
PARAMETER SELECTION AND

DERIVATIVE CONDITIONS

FOR B-SPLINES APPLIED TO

GAS TURBINE BLADE

MODELING

ANDREAS SÖDERLUND

Bachelor’s thesis
2015:K2

Faculty of Science
Centre for Mathematical Sciences
Numerical Analysis

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M

Abstract

In gas turbine blade modeling a stable but yet flexible method of describing the blade
shape is crucial. Polynomials and Bézier curves have been previously used and in this
paper B-splines are employed instead. This method removes the need for many of the
interior derivative conditions on the curve but special care must be taken when selecting
the parameter values and appropriate derivative conditions. This paper presents several
parameter selection methods and shows how they affect the construction of the curve. In
the end a satisfactory curve is produced where one of its conditions depends on a variable
whose value can be set to optimize the shape of the curve in the modeling procedure.

2

Contents

1 Introduction 4

2 Blade geometry 5
2.1 Investigating s1 and s5 . 7
2.2 Investigating s3 . 8
2.3 Investigating p1 and p4 . 9
2.4 Slopes at the points . 10

3 B-spline definition and properties 10
3.1 B-spline basics . 10
3.2 B-spline interpolation . 11

4 Parameter selection 11

5 Derivative conditions 13
5.1 Endpoint derivatives . 14
5.2 Derivative at s3 . 14

6 Results 15
6.1 Basic choices . 17
6.2 Modifying vs3 . 18
6.3 New parametrizations for Ω1 and Ω2 . 19
6.4 Increasing the number of control points . 20

7 Conclusions 22

A Code 24
A.1 turbine.py . 24
A.2 util.py . 32
A.3 spline.py . 37
A.4 plots.py . 42

3

1 Introduction

In the development of gas turbines several stages of computer simulation in both R, R2 and
R3 are employed [14]. Because a comprehensive model of the turbines in R3 can be difficult to
create and analyse, several cross sections in two dimensions of the blade are stacked to give an
approximate blade design.

Figure 1: The inlet guide vanes of an Atar turbojet. Air flows from the viewer towards the
background of the photo [2].

There are several ways of describing these two-dimensional cross sections and Svensson [14]
describes two of them, namely by combining three and four degree polynomials as proposed by Ye
[16] and by composite Bézier curves. Because the blade surface requires several of its derivatives
to be continuous, both of these methods will face problems at the points on the blade where the
functions meet as not only the function values but also its derivatives must be matched. We will
instead investigate if the curve can be described using the B-spline basis. With this approach we
will immediately gain the desired smoothness along the curve and we can easily add additional
conditions on the curve. Even though we have several conditions on the curve, the shape of the
blade does not have to be unique. In Figure 2 we see three different blades satisfying the same
conditions.

We will begin by explaining the two-dimensional geometry of the cross sections and the
conditions that must be satisfied by the curve. In Section 3 we will introduce the B-spline basis
and some of its properties. We will also look at how the basis can be used for interpolation. In
Section 4 we introduce several methods of choosing the parameter values and how they are used
to construct the knot sequence of the B-spline, and in Section 5 we will deal with the choice of

4

Figure 2: Three possible shapes of the blade fulfilling the same conditions.

derivative conditions for the blade. In the Results section we will look at different ways the blade
can be constructed and what kind of blades these choices produce. In the end a satisfactory shape
is obtained and we conclude the report by proposing possible improvements and extentions. In
the Appendix the code used to produce the curves are presented.

I thank my supervisor Carmen Arévalo for her insightful comments and support throughout
the development of this thesis, and Magnus Genrup at the Department of Energy Sciences who
provided the topic.

2 Blade geometry

The profile of the turbine blade consists of two circular arcs connected by two curves as seen in
Figure 3 where the upper curve is the suction side and the lower curve is the pressure side. The
shape of the blade is given by 11 blade parameters chosen because of their strong influence on
the performance of the turbine [14] and they are as follows:

5

R1 Radius of leading edge circular arc
R2 Radius of trailing edge circular arc
γ Stagger angle
β1 Inlet flow angle
β2 Outlet flow angle
∆β1 Inlet wedge angle
∆β2 Outlet wedge angle
τ Pitch
βg Gauging angle
Γ Uncovered turning
Bx Airfoil axial chord

These parameters are used to define the points in Figure 3 denoted by s1, s3, s5, p1 and

x

y

H

τ

R1

R2

β1
∆β1

β2

∆β2

Bx

s3

s1

s5

p1

p4

s2

C

γ

o

Γ

Figure 3: The geometry of the turbine blade and its defining points and angles.

6

p4. The leading edge of the blade is described by a circular arc of radius R1 and wedge angle
∆β1 while the trailing edge is described by a circular arc of radius R2 and wedge angle ∆β2.
Together with β1 and β2, ∆β1 and ∆β2 describe at which angles the suction side connects to
the circular arcs. The height of the blade is calculated as

H = C sin γ +R1 sinβ1 −R2 sinβ2

where C is the length of the blade defined by [14]

C =
Bx −R1(1− cosβ1)−R2(1− cosβ2)

cos γ
.

The quantity βg is the gauging angle that determines the width of the throat, o, and is defined
as the ratio between o and the pitch τ [16],

sin(βg) =
o

τ
. (1)

2.1 Investigating s1 and s5

As seen in Figure 4, s1 lies on the leading edge circular arc with center (R1, H) and radius R1

where it meets the suction side. Because the suction side meets the radius R1 at a right angle
at s1, the angle θs between s1 and the leading edge circular arc horizontal radius is

θs =
π

2
− ∆β1

2
− β1

If we write s1 as s1 = (xs1 , ys1) we see that

xs1 = R1 −R1 cos θs

= R1

(
1− cos(

π

2
− ∆β1

2
− β1)

)
= R1

(
1− sin(

∆β1

2
+ β1)

)
,

and

ys1 = H +R1 cos(
∆β1

2
+ β1).

The trailing edge circular arc has center (Bx−R2, 0) and radius R2 and as before, we see that s5

lies where the suction side meets the trailing edge circular arc. Following the previous reasoning,
the angle φs between s5 and the x-axis is

φs =
π

2
− ∆β2

2
− β2.

If we write s5 as s5 = (xs5 , ys5) we get

xs5 = Bx −R2 +R2 cosφs

= Bx −R2

(
1− cos(

π

2
− ∆β2

2
− β2)

)
= Bx −R2

(
1− sin(

∆β2

2
+ β2)

)

7

and similarly

ys5 = R2 cos(
∆β2

2
+ β2).

This gives us the following two expressions for s1 and s5:

s1 =
(
R1

(
1− sin(

∆β1

2
+ β1)

)
, H +R1 cos(

∆β1

2
+ β1)

)
(2)

s5 =
(
Bx −R2

(
1− sin(

∆β2

2
+ β2)

)
, R2 cos(

∆β2

2
+ β2)

)
. (3)

x

y

s1

s5

p1

p4

θs

θp

s3
A

B
π/2−(β2−Γ)

Figure 4: The defining points of the blade and their positions.

2.2 Investigating s3

The point s3 is defined as the position of the throat o on the suction side. This means that s3

is the closest point on the lower blade to the upper blade and that the line through the throat
is perpendicular to the slope at s3. By drawing a right triangle with hypotenuse o + R2, side
A parallel to the x-axis and side B parallel to the y-axis as seen in Figure 4, we can calculate
s3 = (xs3 , ys3). From the triangle we see that

xs3 = Bx −R2 −A
ys3 = τ −B

8

which means that we must find expressions for A and B. The angle between A and the slope of
the suction side at s3 is β2 − Γ which means that the angle between the hypotenuse and side A
of the triangle is π

2 − (β2−Γ) using the perpendicularity of the hypotenuse and the slope. From
this calculation and equation (1) we get that

A = (o+R2) cos(
π

2
− (β2 − Γ))

= (τ sinβg +R2) sin(β2 − Γ).

In the same way, we see that

B = (o+R2) sin(
π

2
− (β2 − Γ))

= (τ sinβg +R2) cos(β2 − Γ)

which means that we have an expression for s3:

s3 =
(
Bx −R2(τ sinβg +R2) sin(β2 − Γ), τ − (τ sinβg +R2) cos(β2 − Γ)

)
(4)

2.3 Investigating p1 and p4

Just as s1 and s5 lie on the intersection of the suction side and the leading and trailing edge
circular arcs, p1 and p4 lie on the intersection of the pressure side and the circular arcs, as seen
in Figure 4. The angle θp in Figure 4 is

θp = π + β1 +
∆β1

2

and the angle φp between p4 and the x-axis is

φp =
π

2
− β2 +

∆β2

2
.

If p1 = (xp1 , yp1) we can calculate xp1 as

xp1 = R1 −R1 cos θp

= R1

(
1− cos(π + β1 +

∆β1

2
)
)

= R1

(
1 + cos(β1 +

∆β1

2
)
)

and similarly

yp1 = H +R1 sin(β1 +
∆β1

2
)

which means that

p1 =
(
R1

(
1 + cos(β1 +

∆β1

2
)
)
, H +R1 sin(β1 +

∆β1

2
)
)
. (5)

In the same way, we can find p4 using φp:

p4 =
(
Bx −R2

(
1− sin(β2 −

∆β2

2
)
)
,−R2 cos(β2 −

∆β2

2
)
)
. (6)

9

2.4 Slopes at the points

Apart from the position of the points, we also know the slopes there. From Figure 4 we can
find the slopes using the angle between the tangent line and the horizontal axis at each point.
This means that the slopes at s1 and p1 are tan(β1 + ∆β1

2) and tan(β1 − ∆β1

2) and at s5 and

p4 tan(−β2 + ∆β2

2) and tan(−β2 − ∆β1

2). At s3 we previously saw that the angle between the
tangent line and side A was β2 − Γ, which means that the slope there is tan(−β2 + Γ).

3 B-spline definition and properties

3.1 B-spline basics

A spline of degree n is a function piecewise defined by polynomials of degree ≤ n with sufficient
smoothness at the points of the curve where the polynomials meet. These points are called the
knots of the spline. A B-spline s(x) (where B stands for Basis) is a spline defined by a non-
decreasing knot sequence u0, . . . , uk of length k+ 1, m+ 1 control points d0, . . . , dm and a degree
n satisfying [4]

k︸︷︷︸
of knots −1

= n︸︷︷︸
degree

+ m+ 1︸ ︷︷ ︸
of ctrl pts

(7)

and

s(x) =

m∑
i=0

diN
n
i (x)

where (Nn
i)mi=0 are the basis functions of the B-spline. These basis functions are defined by a

recurrence relation,

N0
i (x) =

{
1 if ui ≤ x < ui+1

0 else

and

Nn
i (x) =

x− ui
ui+n − ui

Nn−1
i (x) +

ui+n+1 − x
ui+n+1 − ui+1

Nn−1
i+1 (x).

Because each basis function Nn
i is nonzero on the interval [ui, ui+n], called the support of the

basis function, the B-spline is only defined for x ∈ [un, uk−n]. Otherwise, x would lie on a part of
the domain without a full basis. If x lies in the interval [un, uk−n], the curve is said to have full
support. If r successive knots coincide, that is ui = ui+r−1, we say that the knot is of multiplicity
r. At each knot, s(x) is Cn−r where r is the multiplicity of the knot. A clamped B-spline is a
B-spline where the first and last knot is of multiplicity n + 1, and a common choice for u0 and
uk is u0 = 0, uk = 1 which means that the domain for s(x) is [0, 1]. Because Nn

i ≥ 0 ∀i, each
point on the B-spline s(x) lies in the convex hull of at most n+ 1 nearby control points [4]. The
derivative of a basis function can be written as [4]

d

dx
Nn
i (x) =

n

un+i − ui
Nn−1
i (x)− n

un+i+1 − ui+1
Nn−1
i+1 (x) (8)

which means that the derivative of the B-spline is

s′(x) =

m∑
i=0

di
d

dx
Nn
i (x). (9)

Because B-splines have such convenient properties, as cited above, we use these splines to
model the turbine blade. If the reader wishes to read more about B-splines, de Boor [3], Farin
[4] and Piegl [11] to name a few are excellent sources.

10

3.2 B-spline interpolation

If we want the B-spline curve to satisfy m+1 conditions we will need to solve for m+1 unknowns.
This can be done by letting the knot sequence, control points, degree or a combination of them act
as the unknowns, but we are going to limit us to only having the control points D = (d0, . . . , dm)>

as our unknowns. This has the advantage that we can reduce the interpolation to a simple matrix
inversion problem for the equation ATD = C where AT is

AT =

Nn

0
(q0)(t0) Nn

1
(q0)(t0) . . . Nn

m
(q0)(t0)

Nn
0

(q1)(t1) Nn
1

(q1)(t1) . . . Nn
m

(q1)(t1)
...

...
. . .

...

Nn
0

(qm)(tm) Nn
1

(qm)(tm) . . . Nn
m

(qm)(tm)

 (10)

and
C = (ξ0, . . . , ξm)>

for the parameter vector T = (t0, . . . , tm), un ≤ ti ≤ uk−n and where 0 ≤ qi < n indicates
the derivative of Nn

i . Of course, the matrix AT might not always be invertible. For qi = 0 the
following theorem is presented in de Boor [3]

Theorem 1 (Schoenberg-Whitney). The matrix AT = (Aj(ti)) defined in (10) with qi = 0 is
invertible if and only if

Ai(ti) 6= 0, i = 0, . . . ,m

i.e., if and only if ui < ti < ui+n ∀i.

In which NT does not contain any derivatives. A proof can be found in Powell [12]. From
equation (8) we see that the derivatives of the basis functions are linear combinations of basis
functions of lower degrees, which means that the theorem most likely can be extended to the
case where we allow derivatives in AT , though a proof of this is outside the scope of this paper.
As we will see in the results, AT will turn out to be invertible when we construct it. We saw
that we could find a parameter vector that made AT invertible for a given knot vector, but we
can just as easily choose a knot vector that satisfies the theorem given the parameter vector. A
method suggested by de Boor [3, p. 219] for a clamped B-spline defined on the interval [a, b] is
to average the knots according to

u0 = · · · = un = a

un+j =
1

n

n+j−1∑
i=j

tj for j = 1, 2, . . . , k − n (11)

uk−n = · · · = uk = b

which will create an invertible matrix AT [3].

4 Parameter selection

If we want to solve the linear equation system s(qi)(ti) = ξi, 0 ≤ qi < n we need a way to choose
the parameter vector T = (t0, . . . , tm). In our case, the derivative conditions will only occur at
the interpolation points Pj , that is where qi = 0. This means that we can look at the simpler case
s(tj) = Pj and then letting ti = tj if s(p)(ti) is the p-th derivative at s(tj). This will be enough
as we only allow derivative conditions at the interpolation points Pi. We begin by introducing

11

the distance vector H = (h0, . . . , hm−1) where hi = ti+1− ti. Following Foley and Nielson [6] we
can assume that t0 = 0 without loss of generality which means that T is completely determined
by H by the recurrence relation

t0 = 0

tk+1 = tk + hk.

Three commonly used methods for choosing H for a given set of interpolation points P =
(P0, . . . , Pm)> are the uniform, chord length and centripetal methods. For the uniform method
we simply let hi = 1 which means that the distance between the ti’s are constant. For the chord
length method we let

hi = |Pi+1 − Pi|

using the Euclidean distance as a metric. Both of these methods can produce poor results if,
for example, the distance between the Pi’s vary greatly, or if the data is badly scaled or changes
direction abruptly [6]. The centripetal method is often used because it does not suffer from some
of these problems and is defined as

hi = |Pi+1 − Pi|α

where a common choice for α is 1/2. If we instead choose α = 0 or 1 we see that we get the
uniform and chord length methods respectively which means that the centripetal method is a
generalization of these methods. The centripetal method is invariant under rotations, translations
and equal scaling of the coordinates for α = 0, 1/2 and 1 but, as shown by Foley and Nielson,
the method is not scale invariant when the axes are scaled independently. Thus, the centripetal
method is not affine invariant in general. Using an affine invariant metric introduced by Nielson
[9], we can describe two affine invariant methods presented by Foley and Nielson as generally
giving geometrically pleasing results [6].

Given P = (P0, . . . , Pm)> where Pi = (xi, yi), define the matrix G by

G =

(σY

g −σXY

g

−σXY

g
σX

g

)
where

σX =
1

m

m∑
i=0

(xi − x̄)2, x̄ =
1

m

m∑
i=0

xi

σY =
1

m

m∑
i=0

(yi − ȳ)2, ȳ =
1

m

m∑
i=0

yi

and

σXY =
1

m

m∑
i=0

(xi − x̄)(yi − ȳ)

g = σXσY − (σXY)2

If U, V ∈ R2, we define

M [P](U, V) =
√

(U − V)Q(U − V)>.

12

Then the metric M [P](U, V) is affine invariant [9]. The first affine invariant method described
by Foley and Nielson is the affine invariant chord method and defines the vector H as

hi = M [P](Pi, Pi+1)

though it satisfies the previous conditions on invariance, it does not take into account the local
geometry of the curve. The second described affine invariant method is the affine invariant angle
method and is defined by

hi = di

(
1 +

δθidi−1

di−1 + di
+
δθi+1di+1

di + di+1

)
where di = M [P](Pi, Pi+1), θi = min(αi, π/2) and

αi = π − arccos

(
d2
i−1 + d2

i −M2[P](Pi−1, Pi+1)

2didi−1

)
.

We are going to assume that d−1 = dm+1 = 0. Foley and Nielson shows that these two methods
are affine invariant and suggests choosing δ = 1.5 [6]. Because we have restricted our B-spline
s(x) to x ∈ [0, 1] ⊂ R we need to scale our parameter vector T to the interval. This is easily
done by calculating the total length of the distance vector as L =

∑
i hi and dividing each hi by

the length to get a new distance vector H̄ = (h̄0, . . . , h̄m−1) where h̄i = hi/L. The parameters
then become

t0 = 0

ti+1 = ti + h̄i

tm = 1.

From now on, we are going to assume that T and H already have been scaled in the previous
manner.

Our method of choosing the knot vector of the B-spline relies on the fact that we have as
many parameter values as we have control points of the spline. This will not be the case if
we have several derivative conditions on the spline for some of the parameters, for example if
s(ti) = Pi and s′(ti) = vi, because the number of parameter values will only depend on the
number of interpolation points Pi. We are going to deal with this problem by calculating the
knot vector using a parameter vector where the number of times each parameter value occurs
in the vector is equal to how many times it occurs in the spline conditions. To illustrate, if we
have the conditions s(ti) = Pi, s

(k0)(ti) = Dk0 , . . . , s
(kn)(ti) = Dkn then the knot vector will be

calculated from the parameter vector

(t0, . . . , ti, . . . , ti︸ ︷︷ ︸
n+1

, . . . , tm).

This ensures that the length of the parameter vector used for the knot vector generation is of
the same length as the number of control points of the spline.

5 Derivative conditions

According to Svensson [14] we need the slope of the curvature of the blade to be smooth. The
curvature κ(t) of a parametric function s(t) in R2 is defined as [13]

κ(t) =
det
(
s′(t), s′′(t)

)
|s′(t)|3

(12)

13

which means that the restrictions given by Svensson affect the fourth derivative of the curve. If
we only allow simple interior knots for our B-spline s(x), the spline will be C4 on its interior if
it is of degree 5. The method by Ye described in Svensson [14] requires us to match the slopes
of the leading and trailing circular arcs at s1, s5, p1 and p4 for the B-splines approximating
the suction and pressure sides respectively. This means that we require the B-splines to be G1

continuous at their endpoints. Here, Gr continuity means geometric continuity of degree r and
is defined as:

Def 1. Two parametric curves meet with Gr continuity if the corresponding arc-length parametriza-
tions of the curves meet with Cr continuity.

By a theorem shown in Barsky and DeRose [1], two curves meet with G1 continuity if and only
if they have a common unit tangent vector. This means that the first derivative end conditions
for the B-splines only depend on the direction of the derivative for the circular arcs at the points
s1, s5, p1 and p4. In Section 2 we saw that the slopes at s1, s3, s5, p1 and p4 were defined which
means that we know the directions of the derivative vectors. The lengths of the vectors depend on
the parametrization of the curve which means that we have to look at suitable parametrizations.

5.1 Endpoint derivatives

Let us begin by parametrizing the leading and trailing edge circular arcs as

Ω1(θ1(t)) =
(
R1(1− cos θ1(t)), H +R1 sin θ1(t)

)
Ω2(θ2(t)) =

(
Bx −R2(1− cos θ2(t)), R2 sin θ2(t)

)
where θ1(t), θ2(t) parametrizations for the circles. For θs, φs, θp and φp from section 2 we see
that

s1 = Ω1(θs), s5 = Ω2(φs)

p1 = Ω1(θp), p4 = Ω2(φp)

which shows that the parametrizations are correct. If we differentiate Ω1 and Ω2 we get

Ω′1(θ1(t)) = R1

(
θ′1(t) sin θ1(t), θ′1(t) cos θ1(t)

)
Ω′2(θ2(t)) = R2

(
θ′2(t) sin θ2(t), θ′2(t) cos θ2(t)

)
which means that we can write the first derivative end conditions as Ω′1 and Ω′2 depending only
on their parametrizations. If we let vs1 , vs5 , vp1 and vp4 be the first derivatives at s1, s5, p1 and
p4 respectively, we can write them as

vs1 = Ω′1(θ1(ts1)), ts1 s.t. θ1(ts1) = θs (13)

vs5 = Ω′2(θ2(ts5)), ts5 s.t. θ2(ts5) = φs (14)

vp1 = Ω′1(θ1(tp1)), tp1 s.t. θ1(tp1) = θp (15)

vp4 = Ω′2(θ2(tp4)), tp4 s.t. θ2(tp4) = φp (16)

for some parametrizations θ1, θ2.

5.2 Derivative at s3

From the calculations in subsection 2.2 we see that the angle between the slope at s3 and the
horizontal line through s3 is β2 − Γ which means that the slope as s3 is defined. Using this we

14

can describe the slope at s3 as a vector ṽs3 of unit length

ṽs3 =
(

cos(β2 − Γ),− sin(β2 − Γ)
)
.

As before, we do not have any information on the length of the derivative vector at s3. This
means that we can write the first derivative at s3 as

vs3 = νs3 ṽs3 = νs3
(

cos(β2 − Γ),− sin(β2 − Γ)
)

(17)

where νs3 = |vs3 | is a real number.

6 Results

Using the theory we built up in the previous sections we will now divide the turbine blade into
four parts, the leading and trailing edge circular arcs, and the suction and pressure sides. The
circular arcs are easily described as parts of parametrized circles which means that we will focus
on the construction of the suction and pressure sides. We will also introduce a point

s2 =

(
xs1 + xs3

2
,
xs1 + xs3

2
λ

)
(18)

on the suction side between s1 and s3. The variable λ will be used to optimize the shape of the
blade. To construct the suction side

S(t) =

m∑
i=0

PiN
n
i (t)

connecting s1 to s5 we will need to decide on a degree n, a knot sequence (u0, . . . , uk) and control
points Ps = (P0, . . . , Pm). From the continuity conditions in section 5 we see that S(t) must be
of degree 5 and without loss of generality we can assume that 0 ≤ t ≤ 1 for S(t). We will choose
S(t) to be a clamped B-spline which means that the first and last knots will be of multiplicity
6. We make this choice because B-splines do not represent circular arcs well which means that
a closed B-spline describing the whole blade will be bad at the leading and trailing edges. With
a clamped B-spline we will be able to describe the suction and pressure side independently in
an easy way. Thus, to have full support, we need at least 12 knots for our B-spline. We have 7
conditions on S(t),

Cs = (s1, vs1 , s2, s3, vs3 , s5, vs5),

which means that we are going to have 7 control points. From the equality (7) we see that we
then need k = 7 + 5 = 12, that is 13 knots. Because we have 4 zero-derivative conditions we will
have the parameter vector

Ts = (t0, t1, t2, t3)

which we will construct using the conditions Cs and one of the methods described in Section 4.
We can now construct the matrix

ATs
=

N5
0 (t0) N5

1 (t0) . . . N5
6 (t0)

N5
0
′
(t0) N5

1
′
(t0) . . . N5

6
′
(t0)

N5
0 (t1) N5

1 (t1) . . . N5
6 (t1)

N5
0 (t2) N5

1 (t2) . . . N5
6 (t2)

N5
0
′
(t2) N5

1
′
(t2) . . . N5

6
′
(t2)

N5
0 (t3) N5

1 (t3) . . . N5
6 (t3)

N5
0
′
(t3) N5

1
′
(t3) . . . N5

6
′
(t3)

15

if we use the averaging method suggested by de Boor for the interior knot. The last thing we
need to do is to solve the equation system

ATsPs = Cs

in order to get the control points. This process is described in the following algorithm:

1. Decide on a value λ

2. Construct s1, s2, s3, s5, p1 and p4 using equations (2), (18), (4), (3), (5) and (6).

3. Construct the parameter vector Ts and the knot vector.

4. Choose a parametrization for Ω1 and Ω2 and construct the end point derivatives vs1 and
vs5 .

5. Choose a value νs3 and construct vs3 .

6. Construct the basis functions N5
i (t) and their derivatives N5

i
(qi)(t).

7. Construct the matrix ATs
, the condition vector Cs and solve ATs

Ps = Cs

8. Return the B-spline

S(t) =

6∑
i=0

PiN
5
i (t)

The method to construct the pressure side will be similar, but as we only have 4 conditions
p1, vp1 , p4, vp4 we will need 2 extra condition to satisfy the equality (7). To do this we will
introduce the conditions ap1 , ap4 on the second derivatives at the endpoints. From this algorithm
we see that we need to decide on the conditions described in Figure 3, a value λ for s2, a
parameter vector Ts for S(t), νs3 for s3, parametrizations for Ω1 and Ω2 and second derivatives
for P (t). Because these are not dependent on any previous calculations in the algorithm, they
can be decided beforehand which simplifies the construction of the algorithm. By implementing
the algorithm in Python we can look at the resulting parametrized blades we get from some
different choices of the previous values. Throughout the examples we will use the following 11
conditions on the blade given by Svensson [14]:

R1 = .0555

R2 = .0220

γ = 29.2

β1 = 51.5

β2 = 74.081

∆β1 = 30

∆β2 = 2

τ = 1.1817

βg = 75.4075

Γ = 8

Bx = 1

1Svensson states that it should be 15.92 but this is incorrect.

16

6.1 Basic choices

We will begin by making the simplest choices possible. We begin by choosing the parametrizations
θ1(t) = t and θ2(t) = t for Ω1 and Ω2. This means that Ω′1(t) = R1

(
sin(t), cos(t)

)
and Ω′2(t) =

R2

(
sin(t), cos(t)

)
and |vs1 | = |vp1 | = R1 and |vs5 | = |vp4 | = R2. We let νs3 = 1 which means

that |vs3 | = 1 and let ap1 = ap4 = (1, 1). We use the uniform method to get the parameter vector
Ts = (0, 1/3, 2/3, 1). Even though the leading and trailing edges can be generated using their
parametrizations Ω1 and Ω2, use two NURBS1 to describe them instead. We now have λ left
which we will use to optimize the shape of the blade. As we see in Figure 5, the blade does not

0.0 1.0 2.0

0.0

1.0

2.0

3.0 B-spline curve, degree=5

parametric bspline
control pts
knots

Figure 5: A B-spline curve satisfying the conditions on the suction side of the blade.

look good at all even though we chose λ = 4.4 which experimentally produced the best result. It
is important to realize that this curve, even though it does not look nearly as good as it should,
satisfies the conditions given on the blade. This means that even though we can easily meet the

1NURBS are a generalization of B-spline where each control point gets a weight value assigned to it. This
means that, among other things, it can be used to describe conic sections [4, 5].

17

conditions on the curve, by making poor decisions when choosing the other values we can get a
curve that is not good enough for our purposes.

6.2 Modifying vs3

Clearly, the previous choices were not good enough. If we look at the derivatives of the curve we
see that vs3 is much longer than the other derivatives. Instead of letting νs3 = 1, we will set it to
a linear combination of |vs1 | = R1 and |vs5 | = R2 at the parameter value t2 which corresponds
to s3.

νs3 = (1− t2)R1 + t2R2.

We also need to change the values of ap1 and ap4 . We use Ω1 and Ω2 and let ap1 = Ω′′1 and
ap4 = Ω′′2 Still using the uniform distribution for the suction and pressure sides, we get the blade
seen in Figure 6 for λ = 3.4. This is not a good result, even if it is an improvement from the

0.0 1.01.0

0.0

1.0

2.0

3.0B-spline curve, degree=5

parametric bspline
control pts
knots

Figure 6: A B-spline curve satisfying the conditions on the suction side of the blade setting vs3
as an average of R1 and R2.

18

last figure. We can clearly see that something really strange is going on around s3. This does
not disappear by using different methods for choosing the parameter values. For example, in
Figure 7 we use the centripetal method to choose the parameter values.

0.0 1.0 2.0

0.0

1.0

2.0

B-spline curve, degree=5

parametric bspline
control pts
knots

Figure 7: A B-spline curve satisfying the conditions on the suction side of the blade setting vs3
as an average of R1 and R2 using the centripetal method to choose parameter values.

6.3 New parametrizations for Ω1 and Ω2

In Figures 5-7 it looks like there are only 5 control points of the curve even though there should
be 7. In fact, if we look closely, there are 2 control points in the beginning of the curve and
2 in the end, but they are clustered together. This indicates that the derivatives vs1 and vs5
might be bad. If we look at the parametrizations of Ω1 and Ω2 we see that the circle does a
full rotation as t goes from 0 to 2π. But S(t) goes from s1 to s5 as t goes from 0 to 1. This
could be the problem. If we instead think of the curve from p1 to p4 along the circular arcs and
the suction side and that it does this as t goes from 0 to 1 then the interval for t when it is on

19

each circular arc is much shorter than the previous parametrization. This suggests again that
we should change parametrization. If we introduce parameters t−1, t0, t1, t2, t3, t4 on the interval
(0, 1) where t−1 = 0, t4 = 1, and the parameters correspond to the points along the curve, we
can use the parameter selection methods to decide the new parameters. Let us also introduce
k1 = t0− t−1 and k2 = t4− t3. Then we want a parametrization of Ω1 that satisfies the following
conditions:

Ω1θ1(a) = p1

Ω1θ1(b) = s1

b− a = k1

and similarly for Ω2. Such parametrizations would be

θ1(t) =
2πt

k1

θ2(t) =
2πt

k2

which gives us the following derivatives:

vs1 = R1
2π

k1

(
sin θs, cos θs

)
vs5 = R2

2π

k2

(
sinφs, cosφs

)
if we use these together with |vs3 | as an average of |vs1 | and |vs5 | and the affine angle method
of choosing the parameter values, and the uniform method to get k1 and k2 we get the curve in
Figure 8. Notice that k1 and k2 are constructed two times, once for the suction side and once
for the pressure side. For the pressure side we use k1 and k2 to construct vp1 and vp4 but ap1
and ap4 will be kept as before. This curve looks remarkably good but the control points in the
middle looks askew. Let us instead choose the parametrization

θ1(t) =
2πt

5k1

θ2(t) =
2πt

5k2

where we divide by the heuristic choice of the degree of the spline. Using this method, where
we construct k1 and k2 using the affine chord method, and the parameter values using the affine
angle method, for λ = 3.4 we obtain the curve in Figure 9 which is a remarkably good result.
Using this method we can use λ to change the shape of the curve and still get good results which
might make it possible to use λ as an optimization parameter.

6.4 Increasing the number of control points

Though the last shape was good, the control polygon did not follow the suction side very closely.
Just as we introduced ap1 and ap4 for the pressure side, we can introduce as1 and as5 as conditions
on the second derivatives at the endpoints. This means that we have the condition vector

Cs = (s1, vs1 , as1 , s2, s3, vs3 , s5, vs5 , as5)

20

0.0 1.0

0.0

1.0

B-spline curve, degree=5

parametric bspline
control pts
knots

Figure 8: A B-spline curve satisfying the conditions on the suction side of the blade where vs1
and vs5 are chosen by finding k1 and k2.

and 9 control points. Letting

as1 = R1
Ω1

|Ω1|

as5 = R2
Ω2

|Ω2|

and using the previous procedure for this condition vector we get the blade in Figure 10 which
shows that we can add more conditions and still get a nice curve.

21

0.0 1.0

0.0

1.0

2.0B-spline curve, degree=5

parametric bspline
control pts
knots

Figure 9: A B-spline curve satisfying the conditions on the suction side of the blade where vs1
and vs5 are chosen by finding k1 and k2 with really good results.

7 Conclusions

In this paper we have built up a theory describing the geometry of the blade and how to choose the
correct B-spline to fit the geometric conditions. In the end we got a result that was satisfactory.
Throughout the results in the previous section we saw that the matrices ATs and ATp were
invertible in our code which suggests that the Schoenberg-Whitney theorem might hold true for
q > 0. A proof of this is not in the scope of this paper though but an interested reader might
find this a rewarding challenge to prove. We have only demanded G1 continuity at the points
s1, s5, p1 and p4 but increasing this to G2 or higher might lead to curves that work better in the
simulations. This too is outside the scope of this paper. We saw in the last part of the results
that we got a nice looking curve depending only on the parameter λ controlling the height of s2.
By using this as a way of optimizing the curve, one could extend this theory as an alternative to
the methods defined in Ye [16] and Svensson [14] in turbine analysis. Using a B-spline instead

22

0.0 1.0

0.0

1.0

B-spline curve, degree=5

parametric bspline
control pts
knots

Figure 10: A B-spline curve satisfying the conditions on the suction side of the blade where vs1
and vs5 are chosen by finding k1 and k2 and with 2 more conditions as1 and as5 .

of polynomials [16] or Bezier curves [14] to describe the suction and pressure sides requires less
interior conditions because we do not need to divide the sides into several parts and demanding
the derivatives to meet continuously at these points. B-splines are not good at representing conic
sections but as we saw in the results the leading and trailing edges could be represented as two
NURBS, a generalization of B-splines. This means that one might be able to extend the results
presented here to NURBS and describe the whole blade as a closed NURBS.

23

A Code

The code was written in Python and used NumPy [10], SciPy [8] and Matplotlib [7] extensively.
For the B-splines a library developed by Oliver Borm and forked and extended to github by
Sebastian Eiser called PyNURBS [15] was used. The code written for this paper relies on the
use of a B-spline library but can easily be modified to fit your own B-spline code.

A.1 turbine.py

This code constructs the curves and uses the code in util.py

-*- coding: utf -8 -*-

from __future__ import division

import scipy as sp

import numpy as np

import matplotlib.pyplot as plt

import util

from math import radians , pi

from spline import Spline , SplineError , Arc

class SuctionSide(Spline):

"""

Construct a B-spline satisfying the constraints put on the turbine

blade

Input:

parameters

11 turbine parameters beta1 , beta2 , GAMMA , tau , betag , gamma , Bx, R1,

R2, dbeta1 , dbeta2

chosen for their strong influence on the blade.

tMethod

The method for choosing the interpolation parameters. Can be

(’uniform ’,)

(’chordlength ’,)

(’centripetal ’, alpha) #where alpha is a number. If not chosen then

0.5 is used.

(’affinechord ’,)

(’affineangle ’, alpha) #where alpha is a number. If not chosen then

1.5 is used.

derMethod

Which method to use to create the derivative conditions. Can be

’radius ’

’fastparam ’

’param ’

dertMethod

24

If h1 and h2 are needed for the derMethod , choose a method to produce

h1 and h2. Can be

(’uniform ’,)

(’chordlength ’,)

(’centripetal ’, alpha) #where alpha is a number. If not chosen then

0.5 is used.

(’affinechord ’,)

(’affineangle ’, alpha) #where alpha is a number. If not chosen then

1.5 is used.

vs3Method

The method to choose vs3. Can be

alpha #where alpha is a number , either a float or an integer. Will be

the length of the vector.

’average ’

der2

If the second derivative should be included. Can be

True

False

lambd

The value that constructs s2. Can be used as an optimization

parameter.

Output:

A B-spline of degree 5

"""

def __init__(self , parameters , tMethod , derMethod , dertMethod ,

vs3Method , der2 , lambd):

beta1 , beta2 , GAMMA , tau , betag , gamma , Bx, R1, R2, dbeta1 ,

dbeta2 = parameters

Convert the angles to radians

beta1 = radians(beta1); beta2 = radians(beta2);dbeta1 = radians(

dbeta1)

dbeta2 = radians(dbeta2); betag = radians(betag); gamma = radians

(gamma)

GAMMA = radians(GAMMA)

chord = (Bx - R1*(1 - sp.cos(beta1)) - R2*(1 - sp.cos(beta2)))/sp

.cos(gamma)

height = chord*sp.sin(gamma) + R1*sp.sin(beta1) - R2*sp.sin(beta2

)

s1 = np.array ((R1*(1 - sp.sin(dbeta1 /2 + beta1)), height + R1*sp.

cos(dbeta1 /2 + beta1)))

25

s3 = np.array ((Bx - (tau*sp.cos(betag) + R2)*sp.sin(beta2 -GAMMA)

- R2, tau - (tau*sp.cos(betag) + R2)*sp.cos(beta2 -GAMMA)))

s5 = np.array ((Bx - R2*(1 - sp.sin(beta2 + dbeta2 /2)), R2*sp.cos(

beta2 + dbeta2 /2)))

s2 = np.array (((s1[0]+s3[0])/2,lambd *(s1[0]+s3[0]) /2))

p1 = (R1*(1 + sp.sin(beta1 - dbeta1 /2.)), height - R1*sp.cos(

beta1 - dbeta1 /2.))

p4 = (Bx - R2*(1 + sp.sin(beta2 - dbeta2 /2.)), -R2*sp.cos(beta2 -

dbeta2 /2.))

newparam = util.spacing(np.array ([p1, s1, s2, s3 , s5 , p4]), (0,

1), *dertMethod)

tParam = util.spacing(np.array ([s1, s2, s3, s5]), (0, 1), *

tMethod)

if der2 == True:

tParam9 = [0,0,0,tParam [1], tParam [2], tParam [2],1,1,1]

else:

tParam9 = [0,0,tParam [1], tParam [2], tParam [2],1,1]

knots = util.knotAveraging(tParam9 , 5, (0,1))

if derMethod == ’radius ’:

vs1 = R1*np.array((sp.cos(dbeta1 /2 + beta1), sp.sin(dbeta1 /2

+ beta1)))

vs5 = R2*np.array((sp.cos(dbeta2 /2 + beta2), -sp.sin(dbeta2 /2

+ beta2)))

elif derMethod == ’fastparam ’:

h1 , h2 = newparam [1]- newparam [0], newparam [-1]- newparam [-2]

vs1 = R1*(np.pi -beta1)/h1*np.array((sp.cos(dbeta1 /2 + beta1),

sp.sin(dbeta1 /2 + beta1)))

vs5 = R2*(np.pi -beta2)/h2*np.array((sp.cos(dbeta2 /2 + beta2),

-sp.sin(dbeta2 /2 + beta2)))

elif derMethod == ’param ’:

h1 , h2 = newparam [1]- newparam [0], newparam [-1]- newparam [-2]

vs1 = R1*(np.pi -beta1)/h1/5.*np.array((sp.cos(dbeta1 /2 +

beta1), sp.sin(dbeta1 /2 + beta1)))

vs5 = R2*(np.pi -beta2)/h2/5.*np.array((sp.cos(dbeta2 /2 +

beta2), -sp.sin(dbeta2 /2 + beta2)))

else:

raise SplineError , "derMethod must be one of ’radius ’, ’

fastparam ’ or ’param ’."

if type(vs3Method) in (int , float):

vs3 = vs3Method*np.array([sp.cos(beta2 - GAMMA),-sp.sin(beta2

- GAMMA)])

elif vs3Method == ’average ’:

leng = (1 - tParam [2])*np.linalg.norm(vs1) + tParam [2]*np.

linalg.norm(vs5)

26

vs3 = leng*np.array([sp.cos(beta2 - GAMMA),-sp.sin(beta2 -

GAMMA)])

else:

raise SplineError , "vs3Method must be either a number or ’

average ’."

if der2 == True:

as1 = np.array((sp.sin(dbeta1 /2 + beta1), -sp.cos(dbeta1 /2 +

beta1)))/20.

as5 = np.array((-sp.sin(dbeta2 /2 + beta2), -sp.cos(dbeta2 /2 +

beta2)))/20.

if der2 == True:

conditions = np.array([s1 ,vs1 ,as1 ,s2 ,s3 ,vs3 ,s5 ,vs5 ,as5])

else:

conditions = np.array([s1 ,vs1 ,s2 ,s3 ,vs3 ,s5 ,vs5])

basislist = util.basisarray (5, knots)

der0 = basislist [-1]

der1 = util.basisderivative (1, basislist , knots)

if der2 == True:

der2 = util.basisderivative (2, basislist , knots)

rang = 9

probmatrix = np.array([

[der0[i](tParam [0]) for i in range(rang)],

[der1[i](tParam [0]) for i in range(rang)],

[der2[i](tParam [0]) for i in range(rang)],

[der0[i](tParam [1]) for i in range(rang)],

[der0[i](tParam [2]) for i in range(rang)],

[der1[i](tParam [2]) for i in range(rang)],

[der0[i](tParam [3]) for i in range(rang)],

[der1[i](tParam [3]) for i in range(rang)],

[der2[i](tParam [3]) for i in range(rang)],

])

else:

rang = 7

probmatrix = np.array([

[der0[i](tParam [0]) for i in range(rang)],

[der1[i](tParam [0]) for i in range(rang)],

[der0[i](tParam [1]) for i in range(rang)],

[der0[i](tParam [2]) for i in range(rang)],

[der1[i](tParam [2]) for i in range(rang)],

[der0[i](tParam [3]) for i in range(rang)],

[der1[i](tParam [3]) for i in range(rang)],

])

xpts = np.linalg.solve(probmatrix ,conditions [: ,0])

ypts = np.linalg.solve(probmatrix ,conditions [: ,1])

self.conditions = conditions

self.parameters = (beta1 , beta2 , GAMMA , tau , betag , gamma , Bx, R1

, R2 , dbeta1 , dbeta2)

27

super(SuctionSide , self).__init__(np.array((xpts ,ypts)), knots)

@classmethod

def functionOfLambda(cls , parameters , tMethod , derMethod , dertMethod ,

vs3Method , der2):

"""

Constructs a function that depends on lambda. Can be used to

optimize the shape of the B-spline

"""

def suctionside(l):

return cls(parameters , tMethod , derMethod , dertMethod ,

vs3Method , der2 , l)

return suctionside

class PressureSide(Spline):

"""

Construct a B-spline satisfying the constraints put on the turbine

blade

Input:

parameters

11 turbine parameters beta1 , beta2 , GAMMA , tau , betag , gamma , Bx, R1,

R2, dbeta1 , dbeta2

chosen for their strong influence on the blade.

derMethod

Which method to use to create the derivative conditions. Can be

’radius ’

’fastparam ’

’param ’

dertMethod

If h1 and h2 are needed for the derMethod , choose a method to produce

h1 and h2. Can be

(’uniform ’,)

(’chordlength ’,)

(’centripetal ’, alpha) #where alpha is a number. If not chosen then

0.5 is used.

(’affinechord ’,)

(’affineangle ’, alpha) #where alpha is a number. If not chosen then

1.5 is used.

der2Method

The method for choosing the second derivatives. Can be

’constant ’

’radius ’

28

Output:

A B-spline of degree 5

"""

def __init__(self , parameters , derMethod , dertMethod , der2Method):

beta1 , beta2 , GAMMA , tau , betag , gamma , Bx, R1, R2, dbeta1 ,

dbeta2 = parameters

beta1 = radians(beta1); beta2 = radians(beta2);dbeta1 = radians(

dbeta1)

dbeta2 = radians(dbeta2); betag = radians(betag); gamma = radians

(gamma)

GAMMA = radians(GAMMA)

chord = (Bx - R1*(1 - sp.cos(beta1)) - R2*(1 - sp.cos(beta2)))/sp

.cos(gamma)

height = chord*sp.sin(gamma) + R1*sp.sin(beta1) - R2*sp.sin(beta2

)

s1 = np.array((R1*(1 - sp.sin(dbeta1 /2 + beta1)), height + R1*sp.

cos(dbeta1 /2 + beta1)))

s5 = np.array ((Bx - R2*(1 - sp.sin(beta2 + dbeta2 /2)), R2*sp.cos(

beta2 + dbeta2 /2)))

p1 = (R1*(1 + sp.sin(beta1 - dbeta1 /2.)), height - R1*sp.cos(

beta1 - dbeta1 /2.))

p4 = (Bx - R2*(1 + sp.sin(beta2 - dbeta2 /2.)), -R2*sp.cos(beta2 -

dbeta2 /2.))

newparam = util.spacing(np.array ((s5,p4,p1,s1)), (0,1), *

dertMethod)

tParam = (0,1)

knots = np.array ([0,0,0,0,0,0,1,1,1,1,1,1])

if derMethod == ’radius ’:

vp1 = R1*np.array([-sp.cos(beta1 - dbeta1 /2.), -sp.sin(beta1

- dbeta1 /2.)])

vp4 = R2*np.array([-sp.cos(beta2 - dbeta2 /2.), sp.sin(beta2 -

dbeta2 /2.)])

elif derMethod == ’fastparam ’:

h2 , h1 = newparam [1]- newparam [0], newparam [-1]- newparam [-2]

vp1 = R1*(np.pi -beta1)/h1*np.array([-sp.cos(beta1 - dbeta1

/2.), -sp.sin(beta1 - dbeta1 /2.)])

vp4 = R2*(np.pi -beta2)/h2*np.array([-sp.cos(beta2 - dbeta2

/2.), sp.sin(beta2 - dbeta2 /2.)])

elif derMethod == ’param ’:

h2 , h1 = newparam [1]- newparam [0], newparam [-1]- newparam [-2]

vp1 = R1*(np.pi -beta1)/h1/5.*np.array([-sp.cos(beta1 - dbeta1

/2.), -sp.sin(beta1 - dbeta1 /2.)])

29

vp4 = R2*(np.pi -beta2)/h2/5.*np.array([-sp.cos(beta2 - dbeta2

/2.), sp.sin(beta2 - dbeta2 /2.)])

else:

raise SplineError , "derMethod must be one of ’radius ’, ’

fastparam ’ or ’param ’."

if der2Method == ’constant ’:

ap1 = np.array ([1. ,1.])

ap4 = np.array ([1. ,1.])

elif der2Method == ’radius ’:

ap1 = R1 /20.*np.array((sp.sin(beta1 - dbeta1 /2.), -sp.cos(

beta1 - dbeta1 /2.)))

ap4 = R2 /20.*np.array((-sp.sin(beta2 - dbeta2 /2.), -sp.cos(

beta2 - dbeta2 /2.)))

else:

raise SplineError , "der2Method must be ’constant ’ or ’radius

’."

conditions = np.array([p4 , vp4 , ap4 , p1 , vp1 , ap1])

basislist = util.basisarray (5, knots)

der0 = basislist [-1]

der1 = util.basisderivative (1, basislist , knots)

der2 = util.basisderivative (2, basislist , knots)

rang = 6

probmatrix = np.array([

[der0[i](tParam [0]) for i in range(rang)],

[der1[i](tParam [0]) for i in range(rang)],

[der2[i](tParam [0]) for i in range(rang)],

[der0[i](tParam [1]) for i in range(rang)],

[der1[i](tParam [1]) for i in range(rang)],

[der2[i](tParam [1]) for i in range(rang)]

])

xpts = np.linalg.solve(probmatrix ,conditions [: ,0])

ypts = np.linalg.solve(probmatrix ,conditions [: ,1])

self.conditions = conditions

self.parameters = (beta1 , beta2 , GAMMA , tau , betag , gamma , Bx, R1

, R2 , dbeta1 , dbeta2)

super(PressureSide , self).__init__(np.array((xpts ,ypts)), knots)

def leadingEdge(parameters):

"""

Constructs the leading edge circular arc using a NURBS.

Input:

parameters

30

11 turbine parameters beta1 , beta2 , GAMMA , tau , betag , gamma , Bx, R1,

R2, dbeta1 , dbeta2

chosen for their strong influence on the blade.

Output:

A NURBS of degree 3

"""

beta1 , beta2 , GAMMA , tau , betag , gamma , Bx, R1, R2, dbeta1 , dbeta2 =

parameters

beta1 = radians(beta1); beta2 = radians(beta2);dbeta1 = radians(

dbeta1)

dbeta2 = radians(dbeta2); betag = radians(betag); gamma = radians(

gamma)

GAMMA = radians(GAMMA)

chord = (Bx - R1*(1 - sp.cos(beta1)) - R2*(1 - sp.cos(beta2)))/sp.cos

(gamma)

height = chord*sp.sin(gamma) + R1*sp.sin(beta1) - R2*sp.sin(beta2)

leadingedge = Arc(R1, (R1, height), pi/2. + beta1 + dbeta1 /2., beta1

- pi/2. - dbeta1 /2.)

return leadingedge

def trailingEdge(parameters):

"""

Constructs the trailing edge circular arc using a NURBS.

Input:

parameters

11 turbine parameters beta1 , beta2 , GAMMA , tau , betag , gamma , Bx, R1,

R2, dbeta1 , dbeta2

chosen for their strong influence on the blade.

Output:

A NURBS of degree 3

"""

beta1 , beta2 , GAMMA , tau , betag , gamma , Bx, R1, R2, dbeta1 , dbeta2 =

parameters

beta1 = radians(beta1); beta2 = radians(beta2);dbeta1 = radians(

dbeta1)

dbeta2 = radians(dbeta2); betag = radians(betag); gamma = radians(

gamma)

GAMMA = radians(GAMMA)

trailingedge = Arc(R2 , (Bx - R2 ,0), dbeta2 /2. - pi/2. - beta2 , pi/2.

- beta2 - dbeta2 /2.)

return trailingedge

31

if __name__ == "__main__":

inputData = [51.5 , 90-15.92 , 8., 1.1817 , 75.4075 , 29.2, 1., .0555 ,

.0220, 30., 2.0]

suctionside = SuctionSide.functionOfLambda(inputData , (’affineangle ’

,1.5), ’param ’, (’affinechord ’,), ’average ’, False)

pressureside = PressureSide(inputData , ’param ’, (’centripetal ’ ,0.9),

’radius ’)

pressureside.plot2D (100, False)

leadingedge = leadingEdge(inputData)

trailingedge = trailingEdge(inputData)

leadingedge.plot2D (100, False)

trailingedge.plot2D (100, False)

print(suctionside)

suctionside (3.4).plot2D (100, False)

ax = plt.gca()

ax.set_aspect(’equal ’)

plt.show()

A.2 util.py

-*- coding: utf -8 -*-

from __future__ import division

import numpy as np

import spline

def basisarray(degree , knots):

def knotfraction(u0 , u1 , u2 , u3):

if u2 == u3: return 0

return (u0 - u1)/(u2 - u3)

def basisfunc(x, i, deg):

if deg == 0:

if knots[i + 1] == knots [-1]:

return float(knots[i] <= x <= knots[i + 1])

if knots[i] == knots[i + 1]: return 0.

return float(knots[i] <= x < knots[i + 1])

return knotfraction(x,knots[i], knots[i + deg], knots[i])*

basisfunc(

x, i, deg - 1) + knotfraction(knots[i + deg + 1], x, knots[i +

deg + 1], knots[i + 1]

)*basisfunc(x, i + 1, deg - 1)

basislist = [[(lambda x, i = j, deg = degr: basisfunc(x, i, deg)) for

j in range(len(knots) - 1 - degr)] for degr in range(degree + 1)]

return basislist

def basisderivative(deriv , basislist , knots):

degree = len(basislist) - 1

if type(deriv) != int:

raise TypeError , "Deriv has to be an integer"

if deriv < 1:

32

raise TypeError , " Deriv has to be 1 or larger"

basisfuncs = basislist [-1 - deriv]

def knotfraction(deg , u1 , u2):

if u1 == u2: return 0

return 1/float(u1 - u2)

def derivative(x, i, deg , der):

if der == 1:

return knotfraction(deg , knots[i + deg], knots[i])*

basisfuncs[i](x

) - knotfraction(deg , knots[i + deg + 1], knots[i + 1])*

basisfuncs[i + 1](x)

return knotfraction(deg , knots[deg + i], knots[i])*derivative(x,

i, deg - 1, der - 1

) - knotfraction(deg , knots[deg + i + 1], knots[i + 1])*

derivative(

x, i + 1, deg - 1, der - 1)

derivativelist = [(lambda x, i = j, deg = degree , der = deriv:

derivative(x, i, deg , deriv)) for j in range(len(basislist [-1]))]

return derivativelist

def spacing(points , domain = (0,1), method = ’uniform ’, *args):

if type(points) not in [tuple , list , np.ndarray]:

raise spline.SplineError , "The points must be represented as a

tuple , list or numpy array"

try:

points = np.array(points)

except:

raise spline.SplineError , "The points cannot be converted into a

numpy array"

if len(points) < 2:

method = ’uniform ’

if type(domain) not in [tuple , list , np.ndarray]:

raise spline.SplineError , "The domain must be represented as a

tuple , list or numpy array"

if len(domain) != 2:

raise spline.SplineError , "The domain must be a starting point

and endingpoint only , for example (0. ,1.)"

if type(domain [0]) not in [int , float] or type(domain [1]) not in [int

, float]:

raise spline.SplineError , "The domain must be an array like

object of length 2 and containing only two integer or floats"

if not type(method) == str:

raise TypeError , "The method name must be a string"

if not method in [’uniform ’, ’chordlength ’, ’centripetal ’, ’

affinechord ’, ’affineangle ’]:

33

raise spline.SplineError , """ method name must be one of the

allowed values

’uniform ’, ’chordlength ’, ’centripetal ’, ’affinechord ’ or ’

affineangle ’"""

if method == ’uniform ’:

h_list = uniform_h(points , domain)

elif method == ’chordlength ’:

h_list = centripetal_h(points , domain , 1)

elif method == ’centripetal ’:

if len(args) == 0:

h_list = centripetal_h(points , domain , 0.5)

elif len(args) == 1:

h_list = centripetal_h(points , domain , args [0])

else:

raise spline.SplineError , "centripetal method only accepts

one alpha value"

elif method == ’affinechord ’:

h_list = affineInvariant_h(points , domain)

elif method == ’affineangle ’:

if len(args) == 0:

h_list = affineInvariantAngle_h(points , domain , 1.5)

elif len(args) == 1:

h_list = affineInvariantAngle_h(points , domain , args [0])

else:

raise spline.SplineError , "affineangle method only accepts

one delta value"

else:

raise TypeError , "method: {} not implemented".format(method)

domainlength = domain [1] - domain [0]

t_values = np.zeros(len(h_list) + 1)

t_values [0], t_values [-1] = domain

if len(t_values) == 2:

return t_values

for i in range(1,len(t_values) - 1):

t_values[i] = t_values[i - 1] + h_list[i - 1]* domainlength

return t_values

def uniform_h(points , domain):

return np.array ([(domain [1] - domain [0])/(len(points) - 1.)]*(len(

points) - 1))

def centripetal_h(points , domain , alpha = 0.5):

if not type(alpha) in [int , float]:

raise TypeError , "alpha value has to be an integer or a float"

lengths = []

if not len(np.shape(points [0])) in [0 ,1]:

raise spline.SplineError , "The individual points has to be

vectors or scalars"

34

for i in range(1, len(points)):

if not len(np.shape(points[i])) in [0 ,1]:

raise spline.SplineError , "The individual points has to be

vectors or scalars"

lengths.append(np.linalg.norm(points[i] - points[i - 1])**alpha)

totallength = sum(lengths)

return lengths/totallength

def affineInvariantMetric_h(points):

try:

points = np.array(points)

except:

raise TypeError , "points not of a recognized type. Must be array -

like"

if not np.shape(points)[1] == 2:

raise TypeError , "This method only woks for two -dim vectors

arranged as ((x0,y0) ,(x1,y1) ,...)"

pointlen = len(points)

x_bar = sum(points [:,0])/pointlen; y_bar = sum(points [:,1])/pointlen

sigma_x = sum ([(x - x_bar)**2 for x in points [: ,0]])/pointlen

sigma_y = sum ([(y - y_bar)**2 for y in points [: ,1]])/pointlen

sigma_xy = sum([(x - x_bar)*(y - y_bar) for (x,y) in points [: ,]])/

pointlen

g = sigma_x*sigma_y - sigma_xy **2

metricmatrix = np.array ([[sigma_y/g, -sigma_xy/g],[-sigma_xy/g,

sigma_x/g]])

h_list = [np.sqrt(np.dot(np.dot((Xi - Yi),metricmatrix) ,(Xi - Yi).T))

for (Xi , Yi) in zip(points [:-1,:], points [1: ,:])]

if not len(h_list) + 1 == pointlen:

raise spline.SplineError , "h_list has not been calculated

correctly"

return h_list

def affineInvariantMetric(points , Pi , Pj):

try:

points = np.array(points)

except:

raise TypeError , "points not of a recognized type. Must be array -

like"

if not np.shape(points)[1] == 2:

raise TypeError , "This method only woks for two -dim vectors

arranged as ((x0,y0) ,(x1,y1) ,...)"

pointlen = len(points)

x_bar = sum(points [:,0])/pointlen; y_bar = sum(points [:,1])/pointlen

sigma_x = sum ([(x - x_bar)**2 for x in points [: ,0]])/pointlen

sigma_y = sum ([(y - y_bar)**2 for y in points [: ,1]])/pointlen

sigma_xy = sum([(x - x_bar)*(y - y_bar) for (x,y) in points [: ,]])/

pointlen

35

g = sigma_x*sigma_y - sigma_xy **2

metricmatrix = np.array ([[sigma_y/g, -sigma_xy/g],[-sigma_xy/g,

sigma_x/g]])

h = np.sqrt(np.dot(np.dot((Pi - Pj),metricmatrix),(Pi - Pj).T))

return h

def affineInvariant_h(points , domain):

try:

points = np.array(points)

except:

raise TypeError , "points not of a recognized type. Must be array -

like"

if not np.shape(points)[1] == 2:

raise TypeError , "This method only works for two -dim vectors

arranged as ((x0,y0) ,(x1,y1) ,...)"

lengths = affineInvariantMetric_h(points)

totallength = sum(lengths)

return lengths/totallength

def affineInvariantAngle_h(points , domain , delta = 1.5):

try:

points = np.array(points)

except:

raise TypeError , "points not of a recognized type. Must be array -

like"

if not np.shape(points)[1] == 2:

raise TypeError , "This method only works for two -dim vectors

arranged as ((x0,y0) ,(x1,y1) ,...)"

points = np.vstack ([points [0],points ,points [-1]]) #This is done so

that d_{-1} and d_{n} will equal 0

dlengths = affineInvariantMetric_h(points)

def theta_i(di1 , di2 , Pi , Pj):

if di1 == 0. or di2 == 0.:

alpha_i = 0

else:

alpha_i = np.pi - np.arccos ((di1 **2 + di2 **2 - (

affineInvariantMetric(points , Pi, Pj))**2) /(2.* di1*di2))

return min(np.pi/2, alpha_i)

lengths = []

for i in range(1, len(dlengths) - 1):

lengths.append(dlengths[i]*(1 + (delta*theta_i(dlengths[i-1],

dlengths[i],points[i-1], points[i+1])*dlengths[i-1])/(dlengths[

i-1] + dlengths[i])

+ (delta*theta_i(dlengths[i],dlengths[i+1], points[i],points[i+2])

*dlengths[i+1])/(dlengths[i] + dlengths[i + 1])))

36

if not len(lengths) + 3 == len(points):

raise spline.SplineError , "h_list has not been calculated

correctly"

totallength = sum(lengths)

return lengths/totallength

def knotAveraging(tparam , deg , domain):

"""

Create the knot vector by averaging the parameter values.

"""

tlen = len(tparam)

if tlen <= deg:

raise TypeError , "Not enough parameter values. Has to be strictly

more than the degree"

start = np.ones(deg + 1)*domain [0]

stop = np.ones(deg + 1)*domain [1]

length = domain [1] - domain [0]

center = np.empty(tlen - deg - 1)

for i in range(len(center)):

s, e = int(i + 1), int(i + 1 + deg)

center[i] = domain [0] + length/deg*sum(tparam[s:e])

return np.hstack ([start , center , stop])

A.3 spline.py

The code extends the spline classes from PyNURBS, further documentation on them can be
found there.

-*- coding: utf -8 -*-

from __future__ import division

import numpy as np

import spline

def basisarray(degree , knots):

def knotfraction(u0 , u1 , u2 , u3):

if u2 == u3: return 0

return (u0 - u1)/(u2 - u3)

def basisfunc(x, i, deg):

if deg == 0:

if knots[i + 1] == knots [-1]:

return float(knots[i] <= x <= knots[i + 1])

if knots[i] == knots[i + 1]: return 0.

return float(knots[i] <= x < knots[i + 1])

return knotfraction(x,knots[i], knots[i + deg], knots[i])*

basisfunc(

x, i, deg - 1) + knotfraction(knots[i + deg + 1], x, knots[i +

deg + 1], knots[i + 1]

)*basisfunc(x, i + 1, deg - 1)

37

basislist = [[(lambda x, i = j, deg = degr: basisfunc(x, i, deg)) for

j in range(len(knots) - 1 - degr)] for degr in range(degree + 1)]

return basislist

def basisderivative(deriv , basislist , knots):

degree = len(basislist) - 1

if type(deriv) != int:

raise TypeError , "Deriv has to be an integer"

if deriv < 1:

raise TypeError , " Deriv has to be 1 or larger"

basisfuncs = basislist [-1 - deriv]

def knotfraction(deg , u1 , u2):

if u1 == u2: return 0

return 1/float(u1 - u2)

def derivative(x, i, deg , der):

if der == 1:

return knotfraction(deg , knots[i + deg], knots[i])*

basisfuncs[i](x

) - knotfraction(deg , knots[i + deg + 1], knots[i + 1])*

basisfuncs[i + 1](x)

return knotfraction(deg , knots[deg + i], knots[i])*derivative(x,

i, deg - 1, der - 1

) - knotfraction(deg , knots[deg + i + 1], knots[i + 1])*

derivative(

x, i + 1, deg - 1, der - 1)

derivativelist = [(lambda x, i = j, deg = degree , der = deriv:

derivative(x, i, deg , deriv)) for j in range(len(basislist [-1]))]

return derivativelist

def spacing(points , domain = (0,1), method = ’uniform ’, *args):

if type(points) not in [tuple , list , np.ndarray]:

raise spline.SplineError , "The points must be represented as a

tuple , list or numpy array"

try:

points = np.array(points)

except:

raise spline.SplineError , "The points cannot be converted into a

numpy array"

if len(points) < 2:

method = ’uniform ’

if type(domain) not in [tuple , list , np.ndarray]:

raise spline.SplineError , "The domain must be represented as a

tuple , list or numpy array"

if len(domain) != 2:

raise spline.SplineError , "The domain must be a starting point

and endingpoint only , for example (0. ,1.)"

38

if type(domain [0]) not in [int , float] or type(domain [1]) not in [int

, float]:

raise spline.SplineError , "The domain must be an array like

object of length 2 and containing only two integer or floats"

if not type(method) == str:

raise TypeError , "The method name must be a string"

if not method in [’uniform ’, ’chordlength ’, ’centripetal ’, ’

affinechord ’, ’affineangle ’]:

raise spline.SplineError , """ method name must be one of the

allowed values

’uniform ’, ’chordlength ’, ’centripetal ’, ’affinechord ’ or ’

affineangle ’"""

if method == ’uniform ’:

h_list = uniform_h(points , domain)

elif method == ’chordlength ’:

h_list = centripetal_h(points , domain , 1)

elif method == ’centripetal ’:

if len(args) == 0:

h_list = centripetal_h(points , domain , 0.5)

elif len(args) == 1:

h_list = centripetal_h(points , domain , args [0])

else:

raise spline.SplineError , "centripetal method only accepts

one alpha value"

elif method == ’affinechord ’:

h_list = affineInvariant_h(points , domain)

elif method == ’affineangle ’:

if len(args) == 0:

h_list = affineInvariantAngle_h(points , domain , 1.5)

elif len(args) == 1:

h_list = affineInvariantAngle_h(points , domain , args [0])

else:

raise spline.SplineError , "affineangle method only accepts

one delta value"

else:

raise TypeError , "method: {} not implemented".format(method)

domainlength = domain [1] - domain [0]

t_values = np.zeros(len(h_list) + 1)

t_values [0], t_values [-1] = domain

if len(t_values) == 2:

return t_values

for i in range(1,len(t_values) - 1):

t_values[i] = t_values[i - 1] + h_list[i - 1]* domainlength

return t_values

def uniform_h(points , domain):

return np.array ([(domain [1] - domain [0])/(len(points) - 1.)]*(len(

points) - 1))

39

def centripetal_h(points , domain , alpha = 0.5):

if not type(alpha) in [int , float]:

raise TypeError , "alpha value has to be an integer or a float"

lengths = []

if not len(np.shape(points [0])) in [0 ,1]:

raise spline.SplineError , "The individual points has to be

vectors or scalars"

for i in range(1, len(points)):

if not len(np.shape(points[i])) in [0 ,1]:

raise spline.SplineError , "The individual points has to be

vectors or scalars"

lengths.append(np.linalg.norm(points[i] - points[i - 1])**alpha)

totallength = sum(lengths)

return lengths/totallength

def affineInvariantMetric_h(points):

try:

points = np.array(points)

except:

raise TypeError , "points not of a recognized type. Must be array -

like"

if not np.shape(points)[1] == 2:

raise TypeError , "This method only woks for two -dim vectors

arranged as ((x0,y0) ,(x1,y1) ,...)"

pointlen = len(points)

x_bar = sum(points [:,0])/pointlen; y_bar = sum(points [:,1])/pointlen

sigma_x = sum ([(x - x_bar)**2 for x in points [: ,0]])/pointlen

sigma_y = sum ([(y - y_bar)**2 for y in points [: ,1]])/pointlen

sigma_xy = sum([(x - x_bar)*(y - y_bar) for (x,y) in points [: ,]])/

pointlen

g = sigma_x*sigma_y - sigma_xy **2

metricmatrix = np.array ([[sigma_y/g, -sigma_xy/g],[-sigma_xy/g,

sigma_x/g]])

h_list = [np.sqrt(np.dot(np.dot((Xi - Yi),metricmatrix) ,(Xi - Yi).T))

for (Xi , Yi) in zip(points [:-1,:], points [1: ,:])]

if not len(h_list) + 1 == pointlen:

raise spline.SplineError , "h_list has not been calculated

correctly"

return h_list

def affineInvariantMetric(points , Pi , Pj):

try:

points = np.array(points)

except:

raise TypeError , "points not of a recognized type. Must be array -

like"

if not np.shape(points)[1] == 2:

40

raise TypeError , "This method only woks for two -dim vectors

arranged as ((x0,y0) ,(x1,y1) ,...)"

pointlen = len(points)

x_bar = sum(points [:,0])/pointlen; y_bar = sum(points [:,1])/pointlen

sigma_x = sum ([(x - x_bar)**2 for x in points [: ,0]])/pointlen

sigma_y = sum ([(y - y_bar)**2 for y in points [: ,1]])/pointlen

sigma_xy = sum([(x - x_bar)*(y - y_bar) for (x,y) in points [: ,]])/

pointlen

g = sigma_x*sigma_y - sigma_xy **2

metricmatrix = np.array ([[sigma_y/g, -sigma_xy/g],[-sigma_xy/g,

sigma_x/g]])

h = np.sqrt(np.dot(np.dot((Pi - Pj),metricmatrix),(Pi - Pj).T))

return h

def affineInvariant_h(points , domain):

try:

points = np.array(points)

except:

raise TypeError , "points not of a recognized type. Must be array -

like"

if not np.shape(points)[1] == 2:

raise TypeError , "This method only works for two -dim vectors

arranged as ((x0,y0) ,(x1,y1) ,...)"

lengths = affineInvariantMetric_h(points)

totallength = sum(lengths)

return lengths/totallength

def affineInvariantAngle_h(points , domain , delta = 1.5):

try:

points = np.array(points)

except:

raise TypeError , "points not of a recognized type. Must be array -

like"

if not np.shape(points)[1] == 2:

raise TypeError , "This method only works for two -dim vectors

arranged as ((x0,y0) ,(x1,y1) ,...)"

points = np.vstack ([points [0],points ,points [-1]]) #This is done so

that d_{-1} and d_{n} will equal 0

dlengths = affineInvariantMetric_h(points)

def theta_i(di1 , di2 , Pi , Pj):

if di1 == 0. or di2 == 0.:

alpha_i = 0

else:

alpha_i = np.pi - np.arccos ((di1 **2 + di2 **2 - (

affineInvariantMetric(points , Pi, Pj))**2) /(2.* di1*di2))

return min(np.pi/2, alpha_i)

41

lengths = []

for i in range(1, len(dlengths) - 1):

lengths.append(dlengths[i]*(1 + (delta*theta_i(dlengths[i-1],

dlengths[i],points[i-1], points[i+1])*dlengths[i-1])/(dlengths[

i-1] + dlengths[i])

+ (delta*theta_i(dlengths[i],dlengths[i+1], points[i],points[i+2])

*dlengths[i+1])/(dlengths[i] + dlengths[i + 1])))

if not len(lengths) + 3 == len(points):

raise spline.SplineError , "h_list has not been calculated

correctly"

totallength = sum(lengths)

return lengths/totallength

def knotAveraging(tparam , deg , domain):

"""

Create the knot vector by averaging the parameter values.

"""

tlen = len(tparam)

if tlen <= deg:

raise TypeError , "Not enough parameter values. Has to be strictly

more than the degree"

start = np.ones(deg + 1)*domain [0]

stop = np.ones(deg + 1)*domain [1]

length = domain [1] - domain [0]

center = np.empty(tlen - deg - 1)

for i in range(len(center)):

s, e = int(i + 1), int(i + 1 + deg)

center[i] = domain [0] + length/deg*sum(tparam[s:e])

return np.hstack ([start , center , stop])

A.4 plots.py

simp plot produces Figure 5, av v2 plot produces Figure 6, av v2 diff plot produces Figure 7
and good der plot produces Figure 9

-*- coding: utf -8 -*-

from __future__ import division

import matplotlib.pyplot as plt

from turbine import SuctionSide , PressureSide , leadingEdge , trailingEdge

from matplotlib.lines import Line2D

def simp_plot(shw = False):

inputData = [51.5 , 90-15.92 , 8., 1.1817 , 75.4075 , 29.2, 1., .0555 ,

.0220, 30., 2.0]

lambd = 4.4#;SuctionSide.functionOfLambda(inputData , (’affineangle

’,1.5), ’param ’, (’affinechord ’,), ’average ’, False)

42

turbine1 = SuctionSide.functionOfLambda(inputData ,(’uniform ’,), ’

radius ’, (’uniform ’,), 1, False)

turbine2 = PressureSide(inputData , ’radius ’, (’uniform ’,), ’constant ’

)

leading , trailing = leadingEdge(inputData), trailingEdge(inputData)

fig = plt.figure(facecolor = ’white’)

turbine1(lambd).plot2D (100, True , fig)

turbine2.plot2D (100, True , fig , False)

leading.plot2D (100, False)

trailing.plot2D (100, False)

ax = plt.gca()

ax.set_frame_on(False)

ax.get_xaxis ().tick_bottom ()

ax.get_yaxis ().tick_left ()

ax.set_aspect(’equal ’)

xticks = ax.xaxis.get_major_ticks ()

xticks [0]. label1.set_visible(False)

xticks [2]. label1.set_visible(False)

xticks [4]. label1.set_visible(False)

yticks = ax.yaxis.get_major_ticks ()

yticks [0]. label1.set_visible(False)

yticks [2]. label1.set_visible(False)

yticks [4]. label1.set_visible(False)

yticks [6]. label1.set_visible(False)

xmin , xmax = ax.get_xaxis ().get_view_interval ()

ymin , ymax = ax.get_yaxis ().get_view_interval ()

ax.add_artist(Line2D ((xmin , xmax), (ymin , ymin), color=’black ’,

linewidth =2))

ax.add_artist(Line2D((ymin , ymin), (xmin , ymax), color=’black ’,

linewidth =2))

if not shw:

plt.savefig(’../../ latex/img/simplistic_curve.pdf’, format=’pdf’,

dpi = 1200, bbox_inches=’tight’, pad_inches =0)

if shw:

plt.show()

def av_v2_plot(shw = False):

inputData = [51.5 , 90-15.92 , 8., 1.1817 , 75.4075 , 29.2, 1., .0555 ,

.0220, 30., 2.0]

lambd = 3.4

turbine1 = SuctionSide.functionOfLambda(inputData ,(’uniform ’,), ’

radius ’, (’uniform ’,), ’average ’, False)

turbine2 = PressureSide(inputData , ’radius ’, (’uniform ’,), ’radius ’)

leading , trailing = leadingEdge(inputData), trailingEdge(inputData)

fig = plt.figure(facecolor = ’white’)

turbine1(lambd).plot2D (100, True , fig)

turbine2.plot2D (100, True , fig , False)

leading.plot2D (100, False)

trailing.plot2D (100, False)

43

ax = plt.gca()

ax.set_frame_on(False)

ax.get_xaxis ().tick_bottom ()

ax.get_yaxis ().tick_left ()

ax.set_aspect(’equal ’)

xticks = ax.xaxis.get_major_ticks ()

xticks [0]. label1.set_visible(False)

xticks [2]. label1.set_visible(False)

xticks [3]. label1.set_visible(False)

xticks [4]. label1.set_visible(False)

xticks [5]. label1.set_visible(False)

xticks [7]. label1.set_visible(False)

xticks [8]. label1.set_visible(False)

xticks [9]. label1.set_visible(False)

yticks = ax.yaxis.get_major_ticks ()

yticks [1]. label1.set_visible(False)

yticks [3]. label1.set_visible(False)

yticks [5]. label1.set_visible(False)

yticks [7]. label1.set_visible(False)

xmin , xmax = ax.get_xaxis ().get_view_interval ()

ymin , ymax = ax.get_yaxis ().get_view_interval ()

ax.add_artist(Line2D ((xmin , xmax), (ymin , ymin), color=’black ’,

linewidth =2))

ax.add_artist(Line2D((xmin , xmin), (ymin , ymax), color=’black ’,

linewidth =2))

if not shw:

plt.savefig(’../../ latex/img/average_v2_curve.pdf’, format=’pdf’,

dpi = 1200, bbox_inches=’tight’, pad_inches =0)

if shw:

plt.show()

def av_v2_diff_plot(shw = False):

inputData = [51.5 , 90-15.92 , 8., 1.1817 , 75.4075 , 29.2, 1., .0555 ,

.0220, 30., 2.0]

lambd = 3.4

turbine1 = SuctionSide.functionOfLambda(inputData ,(’centripetal ’,), ’

radius ’, (’uniform ’,), ’average ’, False)

turbine2 = PressureSide(inputData , ’radius ’, (’chordlength ’,), ’

radius ’)

leading , trailing = leadingEdge(inputData), trailingEdge(inputData)

fig = plt.figure(facecolor = ’white’)

turbine1(lambd).plot2D (100, True , fig)

turbine2.plot2D (100, True , fig , False)

leading.plot2D (100, False)

trailing.plot2D (100, False)

ax = plt.gca()

ax.set_frame_on(False)

ax.get_xaxis ().tick_bottom ()

44

ax.get_yaxis ().tick_left ()

ax.set_aspect(’equal ’)

xticks = ax.xaxis.get_major_ticks ()

xticks [0]. label1.set_visible(False)

xticks [2]. label1.set_visible(False)

xticks [4]. label1.set_visible(False)

yticks = ax.yaxis.get_major_ticks ()

yticks [0]. label1.set_visible(False)

yticks [2]. label1.set_visible(False)

yticks [4]. label1.set_visible(False)

yticks [6]. label1.set_visible(False)

xmin , xmax = ax.get_xaxis ().get_view_interval ()

ymin , ymax = ax.get_yaxis ().get_view_interval ()

ax.add_artist(Line2D ((xmin , xmax), (ymin , ymin), color=’black ’,

linewidth =2))

ax.add_artist(Line2D((xmin , xmin), (ymin , ymax), color=’black ’,

linewidth =2))

if not shw:

plt.savefig(’../../ latex/img/average_v2_diff_curve.pdf’, format=’

pdf’, dpi = 1200, bbox_inches=’tight’, pad_inches =0)

if shw:

plt.show()

def good_der_plot(shw = False):

inputData = [51.5 , 90-15.92 , 8., 1.1817 , 75.4075 , 29.2, 1., .0555 ,

.0220, 30., 2.0]

lambd = 3.4

turbine1 = SuctionSide.functionOfLambda(inputData ,(’affineangle ’,), ’

param ’, (’affinechord ’,), ’average ’, False)

turbine2 = PressureSide(inputData , ’param ’, (’chordlength ’,), ’radius

’)

leading , trailing = leadingEdge(inputData), trailingEdge(inputData)

fig = plt.figure(facecolor = ’white’)

turbine1(lambd).plot2D (100, True , fig)

turbine2.plot2D (100, True , fig , False)

leading.plot2D (100, False)

trailing.plot2D (100, False)

ax = plt.gca()

ax.set_frame_on(False)

ax.get_xaxis ().tick_bottom ()

ax.get_yaxis ().tick_left ()

ax.set_aspect(’equal ’)

xticks = ax.xaxis.get_major_ticks ()

xticks [1]. label1.set_visible(False)

xticks [2]. label1.set_visible(False)

xticks [3]. label1.set_visible(False)

xticks [4]. label1.set_visible(False)

yticks = ax.yaxis.get_major_ticks ()

45

yticks [0]. label1.set_visible(False)

yticks [2]. label1.set_visible(False)

yticks [4]. label1.set_visible(False)

xmin , xmax = ax.get_xaxis ().get_view_interval ()

ymin , ymax = ax.get_yaxis ().get_view_interval ()

ax.add_artist(Line2D ((xmin , xmax), (ymin , ymin), color=’black ’,

linewidth =2))

ax.add_artist(Line2D((xmin , xmin), (ymin , ymax), color=’black ’,

linewidth =2))

if not shw:

plt.savefig(’../../ latex/img/good_der_curve.pdf’, format=’pdf’,

dpi = 1200, bbox_inches=’tight’, pad_inches =0)

if shw:

plt.show()

References

[1] Brian A. Barsky and Tony D. DeRose. Geometric continuity of parametric curves: Three
equivalent characterizations. IEEE Computer Graphics and Applications, 9(6):60–68, 1989.

[2] Olivier Cleynen. Turbine inlet guide vanes of atar turbojet. https://en.wikipedia.org/

wiki/File:Turbine_inlet_guide_vanes_of_Atar_turbojet.jpg, March 2012. [Online;
accessed 2015-01-17].

[3] Carl de Boor. A practical guide to splines, volume 27 of Applied Mathematical Sciences.
Springer-Verlag, New York-Berlin, 1978.

[4] Gerald Farin. Curves and surfaces for computer-aided geometric design. Computer Science
and Scientific Computing. Academic Press, Inc., San Diego, CA, fourth edition, 1997. A
practical guide, Chapter 1 by P. Bézier; Chapters 11 and 22 by W. Boehm, With 1 IBM-PC
floppy disk (3.5 inch; HD).

[5] Gerald E. Farin. NURBS. A K Peters, Ltd., Natick, MA, second edition, 1999. From
projective geometry to practical use.

[6] Thomas A. Foley and Gregory M. Nielson. Knot selection for parametric spline interpolation.
In Mathematical methods in computer aided geometric design (Oslo, 1988), pages 261–271.
Academic Press, Boston, MA, 1989.

[7] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering,
9(3):90–95, 2007.

[8] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python. http://www.scipy.org/, 2001–. [Online; accessed 2015-01-17].

[9] Gregory M. Nielson. Coordinate free scattered data interpolation. In C. K. Chui, L. L.
Shumaker, and F. I. Utreras, editors, Topics in multivariate approximation (Santiago, 1986),
pages 175–184. Academic Press, Boston, MA, 1987.

[10] Travis Oliphant et al. NumPy. http://www.numpy.org/, 2006–. [Online; accessed 2015-
01-17].

46

[11] L. Piegl and W. Tiller. The NURBS Book. Monographs in Visual Communication. Springer,
1997.

[12] M. J. D. Powell. Approximation theory and methods. Cambridge University Press,
Cambridge-New York, 1981.

[13] Andrew Pressley. Elementary differential geometry. Springer Undergraduate Mathematics
Series. Springer-Verlag London, Ltd., London, second edition, 2010.

[14] Jonas Svensson. Parametric blade profiling methods and improvements on LUAX-T with
emphasis on oxy-fuel cycles. Master’s Thesis. Faculty of Engineering, Lund University, 2011.

[15] Runar Tenfjord, Alex Wiltschko, Sebastian Eiser, et al. PyNURBS - non uniform rational
B-splines in Python. https://github.com/bashseb/PyNURBS, 2013.

[16] Z. Q. Ye and P. Kavanagh. Axial-flow turbine cascade design procedure and sample design
cases. Technical Report ISU-ERI-Ames-84159, Department of Mechanical Engineering, Iowa
State University, January 1984.

47

Bachelor’s Theses in Mathematical Sciences 2015:K2

ISSN 1654-6229

LUNFNA-4003-2015

Numerical Analysis

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

