
Fuzzy Matching and Merging of Family Trees using

a Graph Database

Hampus Lundberg

Department of Electrical and Information Technology
Lund University

Advisor: Anders Ardö

Tuesday 10th March, 2015

Printed in Sweden
E-huset, Lund, 2015

Abstract

Association for computer aided genealogy research of Sweden(DIS) is investigating
the possibility of a nationwide genealogical database (RGD) of Sweden’s histor-
ical population. The finished database should contain basic information about
individuals’ names, birth, marriage, death, and individuals’ relationships such as
father, mother, husband/wife and children. This will make up a kind of graph over
the ancestry of Sweden historical population were persons are connected to each
other according to ancestry. The idea is that different genealogists should add
already finished pedigrees (family trees). The problem is that the same pedigree
can be inserted by two different genealogist. RGD has to find these duplicates and
merge them. In this thesis a test application for RGD is made in small scale using
the graph database Neo4j and the document search tool Lucene. The focus is on
finding and merging duplicated pedigrees. The test application made was able to
upload files containing multiple pedigrees and merge them into a graph that was
stored in Neo4j. This merging process had a linear time complexity in relation to
how many families that were merged. A family in this thesis means family unit
containing father, mother and children. Storing the biggest available file (20000
persons and 6500 families) in an empty database and then inserting the second
biggest (10000 persons and 3000 families) took about 2 min and 30 seconds. The
result was about 1200 family merges. This was done on the laptop Lenovo N500.
Lenovo N500 has a Dual CPU T3200(2GHz) and 3GB RAM. The accuracy of the
algorithm was compared to a previously made application. Both applications were
tested on the same data-set. The result from the tests was the overlap of families
merged by both applications. Then precision and recall was calculated for the test
application considering the previous application gave all the correct family merges.
There were two precision and recall scores estimated. The better one of those two
gave the precision 97% and the recall 81%. The F-score for the system was 88%.

i

ii

Acknowledgements

First of all I would like to thank my supervisor docent Anders Ardö for his support
throughout the process of making this thesis. The thesis would not have existed
without him. I also like to thank my examiner Dr. Mats Cedervall for his correc-
tions, the EIT department at LTH for providing a good work environment and my
family and friends for their emotional support during my master thesis studies.

iii

iv

Table of Contents

1 Introduction 3
1.1 Similar work . 4
1.2 Disposition . 5

2 Background Theory 7
2.1 Time complexity . 7
2.2 Precision, Recall and F-score . 8
2.3 Property Graph . 8
2.4 Inexact sub-graph Matching . 8
2.5 JSON . 9
2.6 Neo4j . 9
2.7 Lucene . 10

3 Implementation 13
3.1 System overview . 13
3.2 Tools and Devices . 14
3.3 The Content of the Genealogical Data Files 14
3.4 Algorithm . 15
3.5 Class Structure . 30
3.6 GUI . 31

4 Tests 39
4.1 Time complexity . 40
4.2 Accuracy . 41

5 Results and Discussion 43
5.1 Time Complexity . 43
5.2 Accuracy Compared to Previous Research 45

6 Conclusions and Future Work 49

1

2 TABLE OF CONTENTS

Chapter 1
Introduction

The field of genealogical research has grown in popularity during the last decades.
One major reason is that it has become simpler. Today many sources of ancestry
data have been and is being digitalized. A common example is the old so called
church books in Sweden. The information that has been stored varies but at least
basic information about individuals such as name, date and place of birth, date
and place of death and date and place of marriage are available. Basic family re-
lationship such as parent, spouse and child has also been stored. There are today
computer programs that can find ancestors one or several steps back. The speciali-
ties of the programs differs from drawing good looking pedigrees to advanced search
capabilities. There are many different groups interested in genealogical research,
all from large volunteering organisations like the Latter Day Saints church[10] to
commercial websites like ancestry.com[20]. Their files are available online and can
contain not only basic personal data but also parts of a family tree form earlier
research. Sometimes also information about people’s living conditions are stored.

There are however problems with collecting information about ancestry from
different sources. The main one is that different sources may contain duplicate
and conflicting information. For instance the name and place of birth is the same
for two persons stored in two different files but their date of birth is different. So
now the question is are the two persons actually the same person with a mistake
or two separate persons. For making a unified database containing persons from
several sources some kind of matching program would be necessary. The purpose
with such a program would be to automatically merge duplicated persons.

A trend in the computer world is the so called noSQL databases. One type
is a graph database. In these information is stored in a graph and they special-
izes in storing and querying highly connected data. This makes graph database
interesting for the field of genealogical research where individuals are connected to
each other through their family relationships. In larger databases it is not enough
to validate that two person suspected to be the same are the same on their basic
information such as names, dates and places. It is also necessary to see that the
persons they are related to are the same. In a graph database traversal between
related family members is simple which facilitates that two groups of persons easily
can be traversed to check for similarity.

The oldest association in the world for computer aided ancestry research is
called DIS (Datorhjälp i släktforskning) [7]. The association is currently exploring
the possibility of building a Nationwide Genealogical Database (RGD) over Swe-

3

4 Introduction

den’s historical population. The idea is that data should come from different ge-
nealogists. The data should be in form of files containing basic information about
individuals (name, birth, death) and their family relationships (father, mother,
marriage, children). The problem is as mentioned before that different files may
contain duplicate and conflicting information. The focus in this thesis is the de-
velopment of a java application for detecting duplicated families. Families here
means a family unit of husband, wife and children. The developed application
uses the graph database neo4j[14] and the text based search tool Lucene[17]. The
application was tested on small sets of families up to about 6000. The purpose
of the work was to determine if this approach could be used to build a RGD.
The duplicate families are detected and merged during insertion. This makes the
insertion operation the most important work of the thesis.

The thesis tries to answer the following problems.

• How shall information be saved within Neo4j?

• How shall basic operations such as insertion, removal and search be imple-
mented?

• What is the time complexity for the insertion operations?

• How accurate is the insertion method at detecting duplicates between the
database and the insertion file?

• How shall information about duplicate families (conflicts, two possibilities)
be represented to the user?

1.1 Similar work

Previously Neo4j’s suitability for storing and traversing genealogical data has been
investigated [3] [18]. In [3] it is concluded that Neo4j is superior to MariaDB(a
relational database) regarding traversal of genealogical data. A study of different
graph database was done in [18] as to find out which graph database was most suit-
able for storing and querying genealogical data. The study concluded that Neo4j
was among the top two most suitable databases. There are other applications that
tries to solve the problem of duplicate individuals[22]. For example is there a Dan-
ish enthusiast that has made his own matching program[16]. Currently (January
2015) he has about 6.2 million individuals in his database. His programs among
other things can be used to find other researchers researching the same individuals
[22]. There are also a large number of commercial products [20][9][11][13]. These
products are mostly used as an aid for enthusiasts who want to know more about
their ancestry. What all these sites have in common is that they enable searching
through large records of genealogical data. They often have slightly different fo-
cus, some focus on cooperation between users by connecting user researching the
same individuals while others focus on advanced searching capabilities. How the
information actually is stored by the sites is unclear since companies protect their
ideas. So whether or not commercial companies solve the same problem as in this
thesis is hard to know. What is certain is that commercial products have search
capabilities. Search capabilities are also needed when finding persons to merge.

Introduction 5

The supervisor of this thesis [5] has done a similar application as the one made in
this work. The difference is that in that work a MySQL database was used instead
of a graph database and that the insertion and merging algorithm was different.
The accuracy of the application was tested by comparing it’s result with the result
from the application made by [5].

1.2 Disposition

The thesis begins with the theory used for development of the test application.
How the test application was implemented is explained in chapter 3. In chapter 4
the motivation for the different tests is described. Chapter 5 contains the result
and discussion of the tests. Final conclusions and possible future developments
are discussed in chapter 6.

6 Introduction

Chapter 2
Background Theory

A number of different tools and theories comes together to develop a test appli-
cation for RGD. The basic tools are as mentioned in the introduction Neo4j and
Lucene, they are described in section 2.6 and 2.7. In order to understand how
these tools work some graph theory and some information retrieval theory need
to be explained. The difficulty surrounding graph and sub-graph isomorphism is
explained to understand the difficulty of the matching problem. Graph isomor-
phism is the the problem of determining if two graphs are the same. Sub-graph
isomorphism is the problem to determine if small graph is the same as a sub-graph
in a larger graph. The basic computer subject of time complexity is also explained
to give an audience outside the field of computer science a chance to understand
the content of the thesis.

2.1 Time complexity

In computer science time complexity is an important subject. Time complexity
is a measure about how long it takes to do an operation on a certain number of
elements. Elements here can be all kinds of data structures such as numbers and
text strings. An example could be how long time it would take to find the number
of sevens in a sequence containing n numbers. Since the whole sequence needs to
be looked through and it takes about the same length of time to look at every
number, the execution time can be expressed as t = k · n where k is a constant
and t stands for the execution time. When measuring time complexity exact
execution time is not relevant since it varies for different computers and between
different executions. Therefore the time complexity measurement is simplified
from t = k · n to tc = n where tc stands for time complexity. When talking about
time complexity the expression order n is used rather than saying that the time
complexity is n. In writing, order n is expressed as O(n). There are a couple
of common time complexities for different algorithms. These are O(1) meaning
something can be done in constant time, O(n) the execution time is proportional
to the number of elements and O(log(n)) which means that there is a logarithmic
dependence between the execution time and the number of elements. When the
time complexity is O(n · log(n)) it is worse than O(n) but still within acceptable
regions for most applications.[1]

In case of making a test application for RGD time complexity is of great

7

8 Background Theory

importance. When data gets added to the test application it will naturally take
longer time to search for potential merges, since there are more individuals to
search through in the database. Even if execution time is low on a small database
bad time complexity will raise execution time quickly when the database grows.

2.2 Precision, Recall and F-score

When evaluating information retrieval systems the parameters precision, recall
and F-score are often used. The parameter precision is a measurement regarding
how many answers given to a query were correct. In this work this correspond
to how many of the found matching families were correct. Recall is how many of
the possible answers to a query were found. For the application this corresponds
to how many of the families that were the same were found and merged. F-score
is a combination of both precision and recall. The F-score is given in 2.1. The
measurement F-score is an important performance measurement because it is easy
to make a system that has either good precision or recall. In order to get high
precision only matches that have an absolute certainty are returned. Recall is even
easier when it is possible to return the entire content of the database which will
result in that all possible match are found (and a lot of wrong ones). The hard
goal is to have a high precision and recall which corresponds to a high F-score.
[19]

Fscore = 2 · precision · recall
precision + recall

(2.1)

2.3 Property Graph

A property graph consists of nodes and relationships linked together. The kind
of properties depend on what the graph represents. An example is given in figure
2.1. The circles are the nodes and the arrows the relationships. The text represent
the properties. In this example the nodes are assigned three different kinds of
properties. These are first name, date and place. In Neo4j information is stored
by the same principle as in the example. However, in this work nodes containing
more information were used. The idea is that all family history will end up in one
big property graph.[14, p.26].

2.4 Inexact sub-graph Matching

The problem of finding matching individuals can be thought of as finding a sub-
graph in a large property graph. Many related individuals need to be considered
similar to determine a match. Inexact sub-graph matching is considered an NP-
complete problem in many cases[23], meaning that it has no know standard solu-
tion with a time complexity that is in the order of a polynomial [2]. This make
the standard solutions unusable in our case. Therefore it is necessary to find a
tailored solution.

Background Theory 9

Figure 2.1: An example of what a property graph in Neo4j looks
like.

2.5 JSON

JSON is a certain text format used for sending data between applications. The
format is good for writing content contained in different data structures such as an
object or an array into a text file. In a json file an object contains many different
type/value pairs. A person object could for example have a type/value pair, birth
date/1989-10-04. An array could then consist of many persons.[15]

2.6 Neo4j

Neo4j is a graph database where information is stored in a property graph. It
also supports directed relationships. Neo4j is the most used graph database in the
world today. It is open source and can be used for free. In Neo4j properties are
stored as type/value pairs. The user can define both the property types and val-
ues. Neo4j has three application programmable interfaces (APIs). The most used
API is Neo4j’s query language Cyper. With Cyper its possible to add and remove
nodes and relationships and do queries in Neo4j. The Cyper queries in Neo4j has
three parts namely a start statement, a matching pattern and a return statement.
The start statement contains which node or nodes the query should start from.
The start nodes are defined by what property they contain. The matching pattern
describes paths containing nodes and relationships with the specified properties
that the query has to follow. The return statement contains which nodes or rela-
tionships that should be returned. The query works by first finding the start nodes

10 Background Theory

through lookup and then trying to traverse the property graph according to the
matching pattern. In case of success the nodes specified in the return statement
are returned. There can be several results from one query. In a genealogical graph
stored in Neo4j an example could be the graph shown 2.1 and a query for that
graph could be to retrieve all individuals born in Holy church in the year 1750.
The start node can be Holy church. The query then tries to go from the Holy
church node through a person node to the year node 1750. For all cases when this
is possible the individual node is returned. In this case the Karl node would have
been returned. Cyper is not used in the test application for RGD. However, how
quires are done in Cyper gave inspiration for how to find duplicated individuals
with the test application developed.[14]

The core and the traversal API was used when developing the application.
They are more closely connected to the internal workings of Neo4j and are used
when it is important with low execution time and making specific queries as in
this case. The traversal interface lets one use a traverser that will traverse nodes
according to a chosen pattern from a chosen starting node. It is very similar to how
Cyper works. The core API was mostly used in writing the application. Both the
traverser API and Cyper is built on the core API so it gives the most freedom for
designing applications with Neo4j. With the core API it is possible to get access
to the primitive node and relationship data types. It is also possible to get the
relationships connected to a specific node and the nodes connected to a specific
relationship. This makes it possible to make non standard quires and operation
as was desired in this case.[14]

In order to understand the time complexity for operations done by the test
application, it is important to know the complexity for some standard operation
in the core API. Getting a node in Neo4j by using it’s id has the time complexity
O(1). This is also the case for adding nodes and relationships. In the case that the
id to a node or a relationship is available it is possible to delete it in O(1) time.
Neo4j uses something called adjacency lookup which means that from any node
it is possible to get all of it’s neighbouring nodes and relationships in O(1) time.
This is made possible by Neo4j’s internal storage having references in every node
and relationship pointing to it’s connected nodes and relationships. Finding nodes
with a specific property has time complexity O(log(n)), which is implemented
through a lookup table, the same as in traditional relational databases.[14]

2.7 Lucene

Lucene is a search tool for searching through documents. It uses something called
reverse indexing where first documents are indexed based on their content. Then
the index is used to find a document containing the text being searched for[17].
This is primly done through using the Vector Space Model (VSM)[4]. In VSM
documents are represented as multidimensional vectors, where each dimension
represent a separate term(word) in the document. The length and the direction of
a document’s vector is determined by it’s term frequencies(the number of times a
term appears in a document). Search is done by comparing the query text’s vector
to the stored document vectors. This is done using a form of dot product.[12]

Background Theory 11

To be able to quickly search through documents, only comparing documents
relevant to a query is important. This is achieved by having a well structured
index. The index is structured so that for every term there is a connected list
with all the documents that contains the term. In that list there is also for each
document the term frequency for the term in that document. These lists are
called postings lists. Together with each term there is also a number for how
many documents they appear in for the entire index.[17]

When doing a query, first the query text is parsed into it’s containing terms.
Then the postings list for each term in the query is iterated through. During
iteration the term frequency times a specific weight called term frequency–inverse
document frequency weight(tf-idf weight) is added to the score for each document
in the posting lists. The tf-idf weights are ratios between how many times a word
occur in a document contra how many documents it occurs in. Various ways to
calculate the exact tf-idf weights exist, most of them include dividing the term
frequency for the document with the number of documents the term occurs in.
The purpose of the tf-idf weights is to boost similarity score for rare terms in the
index.[12] The document similarity score for a query becomes the sum of all term
frequencies times the terms’ tf-idf weights. The higher this score is the higher
the similarity is considered to be between the document and the query[12]. The
advantage of this method is that only the documents containing the relevant terms
are considered when searching[6].

An example over how the postings list are generated and used could be the
following. Consider two document being stored. The first document containing the
text ”Hello cat” and the second ”Hello world”. This would generate the following
postings list.

Postings lists
Term List
Hello 1, 2
cat 1
world 2

Then when searching for example the text ”Hello world”. First the postings
list for ”Hello” is iterated through and document 1 and 2 score will be add with
one times the tf-idf weight of ”Hello”. The weight is taken times one because
”Hello” only occur once in both documents. For this simple illustration let say
that the tf-idf weight is 0.5 for ”Hello” since it occurs in both documents and that
”cat” and ”world” has the weight 1 because they are only in one document each.
So then both document 1 and 2 has the score 0.5. Finally the ”world” postings
list is iterated through which gives the final score of 1.5 for document 2 and 0.5
for document 1. So in this case document 2 will be the top result of the query.

Often when doing a query it’s of interest to get the top k (chosen number)
documents. In order to do this the method explained above needs to be improved.
This is done by having a queue holding the k + 1 most relevant documents. The
queue is ordered so that the document considered most relevant for the query is
put in the back. Every time a new document is evaluated it is inserted into the
queue. The position is decided by the similarity score of the document. Then the

12 Background Theory

first element of the queue is withdrawn. This makes it so that only the current top
k documents are kept in the queue. The total time complexity for this algorithm
becomes O(p · log(k)) where p is the number of postings in the postings lists for
the terms of the query.[12]

Even though this is a decent time complexity it can be improved. This has
been done using approximative methods. These approximative methods finds k
’good’ documents instead of the top k documents. The approaches is based on
that often the most rare terms are the most important for a query. This is because
rare terms tf-idf weights are higher. So first the query terms are ranked according
to their weights. Then the posting lists are iterated according to that ranking
order, adding scores to the documents containing the most important terms first.
When adding scores to a document an estimation is made whether it is possible
to stop the search. The search process is stopped when a good enough match has
been found. This technique has two advantages. First that not all postings list
are iterated. Second that the shortest list are searched and longer ones are the
ones that are often left out.[6]

Chapter 3

Implementation

3.1 System overview

Figure 3.1: A system overview of the entire application

The system overview is shown in figure 3.1. The Graphical User Interface
(GUI) is used to select the json file for insertion and also for showing merging
result. The path for the selected json file is sent to the algorithm for insertion into
Neo4j and Lucene. Almost the entire work for this thesis has been on developing
the insertion algorithm. There has also been some development on the GUI but
further work to finish this is required.

13

14 Implementation

3.2 Tools and Devices

The tools used in the development of the system includes Neo4j community 1.8.3
version in it’s embedded form. Neo4j uses Lucene internally [21]. This was Lucene
3.5.0. All the code was written in java. The Integrated Development Environment
(IDE) used was Eclipse kepler [8]. In order to read json files the json simple library
from [15] was used. Both Neo4j and the json simple library was included as jar
files into the program by extending the java build path in Eclipse.

3.3 The Content of the Genealogical Data Files

In order to understand certain aspects of the algorithm it is important to know the
content of the inserted data files. The insertion files are json files containing two
json arrays. One for family json objects and one with person json objects. Every
person and every family has a fixed set of properties. Each of the properties can
be assigned a value or not. In the case a property has not been assigned a value
it has the default value null. The following two tables show an example.

Person properties
Property name Property value
Gedcomid 14-1
Id 1
Birth family id 46
Name Sven Svensson
Normalized first name 4045 6942
Normalized last name 144270
Sex M
Normalized birth date 19500101
Normalized death date null
Birth Congregation Lund Domkyrko (M)
Normalized birth congregation 398
Death Congregation null
Normalized death congregation null

Family properties
Property name Property value
Gedcomid 14-256
Id 49
Normalized Marriage Congregation null
Normalized Marriage Date null
Husband Id 209
Wife Id 208
Marriage Congregation null

Normalized here means that the name of a church or person has been replaced
with a number. This is in order to make comparison easy between churches and

Implementation 15

persons since there might be slight variation in spelling. There are two types of ids
for persons and families in the files. These are used for giving unique identification.
The two types differ a bit. One is for connecting persons and families within a
file. This is the one called Id and it is only a local identifier within a file. In other
words persons and families can have the same Id between files but not within the
same file. Linkage between persons and families are done using this id and the
Husband Ids, Wife Ids and Birth Family Ids. Where the Husband Ids, Wife Ids
and Birth Family Ids are used as pointers to indicate how persons and families are
connected. The second type of id is called Gedcomid. The reason why there is also
a Gedcomid is that the json files were derived from GEDCOM files. GEDCOM is a
file type that stands for Genealogical Data Communication. This is the most used
file type for sending genealogical data. In this work the Gedcomids were unique
for all families and persons inserted during the test procedure, which made them
suitable for identifying families during this procedure.

3.4 Algorithm

The main work carried out during this thesis is the algorithm explained in this
section. Firstly some limitations on the algorithm will be given. Secondly how
data was stored in Neo4j will be described. Then a basic overview over how the
algorithm works will be explained. Certain key operations will be explained in
more detail together with motivation for approach.

3.4.1 Limitations

The algorithm developed only finds duplicated families between files. Usually there
are also some duplicated families within the same file. These will not be looked
for or merged by the algorithm. An other problem with the algorithm is that it
does not handle simultaneous updates. After insertion there will usually be some
matches that need to be looked over by the user. The problem is that if a new
file get inserted while the matches form a previously inserted file is looked over
changes to the matches being looked over can be made. When this is the case
the user needs to get notified of what has changed for the matches that are being
looked over. Some kind of mechanism for doing this is necessary in a real RGD
application, which is ignored here.

3.4.2 How the Genealogical Data is Stored in Neo4j

There are two types of nodes stored in Neo4j namely family and person nodes.
Both family and person nodes have a set of properties. These can be seen in figure
3.2 and figure 3.3. The properties are the same in the json input files.

In Neo4j person and family nodes are not separate entities but are part of
property graphs as in figure 3.4.

There are alternative ways for storing properties. Commonly in Neo4j it is
not recommended to add many properties to the same node but instead storing
different properties at different nodes [14, pp. 69-71]. This is due to how queries
usually are done in Neo4j. In Neo4j queries are traditionally based on searching

16 Implementation

Figure 3.2: An example of a person node in Neo4j.

Figure 3.3: An example of an family node in Neo4j.

for something that relates to something else. A good example query could for
example give all persons born in 1915 that were nationally registered in the Parish
of Domkyrkan in Lund. In this type of query churches, years and persons would
be represented as nodes and there would be relationship between the person node
and the year and church nodes. However the way chosen for storing properties in
this work disable this capability. The motivation was primly to save time during
insertion. This is because it goes faster placing all properties on every person and
family node instead of having a node for every specific property and then inserting
a relationships from the property nodes to their respective person or family nodes.
The reason for this is that a lot of searches is needed to find the property nodes
for the persons and families.

Implementation 17

Figure 3.4: Picture showing how the family and person nodes are
connected in the database. No properties are shown to make
the graph easier to read and understand. The person nodes are
the square nodes with a man inside and the family nodes are
the round nodes with an F inside. The relationships indicate
what role a person has in a family. The roles are husband, wife
and child which is indicated by h,w and c.

3.4.3 Basic Overview

For every family that gets inserted into the database there has to be a query to
see if there are any similar(duplicate) families already in the database. The big
issue in this thesis is how this query can be done effectively. The basic inspiration
for the query used is taken from Neo4j. When doing a query in Neo4j a start node
is first searched by index lookup and then traversal takes place to see if the rest
of the query graph matches a sub-graph in Neo4j[14, pp. 29-30]. The algorithm
is structured in the same way. When the algorithm is executed potential family
matches are first searched for with Lucene and then traversal is carried out in Neo4j
for validation and merging. This is done by first searching for every family in Neo4j
using Lucene. This search is enabled by having every family in Neo4j stored in
Lucene. More specifically, what is stored in Lucene are documents containing
most of the property values from different family nodes together with their family
members. These documents are indexed which makes it possible to search for a
family in Lucene. In order to connect a family in Lucene to it’s corresponding
family node in Neo4j a id pointing to the corresponding node in Neo4j is also
stored in Lucene. After Lucene has find a potential families to merges with the
families being inserted an other evaluation process is gone through. This evaluation
process is an extra check whether two families should be merged (see section 3.4.4).
The families that pass this evaluation are then validated with Neo4j. Finally the
families that pass the validation are merged(see section 3.4.5).

As can be seen from the activity diagram in figure 3.5 there are eight steps
in the algorithm. Matching and merging of families are the main subject for this
thesis and this is carried out in step 5 and step 6. All steps will now be described to
give an overview and then the merging and matching will be described in greater

18 Implementation

Figure 3.5: Activity diagram showing the different steps that the
insertion algorithm goes through when inserting families from a
input file.

detail.
Step 1: The input file is being parsed and stored in lists of family and person
Java objects. These objects are temporary containers for storing the properties
for family and person nodes.
Step 2: The family and person objects are connected. This is done by inserting
the person objects into the family objects they belong too. These connections
will later be used when inserting the persons and families into Neo4j. This is
enabled by pointers within the json files which tell which persons and families are
connected.

The families and persons have an unique family or person id in the json files.
Every family also has an id pointing to the husband or wife belonging to the family
and every person has an id pointing to the family within the person was born. In
case that a family’s husband or wife is unknown the husband or wife id has the
value null and the same is true if the birth family for a person is unknown. For
easier insertion into the database family objects can store person objects as either
husband wife or child. The second step of the algorithm does the mapping so that
every family object gets filled with the husband, wife or child person objects that
belongs to it.
Step 3: All the families are sorted according to marriage date of their husbands
and wifes. Families that have been married more recently are placed first in the

Implementation 19

list. In the case the marriage date is missing the family is put last in the list. This
is done to make step 6 work better. In step 6 family trees are being compared and
merged. The idea is that it is easier to compare large trees because comparing two
large trees means more family comparisons are made which makes the matching
result more certain. Comparisons are made by traversing two trees and comparing
one pair of families at a time, see section 3.4.5 for more information. A family
tree’s root lies in the latest married family of the tree. So in order to traverse two
large trees instead of traversing and merging smaller sub-trees of the larger trees
it is important to start traversal with the pair of families that has the most recent
marriage dates. Ordering the list in this step leads to that the traversal start at
the right place in step 6.
Step 4: Inserting all the persons and families from the file into Neo4j is done
in two steps. First all persons are inserted. During the insertion of persons the
persons objects ids are changed to match the person node ids in the database.
This makes it quick to insert the families when the person family member nodes
can be find directly with their id. Since the time complexity for finding a node
using it’s id is O(1) in Neo4j.
Step 5: For every inserted family a similar family in the database is searched for
using Lucene. In order to use Lucene a matchtext for every family is generated.
The matchtext is a text string containing property values from all family member
nodes and the family node itself. When searching Lucene compares the matchtext
with it’s previously inserted matchtexts. In Lucene matchtext and node ids for a
family are stored as pairs. Lucene retrieve the five family ids for the five families
with the most similar matchtext compared to the family matchtext searched for.
The number of five families was chosen to be retrieved instead of one because it is
possible that the family Lucene considered most similar to the query family is not
the most similar one in reality. This potential error is eliminated by retrieving more
families and checking all of them. On the other hand retrieving to many families
slows down execution time, therefore five families were considered enough. The
ids retrived by Lucene are used to find the corresponding family nodes in Neo4j.
The five found families together with the query family make up five pairs (the
query family is in every pair together with one of the found families). The pairs
are evaluated using a family comparison method described in section 3.4.4. The
method gives five similarity scores for every pair. When the similarity score for
a pair exceed the threshold value of 0.5 and has higher similarity score then the
other pairs the pair is stored in a Java structure called a map. The pairs stored
in the map are considered potential merges.

It is hard to set the number for how many families Lucene should search for
and the threshold value for considering a family match. Since what are appropri-
ate values for these variables are dependent on the accuracy and completeness of
the data intended to be inserted. One way to do it is to test a couple of different
values for the variables to see which worked best. The disadvantage of this is that
it is hard to tell if the algorithm is improved or just becoming better adapted to
the tested data-set. An other way to go about it is to try to change the values
to get optimal results on part of the data-set and then trying them on the entire
data-set. If the optimized values preforms better on the entire data set the vari-
ables are changed. In this way the disadvantage of changing the values to only

20 Implementation

preform better on a specific data-set is avoided. There was however not that much
data available, so instead a small test just to check if the result remained similar
when changing the variables slightly was done. The results remained almost com-
pletely the same. Therefore it was concluded that it was not worth putting time
on optimizing the variables and the initial values of 5 and 0.5 was kept.
Step 6: The potential merges found have to go through a more narrow validation
before merging can take place. This is because an inconsistency would arise if
two families where merged without merging the birth families of the husband and
wife. This inconsistency would be that the husband and wife would be children in
two families which is impossible (adoption is not considered a possibility). There-
fore when merging two families also the families where the husband and wife was
born has to be merged. This process repeats itself as long as the families being
merged has a husband or wife that is connected to his/her birth family. This leads
to that entire family trees has to be traversed and validated before merging can
take place. The same does not apply for the children of the merged family. This
is because remarriage is a possibility which makes it possible for a child to later
become husband or wife in two families. How the traversal is done is more thor-
oughly explained in section 3.4.5. After approved validation all compared families
are merged. Otherwise the trees are either not merged or sent to the user for val-
idation. When the families have been validated they are removed from the Java
map.
Step 7: During this step all inserted family matchtexts and all merged fam-
ily matchtexts are being inserted and indexed by Lucene. This makes the new
matchtexts searchable the next time a file is to be inserted.
Step 8: After insertion of matchtexts into Lucene there are still outdated match-
texts from families that has been merged. This is because merging two families
result in a new family being made that is the result of the merge. The two families
that were merged are still in Neo4j connected to the merged family (see section
3.4.4. This is good because information does not get lost when storing in this way.
It is however not desirable that the families that were merged show up in a Lucene
search. Instead what is wanted is that the resulting merged family is returned. In
order to ensure this the two merged families are removed from Lucene’s index so
that only the merged family can be found when searching.

3.4.4 How Persons and Families are Being Compared and Merged

After finding potential family merges with Lucene these family merges were eval-
uated by a family comparison method. The method used a person comparison
method to compare all the person nodes connected to the family nodes. How
these comparison methods work will now be explained in more detail. First the
person comparison method will be described and later on the family comparison
method. It is important to understand that the matching methods should be able
to deal with incomplete data. When properties or family members are missing
there is an uncertainty of the matching result. This uncertainty should be ex-
pressed in the value the methods return. It is at the same time important not to
regard a disability to compare two persons or families with that they can not be
duplicates. Meaning that if there are missing property values so that two persons

Implementation 21

or families only can be partially compared. The missing property values can not
be counted as mismatching property values.

The person comparison method compares two persons and then gives a decimal
value between -1 and 1 over how similar they are. The method does this by
comparing the normalized properties of the two persons and their sex and year
properties. The other properties are not compared because they can contain minor
errors which makes computer comparison difficult, this was mentioned in section
3.3. Getting -1 from the method means that all properties for the two persons are
dissimilar, 1 that they are all similar. In the case some property values are missing
or some properties are similar and others dissimilar the value will be somewhere
in between -1 and 1. When there is no possibility to compare any property the
method will return 0 . The score is calculated by first comparing the properties.
The result of comparing two properties is either -1 if mismatch, 0 if comparison
was not possible, 1 if match. The value from the comparison is than multiplied
by the property weight for the corresponding property. A property weight is a
weight for boosting a property. For example if it was most important that two
persons had the same first and last name to establish similarity then the first and
last name weights would be set higher then the rest. For the person comparison
method used by the algorithm all weights were set to 1. After multiplication all
values are summed up and then divided by the total sum of all property weights
as to calculate the similarity score. This was done according to equation 3.1.

scorep =

n∑
i=1

(wi · sim(p1,i, p2,i))

n∑
i=1

wi

(3.1)

Equation 3.1: The equation gives the similarity score between two
persons. The sim function compare two property values and
gives the result -1, 0 or 1. The notation p1,i stands for a prop-
erty value from one family and the notation p2,i from the other.
The weight for each property is written as wi.

The mean value is finally returned by the method. When comparing date
properties the result is not -1, 0 or 1 but instead a scale between -1 and 1, depend-
ing on the dates proximity. All property matches or mismatches are multiplied by
a corresponding match property weight.The match property weights where imple-
mented in order too fine tune matching by assigning more important properties
a heavier weight. In this algorithm all person properties were considered equally
important so every weight was set to one. There were also weights for how different
kinds of family members and family properties should be prioritized.

The family comparing method also returns a value between 1 and -1. When
comparing two families first the family nodes are compared in the same way as
person nodes. Then the person comparing method is used to compare the family
members. The main problem with developing the family matching method is that
it is hard to know which children to compare. This is due to that the families

22 Implementation

compared might be incomplete. Families can be incomplete in two ways either
the nodes have missing properties or members of the family might be missing. In
order to be certain of comparing the right children the family comparison method
only compares children born closer than 4 months or children with the same first
name. The other children does not get included in calculating the matching score.
The values from matching the husband, the wife and the children gets multiplied
with their corresponding weights. The husband and wife have weight 3 while the
children have weight 1. This is due to that there is no possibility matching the
wrong parents. The matched properties from the family nodes consisting of mar-
riage date and marriage congregation are also multiplied by their corresponding
property weights that are also set to 1. Then all values are summed up. The sum
is finally divided by the sum of the husband and wife weights, the children weights
times the number of children and the sum of the family property weights. This is
expressed in equation 3.2. Finally the resulting value is returned by the method.

scoref =

fw · simF (f1, f2) +
n∑

i=1
(pw · simP (p1,i, p2,i))

fw +
n∑

i=1
pw

(3.2)

Equation 3.2: The equation gives the similarity score between two
families. The simP function compare two persons and the
simF function compare two family nodes. The notation pw
stands for person weight. This weight is different for husband,
wife and child nodes. The weight is 3 for both husband nodes
and the wife nodes and 1 for the child nodes. fw are the weight
for the family node. The weight of the family node can be seen
as the sum of the family node property weights divided by the
number of properties.

It is important to realize that the families that are finally merged are also
checked by Lucene’s scoring formula. This formula can be seen in [17, p. 86].
Lucene is a state of the art search engine so it’s scoring formula can be considered
very good. There are however in this case two drawback with the check done with
Lucene. When using Lucene two family matchtexts are compared. The matchtexts
are made up of the family property values. So what Lucene does is that it checks
how many words(property values) are the same for both matchtexts, see section
2.7 and [4] for more information. The foremost problem with this is that the
individuals of the families compared are not distinguished from each other. So for
example if the death date of a child in one family is the same as the death date
of a completely different child in an other family the similarity score will still go
up. In order to partly stop this one precaution was made. That was to set an
extra letter for all properties indicating what role the person it belonged to had.
The different roles are husband, wife and child and the respective letter h,w and
c. This precaution however does not stop that different children properties still
can become mixed up, as was mentioned above. The other problem with Lucene

Implementation 23

is that Lucene does an exact match between years. So slight variations in birth
dates are considered no match at all. It was to overcome these limitations the
comparisons method was implemented.

There were also merging methods developed for both merging persons and
families. The problem with merging two persons is that they might have conflicting
property values. In this case the newly inserted person’s property values replaces
the property values of the person node in the database. However if there are to
many mismatches within two family trees both trees will be looked over by the
user before merging. The idea is that the GUI should be developed to a level so
that the user can decide which property values is correct. In the case of merging a
person that is the result of a merge from two or several other persons the computer
could of course also look at the property value of the previous inserted persons to
make a decision. This was not implemented here because it would take to much
time but can be a good idea for the future.

The hard thing when it comes to merging families is to make sure that the right
children are merged together. This is done by using the same procedure as when
deciding which children to compare. When two families are merged the families
that gets merged are kept and referenced too by the new merged family. This is
shown in figure 3.6. The figure only shows merging of two families not connected to
any other families. Merging is more complicated when merging connected families
which will be discussed in section 3.4.5. The reason for keeping the old families is
to prevent lose of information. For example does lose of information occur when
two persons have conflicting property values because then information from one
individual is overwritten. Preventing lose of information is important because if a
user wanted to verify that a merge has been done correctly it would be helpful to
have the two families that were originally merged.

3.4.5 Iteration and Merging of Family Trees

One of the main goals of the thesis is making sure that the family merges are
correct. The way to assure this is by traversing the family trees of the pairs of
families suspected to be merged. A family tree for a family here consist of the
family itself and the birth families of the parents and the family of the parents’
parents and so on. Neo4j is built for fast traversal between nodes (O(1) for going
from one node to the nodes connected to it)[14]. This makes Neo4j perfect for this
validation method. Figure 3.7 below illustrates how two family trees are being
traversed for comparison.

The evaluation procedure is done by pre-order traversal. The traversal method
in the database uses an Evaluator object to evaluate if a merge is going to take
place or not. The Evaluator object has three major methods. These are shown in
the table below.

Evaluator methods
boolean stop(...)
void merge(...)
void storeInfo(...)

For every pair of families visited the stop method is called. The stop method

24 Implementation

Figure 3.6: The figure illustrates two families being merged together.
In the figure the round nodes are family nodes and the square
nodes are person nodes. The notation F1 and F2 stands for
two families with family id one and two. The notation F1-F2
means that the node is a merge of F1 and F2. The same goes
for person nodes. The only difference is that a P is used to
indicate persons. The green color represents that the node is
the result of a merge. The different notations for relationships
h, w, c, m stands for husband, wife, child and merge. In this
example the two families are the same with one child missing
in F2.

makes an evaluation whether to abort the merge or continue. This prevents unnec-
essary traversal of family nodes when the evaluation already has given a negative
result. The stop method also classifies if two trees need to be manual merged by a
user or can be merged automatically (henceforth families that belonging to trees
that need to be manual merged will be called manual merges and family merges
that are carried out by the computer automatic merges). The stop method takes
a similarity score between the currently visited pair of families as an argument to
make it’s evaluation. The specific working of the stop method depends on which
Evaluator object that is used. There were many Evaluator objects made in this
thesis due to constant revision of the code. The Evaluator used to generate the
result for this thesis simply takes the mean value for all family comparisons and
checks that it is over a certain threshold set between zero and one. The threshold
differs depending on how many families that has been compared. In the case many
families have previously been compared during traversal the certainty is higher for
a match between trees. This is compensated for by setting the threshold lower
when many families have been compared. To preserve time the simple solution to

Implementation 25

Figure 3.7: The figure shows how two trees being evaluated for
merging are traversed. The left are from the a new input file
and right has been generated from earlier inserted files. The
square nodes are person nodes and the round nodes are family
nodes. The marked nodes are the nodes being traversed. The
numbering shows the traversal order.

use mean value was chosen. This part of the algorithm should be improved.

When the Evaluators stop method does not stop the traversal, it is stopped
when there is no possibility to go further through older generations to compare
families.

The Evaluator object merge method and store information method are used
in combination to merge two trees. The store information method is used while
traversing through the tress during evaluation. In the case the trees pass evaluation
the information that was stored is used by the merge method to merge the trees.
Figure 3.8 show two families being merged.

When two family trees are merged only the traversed family nodes are merged
together. Family nodes only belonging to one of the family trees simply gets
transferred over to the merged tree. This makes the merged family graph more
complete which is the goal of the algorithm. From looking at figure 3.8 it looks
odd how the families F6 and F11 has the same husband. This is however possible
because remarriages are possible. So in this case the husband of F6 and F11 is
considered remarried. It is still possible though that these families will later be
merged. The pair F6-F11 might also be in the map containing pairs of families
that need to be validated before merging. In that case they might later be merged
by the algorithm. The problem with this is that now when traversing the trees
of F6 and F11 the same node will be reached when doing the traversal namely
node (F3-F9). When this happens the evaluation will not travel further along the
branch belonging to the already merged node. The merging process is also tailored
to handle this situation so that the already merged node will not be merged again.
This makes the algorithm robust enough to cope with these cases. When the same
node is visited during traversal the similarity score of one is also sent to the stop
method of the evaluator to boost likelihood of a merge between two families having

26 Implementation

Figure 3.8: The figure show how the two graphs shown at the top are
being merged together to form the graph at the bottom. The
numbers are the ids of the family nodes. Two ids put together
with a hyphen means that two families with the specified ids
has been merged into a new family. The nodes of the top two
trees that were going to be merged were marked and the nodes
that were merged to form the bottom tree were also marked.

the same father or mother. The process for merging F6 and F11 is shown in figure
3.9. When the two families are merged the husband that they have in common
are basically merged with itself which of course result in an exact copy of itself.

It was mentioned before that families that are merged are stored together with
the family that is the result of the merge. This is shown in figure 3.6. However
figure 3.6 only show how two families that have no connection to other families
are merged. The merging procedure for merging two families in two family trees is
a bit different. It was previously shown in figure 3.8 how family trees are merged.
This figure is simplified and leaves out the process of merging and how the families
that was merged are stored. The merging is in reality done for one family at a
time so it can be said that the merging process goes through several stages before
reaching the final merged family tree. This process is illustrated in figure 3.10. The

Implementation 27

Figure 3.9: The figure show how a merge between F6 and F11 would
look.

figure show three stages. In the first stage the two separate trees are shown. There
are both actually in the database at this point. The file and database containers
are there to mark that one of the trees is newly inserted and the other has already
been integrated into the database. The merging process is done post-order, goes
from the top of the tree downwards. Down to the family nodes F2 and F4 which
were the starting nodes when traversing the trees for validation. In the second
stage the two top families has been merged. The family nodes F2 and F4 are
disconnected from F1 and F3. This is because the resulting merged family should
be part of the network not the families that has been merged. The person nodes
P3 and P11 also has to be duplicated. So that when families they belong to later
are merged there can be references to two complete family nodes. This can clearly
be seen in stage 3 where F1 and F2 does not share P4 but now has one copy
each. In stage 3 the families F2 and F4 has also been merged. F5 is transferred
to (F2-F4). This is done to make sure that nodes that has been merged are not

28 Implementation

part of the network, but instead the nodes resulting from the merge.
There was additional functionality needed for the family merging method for

merging families that are part of a tree. The reason for this need is that when
merging two families the husband or wife of the families below that later will
be merged then already has been merged. In those cases the already merged
parents need to be connected to the family node that is the result of the merge of
the families below. So the family merge method was modified to receive already
merged parents as arguments. In the case the merged method received any parents
it did not merge the parents again but instead connected the them to the merged
family node. This can be seen in figure 3.10 were (P4-P11) is merged in stages 2
and then connected to (F2-F4) directly in stages 3.

It was previously mentioned that the merging process was done post-order,
going from the top of the trees to the bottom. It can seem odd that the merging
process was not done pre-order as the traversals during validation. The reason
behind doing the merging process post-order has to do with that families only can
have one husband and wife while they can have several children. This leads to that
it is easier to connect a family node to a husband or wife node because there can
only be one husband or wife node to chose from while there can be several child
nodes. This however leads to that it becomes very important to merge the correct
children of one family that has a family below that should be merged next. Take
for example P4 and P11 in figure 3.10. Both persons are merged in stage 2. There
would be a problem if the wrong persons were merged at this stage. For example if
P4 was accidentally merged with P10. Then the family trees would be put together
inconsistently in stage 3. This can happen since the comparison procedure that
chose which children to merge is not perfect. In order to prevent this error the
children that were also parents of families to be merged in a later stage was stored
together with the families where they were children. By storing those children
it was made sure that they later were merged by the family merging method.
It is during the validation procedure for merging tree the information necessary
for merging is stored. During this procedure the person nodes that connects two
families are collected and then stored together with the family it is a child in. This
makes sure the merge method later knows which children that has to be merged
together. Even though these procedures are put in place to prevent erroneous
child merging. Errors still can accrue because the other children can be merged
in an incorrect way. This is however not a huge problem because it only becomes
one person that is merged incorrectly, but the person is stilled connected to the
right family.

Implementation 29

Figure 3.10: The figure show how two trees are being merged. The
ids for each node is shown by the numbering. The person and
family nodes are marked by a P and a F respectively. So a
family node with id 1 is marked F1. The green nodes are the
merged nodes.

30 Implementation

3.5 Class Structure

Figure 3.11: A simplified class diagram for the implementation of
the algorithm. Smaller classes as well as less important methods
were left out in order to make the diagram readable.

The class diagram for the algorithm is shown in figure 3.11. The two major
classes for the algorithm is the FileLoader and the Database class. The FileLoader
receive a file path for a json file when initiated. The json file is parsed by the
FileLoader and the persons and families in the file get inserted into family and
person objects. These persons and family objects are connected according to step

Implementation 31

2 of the algorithm. Then they are put into lists. These lists are then sorted
according to step 3. The lists are retrieved from the FileLoader by using it’s
getPersons and getFamilies methods. After the lists have been retrieved they are
sent to the Database addFile method. This method carries out the remaining
steps of the algorithm. The method first inserts all the persons and families into
Neo4j. Lucene then searches through it’s index to see if there are any similar
families already in Neo4j. The compareFamilies method is used on the top five
families resulting from the Lucene query. In the case one of the five families is
similar enough to the query family both are put as a pair in a Java Map as was
mentioned in step 5 of algorithm. The pairs in the map is then validated using
Neo4j. This is done by repeatedly calling the mergeTree3 method for traversing
the two family trees of one pair at a time. The mergeTree3 method uses the
recursive method mergeTree4 to traverse the pair of families two corresponding
family trees. This process was described in section 3.4.5. As mentioned before it
is during this traversal an Evaluator is used. For an object to be an Evaluator it
must implement the interface Evaluator. There were three evaluators implemented
during the implementation. This was because the first two needed improvements.
The ThirdEvaluator was the one that was finally used. What is unique about the
ThirdEvaluator is that it’s merging process is more advanced. The ThridEvalutor’s
merging method does not need to merge two entire trees but can merge sub-trees
of two trees that are partly matching.

3.6 GUI

Unfortunately there was not enough time to add any functionality to the GUI
(Graphical User Interface). So only the shell of the GUI was created. Using the
shell a couple of example graphs were uploaded to it. This to illustrate how the
merging results was intended to be represented to the user. The GUI is shown
in figure 3.12. The parts of the GUI implemented so far is only for looking at
the algorithm’s resulting merged trees and trees that need manual merging. In
a real application the GUI would probably be extended to also include different
search capabilities such as searching for a family and getting back potential family
trees for that family. Browsing around the entire graph instead of just looking at
trees would probably also be of interest. The way of representing information to
the user here has this in mind. So that the GUI later easily can be extended to
included these capabilities.

The structure used in Neo4j for storing family trees is also used when repre-
senting the information to the user. So person and family nodes are shown linked
together into trees. This is good for giving the user a understanding of how the
data is stored. Information in Neo4j can also easily be accessible this way by hav-
ing references(ids) for the nodes on screen to the stored nodes in Neo4j. This is for
example useful when editing nodes in Neo4j through the GUI. All that needs to
be implemented then is some method that retrieves the node directly from Neo4j
using it’s id(O(1)) and then changes it the same way that was done in the GUI.
Searching and browsing can also easily be implemented using Lucene to search for
potential start families and then Neo4j for retrieving connected families.

32 Implementation

Figure 3.12: A picture of the GUI. The field to the upper left is
for uploading files to the GUI. When clicking on ”chose file”
a dialogue window pops up which makes it possible to select a
json file for uploading. The clicking on ”upload file” calls on the
algorithm which inserts the selected file. The upper right field
is for checking the tree merges of the previously inserted file.
Filling the boxes lets one chose between looking at automatic
tree merges or trees that need to be manual merged. The next
and previous buttons are to go back and forth between the
different automatic merged trees or the trees that need to be
manual merged. The zoom out button is for zooming out. The
big area in the lower center of the GUI is for displaying the
different trees. The boxes with the text in are for showing the
color and shape coding for both person and family nodes and
if it is a merged person/family, not merged person/family or a
person/family that it was not possible to merge.

When representing the merge results to a user it is important that the person
and families are shown in a way that does not make the user overwhelmed with
information. It is also important that the information that is represented is un-
derstandable. An idea for this GUI was to cut down the information shown to
the user by having a zoom in/zoom out function. When zoomed out either a tree
resulting form a merge is shown or a tree that would have been the result of a
merge depending on if automatic merged trees are shown or the trees that need to
be manual merged. The trees that need to be merged manual are represented as
they were already merged(even though they are not) but the persons and families
that could not be merged are highlighted. Examples of how this can look is shown
in figure 3.13 and 3.14. The zoom in functionality was intended to work in the way
that the user double clicks on a family node to zoom in. When zoomed in on an

Implementation 33

automatically merged family the GUI shows all the members of the merged family
and the families that were used to make up the merged family. When zooming in
on families for manual merging the same is shown, but here the family that is the
resulting merge is not in the database but show what is wrong with the merge.

The idea is that it should be possible to click on the person and family nodes
to correct the errors. Then the merge gets stored for real in Neo4j and Lucene.
Examples of when the GUI is zoomed in on families is shown in figure 3.15 and 3.16.
Different shapes are used to distinguish between person and family nodes. The
persons are boxes and the families are ellipses. A color scheme was also included
to be able to see the difference between three types of nodes namely nodes that
are the results of a merge or should be merged, nodes that are not the result of
a merge and nodes that should be but can not be merged. The color green was
used for merged nodes, blue for nodes that are not the result of a merge and red
for the nodes that could not be merged. When showing manual merges the same
colors where used even though nothing was ever merged, here green means that
a person or family node should be merged instead. It can be seen in figure 3.13
that all family nodes are green for the automatically merged families. Figure 3.14
show that for the manual merged trees the families not possible to merge was
highlighted red. The color highlighting is also present when zooming in.

A side note is that the insertion algorithm make judgements on the entire
family tree. While the GUI make judgements on each individual family and person.
There can therefore be families among the merged trees that have more conflicts
then the families that are looked over for manual merging. This can become
confusing to the user. One way to fix this would be to change the algorithm
by making a new Evaluator were it is enough that only one family or person is
conflicting to consider a whole tree to need to be manually merged. This was not
tested here but it can be a good idea. In order to do this some threshold need to
be implemented so that some properties of family and person nodes can conflict
without it needing to be manually merged.

34 Implementation

Figure 3.13: The figure shows an example of an automatic merge.
The tree that is shown by the GUI is the resulting tree from
a merge of two family trees. The two trees that has been
merged are not shown only the resulting tree. Children not
connecting two families in the tree are also not shown. Only
partial information of both person and family nodes are shown.
All this to give a clear view over how the merged tree turned
out.

Implementation 35

Figure 3.14: The figure show an example of an manual merge. The
tree that is shown by the GUI is what would have been the result
of merging two trees. The red color here indicates a family or
person mismatch. This makes it easy for the user to manual
look over what in the tree that might need to be changed.

36 Implementation

Figure 3.15: The figure show an example of an automatic merge
zoomed in on a family. The resulting merged family is shown
and one of the families that were put together to create it. In
this view most of the information for every member of the family
and the family node itself is shown.

Implementation 37

Figure 3.16: The figure show an example of an manual merge
zoomed in on a family. How the merge result would have turned
out if both families were merged is shown to the right and to the
left one of the families that should be merged. The members of
the family that can not be merged are highlighted red. Family
members that could be merged are green and family members
not needed to be merged are marked blue. The family node
also changes color depending on it could be merged or not.

38 Implementation

Chapter 4
Tests

This chapter will present the different performance tests carried out on the algo-
rithm and give motivation for their relevance. There were two types of tests namely
for time complexity and accuracy. In order to carry out the tests, code was added
to the algorithm to retrieve information about execution time and which families
that were merged. More on this in section 4.1 and 4.2. All tests were carried out
on a Lenovo N500 running Windows 7 Professional N 32 bit. The processors were
Intel(R), Pentium(R) Dual CPU T3200, both with a speed of 2GHz. The RAM
memory was at 3GB and Java version 7 was used to run the program. Five files
were available for testing [5]. Each file contained a different amount of families
and persons. The file size varied from about 50 families and 200 persons in the
smallest file to about 6500 families and 20000 persons in the largest. A list of the
files can be seen below.

• pilot1.json

• pilot2.json

• pilot3.json

• pilot4.json

• pilot5.json

From [5] also files containing merged pairs of families from an earlier genealog-
ical database prototype was available. In that work a MySQL database was used
for storage. The solution from the earlier prototype was created by inserting dif-
ferent combinations of the listed input files into it. Before doing the insertion the
earlier prototypes database was always empty then one file was inserted to make
up the database and then an other one to be the input file. The same method
was used in this work but the major difference is that in this application a graph
database and a different insertion algorithm was used. The different insertion
combinations that were carried out are shown in table 4.1.

This resulted in ten different results for each approach(this work and [5]). The
results contained both measurement for execution time and which families that
were merged together (see section 4.1 and 4.2 for more information). The point
with doing the test this way was to let one file constitute the database and the
other the input file. This in order to make it possible not only to see how the
execution time varied with input file size but also with database size.

39

40 Tests

File combinations

Input file Database containing

pilot1.json pilot3.json

pilot1.json pilot4.json

pilot1.json pilot5.json

pilot2.json pilot1.json

pilot2.json pilot3.json

pilot2.json pilot4.json

pilot2.json pilot5.json

pilot3.json pilot4.json

pilot3.json pilot5.json

pilot4.json pilot5.json

Table 4.1

4.1 Time complexity

In order to determine the time complexity of the algorithm the five json files where
inserted into the algorithm. The execution time for different algorithm steps and
the entire algorithm was calculated using the java command System.currentTimeMillis().
The command returns a value from javas internal clock regarding current time in
ms. Using the command once before and once after an algorithm step, an al-
gorithm step’s execution time can be calculated. This resulted in eight sets of
execution times for the eight algorithm steps. The execution time for the entire
algorithm was also calculated. During execution of the algorithm other relevant
data was also collected such as number of families in the input file, number of
families in the database and number of merged families. This was done for all the
different combinations of files shown in the table above.

All information was retrieved by adding lists to the code. The lists were then
filled with the information previously mentioned. The lists were finally processed
and written to a Matlab file. Matlab was then used to generate graphs for time
complexity for the entire algorithm and for the different algorithm step’s. This
was done in relation to number of families in the input file, number of families in
the database and number of merged families. When making a graph every data
point represented a measurement from merging a combination of files. For example
when drawing the execution time for the entire algorithm all ten combinations of
files where needed so that the correlation between execution time and number of
merged families could be seen (see section 5.1). In Matlab many different graph
were generated, only a few of those were considered relevant. The relevant graphs
are shown in section 5.1.

Tests 41

Comparisons

Algorithm Previous prototype

Automatic merges Automatic merges

Automatic merges Manual merges

Manual merges Automatic merges

Manual merges Manual merges

Table 4.2

4.2 Accuracy

The point of the accuracy testing was to find out the precision, recall and F-score
of the algorithm (see section 2.2). This was done by comparing the pairs of merged
families from the algorithm with the pairs of merged families from the previous
prototype[5]. In this case the previous prototype was regarded as a correct solution.
The merges for the algorithm were retrieved by adding code to the algorithm
so that gedcomids representing the merged families were inserted into two lists.
There were one list for storing automatic merges and one for manual merges. The
comparison was then made by comparing the gedcomids representing the merges
from the algorithm with the gedcomids representing the merges from the previous
solution. It was previously mentioned in section 3.3 that the gedcomids were
unique for every family in the five files. Therefore it was enough only to compare
gedcomids to determine if two families were the same.

The previous prototype’s solutions were available as ten files [5]. There were
one file for every combination of input files merged. When testing one of the
combinations, the input files were first inserted into the algorithm and then corre-
sponding previous solution’s file was uploaded for comparison. This was repeated
for all ten combination resulting in ten different comparisons between the algo-
rithm and previous prototype.

The comparisons were made by comparing four lists with each other. Two
lists were from the algorithm’s merges and two were from the previous prototype’s
merges. There were two for each solution since there were two kinds of merges
namely automatic and manual merges. The lists were compared with each other
in four combinations. These combinations are shown in table 4.2. Finally the
number of automatic and manual merges was extracted to Matlab together with
the comparison results. In Matlab bar plots were generated to show the comparison
results. Calculations were also made to determine the precision, recall and F-score
of the algorithm.

42 Tests

Chapter 5
Results and Discussion

5.1 Time Complexity

This section will both present results from the test on time complexity explained
in the test section and a deeper analysis. The analysis will mainly be about what
time complexity to expect when the database becomes large.

The algorithm seems to have a linear time complexity in relation to families
being merged according to figure 5.1. About 75 percent of the execution time is
during algorithm step 6 (validate and merge) which can be seen by comparing
figure 5.1 and figure 5.2.

In order to understand the relation between database size and execution time
a deeper analysis of the algorithm is necessary. Before the validation and merging
step Lucene searches the database several times to find potential family merges.
This step is most dependent on database size. In section 2.7 it was written that a
Lucene search had the time complexity p · log(k) where k is the number of families
retrieved and p is the number of postings in the postings lists for the terms of the
query. The algorithm uses Lucene to search the database one time for every family
in the input file, for every query the top five most similar family candidates are
retrieved. This makes the time complexity for searching for every family in the
input file containing n families n · paverage · log(5). The paverge stands for average
number of postings in the posting lists for the terms in an averaged sized query.
There is of course a linear dependence between the input file size and the execution
time for searching all families in the input file. It is however harder to know the
dependence between the database size and the execution time for searching. This
is because it is hard to know the dependence between paverage and the database
size. The paverage is dependent on two factors. The average number of terms in a
query and the average length of the postings lists. The average number of terms
in a query is dependent on the average size of the families. The average length of
the postings lists however is indirectly dependent on the database size. A postings
list is basically a list containing the id’s of the documents(families) containing
a specific term(property value). So in the case new families are inserted that
have few property values in common with previously inserted families the postings
lists do not grow much. Instead new postings lists are created. In this case the
execution time for the Lucene search is not effected much because the paverage
does not grow. This is what makes it hard to know the relation between database

43

44 Results and Discussion

Figure 5.1: The graph show how long time it takes to execute the
entire algorithm in relation to how many families are merged.

size and execution time. So tests on larger sets of data is necessary. In the case the
search would take to long on a large database it would be possible to start using
approximative methods to lower the execution time, these were shortly discussed
in section 2.7. For the test carried out in this thesis all Lucene searches did not
take more than a few seconds.

The more trivial steps in the algorithm can of course also start to play a role
when the database becomes large. Adding the nodes to Neo4j or documents to
Lucene might for example become slower when the number of persons and families
in the database are already large. Theoretically insertion into Neo4j should not
depend on the number of already inserted nodes. It is worse for Lucene where
the postings lists has to be iterated through to remove the documents (families)
that were taken away. Insertion and removal of documents in Lucene is quite an
advanced subject, see [17] for more information.

Results and Discussion 45

Figure 5.2: The graph shows how long time it takes to validate and
merge families in relation to how many families are merged.

5.2 Accuracy Compared to Previous Research

This section will first present the result regarding accuracy of the algorithm as
compared to previous implementation[5] and then give deeper analysis into the
result. It is in this case hard to give any absolute correct answer regarding accu-
racy because it is not certain that previous prototype gave a correct solution. For
easy reading the previous prototype’s result will here be called the previous solu-
tions. Matches and manual matches found by the previous solution will be called
previous match or previous manual match. As mentioned in the test section were
the json files inserted into the algorithm and previous prototype in ten different
combinations. Then the result from inserting the files into the the algorithm and
the previous prototype were compared. This resulted in ten comparisons in total.
The results from the comparison all gave a similar distribution of families that
were merged by both solutions in relation to how many families that were merged
individually by the solutions. The ten results where therefore combined into one
result. This result is illustrated in figure 5.3.

The great difference between the applications is that there are almost no man-
ual matches found by the algorithm. This is because the algorithm compares two
trees with each other and not two families. This results in that the matches found
become very certain or disregarded completely. This might result in some families

46 Results and Discussion

Figure 5.3: Shows a summation of the result from comparing the
five files in the ten different combinations presented in the test
chapter. There were so few manual merges done by the algo-
rithm so these are not shown in the bar diagram.

Automatic merges

Precision Recall F-score

79% 85% 82%

Table 5.1

within a tree being merged wrongly. The current version of the algorithm does
not take care of this. Looking at figure 5.3 it becomes clear that the algorithm
finds more family matches but it also becomes clear that many matches found
were considered manual matches by the previous solution. The tables 5.1 and 5.2
show the precision, recall and F-score for the automatic and manual merges. The
two tables does not take into consideration that many of the automatic merges
were found as manual merges by the previous solution. In order to show this the
table 5.3 was made.

In table 5.3 separation between manual and automatic merges were not consid-
ered. Instead it is shown how many manual or automatic merges that were found
by the algorithm that were also found as either automatic or manual merges by
the previous solution. The precision shown in table 5.3 is much higher then in ta-
ble 5.1. This is due to what was previously written, that many automatic merges
found by the algorithm were considered manual merges by the previous solution.

Manual merges

Precision Recall F-score

0% 0% 0%

Table 5.2

Results and Discussion 47

Automatic and manual merges

Precision Recall F-score

97% 81% 88%

Table 5.3

From looking at table 5.3 it becomes clear that the automatic or manual merges
found by the algorithm is also found by the previous solution. Meaning that the
algorithm has a high precision. On the other hand there are many automatic and
manual merges found by the previous solution that are not found by the algorithm.
However it is hard to know whether or not these extra merges are correct or not.
One theory could be that the extra merges are discarded by the algorithm during
the tree traversal. In this case it can be interesting to consider that here are places
were the genealogist have connected the wrong families. So an interesting idea can
be to extend the current algorithm with some sort of detection mechanism for
these situations. This could be done by taking cases were a couple of connected
families had been given a big similarity score and then the similarity score declined
when traversing a specific branch. This could improve the recall.

48 Results and Discussion

Chapter 6
Conclusions and Future Work

There were a number of questions in the introduction of this thesis. Short answers
or references where to find information to these question will now be given as a
conclusion. The following list is the same list that was shown in the introduction.

1. How shall information be saved within Neo4j?

2. How shall basic operations such as insertion, removal and search be imple-
mented?

3. What is the time complexity for the insertion operations?

4. How accurate is the insertion method at detecting duplicates between the
database and the insertion file?

5. How shall information about duplicate families (conflicts, two possibilities)
be represented to the user?

Question number one is answered in section 3.4.2. The second question is
basically three questions. The algorithm that was developed was for insertion. So
the answer for how to implement the insertion is the algorithm, which is explained
in it’s totality in section 3.4. A basic overview of the algorithm is shown in sub-
section 3.4.3. Removal is actually a pretty trivial issue. Removing a family or
person is basically just to use the removal operations in Neo4j and Lucene. There
could however be ramification for removing a family node in Neo4j. In the case
there would be person nodes that were not connected to any other families it
would probably be desirable to remove them as well. This can be accomplished by
traversing from all family member nodes in order to check if they are connected
to any other nodes and if not remove them. It is desirable to remove disconnected
person nodes because there are no way they can be retrieved through a search.
This is due to that they can not be found with Lucene and not traversed to from an
other node in Neo4j when disconneted. An other obvious problem with removing
a person or family node is that this can lead to that families that were previously
related are being disconnected by removing the person or family. This is however
something that the user has to look at when deciding whether or not to remove
the person or family.

The removal process in Lucene is not that complicated either. One of the
main problems is that Lucene has to be queried to find the family that has to

49

50 Conclusions and Future Work

be removed. Lucene can only search for families because there are only family
matchtexts stored in Lucene. Therefore when removing a person, a queries for
the families nodes it is connected to has to be made. This is done by traversing
from the person node to one of it’s neighboring family nodes and then search for
those families with Lucene. Then what basically needs to be done is that for all
of those families the specific part of their matchtexts coming from the person that
is being removed has to be removed. This is accomplished by first removing the
matchtexts in Lucene and then inserting new ones without the removed person’s
property values. Searching can basically only be done for families or family trees.
Searching for a family is just to use Lucene. Implementing searches for family
trees can de done using the Lucene search on the root family node of the tree and
then use the validation procedure in Neo4j.

The answer to the third question is linear time-complexity in relation to num-
ber of families merged but further testing on larger data-sets is necessary to de-
termine this. Question number four is answered in section 5.2. Section 3.6 covers
the last question.

The problem of finding and merging family trees can be considered an open
problem, there are therefore an endless number of solutions. In this thesis an
algorithm using Lucene and Neo4j in collaboration was developed. The point of
this collaboration was to use the strength of both tools to get the best result in
regard to time complexity and accuracy. The basic idea was to first use Lucene to
find which families to merge. This was accomplished by Lucene through the use
of the vector space model. The gives a very time effective way of finding which
families to merge. Neo4j is then used to traverse trees for validation and merging.
This is done quickly because the time complexity for going between neighboring
nodes is O(1) in Neo4j. This leads to the algorithm being very time effective. With
the longest execution time being about two minutes. This makes the algorithm
promising for future work. The remaining problem for improving the algorithm
time complexity lies in optimizing the queries made by Lucene. This can hopefully
be done using the approximative searches discussed in the theory chapter.

In this thesis the application was not tested against any proven earlier results.
So there is a need to test the application on two merged files where the result has
been looked over by genealogist. There is also a need for testing that the appli-
cation keeps the data within Neo4j in a consistent state when many consecutive
insertions of files are being made.

The algorithm can also be improved in several ways. The most obvious im-
provement would probably be to change the Evaluation method so that more
merges become manual merges instead of automatic merges. This can be accom-
plished by instead of only calculating the average value of all family comparisons
also calculate the variance of the family comparisons. A high variance would mean
that there are probably families that have to low similarity score to be merged au-
tomatically. An other way of accomplishing the same goal can be to look at the
comparison value individually for each pair of families compared. In the case the
comparison value is too low for one or a couple of the family pairs the merge can
be considered manual.

The GUI was also not completed. So some development as to how the GUI
should be connected to the algorithm and how the nodes represented by the GUI

Conclusions and Future Work 51

can give access to the nodes stored in Neo4j and the documents stored in Lucene
also need some further investigation. The way the algorithm chooses which chil-
dren that should be merged can be improved. For example by comparing the other
families the children are connected to in order to decided which children are the
same.

52 Conclusions and Future Work

Bibliography

[1] url: http://web.mit.edu/16.070/www/lecture/big_o.pdf

(visited on 12/20/2015).

[2] Eric W. Allender et al. Computer Science Handbook (Second Edition).
Ed. by Allen B. Tucker. Chapman & Hall/CRC, 2004. isbn: 978-
1584883609.

[3] G. Kirby et al. Comparing Relational and Graph Databases for Pedi-
gree Data Sets. url: http://socialhistory.org/sites/default/
files/docs/kirby_et_al_-_database_comparison.pdf (visited
on 03/03/2014).

[4] Apache Lucene - Scoring. url: http://lucene.apache.org/core/
3_5_0/scoring.html (visited on 11/20/2014).

[5] Anders Ardö. Department Electrical and Information Technology,
Lund University.

[6] Douglass R. Cutting and Jan O. Pedersen. “Space Optimizations for
Total Ranking *”. In: In Proceedings of the RIAO97 Conference -
Computer-Assisted Information Searching on Internet (1997), pp. 401
–412. url: http://lucene.sourceforge.net/papers/riao97.ps.

[7] Datorhjälp i Släktforskningen. url: www.dis.se (visited on 01/27/2014).

[8] Eclipse, Kepler. url: http://eclipse.org/kepler/ (visited on
12/16/2015).

[9] Family Tree & Family History at Geni.com. url: http://www.geni.
com (visited on 12/01/2015).

[10] Free Family History and Genealogy Records. url: https://familysearch.
org/ (visited on 12/19/2015).

[11] Free Family Tree, Genealogy and Family History - MyHeritage. url:
http://www.myheritage.com (visited on 12/03/2015).

53

54 BIBLIOGRAPHY

[12] A Wong G. Salton and C.S. Yang. “A Vector Space Model for Au-
tomatic Indexing”. In: Communications of the ACM 18.11 (Nov.
1975), pp. 613–620. url: http://mall.psy.ohio- state.edu/

LexicalSemantics/SaltonWongYang75.pdf.

[13] Geneanet: Your family history. url: http://en.geneanet.org (vis-
ited on 12/02/2015).

[14] Jim Webber Ian Robinson and Emil Eifrem. Graph Dattabases. Ed. by
Mike Loukides and Nathan Jepson. O’Reilly Media Inc., 2013. isbn:
978-1-4493-5626-2.

[15] JSON. url: http://www.json.org/ (visited on 02/15/2014).

[16] Lars Lundin. GEDCOMP - GEDcom COMParison. url: http://
www.lklundin.dk/gedcomp/english.php (visited on 12/15/2015).

[17] Eric Hatcher Michael McCandless and Otis Gospodnetic’. Lucene In
Action. Ed. by Sebastian Stirling and Liz Welch. Manning Publica-
tions Co., 2010. isbn: 978-1933988177.

[18] Lućıa Pasarin Perea. “Analysis of alternatives to store genealogical
trees using Graph Databases”. MA thesis. Universitat Politècnica de
Catalunya, 2013.

[19] David M. W POWERS. “EVALUATION: FROM PRECISION, RE-
CALL AND F-MEASURE TO ROC, INFORMEDNESS, MARKED-
NESS & CORRELATION”. In: International Journal of Machine
Learning Technology 2.1 (Dec. 15, 2011), pp. 37–63. url: http :

//dspace2.flinders.edu.au/xmlui/bitstream/handle/2328/

27165/Powers%20Evaluation.pdf?sequence=1.

[20] Släktforskning, släktträd och släkthistorisk information p̊a Ancestry.se.
url: ancestry.se (visited on 12/20/2014).

[21] The Neo4j Manual v1.8.3. url: http://neo4j.com/docs/1.8.3/
index.html (visited on 12/15/2015).

[22] PETER WAYNER. “From Shared Resources, Your Personal His-
tory”. In: The New York Times (Apr. 22, 2004).

[23] Peixiang Zhao and Jiawei Han. “On Graph Query Optimization in
Large Networks”. In: Proceedings of The Vldb Endowment - PVLDB
3.1 (), pp. 340 –351. url: http://web.engr.illinois.edu/~hanj/
pdf/vldb10_pzhao.pdf.

