positive selection, there have probably been many which 
went extinct. Likewise, for every disease-causing allele that is known to be 
around in a family line for generations, there are many that just affected a 
single person. 
 
Considering this, perhaps the most telling results from this study is the 
average individuals with deleterious mutation per linage and generation. It is 
shown that it is likely that this mean strives against equilibrium, not unlike 
the mutation-selection equilibrium. The selection is the obvious reason that 
prevents the ‘individual per linage mean’ to increase indefinitely. But what 
force is keeping this mean up at the level shown in the results? A pragmatic, 
but perhaps not so scientific, answer to this question is simple: it is luck. For 
a deleterious allele to persist to a late generation it has to have a history of 
‘luck’. Since luck is just randomness in subjective hindsight, if alleles are to 
persist to a later generation, the average number of alleles cannot be too 
few. If so, they would randomly go extinct much faster. On the other hand, 
if the alleles become many, the relentless force of negative fitness brings the 
number down again. For example, for 1 000 individuals with an average 
fitness of 0.8, their offspring would be very close to 800, and almost never 
above 1 000, but for just 10 of these individuals, it is not that unlikely that 
they would produce 10 or more offspring with some regularity. Hence, for a 
small group, randomness plays a much larger role than for big groups.  
 
Even though this study focuses on deleterious alleles, the non-equilibrium 
situations with neutral alleles are shown as a pretext (figure 6a). The 
apparent paradox that the expected age of an allele continues to increase, 
even when the identity is momentarily increasing, has an explanation. It is 
because the total number of individuals from a certain generation is 
expected to be about the same for further generations in the near future, but 
they will stochastically coalesce to fewer and fewer origins because of drift. 
This causes a certain generation to increase the expected age as time passes, 
regardless of the composition of different origins. This is true when Nµ is 
large in relation to the time scale. In the very long run, all the ‘new’ mutated 
alleles from a certain generation will all be gone in this model. This puts 
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emphasizes on the fact that this model works well for pragmatic purposes 
regarding some few alleles, but not so well for the evolution of an entire 
population. Alleles, as well as individuals, in one generation must have 
ancestors in all earlier generations in a real population. This connects to the 
lottery paradox; it is highly unlikely that any single ticket would be the 
winning one, but one must be the winning one. When there is selection on 
the other hand, the model becomes more appropriate for the context. Now 
the interesting thing is the low correlation between the identity, expected 
age and number of individuals with mutations of the same type. Intuitively, 
there should be a strong connection between these three. The random walk 
of these factors is relatively high compared to the expected causality 
between them. 
 
The Bayesian approach to the IBD problem for small groups is only a first 
step to try and answer a very complex problem. The well-used infinite-site 
model for mutations presented by Kimura and Crow (1964) states that 
mutations affecting the same site in the DNA are so unusual that they can be 
neglected. Even though this is a very important and usually reliable model, 
its thinking can be counterproductive in this case. In this study, the very 
possibility that a single site has mutated twice must be included as a 
potential reality. The questions asked and answered in this report are 
informative, but perhaps a bit on the theoretical side. For example, it is not 
entirely clear what qualifies ‘the same underlying haplotype’, as a true 
shared IBD haplotype for two individuals can stretch for a different number 
of base pairs due to molecular recombination. Considering all this, the 
question still not answered is the probability that two or more identical 
mutations are not IBD, depending on the length of the shared underlying 
haplotype?  
 
Attempts to validate the results in this report have been made. Of interest is 
of course to compare results from this study, using a simulating approach, 
with previous results were only mathematics were used. In the review article 
‘On the Persistence and Pervasiveness of a new Mutation’ (Garcia-Dorado 
A, Caballero A, Crow J, 2003) the results from various researches in the 
field were presented: 
 
Table 6 

 
Source -‘On the Persistence and Pervasiveness of a new Mutation’ (Garcia-Dorado A, 
Caballero A, Crow J, 2003) 
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The results are very similar. For example, if h=1 and hs=s, then the two 
different values for persistence at s=0.1 presented in the review article 
(table 6) are 4.06 and 4.00 respectively, and in the results presented in this 
study it was equal to 4.12 (table 1). The pervasiveness for the same s 
according to the article is 10, and in this study 10.56 (table 4).  
 

Nei (1970) presents a probability distribution for extinction time for alleles 
using a diffusion equation: 

 
Figure 11: Probability distribution of extinction times for alleles using a diffusion 
equation. Source – Nei M, 2003 
 
This probability distribution (figure 11) is remarkably similar to the actual 
frequency distribution presented in this report. Nei also points out the small 
difference in the appearance of the distribution for the two different 
selection coefficients, but that the differences in mean and variance are 
quite large. This can partially be explained by the nature of the Poisson 
distribution. Consider just the first generation after the mutations, and the 
fact that the probability of getting zero offspring does not change radically if 
s changes. The probability of getting zero offspring in the dominant version 
is 37% if s=0, 38% if s=0.02 and 45% if s=0.2. This corresponds well to 
what can be seen in the results.  
 
What is random? 
The programming language ‘R’  uses the Mersenne-Twister algorithm to 
produce pseudorandom numbers. Pseudorandom means that the numbers 
aren’t actually random, but seems like it. From a statistical view this is of 
course troublesome, but in the algorithm, measures have been taken to avoid 
the obvious appearance of patterns. Pseudorandom numbers are thus widely 
used in statistical analysis and produce reliable results in most situations. 
 
The results from this study often include a time dimension, and the situation 
in one generation is of course dependent on both the situation in the last 
generation, and the (pseudo-)random change.  
 
This correspondence puts trust in the results presented in this report, even 
for the results that have not been presented in earlier studies, since the 
results are generated using the same algorithm: the double iteration loop. 
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Results from the second algorithm used in this study, whole population 
equilibrium, are easier to validate just using existing mutation selection 
equilibrium. X=Nµ/f holds very well for the expected number of individuals 
carrying the mutation at equilibrium.  
 
All in all, this study shows that the alternative approach of simulating rather 
than calculating probable outcomes serves its purposes. Though new 
insights have been made, several questions raised in this study still stand 
unanswered. 
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