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Abstract

Registration is a key component in multi-atlas approaches to medical image
segmentation. Current state of the art uses intensity-based registration meth-
ods, but such methods tend to be slow and sensitive to large amount of noise
and anatomical abnormalities present in medical images. In this master the-
sis, a novel feature-based registration method is presented and compared to
two baseline methods; an intensity-based and a feature-based. The registration
method is implemented with the purpose to handle outliers in a robust way and
be faster than the two baselines. The algorithm performs a multi-atlas based
segmentation by first co-registering the atlases and clustering the feature points
in an überatlas, and then registering the feature clusters to a target image.
The method is evaluated on 20 CT images of the heart and 30 MR images of
the brain, with corresponding gold standard. The method produces compara-
ble segmentation results to the two baseline methods and reduces the runtime
significantly.

Keywords: computer vision, medical image analysis, feature-based regis-
tration, segmentation of pericardium, segmentation of brain, multi-atlas based
segmentation
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5.2.3 Überatlas registration . . . . . . . . . . . . . . . . . . . . 22
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Chapter 1

Introduction

1.1 Background

Segmentation, the process of automatically finding and outlining structures of
images, is one of the most fundamental problems in medical image analysis.
Segmentation may be used in order to locate tumors, measure tissue volumes,
study of anatomical structure, surgery planning, virtual surgery simulation,
intra-surgery navigation et cetera [17].

The value of automatic delineation of organs and other anatomical structures
is huge, since manual delineation is time-consuming and sensitive to the skill of
the expert. Moreover, it is important that the automatic segmentation is robust,
that is, insensitive to anatomical abnormalities, noise, and other measurement
errors, as well as fast, in order to be useful in clinical care. Moreover, the
segmentation algorithm should of course also produce results comparable or
better than the skill level of experts.

Several segmentation methods involves image registration, that is aligning
two images into a common coordinate frame. In general, this is a difficult task
due to the size of medical images, that may consist of hundreds of millions
data values, as well as the large amount of noise, inter-subject variations et
cetera. There are two different approaches that are considered as state of the
art [9]; feature-based and intensity-based registration. Intensity-based regis-
tration methods have the capacity of producing accurate registrations, but are
time-consuming and sensible to initialization. On the other hand, feature-based
methods can be faster, but are sensitive to measurement errors and may risk fail-
ing due to the difficulty in establishing correct point-to-point correspondences
between the images [21].

In this report, a novel feature-based registration method that takes advan-
tage of co-registration of the data set is presented; überatlas registration. Fur-
thermore, this approach is compared to two competing methods; referred to as
the two baselines. The first baseline is an intensity-based registration method
based on the program package Niftyreg, and the second is a standard feature-
based method. The purpose of this report is to compare the three different
methods with respect to robustness, speed and segmentation results.
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1.2. PROBLEM FORMULATION

1.2 Problem formulation

Given a set of 3D pixels p ∈ P, an image refers to a medical 3D image consisting
of a set of intensities I = {ip : p ∈ P}. A 3D pixel is referred to as a voxel and
the voxel coordinates are denoted as xp = (xp, yp, zp) ∈ Ω ⊂ R3. An image may
therefore be regarded as a function that maps the coordinates of all the voxels
in the image to an intensity, I : Ω ⊂ R3 → R.

A label of a voxel is a non-negative, discrete-valued number lp = 0, . . . , L
and a labeling is a set of labels for each voxels, L = {lp : p ∈ P}. Therefore, a
labeling may be regarded as a function that maps the coordinates of all voxels
to a specific label, L : Ω ⊂ R3 → N. The value of the labels corresponds to
which anatomical region a voxel belongs to. If two different voxels have the
same label they belong to the same anatomical structure, and if not they do
not.

A labeling performed manually by an expert, typically a physician, is defined
as the gold standard, L. A segmentation of an image is an estimated labeling
of the image and denoted as L̂. In order to find the best possible segmentation,
the Jaccard index between the gold standard and the segmentation should be
approximately equal to 1. The Jaccard index, J , is a number between 0 and 1
that measures the similarity between two labelings. It is defined as

J(L, L̂) :=

∣∣∣L ∩ L̂∣∣∣∣∣∣L ∪ L̂∣∣∣ . (1.1)

The main problem of this thesis is to find a segmentation algorithm that
maximizes the Jaccard index between the gold standard and the estimated la-
beling.

1.3 Proposed solution

The idea of introducing an überatlas that contains the information about pair-
wise correspondences between all available images in the form of point clusters
was proposed by Norlén [14]. The general idea is to co-register all images as
exactly as possible, followed by clustering of points that are considered close
enough according to the co-registration. The purpose is to be able to register
the point clusters to a new image, instead of register all images separately, and
in that manner speed up the segmentation. Also, the überatlas will hopefully
contain only the best fitted points for matching, which will hopefully reduce the
amount of classification errors and improve the segmentation.

1.4 Contributions

The main contribution of this thesis is the proposition of how to speed-up a
feature-based multi-atlas segmentation by co-registering atlases in order to cre-
ate a mean atlas that contains information about feature points in all atlases.
Also, this master thesis shows that using the truncated l1-norm instead of using
the truncated l2-norm in RANSAC when estimating the affine transformation
improves robustness as well as computational efficiency.
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CHAPTER 1. INTRODUCTION

Figure 1.1: A slice of a CT image of the heart and the expert delineation of the
pericardium.

Figure 1.2: A slice of a MR image of the brain and the expert delineation of
some of the 83 regions present in the data set.

1.5 Data sets

In this work, two different data sets of medical 3D images and manual delin-
eations are used, see Figure 1.1 and 1.2.

The first data set consists of 20 CT images of the heart. CT (Computed To-
mography) is a method where computer-processed X-ray images from different
angles are used in order to produce virtual slices of the scanned object. The
data set includes delineation of the pericardium (heart sack) for each image. The
delineations are drawn for every 10th slice in all three viewing directions (also
called axial, coronal and sagittal view) by an expert involved in the SCAPIS
project. The SCAPIS project is an ongoing project and collaboration between
Swedish hospitals and universities that aims to collect CT, MR and ultrasound
images from 30 000 healthy subjects in order to detect early bio-markers for
heart disease. The delineations are interpolated into a complete 3D delineation
and approved by the expert in order to be considered as the gold standard
of the data set. The resolution of the image is between 512 × 512 × 342 and
512×512×458 voxels. The size of the voxels is between 0.3320×0.3320×0.3000
and 0.4297× 0.4297× 0.3000 mm3.

The second data set consists of 30 MR images of the brain of young adults.
MR (Magnetic Resonance) produces slices of the scanned object with help of
strong magnetic fields and radio waves. The data set also includes delineation
of 83 regions of the brain, which are manually drawn according to the protocol
in Hammers et al. [7]. These delineations represent the gold standard. The data
set is available online on http://www.brain-development.org. The resolution of
the images is between 165 × 198 × 155 and 195 × 199 × 175 voxels. The size
of the voxels is between 0.9350× 0.9350× 0.9350 and 0.9375× 0.9375× 0.9375
mm3.
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1.6. RELATED WORK

1.6 Related work

An intensity-based multi-atlas approach has been used by Heckemann et al. [8] in
order to segment the brain MR set, see Section 1.5. In their work, they succeed
to perform single-atlas based segmentations with Jaccard index equal to 0.502±
0.032 and 0.605±0.020 for affine and non-rigid transformations respectively, and
multi-atlas based segmentations with Jaccard index equal to 0.616± 0.030 and
0.718± 0.013 for affine and non-rigid transformations respectively.

A feature-based multi-atlas approach similar to the method referred to as
Baseline 2 was used by Norlén [14] in order to perform segmentations of a
subset of the presented data set of the CT images of the heart. The values of
the Jaccard index of the segmentations are similar to the values of the Jaccard
index presented for Baseline 2. It should be noted, that Norlén used an MRF
model to improve the results slightly.

The idea of co-registering and creating a mean atlas of the atlases is not
novel. For instance, Dey et al. [4] proposed to co-register a set of atlases of
the heart with an intensity-based affine and non-rigid transformation and then
register a new target image to one of these atlases and let the other atlases
vote indirectly. Gill et al. [6] proposed to create a mean atlas including feature
points and mean shapes of a set of atlases of the lung, and use this mean atlas
to initialize an active shape model.

1.7 Structure of report

In Section 2, the general image registration problem is presented. Also, atlas-
based segmentation is explained and the multi-atlas approach is discussed. In
Section 3 two methods are presented: intensity-based and feature-based regis-
tration. These methods will be used as a comparison to the performance of the
invented and main registration method of this report; the überatlas registration
presented in Section 4. In Section 6, the three registration methods will be
compared with respect to i) Jaccard index, ii) detected inliers/outliers and iii)
runtime. The implementation details and parameter choices that were used in
order to produce the results are presented in Section 5. Finally, Section 7 and
8 provides a discussion around the obtained results.
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Chapter 2

Theory

2.1 Image registration

The image registration problem refers to the problem of aligning one image with
another by applying a geometric transformation. More specificly, the task is to
find the transformation between a target image It, also referred to as the fixed or
reference image, and a source image, Is, also referred to as the moving or floating
image that maximizes the similarity between the images. The transformation
is denoted as T(θ), and the parameter θ is found by minimizing a cost, C,
(maximizing a similarity) between the target image and the transformed source
image, that is, solving the problem

argmin
θ

C(It,T(θ) ◦ Is). (2.1)

In this thesis, the transformation is a composition of an affine transforma-
tion and a non-rigid transformation, where the affine transformation is esti-
mated first and then the non-rigid transformation. The affine transformation is
a global transformation that describes the overall motion between the images,
whereas the non-rigid transformation performs a local, more general deforma-
tion. Though, there are other possible choices of transformations.

Two different image registration methods are used in order to find the op-
timal transformation between the target and the source image; intensity-based
and feature-based registration. Intensity-based registration aims to estimate
the transformation between images by optimizing the intensity similarity, while
feature-based registration aims to find point correspondences between features
in the images such as blobs and corners, and estimate the transformation by
maximizing the similarity between the coordinates of these points. Given N
correspondences (xn,yn), one usually solves the problem

argmin
θ

N∑
n=1

C(xn,T(θ) ◦ yn), (2.2)

where C is a cost function.
Nevertheless, the differences between the methods are mainly how the pa-

rameters are estimated, while the formulas for the transformations remain the
same. For more information about the general registration problem and trans-
formations, see for example [9].
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2.1. IMAGE REGISTRATION

2.1.1 Affine transformation

The intention of the affine transformation is to affinely convert the voxels in
the source image to the coordinate system of the target image. Given a voxel
p ∈ Ps in the source image, where xp are the coordinates of the voxel, the new
coordinates x′p in the target image are given by(

x′p
1

)
= Taff

(
xp
1

)
, (2.3)

where the affine transformation has 12 degrees of freedom and is given by

Taff =

(
A t
0 1

)
. (2.4)

2.1.2 Non-rigid transformation

The non-rigid transformation is a free-form deformation equal to a 3D tensor
product on 1-D cubic B-splines proposed by Rueckert et al. [19]. The transfor-
mation is applied after the affine transformation.

The purpose of the non-rigid transformation is to allow more general trans-
formations compared to the affine transformation. This is done by finding the
displacement field that optimizes the similarity between images by capturing
more arbitrary movements of the voxels than the affine counterpart. Though,
in medical images only certain displacements are probable to occur. By using
B-splines, the optimal displacement field is interpolated in a way that increases
the smoothness of the transformation.

For simplicity, the non-rigid transformation is explained for coordinates in a
target space given by Ωt = {x = (x, y, z) : 0 ≤ x ≤ X, 0 ≤ y ≤ Y, 0 ≤ z ≤ Z}.
The parameter of the transformation is a Nx ×Ny ×Nz mesh denoted as Φ =
{φi, φj , φk} with uniform spacing, and the non-rigid transformation equals

Tffd(x) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)

 φi+l
φj+m
φk+n

 , (2.5)

where i = bx/Nxc − 1, j = by/Nyc − 1, k = bz/Nzc − 1, u = x/Nx − bx/Nxc,
v = y/Ny − by/Nyc, w = z/Nz − bz/Nzc and Bl is the lth basis function of the
B-spline given by

B0(u) = (u− 1)3/6,

B1(u) = (3u3 − 6u2 + 4)/6,

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6,

B3(u) = u3/6.

(2.6)

2.1.3 Image warping

Given an estimated coordinate transformation T(θ), the transformed image
may be described as the interpolated set of old intensities given by
T(θ) ◦ Is = {iq = ipq : q ∈ Pt}, where pq is defined as

pq = argmin
p

|xq −T(θ) ◦ xp|, p ∈ Ps, (2.7)

that is, a nearest neighbor interpolation is used.

6



CHAPTER 2. THEORY

Figure 2.1: A slice of a CT image of the heart and the corresponding labeling of
the pericardium. Together, they form an atlas.

Figure 2.2: A slice of a MR image of the brain and the corresponding labeling
of some of the 83 regions present in the data set. Together, they form an atlas.

2.2 Segmentation

2.2.1 Atlas-based segmentation

Together, an image and a labeling represents an atlas, A = {I,L}, see Figure
2.1 and 2.2. By finding the optimal transformation T(θ) between a source image
Is and a target image It, a segmentation may be computed with the method
atlas-based segmentation. This is done by transforming the labeling of the source
atlas with the estimated transformation. Thus, the segmentation is given by

L̂t = T(θ) ◦ Ls. (2.8)

2.2.2 Multi-atlas based segmentation

Given a set of atlases {As : s = 1, . . . ,M}, the segmentation of a target image
can be estimated with an approach called multi-atlas segmentation, see [10,
8], by incorporating several atlas-based segmentation. Firstly, all individual
labelings are transformed independently into the coordinate system of the target
image by atlas-based segmentation. Thus, a set of segmentations is given by
{L̂t(s) = T(θs) ◦ Ls : s = 1, . . . ,M}. For each voxel in the target image,
p ∈ Pt, its label lp is estimated by letting all estimated labels in the set given

by {l̂p(s) : s = 1, . . . ,M} cast a weighted vote, that is,

l̂p = argmax
l

M∑
s=1

ωs1l̂p(s)=l, l = 0, . . . , L, (2.9)

where the weight ωs determines the importance of the individual atlases. The
final segmentation is thereafter given by L̂t = {l̂p : p ∈ P}. In this work, all
atlases are given the same weight, which is a method called majority voting. See
Figure 2.3 and 2.4.
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2.2. SEGMENTATION

Figure 2.3: A slice of a CT image of a heart and examples of segmentations.
The gold standard is marked as red, the atlas-based segmentations as blue and
the multi-atlas segmentation as green.

Figure 2.4: A slice of a MR image of the brain and examples of segmentations
of one of the regions in the brain. The gold standard is marked as red, the
atlas-based segmentations as blue and the multi-atlas segmentation as green.
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Chapter 3

Baseline methods

3.1 Intensity-based registration

Intensity-based registration is frequently used in medical imaging. There are
many different approaches based on different similarity measures and estimation
methods. For this master thesis, the intensity-based program package NiftyReg
is used as one of the baselines. This toolkit is available for everybody at no cost.

When using NiftyReg in order to register two images, the affine transfor-
mation is performed by the program Reg_aladin which is based on a block
matching strategy proposed by and implemented by Ourselin et al. [16, 15].
The non-rigid transformations are performed by the program Reg_f3d, which is
based on the free-form deformation explained in Section 2.1.2, and implemented
by Modat et al. [13].

The affine transformation is used as an initialization for the non-rigid trans-
formation. That is, when using Reg_f3d, both the parameters of the affine
transformation and the grid of the free-form deformation are estimated.

Finally, when the transformations are estimated, the source image is trans-
formed to the target space with help of the program reg_resample, where
nearest neighbor interpolation is used, see Section 2.1.3.

3.1.1 Affine transformation

A block B(x) is defined as a N × N × N patch centered at the position x +
(N/2, N/2, N/2). The mean intensity of the block is denoted as µ(x) and the
standard deviation of the intensities as σ(x). Given a block in the target image,
Bt(x), and a corresponding block in the source image, Bs(y), the similarity
between the two blocks is computed as the correlation coefficient of the voxel
intensities,

C(Bt(x),Bs(y)) =
1

N3

N−1∑
i1=0

N−1∑
i2=0

N−1∑
i3=0

(It(x + i)− µt(x))(Is(y + i)− µs(y))

σt(x)σs(y)
,

(3.1)
where i = (i1, i2, i3).
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3.1. INTENSITY-BASED REGISTRATION

By finding the block position in the target image that maximizes the simi-
larity, that is, solving

argmax
xp

C(Bt(xp),Bs(y)), p ∈ Pt (3.2)

for every block in the source image, a list of corresponding 3D points is ob-
tained. These points may be used in order to estimate an affine transformation
between the images, by minimizing the distance between the correspondences
using trimmed least squares [18].

In order to find the corresponding blocks, the blocks in the source image are
moved in its neighborhood and compared to blocks with a similar position in
the target image. In order to improve computational efficiency, the algorithm is
implemented in a multi-scale iterative scheme. The algorithm starts estimating
a rigid transformation at a coarse level with large blocks and neighborhoods,
and progressively refines the scale while estimating affine transformations until
a predefined number of refinements is reached.

3.1.2 Non-rigid transformation

In the non-rigid transformation, the parameters (the parameters of the affine
transformation and the mesh Φ) are computed by minimizing a cost function
consisting of a similarity term and a smoothness term given by

C = −Csimilarity(It,T ◦ Is) + λCsmoothness(T). (3.3)

The similarity term is a measure of alignment of the images and equals the
normalized mutual information, which is a concept from information theory
that describes the amount of information one image contains about another,
and is given by

Csimilarity(It,T ◦ Is) =
H(It) +H(T ◦ Is)
H(It,T ◦ Is)

, (3.4)

where H(·) denotes the entropy of a image and H(·, ·) is the joint entropy of
two images. The entropy is computed by histograms of the images.

The smoothness term aims to regularize the non-rigid transformation in a
way that constrains the transformation to be smooth. The smoothness term only
penalizes non-rigid transformations, that is, it is zero for affine transformations.
The parameter λ decides the relationship between the similarity term and the
smoothness term.

The smoothness term is given by the equation

Csmoothness =
1

|Ωt|

∫ X

0

∫ Y

0

∫ Z

0

(∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
+

2
∂2T

∂x∂y
+ 2

∂2T

∂y∂z
+ 2

∂2T

∂z∂x

)
dxdydz.

(3.5)

Firstly, the optimal affine transformation is estimated by maximizing (3.4).
Then, the non-rigid transformation is estimated by iteratively refining the grid
of the control points. In each iteration, a local minimum of the cost function in
(3.3) is found by the method of steepest descent followed by a refinement of the
grid of control points. The algorithm is continued until a predefined termination
criterion.

10



CHAPTER 3. BASELINE METHODS

3.2 Feature-based registration

Feature-based registration aims to find and compare discrete correspondences
between two images, unlike most of the intensity based methods that measures
intensity similarities between complete images and/or patches. Examples of
features are lines, corners and blobs (blob-like structures).

Generally, feature-based registration consists of three initial steps; detection,
description and matching. Firstly, detection is the step where feature points are
extracted from an image. Secondly, description is the step where the properties
of the neighborhood of each feature point is estimated by a descriptor. Finally,
matching refers to when descriptors are compared in order to find correspon-
dences between images. Thereafter, a transformation of the source image to the
target space may be estimated by using corresponding features in the images.

In this work this, the detection of features is done with the method SIFT
(Scale Invariant Feature Transform) proposed by Lowe [12]. The description of
the feature points is based on SURF (Speeded Up Robust Features) proposed by
Bay et al. [1]. Finally, matching is performed by a symmetric nearest neighbor
approach.

3.2.1 Correspondences

Feature point detection

The SIFT feature point detector is based on a scale pyramid approach such that
the feature points are searched for at different scales of the image. Given an
image, smoothing at different scales σ is performed by applying a convolution
of a 3D Gaussian filter G to the image, given by

G(x, σ) =
1

(2πσ2)3/2
exp

(
−|x− xc|2

2σ2

)
, (3.6)

where xc is the center of the image.
Convolutions of the image are performed iteratively from the finest level,

corresponding to σmin, to the most coarse level, corresponding to σmax. That
is, the image at the most coarse level is computed by smoothing the image at
the next most coarse level et cetera. Every time the scale has doubled, a new
octave (the next pyramid level) is entered and the image is downsampled by a
factor 2 in order to speed up the computations.

For each octave, the Difference of Gaussian Γ(σ) (DoG) is computed for each
scale. If σi < σi−1, DoG at scale σi is given by

Γ(σi) = I ∗G(x, σi)− I ∗G(x, σi−1). (3.7)

By finding local optima, (x, σ), to the DoG, feature points are detected. A fea-
ture point is considered a local maximum (or minimum) if Γ(σi) has a strictly
larger (or smaller) value than the closest pixels horizontally, vertically and di-
agonally (both spatially and in the scale-dimension). That is, there are in total
27 + 27 + 26 neighbors. Moreover, in order to be considered a feature point,
the points are investigated with respect to skewness (it should correspond to a
corner or blob, and not an edge) and contrast. Feature points that do not fulfill
predefined thresholds are discarded. See Figure 3.1 and 3.2 for detected feature
points in a slice of a heart and a brain, respectively.
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3.2. FEATURE-BASED REGISTRATION

Figure 3.1: A slice of a CT image of the heart and detected feature points in the
neighborhood. The radius of the circles are proportional to the scale where the
feature points were detected.

Figure 3.2: A slice of a MR image of the brain and detected feature points in
the neighborhood. The radius of the circles are proportional to the scale where
the feature points were detected.
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CHAPTER 3. BASELINE METHODS

Feature point description

The purpose of the feature point descriptor is to, in a compact but representable
way, describe the neighborhood of each feature point. In this work, the SURF
approach is used, which describes properties of the image in the neighborhood of
the feature point. The standard SURF descriptor is rotation invariant, though
in this work, the upright, rotation variant descriptor (U-SURF) is used.

The SURF descriptor is computed by considering a patch for every feature
point, formed as a cube with center equal to the coordinates of the feature
point and with edges proportional to the scale. Every patch is divided into
4× 4× 4 = 64 regions, and for each region i the gradients ∇i are computed for
every point in a grid (and for some points outside, but close to the regions). All
gradients are weighted with a Gaussian filter with center at the feature point,
and for each region the gradients are smoothed with an additional Gaussian
filter with center in the middle of the region.

Finally, the descriptor d(x) is defined as

d(x) =

(∑(
∂

∂x

)
1

,
∑(

∂

∂y

)
2

,
∑(

∂

∂z

)
3

,

∑∣∣∣∣( ∂

∂x

)
1

∣∣∣∣ ,∑∣∣∣∣( ∂

∂y

)
2

∣∣∣∣ ,∑∣∣∣∣( ∂

∂z

)
3

∣∣∣∣ , . . . ,∑∣∣∣∣( ∂

∂z

)
64

∣∣∣∣ ), (3.8)

that is, the descriptor is a vector with 384 elements. Finally, the descriptor is
normalized in order to be invariant to intensity scaling.

Feature point matching

In contrast to the approach used in both SIFT and SURF, this master thesis
includes a matching step where the matching between the descriptors is per-
formed symmetrically. Given a set of M feature points in the target image and
a set of N feature points in the source image a pair of feature points (x,y) is
considered as a correspondence if the following criterion is fulfilled

x = argmax
xm

d(y) · d(xm), m = 1, . . . ,M,

y = argmax
yn

d(yn) · d(x), n = 1, . . . , N.
(3.9)

3.2.2 Inliers and outliers

When estimating the transformation between the correspondences, there are two
different kinds of errors that need to be taken into account. Firstly, the measure-
ment error (the noise) and secondly, classification errors (improperly matched
correspondences). Feature points that are incorrectly classified as correspon-
dences are referred to as outliers, while correctly matched correspondences are
referred to as inliers.

One disadvantage of working with features points is the large amount of out-
liers introduced to the problem. When estimating the transformations based on
correspondences, a common cost function such as the l2-norm is able to deal with
the noise, but may fail to produce good results due to outliers. This problem
is solved in two different manners; by introducing a more robust cost function,
the truncated l2-norm, and by using RANSAC (Random Sample Consensus),
see [5].
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3.2. FEATURE-BASED REGISTRATION

3.2.3 Affine transformation

Given a set of N correspondences, the affine transformation Taff is found by
minimizing the cost function chosen as the truncated l2-norm, proposed by
Blake et al. [2]. When minimizing the truncated l2-norm the transformation is
found by solving the problem

argmin
A,t

N∑
n=1

min
(
|Ayn + t− xn|2, ε2

)
, (3.10)

where ε is a parameter. The advantage of introducing a truncation is to assign
inliers a cost corresponding to the squared euclidean error while the outliers
are assigned a constant cost ε2. Here, ε should correspond to the euclidean
threshold between inliers and outliers and should be approximately equal to the
noise level.

The estimation of the affine transformation is computed by using RANSAC,
proposed by Fischler and Bolles [5]. The purpose of RANSAC is to minimize
the cost function (or maximize the amount of inliers) by iteratively computing
an affine transformation with a minimal set of correspondences sampled ran-
domly. In order to estimate an affine transformation, the minimal set consist of
4 correspondences since an affine transformation has 12 degrees of freedom. In
each iteration, the current cost function is evaluated and saved if it corresponds
to a new minimum. Finally, when a predefined amount of iterations are run,
the final affine transformation is estimated with the maximum amount of inliers
with linear least squares.

3.2.4 Non-rigid transformation

After an affine transformation is estimated, a non-rigid transformation is found
by using the free-form deformation explained in Section 2.1.2. The parameter of
the transformation that is optimized is the control grid Φ. Unlike the intensity-
based case, the cost function only depends on corresponding points in the target
image and the source image, and does not take the intensities of the image into
account. In this work, this is performed by a program implemented by D. Kroon
based on a proposition of Lee et al. [11]. As an input, it needs a set of points in
the target image, {xn : n = 1, . . . , N}, and a set of affinely transformed points
from the source image, {Taff ◦ yn : n = 1, . . . , N}. In order to get a good non-
rigid transformation, the sets are cleared from the correspondences marked as
outliers after the final affine transformation.
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Chapter 4

The überatlas

The idea of introducing an überatlas that contains the information about pair-
wise correspondences between all available atlases in the form of feature clusters
was proposed by Norlén [14]. The general idea is to co-register all atlases as
exactly as possible, followed by clustering of all extracted feature points that
are considered close enough according to the co-registration. The purpose is to
be able to register the feature clusters to a new target image, instead of reg-
istering all atlases separately, and in that manner speed up the segmentation.
Also, the überatlas will hopefully contain only the best fitted feature points for
matching, which will hopefully reduce the amount of outliers and improve the
segmentation.

First, some definitions will be introduced followed by the general registration
algorithm and finally information about how to construct an überatlas with help
of co-registration and agglomerative clustering.

4.1 Definitions

Given a total number of N detected feature points in M atlases, the jth feature
point is denoted as fj , see Definition 4.1.

Definition 4.1 A feature point f is uniquely determined by the index of the
atlas from which it is extracted, i, the coordinates of the feature point in the
coordinate frame of the atlas, x, and the corresponding descriptor, d, that is,

f = (i,x,d). (4.1)

The mean atlas is a arbitrarily chosen atlas with index î out of the M atlases.
The jth transformed feature point is denoted as f̂j and corresponds to the jth
feature point, though its coordinates are transformed into the coordinate frame
of the mean atlas, see Definition 4.2.

Definition 4.2 A transformed feature point f̂ is uniquely determined by the in-
dex of the atlas from which it is extracted, i, the coordinates of the feature point
transformed into the coordinate frame of the mean atlas, x̂, and the correspond-
ing descriptor d, that is,

f̂ = (i, x̂,d). (4.2)

15



4.1. DEFINITIONS

The transformed coordinates of the jth feature point are given by x̂j = T̂ij ,̂i
◦xj ,

where the transformation T̂ij ,̂i
is a non-rigid transformation that should describe

the mapping between the atlas indexed as ij and the mean atlas î as exactly as
possible, see Definition 4.3. From now on, x̂j will be referred to as the mean
atlas coordinates of jth feature point.

Definition 4.3 The silver standard transformation, T̂i,̂i is the optimal non-

rigid transformation between the atlas given by index i and the mean atlas î,
and should solve the following cost function optimization problem

T̂i,̂i = argmin
Ti,̂i

CI(Iî,Ti,̂i ◦ Ii) + CL(Lî,Ti,̂i ◦ Li), (4.3)

which means that the transformation should both take the similarity of the images
and the similarity of the labelings into account.

A feature cluster F is a set of transformed features from different atlases
with similar mean atlas coordinates. Moreover a feature cluster contains more
than 3 transformed features, see Definition 4.4.

Definition 4.4 A feature cluster F is a set of transformed features
F = {f̂k : k ∈ K} such that

|x̂k − x̂k′ | < εs ∀k, k′ ∈ K, (4.4)

ik 6= ik′ ∀k, k′ ∈ K, (4.5)

3 ≤ |K| ≤M, (4.6)

where εs is the spatial threshold.

The mean atlas descriptor of the uth feature cluster is denoted as d̂u, and
the definition is given in Definition 4.5.

Definition 4.5 The mean atlas descriptor d̂ of the cluster F is given by the
mean of all descriptors in the cluster,

d̂ =
1

|K|
∑
k∈K

dk. (4.7)

Finally, an überatlas is a set of non-overlapping feature clusters, see Defini-
tion 4.6.

Definition 4.6 An überatlas is a set of clusters {Fu : u ∈ U}, such that

Fu ∩ Fu′ = ∅ ∀u, u′ ∈ U . (4.8)

To sum up, the überatlas contains information about corresponding features
in all atlases, as well as an approximate way of describing all the feature clusters.
Therefore, an überatlas is a set of clusters that describes feature points that
are found in several images that can be matched with help of the mean atlas
descriptors, as well as the original descriptors, to a new target image.
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CHAPTER 4. THE ÜBERATLAS

4.2 Überatlas registration

4.2.1 Correspondences

Given a new target image, feature points are detected and descriptors are com-
puted as explained in Section 3.2.1. Thereafter, the feature points are matched
to the clusters in the überatlas by matching the descriptors of the feature points
detected in the target image to the mean atlas descriptors.

Firstly, each feature cluster in the überatlas are matched to its nearest neigh-
bor. Given the total amount of T detected feature points in the target image
and a specific feature cluster, Fu, the index t corresponds to the feature point
that should be matched to the feature cluster. The index t is computed by
solving

t = argmax
t′

dt′ · d̂u, t′ = 1, . . . , T, (4.9)

which means that the total number of correspondences in the first matching
step is equal to the total number of feature clusters.

Secondly, it is not certain that a cluster correspondence (ft,Fu) is an actual
correspondence when it comes to registration of a specific source atlas to the
target image, since all source atlases may not be represented in the specific
feature cluster. That is, only the correspondences where the feature cluster
contains a transformed feature from the specific source atlas may be used. Given
a source atlas indexed as is, the set of correspondences are therefore given by
{(ft, fs) : it = is, f̂s ∈ Fu}.

Moreover, in order to eliminate outliers, a restriction on the distance between
the descriptors of the correspondences are introduced. Given the correspondence
(ft, fs), it is considered as an inlier if the following criterion is fulfilled

|dt − ds| < εdDu, (4.10)

where εd is a parameter and Du is the maximum euclidean distance between
the descriptors within the cluster Fu and given by

Du = max{|di − dj | : f̂i, f̂j ∈ Fu}. (4.11)

4.2.2 Affine transformation

As described in Section 3.2.2, the problem of using feature-based registration
is the great amount of outliers produced. Even though the amount of outliers
hopefully is reduced thanks to the construction of the überatlas, there is no
reason to believe that the problem is eliminated. In the method presented in
Section 3.2.3, the problem was solved with the RANSAC algorithm based on
the truncated l2-norm.

In order to reduce the sensitivity of the choice of truncation threshold and
to enable larger thresholds without losing robustness, the affine transformation
is estimated by optimizing a hopefully more robust cost function. This cost
function is the truncated l1-norm, that is, the truncated l1-norm is assumed
to have the potential to be more robust than the truncated l2-norm for larger
truncation thresholds. The assumption is based on the fact that the l2-norm is
suitable when the noise is Gaussian, and otherwise the l1-norm may be a better
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4.2. ÜBERATLAS REGISTRATION
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Figure 4.1: A set of inliers (marked as green) given by {(xi, yi) : yi = xi + ε, ε ∈
N (0, 50)}, and a set of outliers (marked as red) given by {(xi, yi) : yi = 0}.
Blue line corresponds to the l2 solution, and the purple line to the l1 solution.

choice, see Figure 4.1. By increasing the value of the spatial threshold, there is a
risk of including more outliers when estimating the affine transformation, which
may result in that the assumption of normally distributed residuals is incorrect.
Therefore, the affine transformation is estimated by optimizing the truncated
l1-norm, which is hopefully is more robust than the truncated l2-norm.

Iteratively reweighted least squares

Given a set of N local correspondences, where the coordinates of the corre-
spondences are given by {(xn,yn) : n = 1, . . . , N}, the affine transformation
Taff is estimated by minimizing the cost function chosen as the truncated l1-
norm of the residuals. When using the truncated l1-norm, the transformation
is computed by solving the problem

(Â, t̂) = argmin
A,t

N∑
n=1

min (|Ayn + t− xn|, ε) , (4.12)

where ε is a parameter.
Unlike the l2-norm, there is no analytical expression that provides the op-

timal estimation of Taff. However, the affine transformation may still be ob-
tained by solving the problem approximately with a method called iteratively
reweighted least squares, which is a algorithm that converges linearly for l1-
problems, see Chartrand and Yin [3]. In order to enable a faster algorithm
RANSAC is skipped and the affine transformation is estimated by executing
iteratively reweighted least squares once.

Instead of optimizing the equation given by (4.12), an approximate mini-
mization problem is solved iteratively with the l2-norm as a cost function. In
each iteration i, the approximate minimization problem is given by

(Âi, t̂i) = argmin
Ai,ti

N∑
n=1

ωi,n|Aiyn + ti − xn|2, (4.13)
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CHAPTER 4. THE ÜBERATLAS

where the weight ωi,n should be a measure of the errors in the previous iteration
in order to approximate truncated l1-norm.

In order to avoid dividing with zero, a regularization, |δ| � 1, is introduced.
Moreover, in order to take the truncation into account, the weights are set to
zero if the residuals reside outside the outlier threshold. Thereby, the weights
are given by

ωi,n =

{
1/max{|ri−1,n|, |δ|}, |ri−1,n| < ε,

0, |ri−1,n| ≥ ε,
(4.14)

where the residuals are given by ri,n = Aiyn + ti − xn.

4.2.3 Non-rigid transformation

The non-rigid transformation is the same as described in Section 3.2.4.

4.3 Training

4.3.1 Silver standard

In Section 4.1, a non-rigid transformation, the silver standard transformation,
was used in order transform feature coordinates to the coordinate frame of the
mean atlas. In order to transform features as correctly as possible, a set of
transformations between the atlases and a mean atlas need to be estimated
as exactly as possible. A combination of the feature-based registration method
explained in Section 3.2 and the intensity-based registration method explained in
Section 3.1 is used in order to perform pairwise registrations between the atlases
and the mean atlas. While the explained methods only use the information in
the images, the fact that the atlases also hold information about the correct
labeling, the gold standard, is used in this section.

Firstly, each atlas Ai is concatenated into a Nxi ×Nyi ×Nzi × 2 4D image
where the first element in the fourth dimension corresponds to the image Ii and
the second element corresponds to the weighted labeling αiLi.

A feature-based estimation of the affine transformation is used as an ini-
tialization to the non-rigid transformation. There are several reasons why the
feature-based registration is used; it is faster and previous work has showed
that the affine registration works better than the corresponding intensity-based
method used by NiftyReg for hearts [14]. Also, it is just an initialization. The
non-rigid registration is performed by NiftyReg, due to its capability of register
4D images to each other using normalized mutual information as described in
Section 3.1.2. Though, in the 4D case the similarity measure is based on a bi-
variate distribution. Therefore, the weighting of the labeling by the parameter
α is needed to make sure that the labeling contributes with desired impact.

The standard output of reg_ffd gives a control point grid transformation.
Though, with help of an additional function in NiftyReg called reg_transform,
the control point grid parametrization is easily converted into a displacement
field, Tdisp : Ωi → R3. That is, the silver standard transformation for the ith
atlas is given by

x̂ = Ti,̂i ◦ x = x + Tdisp(x). (4.15)
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4.3. TRAINING

4.3.2 Feature clusters

In order to construct the feature clusters of the überatlas, the method of ag-
glomerative clustering is used. Each transformed feature point will start in a
cluster with size 1 and pairs of clusters are merged as the clustering proceeds.
Before clustering starts, a distance matrix based on the distances between all
descriptors are constructed and sorted. The algorithm tries to merge feature
points with the smallest descriptor distances first. For every potential merg-
ing of clusters, the criteria given by (4.4), (4.5) and (4.6) are checked. Finally,
feature clusters that do not fulfill the criterion given by (4.6) are discarded.
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Chapter 5

Implementation

5.1 Evaluation

Pair-wise registration of 20 images of the heart and 30 images of the brain were
performed with intensity-based registration (Baseline 1), feature-based registra-
tion (Baseline 2) and überatlas registration. Since all the affine registration
methods and the non-rigid transformations are non-symmetric, 180 pairwise
registrations of the heart and 870 pairwise registrations of the brain were com-
puted. For these registrations, the mean and standard deviation of the Jaccard
index defined in Section 1.2 were calculated. Also, multi-atlas segmentation for
each image was performed with the remaining atlases; 20 multi-atlas segmenta-
tions of the heart (with 19 atlases) and 30 multi-atlas segmentations of the brain
(with 29 atlases). The multi-atlas segmentations were evaluated by computing
the Jaccard index.

The mean value and standard deviation of the amount of correspondences
found in the registration were saved for the features-based registration and the
überatlas registration. Also, the mean value and standard deviation of the
amount of inliers and outliers according the registration were saved. Finally, all
correspondences were evaluated with respect to the silver standard for these two
methods as well. A correspondence was set to a silver standard inlier (SSI) if the
spatial distance between the transformed feature points were less than 10 mm,
otherwise set to a silver standard outlier (SSO). Therefore, the percentage of
correspondences correctly/incorrectly marked as an inlier (or an outlier) could
be estimated.

5.2 Implementation

5.2.1 Baseline 1: Intensity-based registration

The programs reg_aladin and reg_f3d were used in order perform a pair-wise
registration of 20 images of the heart and 30 images of the brain. The programs
were run with default values.
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5.2.2 Baseline 2: Feature-based registration

Feature points were extracted by a feature detection and description program
ff3d.m, implemented by Svärm et al. [20]. The program was run with default
values and for rotation variant features. The images of the brains were upsam-
pled with a factor 2. The affine registration was performed with RANSAC, that
was run 10000 iterations. The spatial threshold for inliers, ε, was tested to be 10
and 50 mm. The non-rigid transformation was run with default values, though
the number of grid refinements was set to 5.

5.2.3 Überatlas registration

Feature points were extracted by the feature detection and description program
ff3d.m. The program was run with default values and for rotation variant fea-
tures. The images of the brains were upsampled with a factor 2. The affine
registration was performed with iteratively reweighted squares with 10 itera-
tions. The spatial threshold for inliers, ε, was tested for different values, where
10 and 50 mm are presented in this report. The descriptor threshold, εd, was
set to 1 for both hearts and brains. The non-rigid transformation was run with
default values, though the number of grid refinements was set to 3.

5.3 Überatlas training

5.3.1 Silver standard

Affine transformation

Feature points were extracted by the feature detection and description program
ff3d.m. The program was run with default values and for rotation variant
features. The images of the brains were upsampled with a factor 2. The labeling
weighting factor αi was set to max Ii−min Ii (the intensity span of the image).
The affine registration was performed with RANSAC, with truncated l2-norm
as a loss function, that was run 1 million iterations. The spatial threshold for
inliers was set to 20 mm.

Non-rigid transformation

The non-rigid registrations were run with reg_f3d with default values. The
precision of the transformations was evaluated by computing the Jaccard index
of the pairwise registrations.

5.3.2 Feature clusters

An agglomerative clustering algorithm based on the complete-linkage criteria εs
was implemented. The spatial threshold was set to 10 mm for both hearts and
brains. An überatlas based on all remaining atlases where constructed for each
of the images. The mean atlas was randomly picked out of the remaining atlases.
A sorted distance matrix with respect to the descriptor distance was constructed
and sorted. Only the 3×M nearest neighbors to each of the transformed feature
points were taken into account, where M is the total amount of atlases. This
restriction was done in order to speed up the training.
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Data set Silver standard
Hearts 0.9715 ± 0.0562
Brains 0.7612 ± 0.0095

Table 6.1: The table contains the pairwise Jaccard index of the silver standard
transformations of the atlases (Mean ± Standard deviation).

Data set Feature clusters Features total
Hearts 19706 ± 491 341640 ± 4136
Brains 30777 ± 2672 189050 ± 880

Table 6.2: The table contains the amount of feature clusters of the atlases and
the total amount of features used in order to create the feature clusters (Mean
± Standard deviation).

Chapter 6

Results

6.1 Training

In order to be able to evaluate the performance of the training of the algorithm,
the accuracy of the transformations that represent the silver standard is pre-
sented. In Table 6.1 the mean and standard deviation of the Jaccard index of
all registrations performed according to Section 4.3.1 are given account for.

In Table 6.2 the mean and standard deviation of the amount of feature
clusters produced by the algorithm explained in Section 4.3.2 is compared to
the total amount of features.

Figure 6.1 and 6.2 depict an example of six different, randomly chosen feature
clusters for the heart and brain respectively, depicted in the mean atlas with
the mean atlas coordinates. The corresponding features are also plotted in eight
other atlas images with its original coordinates. The eight other atlases contain
all or a subset of the feature points present in the six clusters. The images are
chosen in order to show the atlases that contain the most feature points present
in the clusters.
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6.1. TRAINING

Figure 6.1: Six different feature clusters (marked with six different colors). The
heart in the middle is the mean atlas. In the mean atlas, the mean atlas co-
ordinates of the feature points belonging to the same cluster are marked with
the same color. The black circles correspond to the coordinates of the feature
points extracted from the mean atlas. The eight surrounding figures depict a
sample of the original images represented in the clusters and the feature points
belonging to the clusters with its original coordinates. If a color is missing, it
means that the corresponding cluster does not contain a feature extracted from
the corresponding image.
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CHAPTER 6. RESULTS

Figure 6.2: Six different feature clusters (marked with six different colors). The
brain in the middle is the mean atlas. In the mean atlas, the mean atlas co-
ordinates of the feature points belonging to the same cluster are marked with
the same color. The black circles correspond to the coordinates of the feature
points extracted from the mean atlas. The eight surrounding figures depict a
sample of the original images represented in the clusters and the feature points
belonging to the clusters with its original coordinates. If a color is missing, it
means that the corresponding cluster does not contain a feature extracted from
the corresponding image.
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6.1. TRAINING

Method Affine Non-rigid
Intensity 0.6209 ± 0.1528 0.7737 ± 0.1388
ε = 10 mm
Features 0.7746 ± 0.0840 0.8314 ± 0.0832

Überatlas 0.7817 ± 0.0917 0.8320 ± 0.0936
ε = 50 mm
Features 0.6984 ± 0.1054 0.8291 ± 0.0449

Überatlas 0.8006 ± 0.0577 0.8150 ± 0.0577

Table 6.3: The table contains the Jaccard index of the pairwise registrations of
the heart (Mean ± Standard deviation).

Method Affine Non-rigid
Intensity 0.4673 ± 0.0258 0.5654 ± 0.0193
ε = 10 mm
Features 0.4710 ± 0.0246 0.5022 ± 0.0167

Überatlas 0.4737 ± 0.0242 0.5212 ± 0.0171
ε = 50 mm
Features 0.4604 ± 0.0270 0.4749 ± 0.0189

Überatlas 0.4688 ± 0.0253 0.5069 ± 0.0186

Table 6.4: The table contains the Jaccard index of the pairwise registrations of
the brain (Mean ± Standard deviation).

Method Affine Non-rigid
Intensity 0.7206 ± 0.1044 0.8779 ± 0.0800
ε = 10 mm
Features 0.8531 ± 0.0349 0.9104 ± 0.0347

Überatlas 0.8519 ± 0.0362 0.9075 ± 0.0329
ε = 50 mm
Features 0.7197 ± 0.0533 0.9115 ± 0.0254

Überatlas 0.8458 ± 0.0277 0.8814 ± 0.0440

Table 6.5: The table contains the Jaccard index of the multi-atlas based segmen-
tations of the heart (Mean ± Standard deviation).

Method Affine Non-rigid
Intensity 0.5705 ± 0.0246 0.6739 ± 0.0141
ε = 10 mm
Features 0.5721 ± 0.0224 0.6362 ± 0.0151

Überatlas 0.5724 ± 0.0221 0.6246 ± 0.0171
ε = 50 mm
Features 0.5572 ± 0.0246 0.6268 ± 0.0154

Überatlas 0.5646 ± 0.0231 0.6118 ± 0.0183

Table 6.6: The table contains the Jaccard index of the multi-atlas based segmen-
tations of the brain (Mean ± Standard deviation).
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CHAPTER 6. RESULTS

Method Correspondences SSI SSO
Features 3434 ± 541 151 ± 77 3283 ± 515

Überatlas 3489 ± 954 183 ± 88 3307 ± 909

Table 6.7: The table contains the amount of detected correspondences of the
pair-wise registrations of the heart. Also, it presents the amount of inliers and
outliers according to the silver standard (Mean ± Standard deviation).

Method Correspondences SSI SSO
Features 2275 ± 181 536 ± 74 1739 ± 157

Überatlas 5559 ± 585 706 ± 75 4852 ± 576

Table 6.8: The table contains the amount of detected correspondences of the
pair-wise registrations of the brain. Also, it presents the amount of inliers and
outliers according to the silver standard (Mean ± Standard deviation).

6.2 Segmentations

In order to be able to evaluate the performance of the algorithm compared
to Baseline 1 and 2, the accuracy of the segmentations of each of the three
methods is presented. In Table 6.3 and 6.4 the mean and standard deviation of
the Jaccard index of all pair-wise registrations are given account for. The mean
and standard deviation of the Jaccard index of the multi-atlas segmentations
are presented in Table 6.5 and 6.6.

6.3 Inliers and outliers

In order to compare the feature-based registration method (Baseline 2) and the
überatlas registration, the amount of detected inliers and outliers in pairwise
registration is presented in Table 6.9 and 6.10 for the heart and brain, respec-
tively.

By computing the euclidean distance between the mean atlas coordinates of
the detected correspondences, inliers and outliers in the registration, one may
evaluate whether they correspond to an inlier or an outlier according to the
silver standard. A silver standard inlier has a distance less than 10 mm between
the mean atlas coordinates, otherwise it is marked as an outlier. Table 6.7
and 6.8 present the amount of silver standard inliers and outliers among the
detected correspondences. Finally, Table 6.11 and 6.12 present the percentage
of the correspondences correctly and incorrectly marked as inliers/outliers.
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6.3. INLIERS AND OUTLIERS

Method Correspondences Detected inliers Detected outliers
ε = 10 mm
Features 3434 ± 541 664 ± 239 2770 ± 479

Überatlas 3489 ± 954 584 ± 254 2905 ± 833
ε = 50 mm
Features 3434 ± 541 2287 ± 453 1147 ± 294

Überatlas 3489 ± 954 1293 ± 431 2196 ± 697

Table 6.9: The table contains the amount of detected correspondences of the
pair-wise registrations of the heart. Also, it presents the amount of inliers and
outliers according to the registration (Mean ± Standard deviation).

Method Correspondences Detected inliers Detected outliers
ε = 10 mm
Features 2275 ± 181 1809 ± 159 466 ± 93

Überatlas 5559 ± 585 2707 ± 536 2851 ± 473
ε = 50 mm
Features 2275 ± 181 2244 ± 180 31 ± 11

Überatlas 5559 ± 585 3599 ± 869 1960 ± 649

Table 6.10: The table contains the amount of detected correspondences of the
pair-wise registrations of the brain. Also, it presents the amount of inliers and
outliers according to the registration (Mean ± Standard deviation).

Inliers Outliers
Method Correct Incorrect Correct Incorrect
ε = 10 mm
Features 0.83 ± 0.13 0.17 ± 0.13 0.84 ± 0.05 0.16 ± 0.05

Überatlas 0.58 ± 0.13 0.42 ± 0.13 0.86 ± 0.05 0.14 ± 0.05
ε = 50 mm
Features 1.00 ± 0.00 0.00 ± 0.00 0.35 ± 0.07 0.65 ± 0.07

Überatlas 0.66 ± 0.09 0.34 ± 0.09 0.64 ± 0.08 0.36 ± 0.08

Table 6.11: The table contains the percentage of detected inliers and outliers
in registration of the heart correctly/incorrectly labeled according to the silver
standard (Mean ± Standard deviation).

Inliers Outliers
Method Correct Incorrect Correct Incorrect
ε = 10 mm
Features 0.99 ± 0.01 0.01 ± 0.01 0.26 ± 0.04 0.74 ± 0.04

Überatlas 0.87 ± 0.05 0.13 ± 0.05 0.57 ± 0.07 0.43 ± 0.07
ε = 50 mm
Features 1.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.98 ± 0.01

Überatlas 0.88 ± 0.05 0.12 ± 0.05 0.39 ± 0.12 0.61 ± 0.12

Table 6.12: The table contains the percentage of detected inliers and outliers
in registration of the brain correctly/incorrectly labeled according to the silver
standard (Mean ± Standard deviation).
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Sub-method Intensity Features Überatlas
Feature detection - 40.85 40.85
Feature matching - 128.00 8.05
Affine transformation 20026.00 53.45 0.15
Non-rigid transformation 36955.00 141.25 120.90
Total 56981.00 363.55 169.95

Table 6.13: Runtime for the sub-steps of the online algorithm, and the total
runtime, for an average multi-atlas based segmentation of the heart (using 19
atlases). Sub-steps as resampling of the images and multi-atlas voting are ex-
cluded. (Time in seconds)

Sub-method Intensity Features Überatlas
Feature detection - 18.77 18.77
Feature matching - 24.40 5.23
Affine transformation 1827.00 163.03 0.63
Non-rigid transformation 2900.00 27.53 23.47
Total 4727.00 233.73 48.1

Table 6.14: Runtime for the sub-steps of the online algorithm, and the total
runtime, for an average multi-atlas based segmentation of the brain (using 29
atlases) Sub-steps as resampling of the images and multi-atlas voting are ex-
cluded. (Time in seconds)

6.4 Runtime

Finally, the runtimes of an average multi-atlas segmentation are presented in Ta-
ble 6.13 and 6.14. Though, parts of the algorithm such as resampling the image
and computing the multi-atlas segmentations out of the pair-wise segmentations
are not presented since these sub-steps are the same for all the three methods.
Also, only online substeps are presented. That is, feature detection and match-
ing refer to the detection and matching of feature points in the target image to
already computed feature points/feature clusters. The feature points/feature
clusters in the source images are computed offline.
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Chapter 7

Discussion

7.1 Training

7.1.1 Silver standard

By studying Table 6.1, one may conclude that the proposed method of regis-
tering atlases to each other in order to produce a silver standard works well for
the heart, and worse for the brains.

One could argue that a Jaccard index of 0.9715 should be high enough in or-
der to map features to each other with a large precision. Though, the standard
deviation is quite large, 0.0562, which implies that there are some transforma-
tions that are not good enough in order to represent an approximation of the
”ground truth”. Though, the result could hopefully be improved by optimizing
the choice of weighting of the labeling, α, with respect to the Jaccard index.
Another aspect that could be taken into account is to reconsider the choice
of cost function. When training the silver standard, one could argue that the
chosen similarity measure, a bi-variate normalized mutual information, is non-
intuitive. Firstly, one would probably want to use a cost function that treats
the image and the labeling independently. Secondly, one should probably con-
sider comparing with other functions such as least squares. Both independent
normalized mutual information and least squares are implemented by Niftyreg

and could easily be tested.

The silver standard training of the brains is more disappointing. It is un-
certain that a Jaccard index equal to 0.7612 could be considered high enough
in order to represent a silver standard at all. Apart from the propositions of
improvements above considering the hearts, there are additional improvements
that be considered due to the multi-labelings in the brain atlases. In the train-
ing, the image and the labeling compose a 4D image where the image represents
the first layer and the labeling the second layer. When representing all different
labels as one layer, an optimization of a cost function for all different labels at
once is performed. A more intuitive approach would be to let all different labels
represent one layer each. That is, there would be 85 layers in total (1 image +
1 background label + 83 region labels). Though, this approach would take a
huge amount of time and may not be practical in reality.
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7.1.2 Feature clusters

As can been studied in Table 6.2, as well as in Figure 7.1 and 7.2, the clustering
algorithm produces a significant greater amount of clusters in the brains than
in the hearts, even though the initial amount of feature points are larger in the
hearts. This may be due to the fact that there are relative few good feature
points that could be used as correspondences in the heart images compared to
the brain images. Though, it could also mean that it is harder to distinguish
between correspondences when it comes to the brains. Moreover, even though
the original feature points are spatially distributed more or less uniformly, the
feature clusters do not exhibit the same behaviour. This is most evident for the
hearts, see Figure 7.1.

Both these issues may partly be explained as a result of the insufficient
silver standard registration discussed in the previous section, which limits was
most evident for the brain. Though, in order to evaluate whether a cluster
is formed correctly or not, one would need to manually evaluate all feature
points and feature clusters, which would be a tiresome work and unrealistic
in practice. Furthermore, in order to do a manual evaluation properly, one
would probably need to consult a physician. A better suggestion could be to
evaluate the feature clusters by introducing a statistical model that describes the
spatial distributions of the feature points, and how that changes with clustering
algorithm.

An attempt to evaluate whether the überatlas registration produces more
or less than ordinary feature registration (Baseline 2) is presented in Table
6.7 and 6.8. Here, all correspondences found in the registrations respectively
are evaluated with help of the silver standard transformations. According to
this, the überatlas method succeeds to include more inliers, though it produces
more outliers as well. This is most evident for the brains, where an increase
of barely 200 inliers is probably not a justification of an increase of more than
3000 outliers. The situation is more positive for the hearts.

In order to rely less on the silver standard transformations when forming the
clusters, one could introduce other criteria than the spatial distance between the
mean atlas coordinates. For instance, one approach was tested where the clus-
tering was based on the distance between the descriptors between the feature
points. More specificly, the complete-linkage criterion was based on a compari-
son between the maximum descriptor distance within the potential cluster and
the minimum descriptor distance between the cluster and the remaining fea-
tures. This approach was tested both in combination with a spatial criterion as
well as without. The purpose was to construct a simple statistical model of the
descriptor space. Though, clustering based on descriptor distance did produce
very few clusters, which is unfortunate when it comes to registering images.
The approach could be investigated further, since it would eliminate the depen-
dence of the silver standard transformation that takes a great amount of time
to produce and is poor at least for the brains in its current implementation.

Finally, it should be mentioned that clustering was tested with different
spatial thresholds (different linkage-criteria), and this parameter could probably
benefit from further tuning.
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7.1. TRAINING

Figure 7.1: A slice of a CT image of the heart, all detected feature points in the
corresponding region marked as green and all feature points included in a feature
cluster marked as red.

Figure 7.2: A slice of a MR image of the brain, all detected feature points in
the corresponding region marked as green and all feature points included in a
feature cluster marked as red.
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CHAPTER 7. DISCUSSION

7.2 Affine transformation

The Jaccard indexes of the pair-wise registrations in Table 6.3 and 6.4 do exhibit
some positive tendencies considering the affine transformations. For both hearts
and brains, the slowest intensity-based method performs the worst and the
fastest überatlas registration performs the best.

Moreover, the überatlas registration seems to be more insensitive to the spa-
tial threshold defining inliers and outliers. This is positive due to the decreased
need of tuning parameters, and may possible be explained by the introduction of
the more robust l1-norm which is less dependant of choice of truncation thresh-
old. By studying Table 6.11 and 6.12. this becomes even clearer. In this table,
the percentage of the inliers and outliers marked correctly/incorrectly according
to the silver standard may be studied. On the on hand, the original feature-
based method do find more correct inliers, but on the other hand the überatlas
approach has a much larger capacity of weed out the outliers, especially for the
higher thresholds. This is an attractive trait of a robust registration method,
and implies that the state-of-the-art method RANSAC is dispensable. Though,
it should be noticed that the überatlas method creates more outliers in the
first place, as mentioned in the previous section. If these outliers are clearly
mismatches, they are of course easier to separate as well.

7.3 Non-rigid transformation

The Jaccard indexes for the pair-wise registrations in Table 6.3 and 6.4 are not
as easily analyzed as the affine counterparts. For the hearts, the feature-based
methods still perform better than the intensity-based approach, which is not
true for the brains. This is probably due to the already mentioned problem
of correctly separating detected correspondences as inliers and outliers. This
especially evident when studying Table 6.11 and 6.12 and comparing how many
outliers that are incorrectly marked as inliers for hearts and brains respectively.
The reason why the incorrectly labeled correspondences cause an impairment
of performance of the non-rigid segmentation probably depends on the program
used in the algorithm, which is not very robust.

Another aspect, maybe even more important, is the opposite of incorrectly
labeled outliers, namely the amount of inliers. This aspect could namely be one
explanation to why the non-rigid transformation behaves differently for hearts
and brains. The non-rigid point-based program demands a great amount of
correspondences in order tor work properly, which is probably the reason why
the two feature-based methods perform differently for hearts and brains. Like
Table 6.9 and 6.10 show, the original feature-based method detects more inliers
in the hearts and has a greater improvement of Jaccard index compared to the
affine transformation. On the other hand, the überatlas registration produces
more final inliers in the brains, which gives a higher relative increase of Jaccard
index when applying the non-rigid transformation.
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7.4. MULTI-ATLAS SEGMENTATIONS

7.4 Multi-atlas segmentations

The Jaccard indexes for the mulit-atlas segmentation in Table 6.5 and 6.6 do
not follow the result of the pair-wise registrations entirely. There is not much to
say about the intensity-based multi-atlas segmentation; the Jaccard index is the
best for the brains and the worst for the hearts like the pair-wise registrations.

More interesting, the Jaccard index of the feature-based multi-atlas segmen-
tations are better than überatlas for both affine and non-rigid transformations
for both hearts and brain. That is highly notably, since there is only one out
of eight examples of the pair-wise registrations where the feature-based method
performs better. This could be due to the already mentioned fact that the
clustering algorithm has a tendency to create more feature clusters in some
anatomical regions than other, while the original features are more uniformly
distributed. This could cause the überatlas registration to estimate consistently
good estimations of the segmentation in some anatomical regions, but on the
other hand consistently fail for other regions.

Another explanation could be that the clustering algorithm is biased with
respect to the choice of mean atlas, which could cause a systematic error. If
the silver standard transformation is systematically incorrectly estimated for
one mean atlas, this could cause a bias in the resulting überatlas. The original
feature-based method does not have this bias towards on of the atlases, which
may explain why it performs better in the multi-atlas step.

7.5 Runtime

As can be seen in Table 6.13 and 6.14 there is a huge speed-up between the
intensity-based method and the feature-based methods.

The überatlas algorithm succeeds to speed up the registration even more.
Most interestingly is of course the enormous speed-up of the affine transfor-
mation. It should noticed that both methods are implemented in C++, and
therefore comparable. Also, the feature matching time is decreased. It could be
decreased even further, since both presented methods are currently implemented
in MATLAB. When it comes to feature detection there is no change due the use of
the same algorithm, though it should be noticed that there is a current imple-
mentation that is faster than the presented runtimes. That is, even though it
may seem like this could be a substep that needs to be speeded up, the current
implementation allows faster detection if OpenMP is installed on the computer.
The bottleneck of the algorithm is evidently the non-rigid transformation, which
also fails to produce as big improvements as its intensity-based counterpart. In
Section 7.6, this will be discussed more thoroughly.

Finally, one should mention that there are other time-consuming parts of the
algorithm that is not mentioned. For instance, the resampling program that is
used by all methods in order to resample the images are unnecessary slow. This
is an issue that needs to be solved in order to make the algorithm practical in
clinical care, though outside the scope of this master thesis.
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7.6 Further work

As discussed in the previous section, the current method of estimating the non-
rigid transformation is insufficient in more than one sense; it takes a lot of
runtime, it is highly dependent of a large amount of feature points spread across
the whole image and the performance is mediocre at its best. Even though the
approach of basing the non-rigid transformation on b-splines seems to work well
in the intensity-based case, it takes a huge amount of time.

Since the affine transformation presented in this work performs great, is ro-
bust and fast, one would like to use this advantage when estimating the non-rigid
transformation. Therefore, it could be of great interest to implement a piece-
wise affine transformation between the images and let this represent the non-
rigid deformation. This could be done by dividing the image into patches, and
compute a local affine transformation between all patches. Then, the patches
could vote independently of each other when applying the multi-atlas method.
This would hopefully be more robust and improve the performance and runtime.

Another approach that could be of interest, is to let the feature points vote
for labels directly instead of indirectly using them for transforming the whole
image. In that way, one would only need to detect and match feature points,
and then let the correspondences decide the labels. This could for example be
implemented by letting all feature points decide the label of the image in a
predefined neighborhood of the point.

Also, a combination of these methods could be used by constructing and
matching clusters of voxels, so called supervoxels, and base local affine transfor-
mations on correspondences of such items.
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Chapter 8

Conclusion

The implemented überatlas registration is a novel, feature-based method that
uses co-registration of atlases, clustering of feature points and robust affine
transformations with the l1-norm. The registration method is faster than the
two methods used as a comparison, one multi-atlas based registration of the
heart (using 19 atlases) takes 2.8 minutes compared to 6.1 and 949.7 (15.8
hours!) minutes respectively. The speed-up of the registration compared to the
original feature-based method is even more evident when it comes to brains, 0.8
minutes compared to 3.9 minutes. Even though the speed-up may seem small,
the überatlas registration reduces the runtime with a half or even more, which
could be of great use in for instance clinical care.

Moreover, the affine registration performed by the implemented algorithm is
more robust and detects a greater percentage of outliers. Even more, it succeeds
to produce better segmentation results with respect to Jaccard index and has
a lower standard deviation. Also, it is not as sensitive to parameters. The
non-rigid registration do not cause a significant change or improvement of the
registration results, and needs to be improved or changed totally in order to
produce relevant results, especially when it comes to the brains. For instance,
the b-splines could be replaced by a piece-wise affine method, since the current
affine transformation has proved to work excellent so far.

Th training of the algorithm seems to work sufficient good for the hearts,
and worse for the brains. The agglomerative clustering algorithm is standard,
and could easily be improved and tuned. The silver standard transformations
needed for the clustering is sufficient for the hearts, but poor for the brains.
Other methods such as adding more layers to the 4D atlas image, changing
cost function or method entirely could probably improve the accuracy. More
specific, the distribution of the feature clusters compared to the original feature
points needs to be investigated in order to achieve a more uniform distributed
überatlas. This would probably improve the result of the multi-atlas segmen-
tation as well, since the segmentation accuracy of different anatomical regions
would be more consistent.
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