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Abstract 

This thesis compares Auto Regressive Moving Average (ARMA) and Generalized Auto Regressive 

Conditional Heteroscedacity (GARCH) models for three metal commodities. ARMA models have an 

unconditionally non-random and constant variance, which typically serves well in effectively 

representing homoscedastic data. The GARCH models feature variable variance that is non-random 

when conditioning on the past. Thus these models are often used to represent heteroscedastic data. It is 

documented that financial data, including metal commodities frequently exhibit heteroscedacity. This 

thesis investigates if this heteroscedacity in the observed historical data is shown in the quality of its 

ARMA and GARCH fits. The data used for comparison involve three time series of logarithmic price 

return for silver, nickel and copper. In the hypothesis it is assumed that GARCH is more efficient than 

ARMA. The efficient market hypothesis is also tested.   

 

The logarithmic price returns are stationary which is confirmed by statistical tests. Thereby, it is 

appropriate to fit ARMA and GARCH models. The ARMA and GARCH models with the lowest 

Akaike’s Information Criterion (AIC) are selected from each series. The models forecasted values and 

running standard deviations are cross-validated with the observed historical data using three measures. 

These measures are Mean Absolute Scaled Error (MASE), symmetric Mean Absolute Percentage 

Error (sMAPE) and correct pairs of sign which all provide different assessment of magnitude of error 

in estimation of the observed historical records. The correct pairs of sign are then tested against the 

efficient market hypothesis. 

 

The error in estimation for forecast values does not yield a difference between ARMA and GARCH 

models by MASE. For the running standard deviation, both measures MASE and sMAPE are applied. 

The GARCH model is then more efficient than ARMA. In this sense, the thesis confirms the increased 

efficiency of using GARCH models for metal commodities.  

 

According to correct pairs of sign measure, nickel has no arbitrage opportunities for logarithmic price 

return. This is expected according to the efficient market hypothesis. However, the test indicates it is 

possible to predict correct sign of logarithmic price return for copper and silver, which indicates that 

the efficient market hypothesis does not always apply.  

 

Keywords: ARMA, GARCH, MASE, sMAPE, Heteroscedasticity, Stationarity, Ljung-Box test, 

McLeod-Li test, Running Standard Deviation, Forecast value. 
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1 Introduction 
 

Metal commodities account for a substantial part of trading and commerce around the world. 

Therefore, analyses of their price returns are important. A method for modeling price return is through 

time series analysis. For homoscedastic data Autoregressive Moving Average (ARMA) models are 

used and for heteroscedastic data, Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH) models are used. 

Time series analysis has developed considerably since the publication of. Box and Jenkins classic 

Time Series Analysis: Forecasting and Control (1974). For example, times series analysis has also 

been developed to fit financial data. Financial data have been observed to have heteroscedastic 

properties, meaning variable volatility according to Cryer and Chan (1998). Therefore, a new model 

called Auto Regressive Conditional Heteroscedastic (ARCH) was introduced by Engle (1982). The 

ARCH model estimates variance more efficiently. 

The purpose of this thesis is to compare effectiveness of ARMA and GARCH models. ARMA models 

assuming homoscedastic properties, meaning constant variance. Also, the efficiency of the market for 

these metals is investigated through observing if fitted models can forecast future prices.   

1.1 Hypothesis 
Commodities including metals are often assumed to have heteroscedastic data for price returns. Due to 

this the GARCH model should be more effective than ARMA. Also, the efficient market hypothesis, 

with no arbitrage opportunities, states that future prices should not be possible to predict. 

The aim of this thesis is to verify this hypothesis and in the process answer these questions: 

 Which of ARMA or GARCH models is the most accurate for time series of silver, nickel and 

copper price return? 

 Are models accounting for heteroscedastic data needed for these types of time series? 

 Does the efficient market hypothesis apply for the logarithmic price returns of silver, nickel 

and copper? 

1.2 Framework 
This thesis focuses on statistical analysis. In addition, the economic theory of the efficient market 

hypothesis is interpreted in the context of the fitted model. The central aim of this thesis is the 

comparison of performance between ARMA and GARCH models. Only one type of GARCH model, 

is applied, which is viewed to be sufficient for the ordinary comparison. In short, considering other 

types of GARCH models is not needed to answer the main question of model adequacy. 

Three time series are used to facilitate this comparison. The times series sample sizes (2,609 for both 

copper and nickel 8,871 for silver) are considered adequate for statistical fitting of the model’s. The 

comparison of model accuracy is conducted only between the models one step ahead forecasts, longer 
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steps of predictions are not discussed. While there are many cross-validation measures for model 

accuracy, they are measuring similar features and therefore only three have been selected: Mean 

Absolute Scaled Error (MASE), symmetric Mean Absolute Percentage Error (sMAPE) and correct 

pairs of sign.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   7 
 

2 Data 
 

The data set used to facilitate the comparison of the models consist of three time series of silver, nickel 

and copper prices. The time series of silver price starts on 1980-01-01 and ends on 2013-12-31, with 

8,871 observations. The time series of nickel and copper price starts on 2004-06-04 and ends on 2014-

06-04, with 2,609 observations each. The prices have been observed and registered at the London 

Metal Exchange. They are the closing prices in US cents per troy ounce, for silver. The closing prices 

for nickel and copper, from each trading day, is in US dollar per metric ton. (Thomson Reuters 2014). 

Below, these data are plotted in Figure 1. 

 

 

 

 

Figure 1. Original time series for silver price, nickel price and copper price 
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2.1.1 Transforming the commodity prices 

From Figure 1, one can see that metal prices can be difficult to model directly. The long lasting trends 

are far from stationary and difficult to model stochastically with models such as ARMA and GARCH. 

It is, therefore, a standard procedure to model the logarithmic price return rather than prices 

themselves. Here, the procedure is briefly discussed. 

If Xt is the price on the day t, then the return on the price for the next day is Xt+1/Xt . This can be 

viewed as the return on one dollar invested the previous day. The logarithmic return is defined as  

Yt = log⁡(
Xt+1
Xt

) 

The plotted logarithmic price returns are shown in Figure 2. 

Figure 2. Transformed time series for price return for silver, nickel and copper. 
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2.1.2 Efficient Market Hypothesis 

The transformed data, shown in Figure 2, can be modeled by a stationary process. In fact, this connects 

with the issue of arbitrage opportunities.  

The arbitrage can shortly be described as a possibility of making gains on the market by predicting 

future prices. The efficient market hypothesis states that the market prices should not allow for 

arbitrage. There is an age-long debate about this in the theory of finance. Here, it is briefly discussed 

in the context of transforming the data in order to obtain a stationary process. 

If the efficient market hypothesis applies, the price series can be described as random walk processes. 

This was shown to be true for daily price return of copper and nickel between 1989 and 2007, see Otto 

(2010). 

Frequently, the price is replaced by the logarithmic price and the price return by the logarithmic price 

return: 

Wt = log(Xt), 
 

(1) 

Wt −Wt−1 = Yt = log (
Xt

Xt−1
). 

 

(2) 

It can be demonstrated that the efficient market hypothesis can be reduced to the random walk 

assumption on the logarithmic prices, i.e. random walk process⁡𝑊𝑡. 

𝑊𝑡 = 𝑐 +𝑊𝑡−1 + 𝑒𝑡 , where c is a drift for a random walk process. 

When a transformation to logarithmic price return is conducted as above, the new transformed time 

series is a stationary white noise process: 

𝑐 + et = Wt −Wt−1 

 

(3) 

which satisfies, 

𝑐 = 𝐸[(𝑒𝑡 + 𝑐)],  
 

(4) 

𝜎𝑒
2 = 𝑉𝑎𝑟[(𝑒𝑡 + 𝑐)]. 

 

(5) 

 

This means that the model cannot forecast future values any better than guessing, implying that there 

are no arbitrage opportunities.  

From this brief argument it follows that the logarithmic price return process should have a form of 

white noise, which is a stationary process. However, very often one does not initially restrict to this 

special class of stationary processes and sometimes dependence is often considered, for example 

through adding an autoregressive part to the white noise.  It is then required to check if the 

autoregressive part indeed brings some benefits in modeling real data. 



   10 
 

 

2.1.3 Dickey-Fuller test 

In order to confirm whether the logarithmic price return is stationary and to be able to continue with 

model fitting of ARMA and GARCH, the Dickey-Fuller test is used. For the case of an AR (1)-

process, the autoregressive parameter should be smaller than one in its absolute value, The Dickey-

Fuller test subtracts 𝑦𝑡−1 on both sides of the AR (1)-process and investigates the unit root from the 

characteristic equation. If there is a unit root, then the time series is non-stationary. (Enders 2009, 221-

225). 

H0:⁡⁡Unit⁡root 

H1:⁡⁡No⁡unit⁡root  

 

 

 

 

 

 

 

The actual p value is smaller than 0.01 but the R package, `tseries’ that is used for performing this test 

does not report smaller values (in the package the function `adf.test()’ is used  on the data). Since the 

null hypothesis are rejected for all series, it implies that the logarithmic price returns are stationary 

which makes it reasonable to model with ARMA and GARCH.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Test For Stationarity 

Time Series Dickey-Fuller (⁡𝜏) P-value 

Silver -19.581 0.01 
Nickel -13.241 0.01 
Copper -11.909 0.01 
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3 Methodology 
 

Selecting specific models to compare is the next step. First, the orders that will be examined for 

ARMA (p,q) and GARCH (p,q,u,v) are chosen. The different combinations of orders leads to 23 

different for ARMA and 168 of GARCH. All these are then fitted, and the ARMA and GARCH with 

the lowest Aikaike’s Information Criterion (AIC) value are selected from each time series. The ranges 

of orders that are examined are sufficient to answer the thesis questions. The Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF) are also regarded as an indication of order. 

However, the AIC criterion is prioritized. 

The standardized residuals of the selected models are analyzed to determine if they are considered as 

white noise by the Ljung-Box test and if they are homoscedastic or heteroscedastic by the McLeod-Li 

test. These tests imply which model, ARMA or GARCH that is most appropriate. 

The selected ARMA and GARCH models are used to estimate one-step ahead forecast value and 

running standard deviation. The estimated values are cross-validated with the observed historical 

values using three measures: sMAPE, MASE and correct pairs of signs. 

3.1 Models 
This thesis focuses on two classes of models: ARMA and GARCH. This part will provide a short 

explanation of what these models and their respective properties are. For these definitions of general 

models and later in chapter 3, when explaining the general functions of the applied tests and measures 

the {𝑥𝑡 , 𝑥𝑡−1, 𝑥𝑡−2…𝑥𝑛} realization of the generic time series⁡𝑥𝑡 is used. It should not be confused 

with Yt, which is defined as the logarithmic price return.  

3.1.1 ARMA 

An ARMA model is an Autoregessive process (AR) and a Moving Average process (MA). The 

ARMA model contains both parts. When a time series requires both autoregressive and moving 

average components, an ARMA (p,q) model is used. Its general form is: 

 

𝑥𝑡 = 𝜇 + ϕ1𝑥𝑡−1 +⋯+ϕ𝑝𝑥𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 −⋯− 𝜃𝑞𝑒𝑡−𝑞. (6) 

 

For stationarity, invertibility for the MA (q) part and stationarity for the AR (p) part are both required. 

 

In the MA (q)-process, the q stands for the order and describes how many time lags back in time the 

model considers. The order also equals the number of parameters in the MA (q)-process:  

 

𝑥𝑡 = 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 −⋯− 𝜃𝑞𝑒𝑡−𝑞, 

 

 

 

(7) 
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so that the generic value yt is a linear function of a constant value and q stochastic 

variables (Cryer and Chan. 2008, 57-65). In the above equation, 𝑒𝑡 represent 

random innovation, i.e. a random noise for which: 

 

𝐸[𝑒𝑡] = 0, 

 

(8) 

𝑉𝑎𝑟(𝑒𝑡) = 𝜎𝑒
2, 

 

(9) 

where 𝜎𝑒
2 is the variance of the innovation. The MA (q)-process is stationary when the process is 

invertible. An MA (q)-process is invertible when it can be rewritten as an AR (p)-process. In order for 

that to occur, its roots of the MA (q)-process characteristic equation must exceed one in absolute value 

(Cryer and Chan. 2008, 57). The characteristic equation for the MA (q)-process is: 

 

1 − 𝜃1𝑥 − 𝜃2𝑥
2 − 𝜃3𝑥

3 −⋯− 𝜃𝑞𝑥
𝑞 = 0. (10) 

 

Similarly, in the AR (p)-process, the p is the order and also describes how many time lags back in time 

the model considers. The order also equals the number of parameters in the AR (p)-process, 

 

𝑥𝑡 = ϕ1𝑥𝑡−1 +ϕ2𝑥𝑡−2 + ϕ3𝑥𝑡−3 +⋯+ϕ𝑝𝑥𝑡−𝑝 + 𝑒𝑡, 

 

is a linear combination of its p last values of itself (Cryer and Chan. 2008, 66). In 

the above equation, 𝑒𝑡 represent random innovation, i.e. a random noise for 

which: 

 

(11) 

 

 

 

𝐸[𝑒𝑡] = 0, 

 

(12) 

𝑉𝑎𝑟(𝑒𝑡) = 𝜎𝑒
2. 

 

(13) 

The condition for stationarity for the general AR (p)-process is the same as for an MA (q)-process, 

namely, roots of the characteristic equation must exceed one in modulus (Cryer and Chan. 2008, 76). 

The characteristic equation of the AR (p)-process is: 

 

1 − ϕ1𝑥 − ϕ2𝑥
2 − ϕ3𝑥

3 −⋯−ϕ𝑝𝑥
𝑝 = 0. (14) 

  

 

3.1.2 GARCH 

In the above models the variance of innovations (often referred to as volatility) is constant over time 

(homoscedastic variance). This often proves to be too restrictive of an assumption for real data. Under 

such an assumption, features like volatility clustering cannot be modelled. For this reason an ARCH 

model has been proposed by Engle (1982) to account for heteroscedastic variance of a time series 

applied on an AR (p)-process. The GARCH that combines with an ARMA (p, q)-process was 

introduced by Bollerslev (1986), where the conditional variance 𝜎𝑡 is used. A GARCH (p, q, u, v)-

process for an ARMA (p, q)-process is defined as, 
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𝑥𝑡 =⁡ϕ1𝑥𝑡−1 +⋯+⁡ϕ𝑝𝑥𝑡−𝑝 + 𝑒𝑡 + Ɵ1𝑒𝑡−1 +⋯+ Ɵ𝑞𝑒𝑡−𝑞 , 

 

where, 

 

(15) 

𝑒𝑡 =⁡𝜎𝑡𝜀𝑡, (16) 

 

where 𝜀𝑡 is defined as the standardized residuals and,   

 

𝜎𝑡
2 = 𝜔 + 𝑎1𝑒𝑡−1

2 +⋯+ 𝑎𝑢𝑒𝑡−𝑢
2 + 𝛽1𝜎𝑡−1

2 +⋯+ 𝛽𝑣𝜎𝑡−𝑣
2 .         (17) 

 

The notation for the order is u and v, which represents the number of parameters α and β. It is 

important to note that the innovation term 𝑒𝑡 is not defined same as in the ARMA model (Cryer and 

Chan. 2008, 285-289). The most important property of the GARCH model is that the stochastic and 

variable volatility 𝜎𝑡, is not random given the past of the process 𝑥𝑡, which can be seen from (12).  

3.2 Model fitting 
For all models the maximum likelihood method is used for parameter estimation. The likelihood 

estimation is defined on the joint probability density function and has for the conditional estimation a 

variance dependent on time,⁡⁡𝐿(ϕ, 𝜃, 𝜇, 𝜎𝑡
2|𝑥1, 𝑥2, … , 𝑥𝑡) , which the unconditional estimation has not 

𝐿(ϕ, 𝜃, 𝜇, 𝜎2).  It is based on the normal distribution of 𝜀𝑡 in (16). Hamilton (1994, 117-148). An 

advantage with this method is that it can estimate the AIC-value and provides efficient parameter 

estimation methods for both ARMA and GARCH models. 

3.2.1 Model diagnostics 

Once the models have been fitted there are several methods to select the most suitable one. In this 

thesis the AIC is used as a comparable measure of the models suitability. The models with the lowest 

values are the most suitable. The AIC is calculated as,  

 

AIC  = -2log (maximum likelihood) + 2k,          (17) 

 

where k is the number of parameters, p is the order of the AR (p)-process and q is the order of the 

MA(q)-process. (Akaike. 1973). It is a commonly used method for selecting the model order.  

 

Further, the standardized residuals of each selected model is tested with the Ljung-Box and McLeod-

Li test to examine whether the model is appropriate to use for the time series. The standardized 

residuals are in these large samples approximated as normal distributed due to the central limit 

theorem. To investigate the suitability of this approximation, the Jarque-Bera test is used. The 

standardized residuals are also illustrated with histograms and quantile-quantile plot (QQ-plot). Below, 

the Jarque-Bera and Ljung-Box tests are briefly described. 
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3.2.2 Jarque-Bera test 

The Jarque-Bera test suggests if the standardized residuals are normally distributed or not. It takes in 

account that normal distribution has zero skewness and excess kurtosis, assuming that 𝜀1,⁡𝜀2,…,⁡𝜀𝑛 is 

independently and identically distributed standardized residuals. g1 is the sample skewness, g2  is the 

sample excess kurtosis and n is the sample size (Cryer and Chan. 1998, 284-285). The test is based on 

the following statistic: 

 

𝐽𝐵 = ⁡
𝑛𝑔1

2

6
+⁡

𝑛𝑔2
2

24
∈̃ 𝜒2(2) 

 

(18) 

If the above statistic is large as measured by the upper quantiles of the chi-square distribution, the 

following 𝐻0 hypothesis is rejected in the favor of 𝐻1. 

 

𝐻0:⁡ Skewness and excess kurtosis are zero – normal distribution 

 

𝐻1:  Skewness or excess kurtosis are not zero – non-normal distribution 

3.2.3 Ljung-Box test 

The Ljung-Box testis used to test if the residuals of the model have autocorrelation. The squared 

autocorrelation of a samples residuals is used as the base for the test. Its autocorrelation function is 

defined:  

 

𝜌𝑖̂(𝑘) = 
∑ (𝑥𝑡−𝑥̅)(𝑥𝑡−𝑘−𝑥̅)
𝑛
𝑡=𝑘+1

∑ (𝑥𝑡−𝑥̅)
2𝑛

𝑡=1
⁡ , 𝑘 = 1,2⁡… ⁡𝐾, (19) 

 

where 𝑥̅ is the sample mean and K = maximum lag. The Ljung-Box test is then based on the test 

statistic, 

 

𝑄𝐿𝐵 = 𝑛(𝑛 + 2)(
𝜌1
2

𝑛−1

̂
+

𝜌2
2

𝑛−2

̂
+…+

𝜌𝐾
2

𝑛−𝐾

̂
)⁡ ∈̃ 𝜒2(𝐾 − 𝑝 − 𝑞) 

(20) 

 

If the 𝑄𝐿𝐵 statistic is large as measured by the by the upper quantiles of the chi-square distribution the 

following 𝐻0 hypothesis is rejected in the favor of 𝐻1. 

 

𝐻0:⁡𝑄𝐿𝐵 ≤⁡⁡𝜒𝑘−𝑝−𝑞
2  Residuals constitute a white noise 

𝐻1: 𝑄𝐿𝐵 > 𝜒𝑘−𝑝−𝑞
2  Residuals show some dependence – they are not a white noise. 

 

If the null hypothesis is not rejected, the residuals of the autocorrelation function is considered as 

white noise and if it is rejected it indicates there is some dependence. (Cryer and Chan.1998, 183-184). 

3.2.4 Homoscedasticity and heteroscedasticity 

A homoscedastic time series has a constant variance independent from time, which is assumed in 

ARMA models. A heteroscedastic time series has a variable variance dependent on time, which is 

taken in account by the GARCH model. Heteroscedasticity is present in many financial data sets, 
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including price for metal commodities. Therefore, GARCH are assumed to be more efficient than 

ARMA models (Cryer and Chan. 1998, 277). 

3.2.5 McLeod-Li test 

The McLeod Li- test is based on the Ljung-Box test. The difference between these two tests is that the 

McLeod-Li test tests the residuals autocorrelation of a squared series 𝑥𝑡
2, thereby easier detecting 

volatility clustering. First, the autocorrelation function of the squared series is defined: 

 

𝜌̂𝑀(𝑘) = 
∑ (𝑥𝑡

2−𝑥̅2)(𝑥𝑡−𝑘
2 −𝑥̅2)𝑛

𝑡=𝑘+1

∑ (𝑥𝑡
2−𝑥̅2)2𝑛

𝑡=1
⁡ , 𝑘 = 1,2⁡… ⁡𝐾, 

 

(21) 

where 𝑥̅2 is the squared sample mean and K = maximum lag. The McLeod-Li test statistic is then 

based on the same as for the Ljung-Box test: 

 

 

𝑄𝑀𝐿 = 𝑛(𝑛 + 2)(
𝜌1
2

𝑛−1

̂
+

𝜌2
2

𝑛−2

̂
+…+

𝜌𝐾
2

𝑛−𝐾

̂
)⁡ ∈̃ 𝜒2(𝐾 − 𝑝 − 𝑞). 

 

(22) 

After the 𝑄𝑀𝐿 statistic is calculated the decision rule is the same as for the Ljung-Box and the Jarque-

Bera test. If the 𝑄𝑀𝐿 statistic is large as measured by the upper quantiles of the chi-square distribution 

the following 𝐻0 hypothesis is rejected in the favor of 𝐻1. 

 

𝐻0:⁡𝑄𝑀𝐿 ≤⁡⁡𝜒𝑘−𝑝−𝑞
2  Still white noise - Homoscedastic lag 

𝐻1: 𝑄𝑀𝐿 > 𝜒𝑘−𝑝−𝑞
2  Volatility clustering - Heteroscedastic lag 

 

This test visualizes if the standardized residuals are homoscedastic or heteroscedastic. (Chen. 2002). If 

the null hypothesis is not rejected the standardized residuals are assumed to be homoscedastic. If for 

some lags the result is significant then there is indication for heteroscedastic residuals. (Cryer and 

Chan. 1998, 282-283.) 

 

3.3 Forecasting 
 

3.3.1 Forecasting methods 

Forecasting with ARMA and GARCH models is conducted through: 

 

𝑥(𝑙) =⁡ϕ1𝑥(𝑙−1) +⁡ϕ2𝑥̂(𝑙−2) +⋯+ϕ𝑝𝑥̂(𝑙−𝑝) + Ɵ0 −⁡Ɵ1𝐸(𝑒𝑡+𝑙−1|𝑥1, 𝑥2, … , 𝑥𝑡)

−⁡Ɵ2𝐸(𝑒𝑡+𝑙−2|𝑥1, 𝑥2, … , 𝑥𝑡) − ⋯− Ɵ𝑞𝐸(𝑒𝑡+𝑙−𝑞|𝑥1, 𝑥2, … , 𝑥𝑡) 

(23) 

 

where, 

 

𝐸(𝑒𝑡+𝑙−𝑞|𝑥1, 𝑥2, … , 𝑥𝑡) = ⁡ {
0⁡𝑓𝑜𝑟⁡⁡𝑗 > 0
𝑒𝑡+𝑗⁡𝑓𝑜𝑟⁡𝑗 ≤ 0

 
(24) 
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The forecasting value is based on the estimated parameters in the model. Through those parameters a 

value for the next coming one and two up to (p,q) time lags in the future can be predicted (Cryer and 

Chan. 1998, 199-201). Both forecast values and running standard deviations are estimated in order to 

cross-validate and evaluate models rather than forecast future price return. The running standard 

deviation is used in order to compare the models efficiency in estimating the volatility of the series. 

The running standard deviations is repeatedly computed standard deviations for pairs of observations. 

This computation is repeated throughout the whole length of time series, the running standard 

deviation is defined as the standard deviation for 𝑥𝑖 and 𝑥𝑖+1. ⁡ 

3.3.2 Model accuracy 

To compare ARMA with GARCH, the accuracy of the estimated models is compared. The three 

measures used for this are MASE, sMAPE and correct pairs of sign. MASE is applied on both forecast 

values and running standard deviation. It is a scaled error measurement that compares the difference of 

forecasted values of the logarithmic price return, defined as 𝑓𝑡, and observed historical values 𝑥𝑡 with 

the residuals obtained from naïve forecasting. The same notation is used for sMAPE. When MASE is 

<1, the model gives on average, smaller error than the naïve method (Hyndman and Koehler. 2006). 

 

𝑀𝐴𝑆𝐸 =
1

𝑛
∑(

|𝑥𝑡 − 𝑓𝑡|
1

𝑛−1
∑ |𝑥𝑡 − 𝑥𝑡−1|
𝑛
𝑡=2

)

𝑛

𝑡=1

 

 

(25) 

 

The second measure utilized in this thesis is sMAPE, which shows the average error in percentage 

with a range from -200 % up to 200 %. sMAPE has a slightly different formula depending on the 

author. In this thesis, a variant of sMAPE defined by Makridakis (2000) is applied, written with the 

same notation as above. sMAPE has a disadvantage in that it does not show which direction the 

forecasting error occurs. Furthermore, it is not an applicable measure for negative forecast values. Due 

to this, it will only be applied for running standard deviation. 

𝑠𝑀𝐴𝑃𝐸 =⁡
1

𝑛
∑(

|𝑥𝑡 − 𝑓𝑡|

(𝑥𝑡 + 𝑓𝑡)/2
)

𝑛

𝑡=1

× 100 

 

(26) 

The final measure will count the pairs with similar signs of observed historical value and forecast 

value. The measure also calculates the percentage of pairs with similar signs. If the efficient market 

hypothesis applies the probability for a correct result should equal the probability for an incorrect 

result. To test if the measured percentage is significantly separated from p = 0.5, a Z-test will be 

conducted, where 𝑝̂ ⁡ ∈ Bin(n, 𝑝). The numbers of observation can approximately be normally 

distributed under the central limit theorem.  The Z-test is as follows: 
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Z =
𝑝−𝑝

σ
∈̃ N (0, 1).     (27) 

   

According to the efficient market hypothesis: 

 

H0: 𝑝̂ ≤
1

2
, 

𝐻1: 𝑝̂ >
1

2
. 

 

If the null hypothesis is not rejected it means that market efficiency cannot be ruled out. If, however, 

the null hypotheses is rejected, it suggests there are arbitrage opportunities in predicting future prices. 

4 Results 
 

Presented below are the results from model fitting, diagnostics and, finally, measures of forecast 

accuracy. First, the ACF and PACF results are interpreted as indicators for model selection.  

4.1 ACF and PACF 

The silver logarithmic price return has a significant lag at 1 and 9 for both ACF and PACF. Other lags 

are barely significant. The similar results for ACF and PACF indicate that silver logarithmic price 

return should have the same order of p and q. Nickel logarithmic price return barely has any 

significant lags for either ACF or PACF. This indicates that it can be described as a white noise 

process. Copper’s logarithmic price return has significant lags at 1 and 4 for the ACF. The PACF is 

significant at lag 1, 3 and barely at 4. This indicates that it ought to have an order of 4 for p and 3 or 4 

for q. For further details, see appendix D.  

 

4.2 ARMA Models 
ARMA models are selected from 23 different combinations. The orders of q in the MA (q)-process 

range from 0-3, and the orders of p, in the AR (p)-process range from 0-5. When minimizing the AIC-

value, these models are selected. 

 

Table 2. Selected models of ARMA 

 Silver Nickel Copper 

 Estimate Std. Error Estimate Std. Error Estimate Std. Error 
𝛟𝟏 -0.4182 0.1069 -0.5089 0.1504 0.4117 0.1761 
𝛟𝟐 -0.8171 0.0744 -0.7469 0.1401 -0.0470 0.4538 
𝛟𝟑 0.1507 0.0899 N/A N/A 0.4735 0.4236 

𝛟𝟒 N/A N/A N/A N/A 0.1021 0.0266 

𝛉𝟏 0.2899 0.1057 0.5319 0.1516 -0.4874 0.1765 

𝛉𝟐 0.7678 0.0662 0.7456 0.1496 0.0743 0.4602 

𝛉𝟑 -0.2417 0.0856 -0.0272 0.0246 -0.5055 0.4429 

𝛔 0.02322 N/A 0.02511 N/A 0.01950 N/A 
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The silver ARMA (3, 3) and the nickel ARMA (2, 3) have standard deviations lower than its 

parameters. The copper ARMA (4, 3) has, on the other hand, standard deviations that, in some cases, 

are larger than its parameters which indicates that these parameter estimations are not efficient. All 

three model orders are coherent with their ACF and PACF results, where nickel is modeling white 

noise. Both models for silver and nickel have a zero-mean which is expected for a market with no 

arbitrage opportunities. Copper, on the other hand, has a mean of 0.003. For further details, see 

Appendix A. 

 

The Jarque-Bera test suggests that the standardized residuals (𝜀𝑡) are not normally distributed, for all 

three models. Despite that the test suggests non-normality, the method of estimating the parameters, 

which is based on the normal likelihood, is still valid. This is due to the so-called quasi-likelihood 

method. This method is similar to the regression, where the normal likelihood yields the least square 

estimate that are also valid for non-normal models. The distribution is also visualized in the QQ-plot, 

where all the models render approximately the same results.  Histograms are visually asymptotic 

normally distributed. For QQ-plots and Histograms see Appendix B. 

 

Table 3. Standardized residuals tests for Silver 

Test Residuals  Statistic P-value 

Jarque-Bera Test 𝜀𝑡 Chi^2 327531.6 < 2.2e-16 

Ljung-Box Test 𝜀𝑡 Q(10) 55.8875 2.155e-08 

Ljung-Box Test 𝜀𝑡 Q(15) 74.7729 6.223e-10 

Ljung-Box Test 𝜀𝑡 Q(20) 90.278 6.628e-11 

 

The Ljung-Box test null hypothesis is rejected at significance level <1 % for Q (10), Q (15) and Q 

(20). This indicates that the standardized residuals are not considered as white noise. This means that 

the ARMA model does not explain the times series efficiently. 

 

Figure 3. McLeod-Li test for standardized residuals of ARMA (3, 3) for silver price return. 



   19 
 

The McLeod-Li test indicates that the standardized residuals are heteroscedastic. The null hypothesis 

is rejected for all lags at significance level <5 %. This confirms that the ARMA model does not 

account for heteroscedastic data.  

Table 4. Standardized residuals tests for Nickel 

Test Residuals  Statistic P-value 

Jarque-Bera Test 𝜀𝑡 Chi^2 1316.235 < 2.2e-16 

Ljung-Box Test 𝜀𝑡 Q(10) 2.4172 0.992 

Ljung-Box Test 𝜀𝑡 Q(15) 6.6753 0.966 

Ljung-Box Test 𝜀𝑡 Q(20) 7.9319 0.9923 

 

The Ljung-Box test null hypothesis is accepted for Q (10), Q (15) and Q (20). This indicates that the 

standardized residuals are considered as white noise. This means that the ARMA model explains the 

times series efficiently. 

 

Figure 4. McLeod-Li test for standardized residuals of ARMA (2, 3) for nickel price return. 

The McLeod-Li test indicates that the standardized residuals are heteroscedastic. The null hypothesis 

is rejected for all lags at significance level <5 %. This implies, again that the ARMA model does not 

account for heteroscedastic data. 

 

Table 5. Standardized residuals tests for Copper 

Test Residuals  Statistic P-value 

Jarque-Bera Test 𝜀𝑡 Chi^2 1225.115 < 2.2e-16 

Ljung-Box Test 𝜀𝑡 Q(10) 2.8704 0.9843 

Ljung-Box Test 𝜀𝑡 Q(15) 9.1196 0.8712 

Ljung-Box Test 𝜀𝑡 Q(20) 12.6074 0.8936 

 

The Ljung-Box test null hypothesis is accepted for Q (10), Q (15) and Q (20). This indicates that the 

standardized residuals are considered as white noise. This means that the ARMA model explains the 

times series efficiently. 
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Figure 5. McLeod-Li test for standardized residuals of ARMA (4, 3) for copper price return. 

The McLeod-Li test indicates that the standardized residuals are heteroscedastic. The null hypothesis 

is rejected for all lags at significance level <5 %. Again, the ARMA does not account for 

heteroscedastic data. 

4.3 GARCH Models 
GARCH models are selected from 168 combinations. The GARCH (p, q, u, v)-process ranges from 0-

5 for both p, q and 0-2 for both u and v, where its conditional distribution is set to normal distribution. 

The five models with the lowest AIC-value for each time series are presented in Appendix A 

Table 6. Selected GARCH model for Silver 

 Estimate Std. Error t-value Pr(>|t|) 
𝛍 -4.309e-04 4.750e-04 -0.907 0.364347 

𝛟𝟏 -0.2062 9.486e-02 -2.174 0.029688 

𝛟𝟐 -0.4626 2.975e-02 -15.547 < 2e-16 

𝛟𝟑  0.5464 5.317e-02 -10.276 < 2e-16 

𝛟𝟒 -0.5935 6.939e-02 --8.553 < 2e-16 

𝛟𝟓 -0.2567 6.718e-02 -3.821 0.000133 

𝛉𝟏 0.1190 9.728e-02 1.224 0.221086 

𝛉𝟐 0.4710 2.964e-02 15.891 < 2e-16 

𝛉𝟑 0.5062 5.946e-02 8.515 < 2e-16 

𝛉𝟒 0.5747 7.203e-02 7.978 1.55e-15 

𝛉𝟓 0.2095 6.839e-02 3.064 0.002188 

𝛚 1.061e-05 1.331e-06 7.971 1.55e-15 

𝛂𝟏 0.1777 1.049e-02 16.943 < 2e-16 

𝛃𝟏 0.1926 3.398e-02 5.669 1.44e-08 

𝛃𝟐 0.6243 3.454e-02 18.075 < 2e-16 

 

All parameters for the ARMA (5, 5)-GARCH (1, 2) are significant at 5 % with exception of⁡θ1. The 

parameters that are not significant are kept because omitting orders of the MA (q)-process results in a 

higher AIC-value. The parameters of GARCH (u, v) are all significant which is important because 

they model the conditional variance and facilitates the comparison between ARMA and GARCH. 
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Table 7. Selected GARCH model for Nickel 

 Estimate Std. Error t-value Pr(>|t|) 
𝛍 1.430e-04 2.440e-04 0.586 0.558018 

𝛟𝟏 -5.698e-01 5.844e-02 -9.751 < 2e-16 

𝛟𝟐 8.373e-02 1.131e-01 0.740 0.459224 

𝛟𝟑 -1.614e-01 1.086e-01 -1.486 0.137212 

𝛟𝟒 2.896e-01 8.768e-02 3.303 0.000957 

𝛟𝟓 8.150e-01 8.194e-02 9.947 < 2e-16 

𝛉𝟏 5.799e-01 6.199e-02 9.355 < 2e-16 

𝛉𝟐 -8.181e-02 1.188e-01 -0.689 0.491056 

𝛉𝟑 1.414e-01 1.201e-01 1.177 0.239153 

𝛉𝟒 -2.817e-01 9.165e-02 -3.074 0.002110 

𝛉𝟓 -7.909e-01 9.028e-02 -8.760 < 2e-16 

𝛚 5.496e-06 1.878e-06 2.926 0.003431 

𝜶𝟏 6.493e-02 9.780e-03 6.639 3.15e-11 

𝛃𝟏 9.275e-01 1.095e-02 84.739 < 2e-16 

 

Four parameters ϕ2, ϕ3, θ2, θ3 are not significant at 5 %. All other parameters are significant. 

However excluding these parameters results in a higher AIC-value. Due to this, the model is selected. 

The parameters for conditional heteroscedasticity are significant, which again, is important for the 

comparison between ARMA and GARCH.  

Table 8. Selected GARCH model for Copper 

 Estimate Std. Error t-value Pr(>|t|) 

𝛍 1.803e-03 3.765e-07 4788.570 < 2e-16 

𝛟𝟏 -4.092e-01 1.520e-05 -26921.552 < 2e-16 

𝛟𝟐 -8.343e-01 1.642e-05 -50806.678 < 2e-16 

𝛟𝟑 1.463e-01 1.651e-05 8859.930 < 2e-16 

𝛟𝟒 5.034e-02 1.555e-05 3236.865 < 2e-16 

𝛟𝟓 -4.421e-02 1.553e-05 -2846.798 < 2e-16 

𝛉𝟏 3.578e-01 1.668e-05 21445.319 < 2e-16 

𝛉𝟐 8.280e-01 1.790e-05 46259.102 < 2e-16 

𝛉𝟑 -2.475e-01 1.685e-05 -14685.392 < 2e-16 

𝛉𝟒 -6.563e-02 1.652e-05 -3973.318 < 2e-16 

𝛚 2.664e-06 9.698e-07 2.747 0.00602 

𝛂𝟏 6.258e-02 1.627e-02 84.739 0.00012 

𝛃𝟏 9.309e-01 3.228e-01 2.884 0.00393 

𝛃𝟐 1.000e-08 3.083e-01 0.000 1.00000 

 

All parameters are significant, with the exception of β2. The p-value of 1 for β2 is due to that the 

maximum numbers of iterations was reached before convergence of the probability density function. 

The R package `fGarch’ was used and the number of iterations was increased (in the package the 

function `garchFit’ is used to fit models) with no effect. When fitting other models the AIC was 

increased, due to this the model was selected. 
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The Jarque-Bera test suggests that the standardized residuals (𝜀𝑡) are not normally distributed for all 

GARCH models. It appears to be a small improvement in the QQ-plots. The Histograms are the same 

as for ARMA. The quasi-likelihood method for parameter estimation still applies.  

Table 9. Standardized residuals tests for  Silver 

Test Residuals  Statistic P-value 

Jarque-Bera Test 𝜀𝑡 Chi^2 216651.7 0 

Ljung-Box Test 𝜀𝑡 Q(10) 13.08905 0.2187354 

Ljung-Box Test 𝜀𝑡 Q(15) 20.44664 0.1554603 

Ljung-Box Test 𝜀𝑡 Q(20) 29.19832 0.0839272 

 

The Ljung-Box test null hypothesis is accepted for Q (10), Q (15) and Q (20). This indicates that the 

standardized residuals are considered as white noise which means that the model is sufficient. This 

result is different from the selected ARMA model for silver, where the null hypothesis is rejected.  

 

Figure 6. McLeod-Li test for standardized residuals of ARMA (5, 4), GARCH (2, 1) for silver price return. 

The McLeod-Li test indicates that the standardized residuals are homoscedastic, accepting the null 

hypothesis for almost all lags. This is different from the selected ARMA model where all standardized 

residuals reject the null hypothesis. It is clear that the GARCH model has a better fit than ARMA.  

Table 10. Standardized residuals tests for  Nickel 

Test Residuals  Statistic P-value 

Jarque-Bera Test 𝜀𝑡 Chi^2 151.9799 0 

Ljung-Box Test 𝜀𝑡 Q(10) 4.022492 0.9463266 

Ljung-Box Test 𝜀𝑡 Q(15) 5.95384 0.9805127 

Ljung-Box Test 𝜀𝑡 Q(20) 9.200908 0.9804613 

 

The Ljung-Box test null hypothesis is accepted for Q (10), Q (15) and Q (20). This indicates that the 

standardized residuals are considered as white noise. This means that the model is sufficient. 
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Figure 7. McLeod-Li test for standardized residuals of ARMA (5, 5), GARCH (1, 1) for nickel price return. 

The McLeod-Li test indicates that the standardized residuals are homoscedastic, accepting the null 

hypothesis for almost all lags. This is different from the selected ARMA model where all standardized 

residuals reject the null hypothesis. This model is therefore more suitable. 

 

Table 11. Standardized residuals tests for Copper 

Test Residuals  Statistic P-value 

Jarque-Bera Test 𝜀𝑡 Chi^2 430.0639 0 

Ljung-Box Test 𝜀𝑡 Q(10) 9.757793 0.4619939 

Ljung-Box Test 𝜀𝑡 Q(15) 14.01829 0.5241428 

Ljung-Box Test 𝜀𝑡 Q(20) 18.60587 0.5475616 

 

The Ljung-Box test null hypothesis is accepted for Q (10), Q (15) and Q (20). This indicates that the 

standardized residuals are considered as white noise. This means that this model is also sufficient. 

 

Figure 8. McLeod-Li test for standardized residuals of ARMA (5, 4), GARCH (1, 2) for copper price return. 

The McLeod-Li test indicates that the standardized residuals are homoscedastic, accepting the null 

hypothesis for almost all standardized residuals. This is different from the selected ARMA model 
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where all standardized residuals reject the null hypothesis. It is clear that this model is preferred for 

this time series. 

For visualizations of the QQ-plots and Histograms for the standardized residuals of the GARCH 

models, see Appendix B. 

4.4 Model forecasting accuracy 
 

Table 12. Forecast values(𝒇𝒕) 
Model  MASE t+1 

ARMA Silver  0.65247 

GARCH Silver  0.65093 

ARMA Nickel 0.7027278 

GARCH Nickel 0.6989116 

ARMA Copper  0.65763 

GARCH Copper 0.651093 

 

All models are more effective than the naïve method. ARMA and GARCH models have 

approximately the same result for one-step ahead forecast values. 

Table 13. Running standard deviation(𝒔𝒓) 
Model  MASE sMAPE 
ARMA Silver 1.180883 136.5816 

GARCH Silver 0.9976456 73.98603 

ARMA Nickel 1.233946 164.1894 

GARCH Nickel 0.9633961 49.60723 

ARMA Copper 1.292256 150.6513 

GARCH Copper 0.9047982 67.93425 

 

The Running standard deviation has a lower value for each GARCH model compared to ARMA, for 

both MASE and sMAPE. This result strongly suggests that GARCH models are more efficient than 

ARMA models for these time series. For graphic illustration for both forecast values and running 

standard deviation, see Appendix C. 

Table 14. Correct pairs of observed signs 

Model Correct pairs z-value 

ARMA Silver 0.51206 2.271638* 

GARCH Silver 0.49932 -0.1280857 

ARMA Nickel 0.48313 -1.723054 

GARCH Nickel 0.50383 -0.06945327 

ARMA Copper 0.47124 -2.937465* 

GARCH Copper 0.551 5.208995** 

 *significant at 5 % 

 ** significant at 1 % 
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The results for the correct pairs of signs are varying. There are only three models which are 

significantly better at predicting positive and negative values correct. The ARMA model for silver is 

significant at 5 % level, with 51.206 % and the GARCH model for copper is significant at 1% level 

with 55.1 % correct predictions. If the ARMA model for copper is interpreted in reverse, it has correct 

prediction at 52.876 % and is significant at 5 % level.  

5 Conclusion 
 

For forecast values ARMA and GARCH are equal in accuracy. However, the GARCH is more 

efficient at forecasting the running standard deviation. If only forecast values are demanded, it is not 

necessary to use heteroscedastic models. However, for financial data, efficiency is often seen as 

crucial and then models accounting for heteroscedasticity are needed. The efficient market hypothesis 

is not rejected for nickel and silver. Copper, on the other hand, seems to reject this hypothesis.  

 

The Ljung-Box test gives a false reassurance when suggesting that the ARMA models are sufficient 

for nickel and copper. This is contrary to all other test results and measures. The McLeod-Li test 

strongly suggests that GARCH should be used for all three time series. When measuring the forecast 

accuracy of the running standard deviations the GARCH is more effective than ARMA, in all three 

time series, for both MASE and sMAPE. For forecast values, ARMA and GARCH are equally 

accurate according to MASE. It can be concluded that GARCH models are more accurate than ARMA 

and that models accounting for heteroscedastic data are necessary for metal prices. Also, that the 

relevance of the Ljung-Box test as an indicator of most efficient model is questionable.  

 

The efficient market hypothesis seems to apply for nickel, where correct pair of sign does not yield a 

significant result. The ACF and PACF also suggests that nickel’s logarithmic price return should be 

considered as white noise. This means that the logarithmic price of nickel can be described as a 

random walk process with no arbitrage opportunities. For silver, the pairs of sign is significant only for 

ARMA. However, with such a large sample size, rejecting the null hypothesis becomes more probable. 

The ACF and PACF indicates that the silver logarithmic price return is not white noise. These results 

are inconclusive to reject the efficient market hypothesis. For copper, the test using correct pair of sign 

is significant for both ARMA and GARCH, even if the results of the ARMA model needs to be 

interpreted in reverse. The ACF and PACF indicates that logarithmic price return is not white noise. 

Copper’s logarithmic price return suggests arbitrage opportunities and, thereby, rejects the efficient 

market hypothesis.  
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The selected models are the ones which minimize AIC, but the difference between the AIC values for 

the models are only marginal for all metals. As an example, the difference between the highest and 

lowest AIC, for the ARMA models for silver, is about 0.005 %. The order of ARMA and GARCH 

does not, in terms of AIC seem to make a crucial difference. It is possible that other criteria for 

selecting models would render a more thorough analysis. 

 

Another approach to compare efficiency of ARMA and GARCH models would be to conduct a 

quantitative simulation study. In this thesis only three empirical time series are used. One can apply 

our methodology on a larger number of different metals, which would yield a more general result. 

Another angle of incidence would be to further analyze and assume another distribution of the 

residuals when fitting models. By using the likelihood method, based on normally distributed 

residuals, for estimating parameters, the parameters estimates are correct but not necessarily effective 

when the residuals are not normally distributed. For a more thorough test of the efficient market 

hypothesis other distributions should be tried to achieve more efficient models. Also, only simple 

GARCH models are examined. For further research, it would be relevant to compare several types of 

GARCH models such as the EGARCH, QGARCH and GJR-GARCH.  
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Appendix A 
 

ARMA AIC values 

 

Table 15. Silver     

AR/MA (AIC) 0 1 2 3 
0 -41394.42 -41536.51 -41534.64 -41537.62 
1 -41532,2 -41534.58 -41533.15 -41536.51 
2 -41536.18 -41550.11 -41536.83 -41563.8 
3 -41538.45 -41548.12 -41546.13 -41565.37 
4 -41536.94 -41546.13 -41544.22 -41542.64 
5 -41535.1 -41533.01 -41531.08 -41559.6 

  

Table 16. Nickel     

AR/MA (AIC) 0 1 2 3 
0 -11799.6 -11798.99 -11798.54 -11799.64 
1 -11798.92 -11797.37 -11797.27 -11798.33 
2 -11798.84 -11797.56 -11800.87 -11802.47 
3 -11799.56 -11798.48 -11802.4 -11800.8 
4 -11800.22 -11798.71 -11798.59 -11798.55 
5 -11799.63 -11798.31 -11799.46 -11794.55 

  

Table 17. Copper     

AR/MA (AIC) 0 1 2 3 
0 -13099.94 -13112.16  -13110.26 -13110.93  
1 -13111.96  -13110.37 -13108.19  -13112.46  
2 -13110.09  -13108.42 -13106.51  -13114.71  
3 -13112.1 -13112.83 -13113.48  -13109.51  
4 -13114.71  -13112.71  -13111.81 -13118.54 
5 -13112.71  -13110.71 -13110 -13116.45 

 

GARCH AIC values 
 

Table 18. Silver  

ARMA(p,q)-GARCH(u,v) AIC- value  

ARMA(5,5)-GARCH(1,2) -5.148399 

ARMA(4,5)-GARCH(1,2) -5.148085 

ARMA(1,5)-GARCH(2,2) -5.148010 

ARMA(5,1)-GARCH(2,2) -5.147965 

ARMA(1,5)-GARCH(1,2) -5.147936 
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Table 19. Nickel  

ARMA(p,q)-GARCH(u,v) AIC- value  
ARMA(5,5)-GARCH(1,1) -4.723885 

ARMA(5,5)-GARCH(1,2) -4.723457 

ARMA(5,5)-GARCH(2,1) -4.723080 

ARMA(5,5)-GARCH(2,2) -4.722690 

ARMA(4,2)-GARCH(1,1) -4.721061 

 

Tabl1 20. Copper  

ARMA(p,q)-GARCH(u,v) AIC- value  
ARMA(5,4)-GARCH(1,2) -5.3065 

ARMA(5,5)-GARCH(1,2) -5,3026 

ARMA(4,5)-GARCH(2,1) -5,2909 

ARMA(2,5)-GARCH(2,1) -5,2907 

ARMA(5,5)-GARCH(2,1) -5,2904 
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Appendix B 
 

ARMA QQ-plot and Histogram 
 

 

Figure 9. QQ-plot and Histogram for standardized residuals of ARMA (3, 3) for silver price return. 

 

Figure 10. QQ-plot and Histogram for standardized residuals of ARMA (2, 3) for nickel price return. 
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Figure 11. QQ-plot and Histogram for standardized residuals of ARMA (4, 3) for copper price return. 

 

 

 

 

GARCH QQ-plot and Histogram 
 

 

Figure 12. QQ-plot and Histogram for standardized residuals of ARMA (5, 4), GARCH (2, 1) for Silver price return. 

-4 -2 0 2 4

-2
0

-1
0

0

Standardized Residuals Silver

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

-4 -2 0 2 4

0
2
0
0

4
0
0

Squared Standardized Residuals Silver

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

Histogram Silver

Standardized Residuals Silver

D
e
n
s
it
y

-20 -15 -10 -5 0 5

0
.0

0
.2

0
.4

Histogram Silver

Squared Standardized Residuals Silver

D
e
n
s
it
y

0 100 200 300 400

0
.0

0
0
.0

6



   32 
 

 

 

Figure 13. QQ-plot and Histogram for standardized residuals of ARMA (5, 5), GARCH (1, 1) for nickel price return. 

 

Figure 14. QQ-plot and Histogram for standardized residuals of ARMA (5, 4), GARCH (1, 2) for copper price return. 
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Appendix C 

Visualization of one-step ahead forecast 

 

 

 

 

Figure 15. Logarithmic price return and one-step ahead point estimation for silver ARMA (3, 3), nickel ARMA (2, 3) and 

copper ARMA (4, 3). 
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Figure 16. Logarithmic price return and one-step ahead point estimation for silver ARMA (5, 4) GARCH (2, 1), nickel ARMA 

(5, 5) GARCH (1, 1) and copper ARMA (5, 4) GARCH (1, 2). 
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Figure 17. Running standard deviation for copper and one-step ahead forecasts for silver ARMA (5, 4) GARCH (2, 1), nickel 

ARMA (5, 5) GARCH (1, 1) and copper ARMA (5, 4) GARCH (1, 2). 
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Figure 18. Running standard deviation for nickel and one-step ahead forecasts for silver ARMA (5, 4) GARCH (2, 1), nickel 

ARMA (5, 5) GARCH (1, 1) and copper ARMA (5, 4) GARCH (1, 2). 
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Appendix D Autocorrelation and Partial Autocorrelation for Price Return 

 

Figure 19. Autocorrelation function for price return. 
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Figure 20. Partial autocorrelation function for price return. 
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Appendix E The simulated ARMA and GARCH 

 

 

 

 

 

 

 

Figure 21. The simulated ARMA for silver, nickel and copper. 
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Figure 22. The simulated GARCH for silver, nickel and copper. 

 

 


