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Abstract

This thesis compares Auto Regressive Moving Average (ARMA) and Generalized Auto Regressive
Conditional Heteroscedacity (GARCH) models for three metal commodities. ARMA models have an
unconditionally non-random and constant variance, which typically serves well in effectively
representing homoscedastic data. The GARCH models feature variable variance that is non-random
when conditioning on the past. Thus these models are often used to represent heteroscedastic data. It is
documented that financial data, including metal commodities frequently exhibit heteroscedacity. This
thesis investigates if this heteroscedacity in the observed historical data is shown in the quality of its
ARMA and GARCH fits. The data used for comparison involve three time series of logarithmic price
return for silver, nickel and copper. In the hypothesis it is assumed that GARCH is more efficient than

ARMA. The efficient market hypothesis is also tested.

The logarithmic price returns are stationary which is confirmed by statistical tests. Thereby, it is
appropriate to fit ARMA and GARCH models. The ARMA and GARCH models with the lowest
Akaike’s Information Criterion (AIC) are selected from each series. The models forecasted values and
running standard deviations are cross-validated with the observed historical data using three measures.
These measures are Mean Absolute Scaled Error (MASE), symmetric Mean Absolute Percentage
Error (SMAPE) and correct pairs of sign which all provide different assessment of magnitude of error
in estimation of the observed historical records. The correct pairs of sign are then tested against the

efficient market hypothesis.

The error in estimation for forecast values does not yield a difference between ARMA and GARCH
models by MASE. For the running standard deviation, both measures MASE and sMAPE are applied.
The GARCH model is then more efficient than ARMA. In this sense, the thesis confirms the increased

efficiency of using GARCH models for metal commodities.

According to correct pairs of sign measure, nickel has no arbitrage opportunities for logarithmic price
return. This is expected according to the efficient market hypothesis. However, the test indicates it is
possible to predict correct sign of logarithmic price return for copper and silver, which indicates that

the efficient market hypothesis does not always apply.

Keywords: ARMA, GARCH, MASE, sMAPE, Heteroscedasticity, Stationarity, Ljung-Box test,

McLeod-Li test, Running Standard Deviation, Forecast value.
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1 Introduction

Metal commodities account for a substantial part of trading and commerce around the world.
Therefore, analyses of their price returns are important. A method for modeling price return is through
time series analysis. For homoscedastic data Autoregressive Moving Average (ARMA) models are
used and for heteroscedastic data, Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) models are used.

Time series analysis has developed considerably since the publication of. Box and Jenkins classic
Time Series Analysis: Forecasting and Control (1974). For example, times series analysis has also
been developed to fit financial data. Financial data have been observed to have heteroscedastic
properties, meaning variable volatility according to Cryer and Chan (1998). Therefore, a new model
called Auto Regressive Conditional Heteroscedastic (ARCH) was introduced by Engle (1982). The

ARCH model estimates variance more efficiently.

The purpose of this thesis is to compare effectiveness of ARMA and GARCH models. ARMA models
assuming homoscedastic properties, meaning constant variance. Also, the efficiency of the market for

these metals is investigated through observing if fitted models can forecast future prices.

Commodities including metals are often assumed to have heteroscedastic data for price returns. Due to
this the GARCH model should be more effective than ARMA. Also, the efficient market hypothesis,

with no arbitrage opportunities, states that future prices should not be possible to predict.
The aim of this thesis is to verify this hypothesis and in the process answer these questions:
e Which of ARMA or GARCH models is the most accurate for time series of silver, nickel and
copper price return?
e Are models accounting for heteroscedastic data needed for these types of time series?

e Does the efficient market hypothesis apply for the logarithmic price returns of silver, nickel
and copper?

This thesis focuses on statistical analysis. In addition, the economic theory of the efficient market
hypothesis is interpreted in the context of the fitted model. The central aim of this thesis is the
comparison of performance between ARMA and GARCH models. Only one type of GARCH model,
is applied, which is viewed to be sufficient for the ordinary comparison. In short, considering other

types of GARCH models is not needed to answer the main question of model adequacy.

Three time series are used to facilitate this comparison. The times series sample sizes (2,609 for both
copper and nickel 8,871 for silver) are considered adequate for statistical fitting of the model’s. The

comparison of model accuracy is conducted only between the models one step ahead forecasts, longer
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steps of predictions are not discussed. While there are many cross-validation measures for model
accuracy, they are measuring similar features and therefore only three have been selected: Mean
Absolute Scaled Error (MASE), symmetric Mean Absolute Percentage Error (sSMAPE) and correct

pairs of sign.



The data set used to facilitate the comparison of the models consist of three time series of silver, nickel
and copper prices. The time series of silver price starts on 1980-01-01 and ends on 2013-12-31, with
8,871 observations. The time series of nickel and copper price starts on 2004-06-04 and ends on 2014-
06-04, with 2,609 observations each. The prices have been observed and registered at the London
Metal Exchange. They are the closing prices in US cents per troy ounce, for silver. The closing prices
for nickel and copper, from each trading day, is in US dollar per metric ton. (Thomson Reuters 2014).

Below, these data are plotted in Figure 1.
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Figure 1. Original time series for silver price, nickel price and copper price



From Figure 1, one can see that metal prices can be difficult to model directly. The long lasting trends
are far from stationary and difficult to model stochastically with models such as ARMA and GARCH.
It is, therefore, a standard procedure to model the logarithmic price return rather than prices

themselves. Here, the procedure is briefly discussed.

If X, is the price on the day t, then the return on the price for the next day is X;,4/X; . This can be

viewed as the return on one dollar invested the previous day. The logarithmic return is defined as

X
Y, = log( ;1)
t

The plotted logarithmic price returns are shown in Figure 2.
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The transformed data, shown in Figure 2, can be modeled by a stationary process. In fact, this connects

with the issue of arbitrage opportunities.

The arbitrage can shortly be described as a possibility of making gains on the market by predicting
future prices. The efficient market hypothesis states that the market prices should not allow for
arbitrage. There is an age-long debate about this in the theory of finance. Here, it is briefly discussed

in the context of transforming the data in order to obtain a stationary process.

If the efficient market hypothesis applies, the price series can be described as random walk processes.
This was shown to be true for daily price return of copper and nickel between 1989 and 2007, see Otto

(2010).

Frequently, the price is replaced by the logarithmic price and the price return by the logarithmic price

return:

W, = log(Xy), ey
X

Wt - Wt—l = Yt = log (thl) (2)

It can be demonstrated that the efficient market hypothesis can be reduced to the random walk

assumption on the logarithmic prices, i.e. random walk process W;.

W; = ¢+ W;_1 + e; , where c is a drift for a random walk process.

When a transformation to logarithmic price return is conducted as above, the new transformed time

series is a stationary white noise process:

c+e =W, — W, 3
which satisfies,

c=E[(e; +0)], @)

a2 =Var[(e; + ¢)]. )]

This means that the model cannot forecast future values any better than guessing, implying that there

are no arbitrage opportunities.

From this brief argument it follows that the logarithmic price return process should have a form of
white noise, which is a stationary process. However, very often one does not initially restrict to this
special class of stationary processes and sometimes dependence is often considered, for example
through adding an autoregressive part to the white noise. It is then required to check if the

autoregressive part indeed brings some benefits in modeling real data.



In order to confirm whether the logarithmic price return is stationary and to be able to continue with
model fitting of ARMA and GARCH, the Dickey-Fuller test is used. For the case of an AR (1)-
process, the autoregressive parameter should be smaller than one in its absolute value, The Dickey-
Fuller test subtracts y;_4 on both sides of the AR (1)-process and investigates the unit root from the
characteristic equation. If there is a unit root, then the time series is non-stationary. (Enders 2009, 221-

225).

Hy: Unitroot
H;: No unitroot

Table 1. Test For Stationarity
Time Series Dickey-Fuller (7) P-value

Silver -19.581 0.01
Nickel -13.241 0.01
Copper -11.909 0.01

The actual p value is smaller than 0.01 but the R package, “tseries’ that is used for performing this test
does not report smaller values (in the package the function "adf.test()’ is used on the data). Since the
null hypothesis are rejected for all series, it implies that the logarithmic price returns are stationary

which makes it reasonable to model with ARMA and GARCH.
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3 Methodology

Selecting specific models to compare is the next step. First, the orders that will be examined for
ARMA (p,q) and GARCH (p,q,u,v) are chosen. The different combinations of orders leads to 23
different for ARMA and 168 of GARCH. All these are then fitted, and the ARMA and GARCH with
the lowest Aikaike’s Information Criterion (AIC) value are selected from each time series. The ranges
of orders that are examined are sufficient to answer the thesis questions. The Autocorrelation Function
(ACF) and Partial Autocorrelation Function (PACF) are also regarded as an indication of order.

However, the AIC criterion is prioritized.

The standardized residuals of the selected models are analyzed to determine if they are considered as
white noise by the Ljung-Box test and if they are homoscedastic or heteroscedastic by the McLeod-Li
test. These tests imply which model, ARMA or GARCH that is most appropriate.

The selected ARMA and GARCH models are used to estimate one-step ahead forecast value and
running standard deviation. The estimated values are cross-validated with the observed historical

values using three measures: SMAPE, MASE and correct pairs of signs.

This thesis focuses on two classes of models: ARMA and GARCH. This part will provide a short
explanation of what these models and their respective properties are. For these definitions of general
models and later in chapter 3, when explaining the general functions of the applied tests and measures
the {x;, x¢_q,X¢_, ... X, } realization of the generic time series x; is used. It should not be confused

with Y;, which is defined as the logarithmic price return.

An ARMA model is an Autoregessive process (AR) and a Moving Average process (MA). The
ARMA model contains both parts. When a time series requires both autoregressive and moving

average components, an ARMA (p,q) model is used. Its general form is:
Xe =P+ Pixp—q + o+ Dpxep + g — 01601 — = Oger_g. (6)

For stationarity, invertibility for the MA (q) part and stationarity for the AR (p) part are both required.

In the MA (q)-process, the q stands for the order and describes how many time lags back in time the

model considers. The order also equals the number of parameters in the MA (q)-process:

Xe =€ —01ee g —Orer 5 — - —0ger_g, (7
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so that the generic value y, is a linear function of a constant value and q stochastic
variables (Cryer and Chan. 2008, 57-65). In the above equation, e, represent

random innovation, i.e. a random noise for which:

Ele] =0, ®
Var(e,) = a2, 9)
where 02 is the variance of the innovation. The MA (q)-process is stationary when the process is
invertible. An MA (q)-process is invertible when it can be rewritten as an AR (p)-process. In order for
that to occur, its roots of the MA (q)-process characteristic equation must exceed one in absolute value

(Cryer and Chan. 2008, 57). The characteristic equation for the MA (q)-process is:

1—61x —0,x% — 03x% — - = 0,x9 = 0. (10)

Similarly, in the AR (p)-process, the p is the order and also describes how many time lags back in time

the model considers. The order also equals the number of parameters in the AR (p)-process,

Xe = O1Xe_1 + OaXpp + P3xe g+ -+ Gpxe_py e, (1)

is a linear combination of its p last values of itself (Cryer and Chan. 2008, 66). In

the above equation, e; represent random innovation, i.e. a random noise for

which:
Ele,] =0, 12)
Var(e,) = 2. 13)

The condition for stationarity for the general AR (p)-process is the same as for an MA (q)-process,
namely, roots of the characteristic equation must exceed one in modulus (Cryer and Chan. 2008, 76).

The characteristic equation of the AR (p)-process is:

1= drx — dpx? — dpax® — - — ppxP = 0. (14)

In the above models the variance of innovations (often referred to as volatility) is constant over time
(homoscedastic variance). This often proves to be too restrictive of an assumption for real data. Under
such an assumption, features like volatility clustering cannot be modelled. For this reason an ARCH
model has been proposed by Engle (1982) to account for heteroscedastic variance of a time series
applied on an AR (p)-process. The GARCH that combines with an ARMA (p, q)-process was
introduced by Bollerslev (1986), where the conditional variance a; is used. A GARCH (p, q, u, v)-
process for an ARMA (p, q)-process is defined as,
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Xy = d)lxt_l + .-+ d)pxt_p + et + elet_l + -+ eqet_q, (15)

where,

€r = O&, (16)

where ¢&; is defined as the standardized residuals and,

o =w+aet, + - +ayer, + P10t + -+ B0l a7

The notation for the order is u and v, which represents the number of parameters o and f. It is
important to note that the innovation term e; is not defined same as in the ARMA model (Cryer and
Chan. 2008, 285-289). The most important property of the GARCH model is that the stochastic and

variable volatility o;, is not random given the past of the process x;, which can be seen from (12).

For all models the maximum likelihood method is used for parameter estimation. The likelihood
estimation is defined on the joint probability density function and has for the conditional estimation a
variance dependent on time, L(d, 6, i, otz |x1, x5, ..., x¢) , which the unconditional estimation has not
L(,0,u,0?). Itis based on the normal distribution of &, in (16). Hamilton (1994, 117-148). An
advantage with this method is that it can estimate the AIC-value and provides efficient parameter

estimation methods for both ARMA and GARCH models.

Once the models have been fitted there are several methods to select the most suitable one. In this
thesis the AIC is used as a comparable measure of the models suitability. The models with the lowest

values are the most suitable. The AIC is calculated as,

AIC = -2log (maximum likelihood) + 2k, a7

where k is the number of parameters, p is the order of the AR (p)-process and q is the order of the

MA(q)-process. (Akaike. 1973). It is a commonly used method for selecting the model order.

Further, the standardized residuals of each selected model is tested with the Ljung-Box and McLeod-
Li test to examine whether the model is appropriate to use for the time series. The standardized
residuals are in these large samples approximated as normal distributed due to the central limit
theorem. To investigate the suitability of this approximation, the Jarque-Bera test is used. The
standardized residuals are also illustrated with histograms and quantile-quantile plot (QQ-plot). Below,

the Jarque-Bera and Ljung-Box tests are briefly described.
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The Jarque-Bera test suggests if the standardized residuals are normally distributed or not. It takes in
account that normal distribution has zero skewness and excess kurtosis, assuming that &;, &,,..., &, 1S
independently and identically distributed standardized residuals. g, is the sample skewness, g, is the
sample excess kurtosis and n is the sample size (Cryer and Chan. 1998, 284-285). The test is based on

the following statistic:

ngi ngj . (18)
X

If the above statistic is large as measured by the upper quantiles of the chi-square distribution, the

following H, hypothesis is rejected in the favor of H;.

Hy: Skewness and excess kurtosis are zero — normal distribution
H;: Skewness or excess kurtosis are not zero — non-normal distribution
The Ljung-Box testis used to test if the residuals of the model have autocorrelation. The squared

autocorrelation of a samples residuals is used as the base for the test. Its autocorrelation function is

defined:

ﬁl(k) — 2?=k+1(xt_f)(xf—k_f) ,k — 1,2 K, (19)

Z?=1(xt_x)2

where X is the sample mean and K = maximum lag. The Ljung-Box test is then based on the test

statistic,

-z -7 oz 20
Qe = n(n+2)(E+ Lo+ +E) E y2 (K —p —q) @0

If the Q. statistic is large as measured by the by the upper quantiles of the chi-square distribution the

following H, hypothesis is rejected in the favor of H;.

Hy:Qrp < )(,%_p_q Residuals constitute a white noise

Hi: Q5 > )(,%_p_q Residuals show some dependence — they are not a white noise.

If the null hypothesis is not rejected, the residuals of the autocorrelation function is considered as

white noise and if it is rejected it indicates there is some dependence. (Cryer and Chan.1998, 183-184).

A homoscedastic time series has a constant variance independent from time, which is assumed in
ARMA models. A heteroscedastic time series has a variable variance dependent on time, which is

taken in account by the GARCH model. Heteroscedasticity is present in many financial data sets,
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including price for metal commodities. Therefore, GARCH are assumed to be more efficient than

ARMA models (Cryer and Chan. 1998, 277).

The McLeod Li- test is based on the Ljung-Box test. The difference between these two tests is that the
McLeod-Li test tests the residuals autocorrelation of a squared series xZ, thereby easier detecting

volatility clustering. First, the autocorrelation function of the squared series is defined:

'[’)\M(k) — Z?=k+1(x?_f2)(x?—k_f2) ,k — 1’2 K, (21)

?:1(35?_3?2)2

where X is the squared sample mean and K = maximum lag. The McLeod-Li test statistic is then

based on the same as for the Ljung-Box test:
_ i, PE PEN & 2K — (22)
Qur =nn+ 2)(n_1 + = +...+ﬁ) Ex*(K—p—q).

After the Q,, statistic is calculated the decision rule is the same as for the Ljung-Box and the Jarque-
Bera test. If the @y, statistic is large as measured by the upper quantiles of the chi-square distribution

the following Hy hypothesis is rejected in the favor of H;.

Hy: Qur < )(,%_p_q Still white noise - Homoscedastic lag

Hq:Qup > )(,%_p_q Volatility clustering - Heteroscedastic lag

This test visualizes if the standardized residuals are homoscedastic or heteroscedastic. (Chen. 2002). If
the null hypothesis is not rejected the standardized residuals are assumed to be homoscedastic. If for
some lags the result is significant then there is indication for heteroscedastic residuals. (Cryer and

Chan. 1998, 282-283.)

Forecasting with ARMA and GARCH models is conducted through:

Xy = $1%a-1) + G2X0-2) + -+ dpR—p) + 60 — O1E(ersi—1lx1, X2, -0, X1) (23)
— O3E(erq1—alxq, X0, ey X)) — oo — qu(et+l_q|x1,x2, s Xg)

where,

0for j>0 (24)
E(erri—q|x1, %z %) = {€t+j forj<o0
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The forecasting value is based on the estimated parameters in the model. Through those parameters a
value for the next coming one and two up to (p,q) time lags in the future can be predicted (Cryer and
Chan. 1998, 199-201). Both forecast values and running standard deviations are estimated in order to
cross-validate and evaluate models rather than forecast future price return. The running standard
deviation is used in order to compare the models efficiency in estimating the volatility of the series.
The running standard deviations is repeatedly computed standard deviations for pairs of observations.
This computation is repeated throughout the whole length of time series, the running standard

deviation is defined as the standard deviation for x; and x;, .

To compare ARMA with GARCH, the accuracy of the estimated models is compared. The three
measures used for this are MASE, sMAPE and correct pairs of sign. MASE is applied on both forecast
values and running standard deviation. It is a scaled error measurement that compares the difference of
forecasted values of the logarithmic price return, defined as f; and observed historical values x, with
the residuals obtained from naive forecasting. The same notation is used for sSMAPE. When MASE is

<1, the model gives on average, smaller error than the naive method (Hyndman and Koehler. 2006).

n (25)
1 Xe —
MASE:—Z i |xe — fel

nt=1 n—1 ?=2|xt_xt—1|

The second measure utilized in this thesis is SMAPE, which shows the average error in percentage
with a range from -200 % up to 200 %. sSMAPE has a slightly different formula depending on the
author. In this thesis, a variant of sMAPE defined by Makridakis (2000) is applied, written with the
same notation as above. SMAPE has a disadvantage in that it does not show which direction the
forecasting error occurs. Furthermore, it is not an applicable measure for negative forecast values. Due

to this, it will only be applied for running standard deviation.

1 N e — ftl (26)

t=1
The final measure will count the pairs with similar signs of observed historical value and forecast
value. The measure also calculates the percentage of pairs with similar signs. If the efficient market
hypothesis applies the probability for a correct result should equal the probability for an incorrect
result. To test if the measured percentage is significantly separated from p = 0.5, a Z-test will be
conducted, where p € Bin(n, p). The numbers of observation can approximately be normally

distributed under the central limit theorem. The Z-test is as follows:
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7Z=PPEN(0,1). @27

o

According to the efficient market hypothesis:

HO:
Hl:

>

IA
NIRN R
8 >

>
\Y

If the null hypothesis is not rejected it means that market efficiency cannot be ruled out. If, however,

the null hypotheses is rejected, it suggests there are arbitrage opportunities in predicting future prices.

4 Results

Presented below are the results from model fitting, diagnostics and, finally, measures of forecast

accuracy. First, the ACF and PACF results are interpreted as indicators for model selection.

The silver logarithmic price return has a significant lag at 1 and 9 for both ACF and PACF. Other lags
are barely significant. The similar results for ACF and PACF indicate that silver logarithmic price
return should have the same order of p and q. Nickel logarithmic price return barely has any
significant lags for either ACF or PACF. This indicates that it can be described as a white noise
process. Copper’s logarithmic price return has significant lags at 1 and 4 for the ACF. The PACF is
significant at lag 1, 3 and barely at 4. This indicates that it ought to have an order of 4 for p and 3 or 4
for q. For further details, see appendix D.

ARMA models are selected from 23 different combinations. The orders of q in the MA (q)-process
range from 0-3, and the orders of p, in the AR (p)-process range from 0-5. When minimizing the AIC-

value, these models are selected.

Table 2. Selected models of ARMA

Silver Nickel Copper
Estimate Std. Error Estimate Std. Error Estimate Std. Error
¢1 -0.4182 0.1069 -0.5089 0.1504 04117 0.1761
b, -0.8171 0.0744 -0.7469 0.1401 -0.0470 0.4538
d; 0.1507 0.0899 N/A N/A 0.4735 0.4236
b,y N/A N/A N/A N/A 0.1021 0.0266
041 0.2899 0.1057 0.5319 0.1516 -0.4874 0.1765
0, 0.7678 0.0662 0.7456 0.1496 0.0743 0.4602
03 -0.2417 0.0856 -0.0272 0.0246 -0.5055 0.4429
o 0.02322 N/A 0.02511 N/A 0.01950 N/A
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The silver ARMA (3, 3) and the nickel ARMA (2, 3) have standard deviations lower than its
parameters. The copper ARMA (4, 3) has, on the other hand, standard deviations that, in some cases,
are larger than its parameters which indicates that these parameter estimations are not efficient. All
three model orders are coherent with their ACF and PACF results, where nickel is modeling white
noise. Both models for silver and nickel have a zero-mean which is expected for a market with no
arbitrage opportunities. Copper, on the other hand, has a mean of 0.003. For further details, see

Appendix A.

The Jarque-Bera test suggests that the standardized residuals (&;) are not normally distributed, for all
three models. Despite that the test suggests non-normality, the method of estimating the parameters,
which is based on the normal likelihood, is still valid. This is due to the so-called quasi-likelihood
method. This method is similar to the regression, where the normal likelihood yields the least square
estimate that are also valid for non-normal models. The distribution is also visualized in the QQ-plot,
where all the models render approximately the same results. Histograms are visually asymptotic

normally distributed. For QQ-plots and Histograms see Appendix B.

Table 3. Standardized residuals tests for Silver

Test Residuals Statistic P-value

Jarque-Bera Test & Chi®2 327531.6 <2.2e-16
Ljung-Box Test & Q(10) 55.8875 2.155e-08
Ljung-Box Test & Q(15) 74.7729 6.223e-10
Ljung-Box Test & Q(20) 90.278 6.628e-11

The Ljung-Box test null hypothesis is rejected at significance level <1 % for Q (10), Q (15) and Q
(20). This indicates that the standardized residuals are not considered as white noise. This means that

the ARMA model does not explain the times series efficiently.

McLeod-Li test standardized residuals Silver

P-value
1.0

0.0

0 2000 4000 6000 8000

Lag

Figure 3. McLeod-Li test for standardized residuals of ARMA (3, 3) for silver price return.
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The McLeod-Li test indicates that the standardized residuals are heteroscedastic. The null hypothesis
is rejected for all lags at significance level <5 %. This confirms that the ARMA model does not

account for heteroscedastic data.

Table 4. Standardized residuals tests for Nickel

Test Residuals Statistic P-value
Jarque-Bera Test & Chi*2  1316.235 <2.2e-16
Ljung-Box Test & Q(10) 2.4172 0.992
Ljung-Box Test & Q(15) 6.6753 0.966
Ljung-Box Test & Q(20) 7.9319 0.9923

The Ljung-Box test null hypothesis is accepted for Q (10), Q (15) and Q (20). This indicates that the
standardized residuals are considered as white noise. This means that the ARMA model explains the

times series efficiently.

McLeod-Li test standardized residuals for Nickel
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Figure 4. McLeod-Li test for standardized residuals of ARMA (2, 3) for nickel price return.

The McLeod-Li test indicates that the standardized residuals are heteroscedastic. The null hypothesis
is rejected for all lags at significance level <5 %. This implies, again that the ARMA model does not

account for heteroscedastic data.

Table 5. Standardized residuals tests for Copper

Test Residuals Statistic P-value
Jarque-Bera Test & Chi*2  1225.115 <2.2e-16
Ljung-Box Test & Q(10) 2.8704 0.9843
Ljung-Box Test & Q(15) 9.1196 0.8712
Ljung-Box Test & Q(20) 12.6074 0.8936

The Ljung-Box test null hypothesis is accepted for Q (10), Q (15) and Q (20). This indicates that the
standardized residuals are considered as white noise. This means that the ARMA model explains the

times series efficiently.
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McLeod-Li test standardized residuals for Copper
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Figure 5. McLeod-Li test for standardized residuals of ARMA (4, 3) for copper price return.

The McLeod-Li test indicates that the standardized residuals are heteroscedastic. The null hypothesis

is rejected for all lags at significance level <5 %. Again, the ARMA does not account for

heteroscedastic data.

GARCH models are selected from 168 combinations. The GARCH (p, g, u, v)-process ranges from 0-

5 for both p, q and 0-2 for both u and v, where its conditional distribution is set to normal distribution.

The five models with the lowest AIC-value for each time series are presented in Appendix A

Table 6. Selected GARCH model for Silver

Estimate
p -4.309¢-04
¢, -0.2062
¢, -0.4626
¢, 0.5464
¢, -0.5935
¢, -0.2567
0, 0.1190
0, 04710
0; 0.5062
0, 0.5747
0:; 0.2095
o 1.061e-05
o, 0.1777
By 0.1926
B, 0.6243

Std. Error
4.750e-04
9.486¢e-02
2.975e-02
5.317e-02
6.939¢-02
6.718e-02
9.728e-02
2.964¢e-02
5.946¢e-02
7.203e-02
6.839¢-02
1.331e-06
1.049¢-02
3.398e-02
3.454e-02

t-value
-0.907
-2.174
-15.547
-10.276
--8.553
-3.821
1.224
15.891
8.515
7.978
3.064
7.971
16.943
5.669
18.075

Pr(>[t)
0.364347
0.029688
<2e-16
<2e-16
<2e-16
0.000133
0.221086
<2e-16
<2e-16
1.55e-15
0.002188
1.55e-15
<2e-16
1.44¢-08
<2e-16

All parameters for the ARMA (5, 5)-GARCH (1, 2) are significant at 5 % with exception of 8. The

parameters that are not significant are kept because omitting orders of the MA (q)-process results in a

higher AIC-value. The parameters of GARCH (u, v) are all significant which is important because

they model the conditional variance and facilitates the comparison between ARMA and GARCH.
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Table 7. Selected GARCH model for Nickel

Estimate
1.430e-04
-5.698¢-01
8.373e-02
-1.614¢-01
2.896e-01
8.150e-01
5.799¢-01
-8.181¢-02
1.414¢-01
-2.817¢-01
-7.909¢-01

5.496¢e-06
6.493e-02
9.275e-01

Std. Error
2.440e-04
5.844¢-02
1.131e-01
1.086¢e-01
8.768¢e-02
8.194¢-02
6.199¢-02
1.188e-01
1.201e-01
9.165e-02
9.028e-02
1.878e-06
9.780e-03
1.095e-02

t-value
0.586
-9.751
0.740
-1.486
3.303
9.947
9.355
-0.689
1.177
-3.074
-8.760
2.926
6.639
84.739

Pr(>[t])
0.558018
<2e-16
0.459224
0.137212
0.000957
<2e-16
<2e-16
0.491056
0.239153
0.002110
<2e-16
0.003431
3.15e-11
<2e-16

Four parameters ¢,, d3, 0,, 85 are not significant at 5 %. All other parameters are significant.

However excluding these parameters results in a higher AIC-value. Due to this, the model is selected.

The parameters for conditional heteroscedasticity are significant, which again, is important for the

comparison between ARMA and GARCH.

Table 8. Selected GARCH model for Copper

Estimate
1.803e-03
-4.092¢-01
-8.343e-01
1.463e-01
5.034¢-02
-4.421e-02
3.578e-01
8.280e-01
-2.475e-01
-6.563¢-02
2.664e-06
6.258¢-02
9.309¢-01
1.000e-08

Std. Error
3.765e-07
1.520e-05
1.642¢-05
1.651e-05
1.555e-05
1.553e-05
1.668e-05
1.790e-05
1.685e-05
1.652¢-05
9.698e-07
1.627e-02
3.228e-01
3.083¢e-01

t-value
4788.570
-26921.552
-50806.678
8859.930
3236.865
-2846.798
21445.319
46259.102
-14685.392
-3973.318
2.747
84.739
2.884
0.000

Pr>lt)
<2e-16
<2e-16
<2e-16
<2e-16
<2e-16
<2e-16
<2e-16
<2e-16
<2e-16
<2e-16
0.00602
0.00012
0.00393
1.00000

All parameters are significant, with the exception of 3,. The p-value of 1 for 3, is due to that the
maximum numbers of iterations was reached before convergence of the probability density function.
The R package "fGarch’ was used and the number of iterations was increased (in the package the

function "garchFit’ is used to fit models) with no effect. When fitting other models the AIC was

increased, due to this the model was selected.
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The Jarque-Bera test suggests that the standardized residuals (&;) are not normally distributed for all

GARCH models. It appears to be a small improvement in the QQ-plots. The Histograms are the same

as for ARMA. The quasi-likelihood method for parameter estimation still applies.

Table 9. Standardized residuals tests for Silver

Test Residuals Statistic P-value
Jarque-Bera Test & Chi*2 216651.7 O
Ljung-Box Test & Q(10) 13.08905 0.2187354
Ljung-Box Test & Q(15) 20.44664  0.1554603
Ljung-Box Test & Q(20) 29.19832  0.0839272

The Ljung-Box test null hypothesis is accepted for Q (10), Q (15) and Q (20). This indicates that the

standardized residuals are considered as white noise which means that the model is sufficient. This

result is different from the selected ARMA model for silver, where the null hypothesis is rejected.

McLeod-Li test standardized residuals Silver
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Figure 6. McLeod-Li test for standardized residuals of ARMA (5, 4), GARCH (2, 1) for silver price return.

The McLeod-Li test indicates that the standardized residuals are homoscedastic, accepting the null

hypothesis for almost all lags. This is different from the selected ARMA model where all standardized

residuals reject the null hypothesis. It is clear that the GARCH model has a better fit than ARMA.

Table 10. Standardized residuals tests for Nickel

Test Residuals Statistic P-value
Jarque-Bera Test & Chi*2 1519799 0
Ljung-Box Test & Q(10) 4.022492  0.9463266
Ljung-Box Test & Q(15) 5.95384 0.9805127
Ljung-Box Test & Q(20) 9.200908  0.9804613

The Ljung-Box test null hypothesis is accepted for Q (10), Q (15) and Q (20). This indicates that the

standardized residuals are considered as white noise. This means that the model is sufficient.
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McLeod-Li test standardized residuals Nickel
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Figure 7. McLeod-Li test for standardized residuals of ARMA (5, 5), GARCH (1, 1) for nickel price return.

The McLeod-Li test indicates that the standardized residuals are homoscedastic, accepting the null

hypothesis for almost all lags. This is different from the selected ARMA model where all standardized

residuals reject the null hypothesis. This model is therefore more suitable.

Table 11. Standardized residuals tests for Copper

Test Residuals Statistic P-value
Jarque-Bera Test & Chi*2  430.0639 0
Ljung-Box Test & Q(10) 9.757793  0.4619939
Ljung-Box Test & Q(15) 14.01829  0.5241428
Ljung-Box Test & Q(20) 18.60587  0.5475616

The Ljung-Box test null hypothesis is accepted for Q (10), Q (15) and Q (20). This indicates that the

standardized residuals are considered as white noise. This means that this model is also sufficient.

McLeod-Li test standardized residuals Copper
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Figure 8. McLeod-Li test for standardized residuals of ARMA (5, 4), GARCH (1, 2) for copper price return.

The McLeod-Li test indicates that the standardized residuals are homoscedastic, accepting the null

hypothesis for almost all standardized residuals. This is different from the selected ARMA model
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where all standardized residuals reject the null hypothesis. It is clear that this model is preferred for

this time series.

For visualizations of the QQ-plots and Histograms for the standardized residuals of the GARCH

models, see Appendix B.

Table 12.

Forecast values(f;)

Model

ARMA Silver
GARCH Silver
ARMA Nickel
GARCH Nickel
ARMA Copper
GARCH Copper

MASE t,
0.65247
0.65093
0.7027278
0.6989116
0.65763
0.651093

All models are more effective than the naive method. ARMA and GARCH models have

approximately the same result for one-step ahead forecast values.

Table 13.

Running standard deviation(s,)

Model

ARMA Silver
GARCH Silver
ARMA Nickel
GARCH Nickel
ARMA Copper
GARCH Copper

MASE SMAPE
1.180883 136.5816
0.9976456 73.98603
1.233946 164.1894
0.9633961 49.60723
1.292256 150.6513
0.9047982 67.93425

The Running standard deviation has a lower value for each GARCH model compared to ARMA, for

both MASE and sMAPE. This result strongly suggests that GARCH models are more efficient than

ARMA models for these time series. For graphic illustration for both forecast values and running

standard deviation, see Appendix C.

Table 14. Correct pairs of observed signs

Model Correct pairs z-value
ARMA Silver 0.51206 2.271638*
GARCH Silver 0.49932 -0.1280857
ARMA Nickel 0.48313 -1.723054
GARCH Nickel 0.50383 -0.06945327
ARMA Copper 0.47124 -2.937465*
GARCH Copper 0.551 5.208995%*

*significant at 5 %
** significant at 1 %
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The results for the correct pairs of signs are varying. There are only three models which are
significantly better at predicting positive and negative values correct. The ARMA model for silver is
significant at 5 % level, with 51.206 % and the GARCH model for copper is significant at 1% level
with 55.1 % correct predictions. If the ARMA model for copper is interpreted in reverse, it has correct

prediction at 52.876 % and is significant at 5 % level.

5 Conclusion

For forecast values ARMA and GARCH are equal in accuracy. However, the GARCH is more
efficient at forecasting the running standard deviation. If only forecast values are demanded, it is not
necessary to use heteroscedastic models. However, for financial data, efficiency is often seen as
crucial and then models accounting for heteroscedasticity are needed. The efficient market hypothesis

is not rejected for nickel and silver. Copper, on the other hand, seems to reject this hypothesis.

The Ljung-Box test gives a false reassurance when suggesting that the ARMA models are sufficient
for nickel and copper. This is contrary to all other test results and measures. The McLeod-Li test
strongly suggests that GARCH should be used for all three time series. When measuring the forecast
accuracy of the running standard deviations the GARCH is more effective than ARMA, in all three
time series, for both MASE and sMAPE. For forecast values, ARMA and GARCH are equally
accurate according to MASE. It can be concluded that GARCH models are more accurate than ARMA
and that models accounting for heteroscedastic data are necessary for metal prices. Also, that the

relevance of the Ljung-Box test as an indicator of most efficient model is questionable.

The efficient market hypothesis seems to apply for nickel, where correct pair of sign does not yield a
significant result. The ACF and PACEF also suggests that nickel’s logarithmic price return should be
considered as white noise. This means that the logarithmic price of nickel can be described as a
random walk process with no arbitrage opportunities. For silver, the pairs of sign is significant only for
ARMA. However, with such a large sample size, rejecting the null hypothesis becomes more probable.
The ACF and PACF indicates that the silver logarithmic price return is not white noise. These results
are inconclusive to reject the efficient market hypothesis. For copper, the test using correct pair of sign
is significant for both ARMA and GARCH, even if the results of the ARMA model needs to be
interpreted in reverse. The ACF and PACEF indicates that logarithmic price return is not white noise.
Copper’s logarithmic price return suggests arbitrage opportunities and, thereby, rejects the efficient

market hypothesis.
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The selected models are the ones which minimize AIC, but the difference between the AIC values for
the models are only marginal for all metals. As an example, the difference between the highest and
lowest AIC, for the ARMA models for silver, is about 0.005 %. The order of ARMA and GARCH
does not, in terms of AIC seem to make a crucial difference. It is possible that other criteria for

selecting models would render a more thorough analysis.

Another approach to compare efficiency of ARMA and GARCH models would be to conduct a
quantitative simulation study. In this thesis only three empirical time series are used. One can apply
our methodology on a larger number of different metals, which would yield a more general result.
Another angle of incidence would be to further analyze and assume another distribution of the
residuals when fitting models. By using the likelihood method, based on normally distributed
residuals, for estimating parameters, the parameters estimates are correct but not necessarily effective
when the residuals are not normally distributed. For a more thorough test of the efficient market
hypothesis other distributions should be tried to achieve more efficient models. Also, only simple
GARCH models are examined. For further research, it would be relevant to compare several types of

GARCH models such as the EGARCH, QGARCH and GJR-GARCH.
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Appendix A

Table 15. Silver

AR/MA (AIC) 0 1 2 3
0 -41394.42  -41536.51 -41534.64 -41537.62
1 -41532,2 -41534.58 -41533.15 -41536.51
2 -41536.18 -41550.11 -41536.83 -41563.8
3 -41538.45 -41548.12 -41546.13 -41565.37
4 -41536.94 -41546.13 -41544.22 -41542.64
5 -41535.1 -41533.01 -41531.08 -41559.6
Table 16. Nickel
AR/MA (AIC) 0 1 2 3
0 -11799.6 -11798.99 -11798.54 -11799.64
1 -11798.92 -11797.37 -11797.27 -11798.33
2 -11798.84 -11797.56 -11800.87 -11802.47
3 -11799.56 -11798.48 -11802.4 -11800.8
4 -11800.22 -11798.71 -11798.59 -11798.55
5 -11799.63 -11798.31 -11799.46 -11794.55
Table 17. Copper
AR/MA (AIC) 0 1 2 3
0 -13099.94 -13112.16 -13110.26 -13110.93
1 -13111.96 -13110.37 -13108.19 -13112.46
2 -13110.09 -13108.42 -13106.51 -13114.71
3 -13112.1 -13112.83 -13113.48 -13109.51
4 -13114.71 -13112.71 -13111.81 -13118.54
5 -13112.71 -13110.71 -13110 -13116.45
Table 18. Silver
ARMA(p,q)-GARCH(u,v) AIC- value
ARMA(5,5)-GARCH(1,2) -5.148399
ARMA(4,5)-GARCH(1,2) -5.148085
ARMA(1,5)-GARCH(2,2) -5.148010
ARMA(5,1)-GARCH(2,2) -5.147965
ARMA(1,5)-GARCH(1,2) -5.147936
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Table 19. Nickel

ARMA(p,q)-GARCH(u,v)
ARMAC(S,5)-GARCH(1,1)
ARMA(5,5)-GARCH(1,2)
ARMAC(S,5)-GARCH(2,1)
ARMA(5,5)-GARCH(2,2)
ARMA(4,2)-GARCH(1,1)

AIC- value
-4.723885
-4.723457
-4.723080

-4.722690
-4.721061

Tabll 20. Copper

ARMA (p,q)-GARCH(u,v)
ARMA(5,4)-GARCH(1,2)
ARMA(5,5)-GARCH(1,2)
ARMA(4,5)-GARCH(2,1)
ARMA(2,5)-GARCH(2,1)
ARMA(5,5)-GARCH(2,1)

AIC- value
-5.3065
-5,3026
-5,2909
-5,2907
-5,2904
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Appendix B
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Figure 9. QO-plot and Histogram for standardized residuals of ARMA (3, 3) for silver price return.
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Figure 10. QQ-plot and Histogram for standardized residuals of ARMA (2, 3) for nickel price return.
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Standardized Residuals Copper Squared Standardized Residuals Copper
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Figure 11. QQ-plot and Histogram for standardized residuals of ARMA (4, 3) for copper price return.
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Figure 12. QQ-plot and Histogram for standardized residuals of ARMA (5, 4), GARCH (2, 1) for Silver price return.
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Figure 13. QO-plot and Histogram for standardized residuals of ARMA (5, 5), GARCH (1, 1) for nickel price return.
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Figure 14. QQ-plot and Histogram for standardized residuals of ARMA (5, 4), GARCH (1, 2) for copper price return.
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Appendix C

Visualization of one-step ahead forecast
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Figure 15. Logarithmic price return and one-step ahead point estimation for silver ARMA (3, 3), nickel ARMA (2, 3) and
copper ARMA (4, 3).
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Figure 16. Logarithmic price return and one-step ahead point estimation for silver ARMA (5, 4) GARCH (2, 1), nickel ARMA

(5, 5) GARCH (1, 1) and copper ARMA (5, 4) GARCH (1, 2).
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Figure 17. Running standard deviation for copper and one-step ahead forecasts for silver ARMA (5, 4) GARCH (2, 1), nickel

ARMA (5, 5) GARCH (1, 1) and copper ARMA (5, 4) GARCH (1, 2).
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Figure 18. Running standard deviation for nickel and one-step ahead forecasts for silver ARMA (5, 4) GARCH (2, 1), nickel
ARMA (5, 5) GARCH (1, 1) and copper ARMA (5, 4) GARCH (1, 2).
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Appendix D Autocorrelation and Partial Autocorrelation for Price Return
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Figure 19. Autocorrelation function for price return.
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Partial ACF
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Figure 20. Partial autocorrelation function for price return.
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Appendix E The simulated ARMA and GARCH
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Figure 21. The simulated ARMA for silver, nickel and copper.
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Figure 22. The simulated GARCH for silver, nickel and copper.
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