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Abstract

The main topic and focus in this thesis are surface recognition.

In the sensing part, the surface information is collected as feature values. There
are research approaches which focus on sensing surface tactile information by us-
ing sensors with robots. However, there are some disadvantages of using sensors.
From that reason, this thesis proposes getting haptic surface information without
sensors at the tip of robots. To this purpose, a disturbance observer is implemented
to achieve the robust acceleration control and a reaction force observer is imple-
mented to estimate the friction force along surfaces.

In the recognition part, a pattern recognition method needs to be applied
for surface recognition. There are some pattern recognition methods, where self-
organizing maps (SOM) is one of the solutions and has been investigated. SOM
is able to summarize high-dimensional data to low dimension with preserving the
topological properties of data. SOM is also suitable for multi-class recognition.
Therefore, a surface recognition using SOM is proposed in this thesis. Multi-class
surface recognition is achieved by the proposed method.

The validity of the proposed method was confirmed through 7 surface recogni-
tion experiments. The recognition rate was over 90% for 5 of 7 surfaces in the time
domain.
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1

Introduction

1.1 Background

“Real World Haptics” has received considerable attention in recent years. Real
world haptics includes transmitting, recording and reproducing the information
of the real environment [Zeng et al., 2013]. Example applications of haptics are
surgery, medical training, micro manipulation and education. Haptics is an impor-
tant technology for human assist field [Motooka et al., 2010] [Ferre et al., 2011]
[From et al., 2014]. The technology to handle visual and audio information is es-
tablished. However, real world haptics is a challenging theme because haptic infor-
mation has bidirectionality. Haptic sensation mainly includes two kinds of informa-
tion, force sensation and tactile sensation. In this paper, force sensation is defined
as hardness or softness of the environment with the push-pull motion. Tactile sen-
sation is defined as slippery or gritty of the environment at rubbing motion. In this
paper, tactile sensation is focused on because it is important for humans to distin-
guish surfaces. For example, people slide their fingers to check the cloth texture
in shopping. People change their grip force through surface roughness of objects.
Therefore, it is clearly essential for robots to have an ability to recognize surfaces.
Surface recognition is divided into two parts: the sensing part and the recognition
part.

In the sensing part, there are some research approaches which focus on sens-
ing of surface tactile information by using sensors with robots. Hosoda et al. used
strain gauges and polyvinylidene fluoride (PVDF) films for robot fingers [Hosoda
and Asada, 2006]. This finger could discriminate five different materials by pushing
and rubbing the objects. Boissieu et al. used three-axial MEMS-based force sensors
for the robot finger to analyse texture properties while sliding on surfaces [Boissieu
et al., 2009]. This finger discriminated textures of 10 kinds of surfaces. Romano
et al. used accelerometers to record and reproduce tactile sensations [Romano and
Kuchenbecker, 2012]. These researchers achieved surface recognition by using sen-
sors.

In the recognition part, there are some pattern recognition methods [Jain et al.,
2000]. Pattern recognition methods are divided into two main groups, parametric
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Chapter 1. Introduction

and non-parametric methods. Parametric methods such as Bayesian decision theory
assume probability distribution of feature values. The disadvantage of parametric
methods is that if the distribution of features is not known, parameters of the dis-
tribution must be estimated. On the other hand, non-parametric methods make no
assumptions regarding the distributions of feature values. Therefore, non-parametric
methods are suitable for using real world data sets. There are some parametric meth-
ods. Nozaki et al. recognized grasping motion using dynamic programming (DP)
pattern matching algorithm [Nozaki et al., 2013]. DP matching is suitable for the
recognition which has to take into account time warping. However, in the surface
recognition, time warping is not necessary. Watabe et al. recognized and classified
road conditions based on friction force information using support vector machine
(SVM) [Watabe and Katsura, 2011]. Two classes of road conditions were recog-
nized by online experiments. Jivko et al. recognized and categorized surfaces based
on acceleration information using k-nearest neighbor algorithm (k-NN) and SVM
[Sinapov et al., 2011]. Twenty different surfaces were recognized by offline experi-
ments.

1.2 Problem Formulation

In the sensing part, previous research approaches achieved surface recognition by
using sensors but there are some disadvantages [Katsura et al., 2007]. For example,
an external force may be detected only at the position where the sensors are imple-
mented. The cost of sensors may be one problem. Signal noise is also a problem
since some force sensors detect an external force by amplifying a strain of the strain
gauges, and then signal noise is also amplified.

Therefore, in the sensing part, this paper proposes getting haptic information of
surfaces without sensors at the tip of multi degrees of freedom (DOF) robots. A dis-
turbance observer (DOB) is implemented to achieve the robust acceleration control
and to extract roughness information of surfaces [Ohnishi et al., 1996]. A reaction
force observer (RFOB) is implemented to estimate friction force from surfaces in
wide-band [Murakami et al., 1993]. Haptic information is acquired without sensors
at the tip of the robots by applying DOB and RFOB. Some researchers used DOB
and RFOB for haptic sensing without sensors [Mizoguchi et al., 2014] [Nozaki et
al., 2014]. However, DOB and RFOB were applied to 1DOF or 2DOF robots. From
a practical point of view, robots should have multi DOF. Therefore, in this paper, a
multi DOF robot is used and haptic information of surfaces is acquired by DOB and
RFOB without using force sensors.

In the recognition part, previous research approaches used k-NN and SVM for
the surface recognition. k-NN and SVM are strong solutions for surface recogni-
tion. However, the computational effort is increased exponentially as the dimension
of the feature vectors and number of class increases. This is a problem for online
surface recognition by robots because longer sampling time deteriorates the control
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1.3 Outline of this Research

Table 1.1 Symbols and indices used in this paper.

Symbol \ Description H Index \ Description
X Position vector cmd Command
F Force vector ref Reference
P Feature vector res Response
K,,K,, Ky | Feedback gain n Number of elements
52 Sample variance || rough Roughness
A Wavelength fric Friction
performance.

Therefore, in the recognition part, a surface recognition using self-organizing
map (SOM) by a haptic robot is proposed. SOM was investigated by Kohonen in
the early 1980s [Kohonen, 2001]. SOM was applied to a wide field of problems.
For instance, document plagiarism detection [Chow and Rahman, 2009], object
detection in surveillance systems [Chacon-Murguia and Gonzalez-Duarte, 2012]
and superquadric-based model of the human motion [Najmaei and Kermani, 2011].
SOM is one of the neural network architecture that is trained using unsupervised
learning [Brugger et al., 2008]. SOM is able to summarize high dimensional data to
low dimension with preserving the topological properties of data. Therefore, non-
linear data summarization is possible and it is suitable for multi-class recognition.
Another characteristics of SOM are data visualization and simple algorithm. Chen
et al. showed that SVM and SOM have almost the same performance for offline
classification simulations [Chen et al., 2006]. SOM is chosen in this paper from the
computational effort point of view for online surface recognition. Therefore, many
classes of surfaces can be recognized by multiple feature values.

1.3 Outline of this Research

An outline of the proposed method is shown in Figure 1.1. Symbols and indices
used in this paper are shown in Table 1.1.

In the training part, a SOM model is generated from training data. In this paper,
feature values are extracted from haptic information. Haptic information is defined
as position information and force information. Both measurements are acquired by
the haptic robot which any sensors are not attached at the tip. In this paper, Omega 7
from Force Dimension is used as haptic robot. After the feature values are extracted,
The SOM model is generated.

In the test part, feature values are extracted by the same way as training part.
Recognition is conducted by comparing SOM model, which is generated in the
training part, and feature values from the test data.

The validity of the proposed surface recognition method was verified by exper-
iments with actual environmental surfaces.
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Haptic information acquisition
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Figure 1.1 Outline of the proposed method.
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Methods

In this chapter, methods used in this research are explained. First, motion control,
which is essential to achieve reaction force estimation without force sensors, is ex-
plained. After that, the haptic information acquisition system is introduced to cal-
culate feature values of surfaces. Finally, self-organizing maps. which is used for
surface recognition is explained.

2.1 Motion Control

This section describes acceleration-based control method for robots. In addition, re-
action force estimation method is explained. For ease of the modeling, it is assumed
that robots mentioned in this chapter are actuated by 1-DOF linear motor. The linear
motor is modeled in Section 2.1. After that, acceleration-based control using DOB
is explained in Section 2.1. Then in Section 2.1, reaction force estimation method
using RFOB is introduced.

Modeling

Defining the linear motor position as x, mass as M, driving force as /™ and load
force as /%% the motion equation of the linear motor is written as Eq. (2.1).

Mi :fm _flaad (21)
The driving force /™ is expressed as Eq. (2.2).
M=K (2.2)

Iaref “and K; are armature current reference and thrust torque constant. The load force
is defined as Eq. (2.3) in this paper.

fload :fﬁxt _|_fg+ffric (2.3)
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Chapter 2. Methods

fload

1 :ef rr +_l 1| 57es| 1 |y res
— K . > I, 5
S

Figure 2.1 Dynamics of linear motor.

£ is the external force, /% is gravitational force and f77% is the frictional force
which consists of static and viscous frictions. From Egs. (2.2) and (2.3), the motion
equation can be rewritten as Eq. (2.4).

Mi :Ktlff— (f _|_fg+ff”'0) (2.4)

The mass M and the thrust torque constant K; vary according to the posture of
the robot or magnetic flux distribution. M and K;, which considering parameter
perturbations, can be written as Eqgs. (2.5) and (2.6).

M = M, +AM 2.5)

K, =K, +AK; (2.6)
Here, subscript n denotes the nominal values of parameters. By substituting
Egs. (2.5) and (2.6) to Eq. (2.4), the motion equation can be expressed as Eq. (2.7).
Mg = Kl — (AM5 — AK [ + f1o0d) @.7)

In this paper, disturbance is defined as Eq. (2.8).

fis = fload 4 AMs — AK I (2.8)

The block diagram of the linear motor is shown in Figure 2.1.

Acceleration based control using disturbance observer

In this subsection, acceleration-based control using disturbance observer is de-
scribed.

The second-order derivative of position is acceleration. In addition, acceleration
is also derived by dividing force by mass. From these reasons, position and force can
be controlled by controlling acceleration. Furthermore, position and force are con-
trolled robustly by acceleration control with disturbance observer (DOB)[Ohnishi
etal., 1996].

14



2.1 Motion Control

fdis
];cf - +—l 1 xres 1 xres
in Mn s s
+ -
Km ] M s
j}dis

Figure 2.2 Block diagram of DOB.

Disturbance observer DOB is one of the observer which estimates a disturbance
from input and output information. In other word, DOB is one the method to achieve
robust control. The block diagram of DOB is shown in Figure 2.2.

The disturbance applied to the linear motor is written as Eq. (2.9) from Eq. (2.7).

S = KLt — M5 (2.9)

From Eq. (2.9), the disturbance can be calculated from the current reference I and
the acceleration response . In this paper, acceleration response is obtained by
measurements from a position encoder. Therefore, the effect of noise is magnified
and the estimated acceleration is deteriorated by second-order differentiation. In
this paper, a low-pass filter (LPF) is applied to eliminate the effect of the noise. The
estimated disturbance is written as Eq. (2.10). A first-order LPF is used in this paper
written as Eq. (2.11).

F5 = Gryp(s) S (2.10)
Gips(s) = Sfdg”dis Q.11

guis 18 the cut-off frequency of the DOB.

The block diagram of the actual DOB is shown in Figure 2.3. In Figure 2.3,
there is a differentiation of the velocity. Therefore, pseudo differentiation is imple-
mented to eliminate the effect of high frequency noise. The block diagram can be
equivalently modified as Figure 2.4.

The compensation current /"7 is calculated as Eq. (2.12).

, 1 g
P = o s (2.12)
tn
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](:‘Cif +—l 1 )-Cres
m M s

| —

m l n
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s+ 8 dis

l

]'}dis

Figure 2.3 Block diagram of actual DOB.

fdis
[ref —l 1 . res
a K + X l
& Mns S
+ o+
Ktn 'l‘ Mngdis T
8ais
s+ 8ais
+1 —
Mngdis <
f'dis

res

res

Figure 2.4 Block diagram of equivalently modified DOB.

Robust control is achieved by feedback compensation current /7 to the input cur-
rent. The block diagram of the disturbance compensation by DOB is shown in Fig-

ure 2.5.
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2.1 Motion Control

fdis
I ref - - res res
a4 + I |x 1 | x
K b
+ n MnS s
+ 4
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1 M n&dis N
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Figure 2.5 Block diagram of disturbance compensation by DOB.

fdiS

S+ 8 ais
17 -

+
Ktn M K

1 -res res

1
N

Figure 2.6 Block diagram of equivalently modified DOB shown in Figure 2.5.

Acceleration controller Figure 2.5 can be equivalently modified to Figure 2.6.
Figure 2.6 indicates that the disturbance passes through a high-pass filter (HPF) and
then affects the system. The HPF is written as Eq. (2.13).

N
thf(s) = S-‘rgdig (2.13)

Ghpy(s) is called sensitivity function since Eq. (2.13) indicates a sensitivity to the
disturbance toward the system. The low-frequency disturbance is suppressed. On
the other hand, the high-frequency disturbance is not eliminated and affects the
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P(s)

x-ref +— 1 ' 1 x'es

o
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\ 4

Figure 2.7 Block diagram of DOB using acceleration disturbance.

system. For these reasons, the high cut-off frequency of the DOB, g ;,, provides a
small sensitivity function and provides the wide bandwidth for robust motion con-
trol. However, too high cut-off frequency leads to instability of the system.

In Figure 2.6, the difference between reference and response of the acceleration
is defined as P(s) in this paper. P(s) is called equivalent acceleration disturbance
and expressed as Eq. (2.14).

P(S) _ )-C-refix-res
= M, 'Gpyp(s) " (2.14)

The block diagram of the DOB using P(s) is shown in Figure 2.7. Input of the
DOB is an acceleration reference from Figure 2.7. In conclusion, the robust control
using DOB is the same as acceleration control which achieves desired acceleration
reference since the input is the acceleration.

Reaction force observer

A reaction force observer (RFOB) is an observer which estimates the external force
£ from the estimated disturbance /% by DOB. Force estimation without force
sensors is possible by using RFOB.

The disturbance estimated by using DOB is written as Eq. (2.3) and Eq. (2.7).
Therefore, external force can be derived as Eq. (2.15).

et = plis _pg pfrie AN 4 AK I (2.15)

Equation (2.15) indicates that the external force can be estimated if the right-hand-
side terms can be identified. In this paper, disturbance f%* is estimated by DOB.
The internal force f7 is assumed to be 0. In addition, parameter perturbations are
assumed to be 0. Hence, in the sequel, we assume that the external force f*7 is
written as Eq. (2.16).

fexl — fvdis _fg _ff”ic (216)

For multi-DOF robots with friction and gravity forces, the right-hand-side terms
are pre-identified and subtracted from % to estimate the external force as shown

18



2.2 Haptic Information Acquisition

fdl‘S

I ;cif +—l 1 X res 1 X res
n M s S
f fric f9

n + l+ Mngreac«

greac
s+ gl‘eUC

+] - ——
MngreaL"_
f'\ext

Figure 2.8 Block diagram of RFOB.

in Eq. (2.16). Since the external force is identified with noise similar to DOB, the
external force is estimated through the LPF as Eq. (2.17).

fext _ Ereac et 2.17)
s + greac
The parameter g,qq is the cut-off frequency of the RFOB. The block diagram of
the RFOB is shown in Figure 2.8. The reaction force is estimated from the current

reference 1,/ and the velocity output €.

2.2 Haptic Information Acquisition

In this section, a haptic information acquisition system is introduced to get haptic
information.

Figure 2.9 shows the surface sensing system in this thesis. The coordinate frame
is also shown in Figure 2.9. The rubbing motion is conducted to the surfaces by the
tip of the robot. The control systems of the robot and the feature value collection
are explained in the rest of this section.

Control Systems

In this thesis, the position control was applied to the x-axis and the force control
was applied to the z-axis for rubbing motion. That is because position outputs of
the z-axis and reaction force outputs of the x-axis are needed to calculate feature
values.

19



Chapter 2. Methods

Figure 2.9 Surface sensing system.

emd Fdzs
X " XVeS 1 Xres
—> K, + K,s Robot —
— N
XVES
Figure 2.10 Block diagram of position control.
dis
F emd _l F 7 res res
+ + X1 1X
K; Robot > — —o—>
— + S
ﬁres
s DOB

H
g

Figure 2.11 Block diagram of force control.

Block diagrams of position control and force control are shown in Figure 2.10
and Figure 2.11. DOB was used to achieve the robust acceleration control. RFOB
was used to estimate reaction force from the environment.

Figure 2.12 shows the result of the force control experiment to prove the validity
of the reaction force estimation. In this experiment, the tip pushed the force sensor
directly. Mini 40 was used for the force sensor. From Figure 2.12, the maximum
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2.2 Haptic Information Acquisition

0& —— Command Force ]
— Estimated Force
'2_0_5 —Measured Force | |
O
S5
_15,
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Figure 2.12 Force control experiment.
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x [m]
(a) Raw position data (b) Extracted roughness

Figure 2.13 Roughness extraction.

error was about 0.1N. The reaction force estimation was achieved by using RFOB.
Therefore, the validity of the reaction force estimation was verified. From these rea-
sons, the reaction force of x-axis, which is same as the friction force of the suraface
can be estimated accurately.

Feature Values Collection

Haptic information is acquired as feature values by the rubbing motion. Feature val-
ues are required for the surface recognition by self-organizing map (SOM). Rubbing
motion is achieved by the position control for the x-axis and force control for the
z-axis. Therefore, position data of the z-axis and reaction force data of the x-axis are
valuable. In this thesis, the position data along the z-axis is defined as "Roughness"
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Chapter 2. Methods

and reaction force data along the x-axis is defined as "Friction".

Feature values from the roughness Raw position data include waviness compo-
nent and roughness component. The roughness can be extracted by a high pass filter.
The example of the raw position data and extracted roughness are shown in Fig-
ure 2.13. Average absolute Z,,,g, sample variance Smugh and average wavelength A
of the roughness are extracted as feature values in this paper. Three feature values
are derived as Egs. (2.18), (2.19) and (2.20).

1 &

Z"Ough[n] = ;lerough[i” (2.18)
i=1
1 &

Srough[] - ;Z(Zrough[n]_zmugh[i])z (219)
i=1

Al = % (2.20)

n is the number of data. & is defined as number of the waves in this paper. Extracted
roughness was approximated by zero phase low pass filter and the k& was calculated
by counting the number of approximated wave.

Feature values from the friction force Average friction f; and sample variance of
friction S%m, are extracted as feature values in this paper as Egs. (2.21) and (2.22).

Sl = %fo[i] @21)
i=1
Shricln] = ;Z Siln] = A (2.22)

i=1

Feature vector From Section 2.2 and Section 2.2, the feature vector for SOM is
written as Egs. (2.23), (2.24) and (2.25).

P = [Zoough Stough 4 Tx Shicl" (2.23)
= [p1 p2 -+ Pu - (2.24)
pi = [ZVOMgh[l} mugh[] H H Szrzc[.ﬂ (225)

2.3 Self-organizing Map (SOM)

In this section, the self-organizing map (SOM) is explained. The SOM is a neural
network architecture [Brugger et al., 2008]. SOM is able to summarize high dimen-
sional data to low dimension with preserving the topological properties of data. The
data are usually organized in 1D or 2D representations, so that data visualization
is possible. In addition, SOM is able to represent the non-linear features, so it is
suitable for multi-class clustering as compared with SVM.
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Figure 2.14  Architecture of SOM.

Architecture of SOM

The SOM architecture is shown in Figure 2.14. r is the dimension of the feature
vector and s is the number of SOM nodes. SOM is composed of an input layer and
SOM layer. The feature vector is used for the input layer. Nodes are arranged as one
or two dimensions in the SOM layer. Each node has a reference vector which has
the same dimensions r as the feature vector. A one-dimensional SOM is used and

r =5 in this paper.

Algorithm of SOM

The algorithm of SOM is explained in this subsection.

1. Dimension and number of nodes are decided.

23



Chapter 2. Methods

24

2.

Each feature value of the input data is normalized that the amplitude of each
feature value becomes 1. For instance, feature value 1 in Figure 2.14 is nor-
malized as Eq. (2.26).

Pil
Pt = 2 2 2
\/P1.1+P2,1 Rl 2

(2.26)

. Reference vector is generated randomly at each node of the SOM layer. After

that, each reference vector is normalized that the amplitude of each reference
vector becomes 1.

. The #*" input vector is sent to SOM layer to make the SOM model. The inner

product between the input vector and each reference vector is calculated. The
node which has biggest inner product is chosen as the "winner" node. The
winner node number of # input vector is defined as ¢; in this paper. ¢; is
calculated as Eq. (2.27).

¢; =arg max(mgq-pi),(g=1,---,s) (2.27)

. The winner node and neighborhood nodes learn the input vector. Learning

is achieved by a reinforcement function. Normal distribution is used for re-
inforcement function in this paper. Reinforcement function #; is defined as

Eq. (2.28).
(Vi - rwin)z
hl‘ = oexp <_2(72 (228)

where « is called learning rate, o indicates the strength of learning, o is the
standard deviation of normal distribution, 7; is the position of the i'" node and
rwin 18 the position of the winner node. SOM learning is achieved and the
reference vector of the winner node is calculated by Eq. (2.29).

m = AP (2.29)

|[m; + Api|

Repeat steps 4) and 5) arbitrary times Z. The input vector is chosen randomly
from the input data.

Parameters, which have to be set up, are as follows:

e Number of nodes s

e Learning rate o

e Standard deviation of reinforcement function o

e Repeat counts of learning Z



3

Experiments

Figure 3.1 Robot (Omega7) used in the experiments.

In this chapter, surface recognition experiments are explained.

3.1 Experimental Setup

The robot used in this paper was an Omega 7 from Force Dimension [De Donno
et al., 2013]. Omega 7 is a parallel haptic device with force feedback in three trans-
lational degrees of freedom and one degree of freedom in a pinching motion. Fig-
ure 3.1 shows the overview of the Omega 7. Figure 3.2 shows the tip of the Omega
7. The coordinate frame used in this paper is also shown in Figure 3.2. In this paper,
the axis parallel to the surface was defined as x-axis and the axis perpendicular to
the surface is defined as z-axis. A pen was attached at the tip. The rubbing motion
was conducted by the pen. Surfaces which were used in the experiments are shown
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Chapter 3. Experiments

A\

#602)141 20 @#240@)#400

(a) Sandpapers (b) Styrol

Figure 3.3 Surfaces used in the experiment.

in Figure 3.3. There were 4 kinds of sandpapers and 3 kinds of different surfaces of
the styrol. The purpose of this paper is recognizing these 7 surfaces.

3.2 Haptic Information Acquisition

First of all, haptic information was acquired as feature values by the rubbing motion.
Parameters and commands for rubbing motion experiments are shown in Table 3.1
and Table 3.2. Rubbing motion was conducted three times to each surface. One time
for training and two times for recognition tests.
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3.3 Surface Recognition by SOM

Table 3.1 Parameters for experiment.

Parameter | Description | Value |

st Sampling time 0.3ms
K, Position gain 900 s
K, Velocity gain 605!
Ky Force gain 0.8
Qais Cutoff frequency of DOB 50 rad/s

Zreac Cutoff frequency of RFOB | 50 rad/s
M, Nominal mass of workspace | 0.3 kg

Table 3.2 Commands of rubbing motion

Symbol \ Value

Femd 03N
Xemd 0.005 m/s

Table 3.3 Parameters for SOM.

Parameter | Description | Value |
K Number of nodes 12
a Learning rate Eq.(3.1)
o Standard deviation of reinforcement function 1.6
Z Repeat counts 10000

3.3 Surface Recognition by SOM

After the feature values are calculated, the surfaces shown in Figure 3.3 were rec-
ognized by SOM. Parameters for SOM in the training are shown in Table 3.3. A
1D SOM model was used in this paper. The parameters of SOM were decided by
trial and error to achieve the higher recognition rate. Initial reference vectors of the
SOM model were set randomly. The learning rate o is written as Eq. (3.1).

o = 03-(1-(i/2)), (i=1,---,2) 3.1)

o was decreased as the number of i was increased because the learning rate should
be large at the beginning of the training due to the randomness of the initial reference
vectors of the SOM model.

First of all, the SOM model was learned by using training data obtained in Sec-
tion 3.2. The SOM algorithm was applied to the training data.

After that, surface recognition experiment was conducted to recognize surfaces
by using the SOM model learned in the training. In this paper, surface recognition
was conducted off-line in Matlab. However, the same recognition algorithm can
be used for on-line experiment. Surface recognition was achieved by Eq. (2.27).
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Chapter 3. Experiments

The inner product between the input vector from the test data and the reference
vector from learned SOM model were calculated. The node which has biggest inner
product was the winner node and surface was recognized. For example, if the winner
node is 1, surface recognition result is a "smooth" surface.
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4

Results

The results from the surface recognition experiments are shown and analyzed in this

chapter.
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Sandpaper(#120)
Sandpaper(#240)

4 — Sandpaper(#400, smooth)

Autocovariance

(a) Sandpapers (b) Autocovariance of roughness

Figure 4.1 Autocovariance of roughness (Sandpapers).

4.1 Analysis of roughness and friction force

In this paper, feature values are calculated from roughness and friction force. There-
fore, analysis results of the roughness and friction force are shown in this section.
Roughness and friction force were analyzed by autocovariance.

Autocovariance of the roughness

Figure 4.1 shows the autocovariance of the roughness of sandpapers. Figure 4.2
shows the zoomed one of Figure 4.1. Figure 4.2 focuses on the maximum value of
the autocovariance and the distance between maxima. From Figure 4.2, the differ-
ences between surfaces can be found.
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Chapter 4. Results

#60 i —— Sandpaper(#60, rough)

s [ —— Sandpaper(#120)

| — Sandpaper(#240)

ar | “ — Sandpaper(#400, smooth)

o [ #60 #60
ol
. #120 ‘«‘;”u #120 #120

Autocovariance

L L L L L L L
1800 1900 2000 2100 2200 2300 2400

Lag

— Styrol(rough)
8 — Styrol(semi-rough)
— Styrol(smooth)

Autocovariance

L L L L L L L
o 500 1000 7500 2000 2500 3000 3500 000

(a) Styrol (b) Autocovariance of roughness

Figure 4.3 Autocovariance of roughness (Styrol).

Figure 4.3 shows the autocovariance of the roughness of styrol surfaces. From
Figure 4.3, it is obvious that there are differences of autocovariance between rough,
semi-rough and smooth styrol surfaces.

Figure 4.4 shows the autocovariance of the roughness of sandpapers and styrol
surfaces. Figure 4.5 shows the zoomed one of Figure 4.4. In Figure 4.5, sandpa-
per #120 and semi-rough styrol surfaces have similar maximum autocovariances.
However, the distances between maxima are different.

Autocovariance of the friction force

Figure 4.6 shows the autocovariance of the friction of sandpapers. Figure 4.7 shows
the zoomed one of Figure 4.6. From Figure 4.7, each surface has a different max-
imum autocovariance. However, it is hard to find the differences of the distance
between maxima.

Figure 4.8 shows the autocovariance of the friction of styrol surfaces. From
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4.2 Haptic Information Acquisition
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Figure 4.4 Autocovariance of roughness (Sandpaper and styrol).
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Figure 4.5 Zoomed autocovariance of roughness (Sandpaper and styrol).

Figure 4.8, each surface has different autocovariance. In addition, each surface has
different distance between maxima.

4.2 Haptic Information Acquisition

Roughness and friction force are the important parameters to recognize surfaces
from the results of Section 4.1. Feature values which are used in the surface recog-
nition are calculated from roughness and friction force. Calculated feature values
are shown in this section.
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Figure 4.6 Autocovariance of friction (Sandpaper).
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Figure 4.7 Zoomed autocovariance of friction (Sandpaper).

Feature values from the roughness

The results of the extracted feature values from the experiments are shown in Fig-
ure 4.9 and Figure 4.10. These results include one training data set and two test
data sets. It seems that each surface is able to be distinguished although there are
overlapping areas in these figures.

Feature values from the friction force

The results of the extracted feature values from the experiments are shown in Fig-
ure 4.11. These results include one training data set and two test data sets. It also
seems that each surface is able to distinguish although there are overlapping areas
in these figures.
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4.3 Surface Recognition by SOM
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Figure 4.8 Zoomed autocovariance of friction (Styrol).
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Figure 4.9 Average and sample variance of roughness.

4.3 Surface Recognition by SOM

Results of the SOM model after learning are shown in Figure 4.12. Figure 4.12 is
also called the topographic map. The SOM map represents the topology between
nodes for each feature value. Therefore, the SOM map is used for some analyses.
First, discrimination of the dominant feature value is possible. For example, feature
values, whose SOM map changes smoothly and has clear map pattern, can be recog-
nized as dominant feature values. Second, a correlation between one feature value
and another feature value can be found. For example, there is a positive correlation
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Figure 4.11 Average and sample variance of friction.

between feature 1 and feature 2 because they have a similar SOM map. Figure 4.9
also represents the positive correlation between feature 1 and feature 2.

Data density histogram of the training data using learned SOM model is shown
in Figure 4.13 to check the validity of the SOM model. The data density histogram
indicates the frequency of becoming "winner" nodes when comparing learned SOM
models and feature vectors from training data. Winner nodes were decided by calcu-
lating Eq. (2.27). From Figure 4.13, all surfaces were classified with no overlapping.

34



Zrough

Feature 1

Feature 3 4

4.3

o
o

=3
o

4
=

o
>

o

Surface Recognition by SOM

08

0.6

0.4

Feature 2 Szmugh

0.2

o

2 4 6 8
Number of nodes

(a) Feature 1 Z,5,g7

038

0.6

04

0.2

s

(b) Feature 2

4 8 1‘0
Number of nodes

2
Sruugh

Feature 4 f,
o
b

Number of nodes

(c) Feature 3 A4

1

N\

12 00 2

4 6 8 10
Number of nodes

(d) Feature 4 f,

Feature 5 S% ¢
s o o
S (=] [=:]

o
N

=

2

(e) Feature 5 S2

ric

4 6 8 10
Number of nodes

Figure 4.12 SOM model (Topographic map) after learning.

Surface recognition experiment

Figure 4.14 shows the recognition results using the SOM model shown in Fig-
ure 4.12. Recognition was started after x = 0.005 m. Surface 1, surface 3, surface
5 and surface 7 were recognized correctly at all position. In this study, however,
the SOM model is changed every simulation due to the randomness of the initial
reference vector. Therefore, surface recognition was conducted 10 times with same
training data. Figure 4.15 shows the average recognition rate.
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Figure 4.14  Surface recognition results using SOM model shown in Figure 4.12.
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4.3 Surface Recognition by SOM

Recognition results (%)

Experimental surface

1 2 3 4 5 6 7
1 100 0 0 0 0 0 0
2 0 78 22 0 0 0 0
3 0 6 94 0 0 0 0
4 0 0 0 46 49 5 0
5 0 0 0 0 96 4 0
6 0 0 0 93 0
7 0 0 0 0 0 0 100

Figure 4.15 Average recognition rate.
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5

Discussion

5.1 Analysis of roughness and friction force

Section 4.1 shows the analysis results using autocovariance. There are two impor-
tant points from this analysis.

First point is the maximum autocovariances. In Figure 4.2, 4 sandpapers can
be distinguished by maximum autocovariances. Rougher sandpaper has bigger
maximum autocovariance. In Figure 4.9 and Figure 4.10, the rougher surface ex-
hibits larger average roughness. For these reasons, the maximum autocovariance is
strongly related with average roughness. In other words, average roughness is one
of the suitable feature value for surface recognition.

Second, the distance between maxima is also an important feature. In Figure 4.5,
the sandpaper #120 and semi-rough surface have almost same autocovariances.
However, the distance between maxima is different. Semi-rough styrol surface has
bigger distance between maxima than #120. In Figure 4.10, semi-rough styrol sur-
face has bigger average wavelength than #120. For these reasons, the distance be-
tween maxima is strongly related with average wavelength. In other words, the av-
erage wavelength is one of the suitable feature values for surface recognition.

5.2 Haptic Information Acquisition

Feature values were calculated from the roughness and the friction force in this
paper.

From Figure 4.9, Figure 4.10 and Figure 4.11, all surfaces seem to be distin-
guished by using all feature values. However, there were data overlapping in some
areas. Data overlapping mainly occurred between the smooth styrol and the sandpa-
per 400 surfaces of the roughness information. The reason is the thinness of the pen.
In this paper, the pen was attached to the tip of the robot and the rubbing motion
was conducted. Therefore, a resolution of the roughness depends on the thinness of
the pen. Higher resolution of the roughness can be achieved by using thinner pen.
However, thinness of the pen also affects to the friction. A thinner pen results in the
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5.3 Surface Recognition by SOM

unreliable friction data. For these reasons, feature values used for decisions depend
on the TCP probing tool of the robot.

5.3 Surface Recognition by SOM

From Figure 4.14 and Figure 4.15, recognition rate was high for most of the sur-
faces. Therefore, the validity of the proposed method was verified. However, recog-
nition errors happened for some surfaces. These errors happened from some rea-
sons.

First, randomness of the initial values of reference vector deteriorated the per-
formance. Recognition rates can be improved by changing the initial values of refer-
ence vector. Second, the effect of SOM parameters shown in Table 3.3 has not been
discussed or investigated in this paper. For example, it is possible to improve the
performance by increasing the number of nodes s although the computation time is
increased. Surface 4 (#400) and surface 5 (Smooth styrol) has similar feature values
as shown in Figure 4.9, Figure 4.10 and Figure 4.11. Therefore, resolution of the
haptic information acquisition system needs to be improved to distinguish surface 4
and surface 5 correctly.

39



6

Conclusion

In this paper, a new surface recognition method based on haptic information using
SOM was proposed.

In the sensing part, roughness and friction force information were recorded by
a haptic robot without a force sensors at the tip of the robot. Observers of type
DOB and RFOB were applied to the Omega 7 robot. As a result, robust position
control and reaction force estimation were achieved so that accurate roughness and
friction could be estimated from the measurements. Feature values were calculated
from the estimated roughness and friction force. From the results of the analysis
using autocovariance as described and shown in Section 4.1, roughness and friction
force have important characteristics to distinguish surfaces. From the results of the
calculated feature values shown in Section 4.2, the validity of the feature values
was verified. In addition to that, the limitation of the surface recognition method
was shown. The resolution of the roughness and friction force depend on the probe.
Users need to change the probe with respect to the surface recognition situation.

In the recognition part, Self-organizing map (SOM) was used. SOM is able to
summarize high dimensional data to low dimension with preserving topological
properties of data. Therefore, it is suitable to distinguish surfaces from some feature
values. The SOM model was learned by using training data including calculated
feature values. Surfaces were recognized using learned SOM model and test data.
The validity of the proposed method was confirmed by experiments. Developing
SOM such as changing initial values of reference vector and finding optimum SOM
parameters are the future works to increase the recognition rate.
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