
Acceleration of Pedestrian Detection System using
Hardware-Software Co-design

Mao Hatto
hatto@am.ics.keio.ac.jp

Department of Electrical and Information Technology
Lund University

Advisor: Hideharu Amano

March 25, 2015

Printed in Sweden
E-huset, Lund, 2015

Abstract

Object detection technologies, represented by face detection system which has been stud-
ied for a long time, have developed recently because of the development of technologies
of high performance computing and pattern recognition technique. Especially, pedestrian
detection system has gathered attention recently, and it will be applied to an automobile
safety system and monitoring camera system.

While many research of acceleration and improvement of detecting accuracy have
been published, system design as distributed system is also required. While a central-
ized computing system which sends raw image data to central processing node presses
networks, distributed system which operates some calculation before sending data to the
network decreases the total amount of data volume.

When we take account of using environment of pedestrian detection system, user
flexibility is also important criteria. Pedestrian detection system should be set some pa-
rameters such as detecting window size, slide width of window and operating speed de-
pending on each using environment. When you implement the whole system on an FPGA,
you will lose flexibility of the system. Hardware-Software Co-design enables to enhance
flexibility.

Thinking of demands mentioned in above, this thesis aims acceleration of pedestrian
detection system using Hardware-Software Co-design. In the implementation, our sys-
tem adopts HOG (Histogram of Oriented Gradients) feature value and Real Adaboost
as a classification algorithm. Also, our system aim data reduction without decrease of
detecting accuracy, design as distributed system by implement on a single FPGA, and
enhancement of flexibility using Hardware-Software Co-design.

HOG feature data is reduced by segmenting to 6bit after converting HOG feature
value from floating-point number to fixed-point number. In addition, output of classifier
by Real Adaboost algorithm is calculated by high-precision in advance, and these values
are stored to ROM on the FPGA. This enables to reduce data volume without much loss
of detecting accuracy.

As a result, whole pedestrian detection system is implemented on a single FPGA
board, and it accelerated in 3.22 faster than software only operation. In addition, feature
data is reduced by 93.5% without much loss of detecting accuracy. Enhancement of
flexibility using Hardware-Software Co-design also accomplished with ZedBoard FPGA
and ARM Coretex-A9 processor on the board.

i

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 2
1.3 Structure of the thesis . 3

2 Pedestrian Detection System 5
2.1 System Algorithm . 5
2.2 Feature Extraction . 6
2.3 Recognition and Classification . 8

3 Related Works 11
3.1 Related Work 1 . 11
3.2 Related Work 2 . 11
3.3 Related Work 3 . 12
3.4 Other Related Works and Discussion 14

4 Design and Implementation 17
4.1 Implement Environment and FPGA Board 17
4.2 Algorithm Optimization . 19
4.3 System Profiling . 20
4.4 Hardware-Software Co-design . 21
4.5 Data Reduction . 22
4.6 Architecture . 24

5 Evaluation 29
5.1 Resource Utilization . 29
5.2 Execution Speed . 29
5.3 Data Volume . 31
5.4 Detecting Accuracy . 32

6 Conclusion 35

References 37

iii

A AXI Bus Signal 39

B Xilinx IP Core Generator 43

C Camera Module 45

iv

List of Figures

1.1 System overview . 2

2.1 Cell, Block and histogram in HOG Feature Extraction 7

3.1 Centralized and Distributed System 14

4.1 ZedBoard . 18
4.2 Zynq Overview . 19
4.3 Algorithm Optimization . 20
4.4 Window-based Scanning and Cell-based Scanning 21
4.5 Hardware-Software Co-design . 23
4.6 Data reduction method . 24
4.7 Whole Architecture . 25
4.8 Block Diagram of Gradient Computation Core 26
4.9 Block Diagram of Normalization Core 26
4.10 Block Diagram of Real Adaboost Core 27

5.1 Resource Utilization . 31
5.2 DET curve of the system . 33
5.3 Test Sample Example . 34

A.1 Reading transaction . 39
A.2 Writing transaction . 40
A.3 Data transaction of AXI4-Stream . 41

C.1 MT9D111 Camera Module . 45

v

List of Tables

3.1 Summary of Related Work 1 . 12
3.2 Summary of Related Work 2 . 13
3.3 Classification rate and memory size for processing an image 13

4.1 Result of Profiling . 22

5.1 Resource Utilization . 29
5.2 Resource Utilization (Detail) . 30
5.3 Operating Speed . 30
5.4 Data volume comparison . 31
5.5 Comparison of error rate of miss detection 34

C.1 Pin List of MT9D111 Camera Module 46
C.2 Key Performance Parameters (excerpt) 46

vii

Chapter1
Introduction

1.1 Background

As technologies of high performance computing and pattern recognition have developed
rapidly, a pedestrian detection system has also gathered attention recently. Pedestrian de-
tection system can be applied for many objectives, such as an automobile safety system,
an automatic traffic census system and a crime prevention system. Especially in the moni-
toring camera system, collected feature data are expected to be stored in data base servers,
and used for big data analysis. Also from the viewpoint of privacy protection, not using
picture data but using secondary data, such as detecting result or feature data, is desirable.

Although various kind of methods for extracting feature data for pedestrian detec-
tion system are proposed, HOG (Histogram of Oriented Gradients)[1] proposed N.Dalal
and B.Triggs has been an effective way for extracting feature values. Also, Adaboost
algorithm[2] proposed by R.E. Schapire and Y.Singer has high recognition ratio and is
easy for hardware implementation. Furthermore, Real Adaboost[3], an improved algo-
rithm of adaboost, extends output values of weak classifier from a binary number to a real
number.

Figure 1.1 shows the overview of a pedestrian detection system. It can be divided
into two phases: learning phase and recognition phase. The learning phase extracts HOG
feature values from prepared learning positive and negative data, and performs learning
using Real Adaboost algorithm. This phase generates strong classifier, and it is used in
the recognition phase. In the recognition phase, extracting HOG feature values from input
data are judged whether the input data include pedestrian or not. If the system detects
pedestrian in the picture, extracted HOG values are sent to the database server.

A lot of researches on pedestrian detection systems adopted these two algorithms, and
achieved a certain progress. However, data volume of HOG feature is still a problem of the
whole system. Much data volume consumes much block RAM in an FPGA, and it makes
difficult to implement on a single FPGA. Also it increases communication time between
each block in FPGA. Although one of the related work proposed feature data reduction
using binary pattern for HOG feature values[4], it also causes deterioration of recognizing
accuracy. As performance of detection is the most important evaluation criteria, it should
be kept even data values are reduced.

1

2 Introduction

Figure 1.1: System overview

1.2 Objectives
Based on the section above, there are three criteria in pedestrian detection system: detec-
tion accuracy, detection speed and data volume. Detection accuracy could be improved
by algorithmic way or increasing learning times in the learning phase. As detection speed
and data volume could be improved via hardware design, this thesis especially focuses on
these two points.

In addition, two proposals will be shown in this thesis. One is necessity of Hardware-
Software co-design. Though pedestrian detection system is supposed to be used in various
situation, specific parameters related to detecting speed, detecting window size or slide
width of detecting window should be able to be changed easily by users. Hardware-
Software co-design enables this and it enhances flexibility.

Another proposal is design as a distributed processing system. Pedestrian detection
system such as an automatic traffic census system and a crime prevention system have
many camera modules, and they communicate with host machine. If raw image data are
sent in order to all operations are processed in the host machine, an enormous amount
of packets are generated in the network. This causes the overall speed reduction and
oppressing network resources.

Therefore, this thesis objects three point mentioned below.

• Implement whole pedestrian detection system, from input from camera module to
output to a display.

• Aim to acceleration and data reduction without deterioration of recognizing accu-
racy.

• Enhance flexibility using Hardware-Software co-design.

Introduction 3

• Implement whole system into a single FPGA in order to design as a distributed
processing system.

1.3 Structure of the thesis
This thesis is organized as follow. Chapter 2 gives an overview of pedestrian detection
system and detail of HOG feature extraction and Real Adaboost, then Chapter 3 mentions
some related works and their achievement. Chapter 4 explains implementation of FPGA,
and Chapter 5 shows the result of evaluation. Finally, Chapter 6 concludes the thesis.

Chapter2
Pedestrian Detection System

This section gives an overview of the pedestrian detection system, and explains algorithms
used there. While whole system overview of pedestrian system has been shown in Figure
1.1, this chapter explains detailed algorithm. In addition, HOG feature extraction and
Real Adaboost learning and detecting algorithm are explained with some equations.

2.1 System Algorithm
Listing 2.1 shows the C-like pseudo code of pedestrian detection system. First of all,
input_image() sub routine inputs image data from camera module. Next, Gray_scaling()
converts input image into gray scale image, and Initialization() routine allocates memory
and initializes them. Then, detecting window is extracted by Raster Scan in for statement.
This process is iterated depending on the number of extracted window. In each iteration,
feature extraction by HOG algorithm and recognition using Real Adaboost are the main
part and these two parts consumes most of the operated time. HOG algorithm consists of
three sub routines: Gradient_computation(), Orientation_binning() and Normalization().
After extracting HOG feature values, RealAdaboost() sub routine judges if the window
includes pedestrian or not using Real Adaboost detecting algorithm. If the judgment is
true, information of the window and detecting result are stored by Voting() sub routine.

Since some windows are determined to be true for one detection point, it is necessary
to integrate them into a single window. Mean_Shift() and Nearest_Neighbor() subroutines
play a part of it. Then finally Output_Image() outputs the image with detected window to
a display.

5

6 Pedestrian Detection System

Listing 2.1: Pseudo Code of Pedestrian Detection System
1 int main()
2 {
3 Input_Image();
4 gray_scaling();
5 initialization();
6
7 for(Raster Scan){
8 // Extract HOG feature values
9 Gradient_computation();

10 Orientation_binning();
11 Normalization();
12
13 //Detecting by Real Adaboost
14 if(RealAdaboost() == true){
15 Voting();
16 }
17 }
18 // Window merging
19 Mean_Shift();
20 Nearest_Neighbor();
21
22 Output_Image();
23 }

2.2 Feature Extraction
Although various feature extraction methods were proposed, HOG (Histogram of Ori-
ented Gradients) has been the most popularly used method in object detection systems.

In HOG feature extraction, input window is divided into some cells, which are com-
posed by a certain number of pixels. Gradients histograms are generated in each cell,
and they are normalized in each block, which contains some cells. Figure 2.1 shows win-
dow, cell, block and extracted histogram in each cell in HOG feature extraction algorithm.
More details of HOG algorithm is shown below.

2.2.1 Gradient Computation

The first step of calculation is computing Intensity derivative fx, fy by intensity L(x, y) in
each pixel. Then, intensity gradients m(x, y) and intensity gradient θ(x, y) are computed.

 fx(x, y) = L(x + 1, y) − L(x − 1, y)
fy(x, y) = L(x, y + 1) − L(x, y − 1)

(2.1)

m(x, y) =
√

fx(x, y)2 + fy(x, y)2 (2.2)

θ(x, y) = tan−1 fy(x, y)
fx(x, y)

(2.3)

Pedestrian Detection System 7

Figure 2.1: Cell, Block and histogram in HOG Feature Extraction

2.2.2 Orientation Binning

The next step is making histograms in each cell. Calculate bin for binning by intensity
gradients θ(x, y) and azimuthal quantum number N.

bin = Round(θ(x, y) +
π

2
) × 180

π
× N

180
(2.4)

2.2.3 Block Normalization

Finally, feature values v are normalized in each block.

vn =
v√√

(
k∑

i=0

v(i))2 + ϵ

(2.5)

8 Pedestrian Detection System

2.3 Recognition and Classification

Adaboost, a machine learning algorithm proposed by Y.Freund and R.Schapire, has high
degree of detective ratio and is easy to be implemented. While Adaboost algorithm uses
weak classifier with binary {+1, -1} outputs, Real Adaboost, an improved version of
Adaboost, uses weak classifier with real number outputs. Compared with Adaboost, Real
Adaboost has high recognition ratio with fewer classifiers in general.

We can divided Real Adaboost algorithm into two phase: learning and classification.
Specification of each Real Adaboost phase is shown below.

2.3.1 Learning

As a precondition, N learning sample data (xi, yi), (i = 1, ...,N) and weighting number
Dt(i) are prepared. xi means input sample data and yi+1,−1 shows class label which
shows whether any person appears in the sample data or not. Di is initialized 1/N at the
beginning of the learning phase.

After initialization, the following tasks for number of learning t = 1, 2, ..., T and
number of weak classifiers m = 1, 2, ...,M are operated.

The first step of learning generates candidates for probability density distributions.
By feature values of learning sample xi and quantifying number j, two probability density
distributions W j

+andW j
− are generated.

W j
+ =

∑
i : j∈yi=+1

Dt(i)

W j
− =

∑
i : j∈yi=−1

Dt(i)
(2.6)

Next step is estimating weak classifier by evaluation value Zm and calculating the
value of weak classifier by (2.8).

Zm = 1 − 2
∑

j

√
W j
+W j
− (2.7)

h(x) =
1
2

ln
W j
+ + ϵ

W j
− + ϵ

(2.8)

Then, updating weighting number Dt(i) by equation (2.9) and (2.10).

ht = minZt,m (2.9)

Dt+1(i) = Dt(i)exp[−yiht(xi)] (2.10)

2.3.2 Classification

Classification of Real Adaboost consists of four steps.

Pedestrian Detection System 9

1. Quantize input feature value x by

j = f loor(x × 64) (2.11)

2. Loading W j
+ and W j

−

3. Calculating h(x)

h(x) =
1
2

ln
W j
+ + ϵ

W j
− + ϵ

(2.12)

4. Summing up h(x) of every input x.

H(x) =
∑

t

ht(x) (2.13)

If the final value H(x) exceeds threshold, the input sample is classified as positive.

Chapter3
Related Works

This section shows some related works, and reveal the achievement and challenges. First
related work designed multi-FPGA system for HOG feature extraction and Real Ad-
aboost. Second related work implemented on pedestrian detection system by Binary pat-
tern HOG and Adaboost on a single FPGA. Third related work focused on data reduction
method for HOG extraction algorithm. After introducing these three related works, we
discuss their contribution and other works.

3.1 Related Work 1
“An Image Recognition System for Multiple Video Inputs over a Multi-
FPGA System”

T.Otsuka, et al.[5], designed multi-FPGA system for image recognition system using
HOG feature and Real Adaboost classification. Their platform device named Cloud of
Reconfigurable Device (CoRD) contains of a controller PC and FPGA printed circuit
boards (PCBs) connected to each other with a high-speed serial interface. Each PCB has
a Gateway FPGA and some tile FPGAs, and they are connected by local bus. The gateway
FPGA has memory controllers handling DDR3 SDRAM for the video frame buffer.

As a result, they achieved operating speed in 30 fps with 720 x 480 pixels per frame.
They also contributed to improve flexibility by HW/SW communication interface. Sum-
mary of this paper is shown in Table 3.1.

3.2 Related Work 2
“Deep pipelined one-chip FPGA implementation of a real-time image-
based human detection algorithm[6]”

11

12 Related Works

Table 3.1: Summary of Related Work 1

Platform Multi FPGA system
Input image size 720 x 480 pixels

Number of window per frame 35,000
Algorithm HOG + Real Adaboost

Gateway-FPGA
Slice: 18,479 / 37,680 (49%)

Resource Block RAM (36KB): 245 / 416 (58%)
Tile-FPGA

Slice: 11,737 / 37,680 (31%)
Block RAM (36KB): 248 / 416 (59%)

Max frequency 27 MHz
Throughput 30 fps

Detection rate no data
False positive rate no data

This paper tried to implement pedestrian detection algorithm using HOG and Ad-
aboost classification on a single FPGA (Virtex-5 VLX-50). In order to implement on a
single FPGA without any external memory modules, they tried to use binary patterned
HOG and some approximation arithmetic strategies. Their system achieved 62.5 fps of
the throughput, showing 96.6% and 20.7% of the detection rate and the false positive rate,
respectively.

The most important contribution of this paper is to present an implementation of
HOG feature extraction and Adaboost classification on a single FPGA without external
memory. Table 3.2 shows the summary of this related work.

3.3 Related Work 3
“A method for reducing number of HOG features based on Real Adaboost[4]”

C.Matsushima et al. tried to data reduction of HOG features[4]. They proposed
binarized HOG features on pedestrian detection system using HOG and Real Adaboost,
which are the same algorithm used in this thesis.

Binarizing HOG feature calculated by equation (3.1) reduced feature data to 1/64. vd

Related Works 13

Table 3.2: Summary of Related Work 2

FPGA Xilinx Virtex-5 VLX-50 (ML501)
Input image size 320 x 240 pixels

of window per frame 1540
Algorithm Binary pattern HOG + Adaboost

Number of Slice Registers: 2,181 / 28,800 (7.6%)
Resource Number of Slice LUTs: 17,383 / 28,800 (60.4%)

Number of Block RAM: 36 / 48 (75.0%)
Max frequency 44.85

Throughput 62.5 fps
Detection rate 96.6%

False positive rate 20.7%

and bd mean HOG feature and binarized HOG feature respectively, and th means threshold
value which is set in 0.03 in this proposal.

bd =

1 vd ≥ th
0 otherwise

(3.1)

Although converting the HOG feature to binary pattern enables to reduce the to-
tal amount of memory space, it also causes the problem of a sparse probability density
distribution used in classification. While this method declines detection accuracy about
10%, they proposed additional method which integrates the binary pattern during training
phase.

As the result, while single binarizing HOG feature declines detection accuracy in
9.8%, they achieved data reduction with keeping detection accuracy as same level as
conventional way by integrating binary pattern. This result shows in Table 3.3.

Table 3.3: Classification rate and memory size for processing an
image

Method Detecting Accuracy Memory size
[%] [MB]

Original HOG 75.6 1,098.63
Binarizing HOG 65.8 17.17

Binarizing HOG (integrating 128 pattern) 76.5 17.17
Binarizing HOG (integrating 64 pattern) 76.5 17.17
Binarizing HOG (integrating 32 pattern) 74.2 17.17

14 Related Works

3.4 Other Related Works and Discussion
First related work[5] shows the implementation on multi-FPGA system. Other woks im-
plement pedestrian detection system on high-performance computing (HPC) systems.
R.Benenson, et al.[7] achieved 135 fps using CPU + GPU desktop machine. S.Bauer,
et al.[8] designed FPGA-GPU architecture for pedestrian detection using HOG and SVM
(Support Vector Machine), and achieved 10 fps for 800 x 600 pixels input, and 1,000
detecting windows are extracted in a frame.

Such related works on HPC system achieved to design pedestrian detection system
in high speed, and their system are supposed to be used as centralized computing system.
Although they contributed design of a high-performance system and improved flexibility
since some of the system includes software operation, such a centralized computing sys-
tem increases network traffic. In Figure 3.1 compares centralized systems and distributed
systems. In centralized systems, central system processes all data from each node, and
data traffic of network is increased since each node sends raw pixel data in each frame.
On the other hand, distributed system showed in Figure 3.1.b has FPGA board in each
node, and they processes detecting result data before sending data to network. Although
each node is more complex than centralized system, network traffic is much smaller.

Figure 3.1: Centralized and Distributed System

Second related work[6] implemented on one-chip FPGA as each node of distributed
system. In order to implement on a single FPGA, they proposed binary pattern HOG
algorithm. Although this algorithm enables us to reduce memory space on FPGA board,

Related Works 15

it decreases detecting accuracy. Third related work[4] tried to solve it, and proposed
improved method for binary pattern HOG. Although distributed pedestrian detection sys-
tems are designed in these two works[6][4], they decrease flexibility of the systems since
they implemented whole system on a single FPGA.

In this thesis, we aim pedestrian system designed as distributed system with high
flexibility by Hardware-Software Co-design.

Chapter4
Design and Implementation

This chapter explains design and implementation. Section 4.1 shows implement envi-
ronment, especially FPGA and camera module. ZedBoard has AXI bus as an on-chip
interconnect protocol between software core and programmable logic. This chapter also
explains detail of AXI protocol. Section 4.2 reviews system algorithm and discusses op-
timization of it for the purpose of Hardware-Software Co-design. Section 4.3 gives the
result of system profiling, and examines which part of the program consumes most of the
execution time. Section 4.4 shows Hardware-Software Co-design based on algorithm op-
timization and profiling result. Section 4.5 discusses data size of HOG feature values, and
examines data reduction method. Finally, Section 4.6 explains detail of the architecture.

4.1 Implement Environment and FPGA Board

This thesis adopts ZedBoard[9], which is designed board for the Xilinx Zynq-7000 All
Programmable SoC[10], as a target FPGA, and Xilinx tools as a development environ-
ment. Figure 4.1 shows ZedBoard and their connections, and key features of ZedBoard
are listed below.

• Zynq-7000 All Programmable Soc XC7Z020-CLG484-1

• 512 MB DDR3 memory

• Pmod headers (2x6) expansion

• VGA connector

• On-board USB JTAG programming port

17

18 Design and Implementation

Figure 4.1: ZedBoard

Overview of Zynq device is shown in Figure 4.2. Zynq consists of two pars: Pro-
cessing System (PS) and Programmable Logic (PL). PS has ARM-Coretex A9 Processor
which operates in 866 MHz at the maximum, memory controller and I/O interface. PL
operates as FPGA, and it is able to communicate with ARM processor via AXI bus. Detail
of AXI bus signal is explained in Appendix A.

ZedBoard also has DDR3 SDRAM memory next to Zynq device. In our design,
ZedBoard inputs image data from through Pmod connector, and outputs image to VGA
display through VGA connector.

Our system adopts MT9D111 CMOS Camera module as input device. The camera
module sends 800 x 600 pixels in 30 fps. More specification of the camera module is
mentioned in Appendix C.

Design and Implementation 19

Figure 4.2: Zynq Overview

4.2 Algorithm Optimization
This section discuss optimization of whole system algorithm for Hardware-Software Co-
design execution.

4.2.1 Cell-based scanning
Figure 4.3.a shows flowchart of original algorithm. HOG extraction, showed in blue
in Figure 4.3, is divided in three parts; gradient computation, orientation binning and
normalization. Since this process is iterated in each detection window, it consumes much
execution time.

In original HOG algorithm[1], as each HOG feature extraction is operated after scanned
each detection window and the detection window is slided in some pixels in this case,
there are many overlaps as shown in Figure 4.4.a. If you have 8x16 cells in a window
and slide in one cell each, you will get 7x15 = 105 cells overlap. This overlap means
increasing data traffic of pixel values and leads low fps in whole system.

Cell-based scanning method is an optimized algorithm for HOG feature extraction
by K.Mizuno et, al.[11]. Figure 4.4.b shows the concept of Cell-based scanning which
avoids pixel overlap. Cell-based scanning method computes all gradient values before
determination of detecting window by Raster Scan, showed in Figure 4.3.b. Gradient
Computation and Orientation Binning is executed before Raster Scan loop, and Load
Histogram which accesses memory and load each histogram data in the detecting window,
is added inside the loop. Although cell-based scanning method adds Load Histogram
procedure, it decreases much workload. In the proposed paper[11], HOG algorithm with

20 Design and Implementation

cell-based scanning and SVM calculation reduces the workload from 447.7 GOPs to 10.6
GOPs.

[a] Original Algorithm [b] Modified Algorithm with Cell-based
Scanning

Figure 4.3: Algorithm Optimization

4.3 System Profiling
Based on optimized algorithm mentioned in Section 4.2.b, we profiled whole system using
only ARM Coretex-A9 processor on ZedBoard. Sub routine name is corresponding to
Figure 4.3.b.

From the result of profiling, Normalization sub routine occupies most of the percent-
age of execution time, and we can expected that hardware implementation of this routines
decrease total execution time. Load Histogram occupies the second largest percentage,
however, most of this routines are memory accessing operation. Therefore, we assessed
that it is unsuited for hardware implementation. Orientation Binning is also unsuited for
hardware implementation for the same reason. As a result, we tried to implement on

Design and Implementation 21

Figure 4.4: Window-based Scanning and Cell-based Scanning

hardware three subroutines: Normalization, Real Adaboost and Gradient Computation.

4.4 Hardware-Software Co-design
Based on the idea of Cell-based scanning method mentioned in Section 4.2 and the re-
sult of profile showed in Section 4.3, we designed Hardware-Software Co-design of the
Pedestrian Detection System (Figure 4.5).

Three accelerated modules, Gradient Computation, Normalization and Real Adaboost
core, and camera interface and VGA controller core are located on Programmable logic
of FPGA. Other process are executed by ARM Coretex-A9 processor, and they commu-
nicate data each other via AXI bus.

As Raster Scan and Load Histogram operate in software side, we can adjust detecting
window size, number of detecting window depends on the usage environment, and it
increases the flexibility of the system.

4.4.1 System Flexibility
Hardware-Software Co-design allow us not only to implement on a single board, but also
to enhance system flexibility. While we need to redo implementation when we want
to change some parameters in the system in Hardware only implementaion, our system

22 Design and Implementation

Table 4.1: Result of Profiling

Sub Routine Name Number of Call Execution Time Ratio
Normalization 23,510 3.23 sec 42.27%

Load Histogram 23,510 2.04 sec 26.69%
Real Adaboost 23,510 1.86 sec 24.29%

Orientation Binning 1 0.24 sec 3.15%
Gradient Computation 1 0.18 sec 2.39%

Gray Scaling 1 0.047 sec 0.61%
Output Image and Window Merging 1 0.015 sec 0.19%

Initialization 1 0.13 sec 0.17%
Voting 16 0.0091 sec 0.12%

Input image 1 0.0086 sec 0.11%
7.64 sec 100%

enables us to adjust some parameters easily. The parameters which we can adjust are
listed below.

• Size of detecting window

• Shifting width of detecting window

• Threshold value in Real Adaboost classification

Depending on a distance between camera module and pedestrians, size of detecting
window should be modified. Also, shifting width of detecting window should be changed
depending of the demanding operating speed. If you would increase the shifting width of
detecting window, the system is accelerated while detecting accuracy may be decreased
as the total number of detecting window is decreased. Furthermore, we can adjust miss
rate and false positives per window of the system by changing threshold value in Real
Adaboost classification.

4.5 Data Reduction

4.5.1 Data Size of Original Algorithm
HOG feature has N feature values in each cell (N represents an azimuthal quantum num-
ber in equation (2.4)), and also these feature values are normalized in shifted block. If we
assume that one window has 8x16 cells, one block composed by 2x2 cells and azimuthal
quantum number is 9, there are 3780 (7x15x2x2x9) feature data generated in total. In
software execution, HOG feature values are calculated in double precision (8 byte), thus,
total data volume per window becomes 30.24K Byte.

As detection window slides and also window size is scaled in the recognition phase,
total occupied memory space is increased. If we assume that scanning 50,000 windows
per one input image, total amount of memory space exceeds 1.5 GB. Using such a huge

Design and Implementation 23

Figure 4.5: Hardware-Software Co-design

memory space in an FPGA, we need external memory like DDR3 SDRAM. It means
communication with DDR3 and programmable logic might be a bottleneck of execution
speed. Also from the view of saving feature data to a data server, too much data volume
increases its running cost.

As we showed in Section 3, data reduction method from 64 bit to 1 bit using binarized
HOG[4] had been proposed. Although this proposal reduced feature data volume much,
detection accuracy is also decreased. If they kept detection accuracy as same level as
conventional way by introducing binary pattern and binary selection algorithm, occupied
resource and latency in the FPGA are increased.

In this thesis, we propose an approach that is using fixed point calculation to reduce
feature data volume without large additional resource and complex coding.

4.5.2 Data Reduction Method

In the classification phase of Real Adaboost, the accuracy of weak classifier outputs has
the highest effects on the output accuracy, and classifier outputs are calculated by HOG
feature value (Equation (2.8)).

Considering the above, we calculated all possible outputs data of weak classifier
(Equation (2.6)) in a high precision in advance, and storing them into the ROM on the
FPGA. Therefore, in the FPGA, we need to access the ROM only. As the probability

24 Design and Implementation

density is distributed in a weak classifier binning in 64 (26), bit width for accessing the
ROM is 6 bits. This method can decrease HOG feature data from 64 bits to 6 bits, with the
same accuracy as software execution in double precision. Figure 4.6 compares original
Real Adaboost classification algorithm and ours.

Figure 4.6: Data reduction method

4.6 Architecture

Figure 4.7 shows the whole architecture in the FPGA. There are three accelerated hard-
ware modules, shown by light-yellow, are mapped on Programmable Logic, and they are
connected to ARM Coretex-A9 processor. AXI DMA Engines are used for converting
AXI4 (Memory Mapped communication) to AXI4-Stream communication.

More specifications of these logic are mentioned below.

4.6.1 Gradient Computation

For 18 bit x 1 frame (800x600 pixels) input, 14 bit x one frame is outputted. Gradient
Computation module, shown in Figure 4.8, operates as Gradient_computation() routine in
Listing 2.1. One input data composed of two Intensity derivative (fx, fy) are pushed into
a FIFO. These input data are calculated as Equation (1) to (4), then the pair of intensity
gradient m(x, y) and direction of gradient bin are sent back to ARM core.

Bit width of each signal is shown in red letter, and module, which are SQRT and
Arctan, which are shown in light-yellow box, are generated by Xilinx Core generator.
Detail of Xilinx IP Core is explained in Appendix B.

4.6.2 Normalization

For 13 bit x 1152 inputs, 6 bit x 3780 frame are outputted. This module, showed in figure
4.9, normalizes each block in input window. One window has 8x16 cells, and each cell

Design and Implementation 25

Figure 4.7: Whole Architecture

has 9 features. Thus, there are 1152 inputs. Also, as we set 2x2 cells in one block, there
are 3780 output data.

After receiving input data, nine parallelized calculation logic operates in parallel, and
it enables us to accelerate the calculation.

4.6.3 Real Adaboost
Figure 4.10 shows block diagram of Real Adaboost module. This module is designed
based on data reduction method which is mentioned in Section 4.5. As the only execu-
tion in this module is accessing ROM data which has previous classifier calculation data,
therefore, block diagram of this module is simple. After accessing the ROM, all of these
data are summed up and compared with λ, a threshold for detection.

26 Design and Implementation

Figure 4.8: Block Diagram of Gradient Computation Core

Figure 4.9: Block Diagram of Normalization Core

Design and Implementation 27

Figure 4.10: Block Diagram of Real Adaboost Core

Chapter5
Evaluation

5.1 Resource Utilization
Total resource utilization is shown in 5.1. Since usage of slice register and slice LUTs are
19% and 27% respectively, there are more space to implement additional modules.

Also, Table 5.2 shows resource utilization of each module. GPIO (General Purpose
IO) outputs signals from the camera interface and VGA controller to each device, and AXI
IIC (Inter-Integrated Circuit) writes option values on the registers of the camera module.

Figure 5.1 shows the usage ratio of Slice Register, Slice LUTs and Block RAM
(BRAM). According to the Figure 5.1, Normalization and Adaboost modules consume
the most resources, and especially it consumes about 77% of Block RAM.

Table 5.1: Resource Utilization

Logic Utilization Used Available Utilization
Number of Slice Register 20,648 106,400 19%
Number of Slice LUTs 14,821 53,200 27%
Number of Block RAM 99 420 24%
Number of bonded IOBs 30 200 15%
Number of RAMB36E1/FIFO36E1s 27 140 19%
Number of RAMB18E1/FIFO18E1s 72 280 25%
Number of DSP48E1s 13 220 5%

5.2 Execution Speed

5.2.1 Hardware Operating Speed

From the implementation report, FPGA operates in 120.7 MHz.
Since Gradient Computation takes 960,600 clock cycles per frame and Normalization

+ Real Adaboost takes 576 clock cycles per window, it takes 15.3m seconds per frame
when 1540 windows, same as [6], are supposed to be extracted in one frame.

29

30 Evaluation

Table 5.2: Resource Utilization (Detail)

Register LUT BRAM
Gradient Computation 1468 1493 2
Normalization + Real Adaboost 10153 5926 76
VGA Controller 323 220 2
Camera Interface 265 200 1
DMA Engine 1 1985 1435 6
DMA Engine 2 1862 1404 6
GPIO 20 23 0
AXI IIC 342 403 0
AXI Interconnect 1 656 560 0
AXI Interconnect 2 1584 1273 3
AXI Interconnect 3 112 286 0
AXI Interconnect 4 1584 1288 3
AXI Timer 210 286 0

5.2.2 Whole System Operating Speed

Whole system operating speed is shown in Table 5.3. Only Software row shows operating
time by only ARM Coretex-A9 processor on ZedBoard.

Gradient Computation operates in 4.025 millisecond on our system, while operates
in 19.66 millisecond on Software execution. Normalization and Real Adaboost operates
22.27 microseconds per window, while operates in 22.27 microseconds on Software exe-
cution.

In total, our whole design achieved 3.22 speedup as software execution with 1540
detecting window per frame.

Table 5.3: Operating Speed

Only Software Our design speed up ratio
Gradient Computation 19.66msec. 4.025 msec. 4.89

/ frame / frame
Normalization and 117.26 usec. 22.27 usec. 5.27

Real Adaboost / window / window
Whole system 2.93 sec. / frame 0.91 sec. / frame 3.22

Evaluation 31

Figure 5.1: Resource Utilization

5.3 Data Volume

By using fixed point expressions, feature data are expressed by 6 bits. It means that the
total compression ratio compared to the implementation using double precision floating
point numbers is about 93.75%

In the proposed method, since the values of weak classifier outputs (Equation (2.8))
are calculated in advance by double precision numbers and stored in the ROM on the
FPGA, the accuracy is not much changed as that of the software execution as shown in
the previous section.

Table 5.4 shows that comparison between our method and related work. Binarized
HOG[4] compressed HOG feature to 1/64 with accuracy deterioration of about 9.8%. In
[4], they also proposed Integrating binarized HOG in order to prevent accuracy deteriora
tion, however, it increases both the resource usage and the latency.

Table 5.4: Data volume comparison

HOG Our Method Binalized HOG[4]
Data volume/window[Byte] 30,240 1968 472.5
Compression ratio - 93.5% 98.4%
Accuracy deterioration - 2.7% 9.8%

32 Evaluation

5.4 Detecting Accuracy
For objective estimation, we refer the classifier of Real Adaboost which is purveyed by
Chubu University[12]. This classifier uses 2,054 positive samples and 6,258 negative
samples, and learning in 500 times.

For test sample, we use 152 positive samples and 250 negative samples from INRIA
Person Dataset[13]. Each positive sample has one pedestrian and each negative sample
has no pedestrian. Figure 5.3 shows test sample example of a) Detection, b) Un-detection
and c) False positives.

Figure 5.2 shows Detection Error Trade-off (DET) curves of our system. DET curves
plot false positives per window (FPPW) in x-axis and miss rate in y-axis. A perfect system
with zero misses and false positives per window would be positioned at the origin, thus,
closer to the origin means better classifier.

In Figure 5.2, testing result of original system which is operated by Software is shown
by red solid line. Other dashed lines show the result of our system with adjusting bit width
of output signal of Gradient Computation module. integer means output of Gradient Com-
putation is truncated to integer value. 16bit fractional, 8bit fractional and 4bit fractional
mean output signal is rounded to each bits after the decimal point. As we can see from
Figure 5.2, 16bit, 8bit and 4bit fractional approximate to original system, while integer
shows somewhat far from original system.

Table 5.5 shows the error rate of miss detection compared to original system. Com-
pared to only Software execution (original), our system has 2.7% of error rate of detecting
accuracy with 16bit fractional. We can conclude that our data reduction method has al-
most same detecting accuracy with original algorithm.

Evaluation 33

Figure 5.2: DET curve of the system

34 Evaluation

Table 5.5: Comparison of error rate of miss detection

Error Rate of miss detection
integer 8.189%

4bit fractional 3.778%
8bit fractional 2.901%
16bit fractional 2.679%

Figure 5.3: Test Sample Example

Chapter6
Conclusion

This thesis proposed an acceleration method of pedestrian detection systems using Hardware-
Software Co-design on ZedBoard. Pedestrian detection system is designed using HOG
feature abstraction and Real Adaboost classification algorithm with hardware paralleliza-
tion and some algorithmic optimization. As an implementation, we aim design as dis-
tributed system and increase user flexibility, besides acceleration and data reduction.

To accelerate the system, we designed three accelerated hardware cores of HOG and
Real Adaboost, and achieved 3.22 speed up compare to only Software implementation.
Communication between ARM processor and FPGA logic is a bottleneck of speed up, and
it would be removed if bandwidth of communication bath between them are increased.

Also, we tried to reduce data volume of HOG feature values by bit cutting of HOG
feature and pre-calculation of classifier. This results data reduction of 93.5% without large
decreasing of detecting accuracy. This data reduction enables to implement on a single
FPGA, which is a part of distributed system. Distributed system decreases communication
traffic between each node and central system.

In order to increase user flexibility, we implemented by Hardware-Software Co-
design. Although this implementation method decreases operating speed because of com-
munication delay between Hardware and Software, it enables to adjust some parameters
such as number of window, detecting window size and slide width of the window.

For our future works, data compression before sending Hardware core and Software
core would be accelerate the whole system. It requires fixed length compression since
these data will be sent in packet, and design additional compress/decompress logic. Be-
sides, other feature algorithm or classification algorithm would have better accuracy of
the system. Especially, feature values via subtraction of previous frame in video stream
would improve detecting accuracy.

35

References

[1] N.Dalal and B.Triggs. Histogram of Oriented Gradients for Human Detection. IEEE
Computer Vision and Pattern Recognition, vol.1, pp.886-893, 2005.

[2] Yoav Freund and Robert E. Schapire. A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. Journal of Computer and System
Sciences, No. 55, pp. 119–139, 1997.

[3] Robert E. Schapire and Yoram Singer. Improved Boosting Algorithm Using
Confidence-rated Predictions. Machine Learning, No. 37, pp. 297–336, 1999.

[4] Chika Matsushima, Yuji Yamauchi, Takayoshi Yamashita, and Hironobu Jujiyoshi.
A Method for Reducing number of HOG Features based on Real AdaBoost. In-
formation Processing Society of Japan SIG Technical Report, CVIM167, 167-32,
2009.

[5] Takuya Otsuka, Takashi Aoki, Eiichi Hosoya, and Akira Onozawa. An Image
Recognition System for Multiple Video Inputs over a Multi-FPGA System. IEEE
6th International Symposium on Embedded Multicore SoCs, 2012.

[6] Kazuhiro Negi, Keisuke Dohi, Yuichiro Shibata, and Kiyoshi Oguri. Deep pipelined
one-chip FPGA implementation of a real-time image-based human detection algo-
rithm. International Conference on Field-Programmable Technology (FPT), 2011.

[7] Rodrigo Benenson, Markus Mathias, Radu Timofte, and Luc Van Gool. Pedestrian
detection at 100 frames per second. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2903–2910, 2012.

[8] Sebastian Bauer, Sebastian Kohler, Konrad Doll, and Ulrich Brunsmann. FPGA-
GPU Architecture for Kernel SVM Pedestrian Detection. Computer Vision and
Pattern Recognition Workshop (CVPRW), 2010.

[9] Inc. Avnet. Avnet product brief, zedboard. http://www.em.avnet.com/en-us/
design/drc/Documents/Xilinx/PB-AES-Z7EV-7Z020-G-v7-web.pdf.

[10] Inc. Xilinx. Zynq-7000 All Programmable SoC Overview (DS190, v1.7), 2014.

[11] Kosuke Mizuno, Yosuke Terachi, Kenta Takagi, Shintaro Izumi, Hiroshi
Kawaguchi, and Masahiko Yoshimoto. Architectural Study of HOG Feature Ex-
traction Processor for Real-Time Object Detection. 2012 IEEE Workshop on Signal
Processing System, pp.197-202, 2012.

37

38 References

[12] Dept. of Robotics Science and Chubu University Technology. Object Detection by
Joint Feature Based on Relations of Local Features. http://www.vision.cs.
chubu.ac.jp/jointhog/.

[13] N.Dalal and B.Triggs. INRIA Person Dataset. http://pascal.inrialpes.fr/
data/human/.

[14] ARM. Amba axi protocol v1.0 specification. http://www.arm.com/products/
system-ip/amba/amba-open-specifications.php.

[15] J.E.Volder. The CORDIC Trigonometric Computing Technique. IRE Trans. Elec-
tron. Comput. EC-8:330-334, 1959.

[16] Inc. Xilinx. Logicore ip cordic v4.0 product specification, 2011.

[17] Micron Technology Inc. 1/3.2-inch system-on-a-chip (soc) cmos digital image
sensor mt9d111. http://www.dragonwake.com/download/camera/MT9D111/
mt9d111_rev5.pdf.

AppendixA
AXI Bus Signal

The AMBA AXI Protocol[14] is an on-chip interconnect protocol which is defined by
ARM, Inc. AXI4 has three type of protocols: AXI4, AXI4-lite and AXI4-Stream. AXI4
is a memory mapped interface and allows burst of up to 256 data transfer. AXI4-lite is
simplified memory mapped interface without burst transfer, and AXI4-Stream is does not
have address phase, and are therefore suited to stream data such as video or audio data.

AXI4 and AXI4-lite has five channels listed below.

• Read Address Channel

• Read Data Channel

• Write Address Channel

• Write Data Channel

• Write Response Channel

When master interface reads data, master interface sends address and control informa-
tion first, and slave interface sends back read data. Figure A.1 shows reading transaction.

Figure A.1: Reading transaction

39

40 AXI Bus Signal

When master interface writes data, it sends address and control information, and also
it sends write data continuously. After that, slave interface sends back write response
signal. Figure A.2 shows writing transaction.

Figure A.2: Writing transaction

Figure A.3 shows data transaction of AXI4-Stream. When master interface has send-
ing data and TREADY signal is asserted, sending data is transferred by TDATA signal
with asserted TVALID signal. When the last valid data is sending, TLAST signal should
be asserted.

AXI Bus Signal 41

Figure A.3: Data transaction of AXI4-Stream

AppendixB
Xilinx IP Core Generator

B.1 CORDIC

Cordic IP Core[15][16] has some mathematical functions.
ArcTan function rotates the input vector (X, Y) and generates the output angle, Atan(Y/X).

The input vector is expressed as a pair of fixed-point numbers with an integer width of 2
bits. The output angle is also expressed as a fixed-point number with an integer width of
3 bits.

Square Root function calculates the positive square root of the input. The input and
output are always positive and are both expressed as either unsigned fractions or unsigned
integers. When unsigned fraction is selected, the input is limited to the range 0 ≤ input <
+2. When unsigned integer is selected as data format, the input is limited to the range
0 ≤ input < 2 ∗ ∗inputwidth, and the output is determined automatically based on the
input width.

43

AppendixC
Camera Module

For the implementation, CMOS Camera Module (MT9D111)[17] by Micron Technology
Inc., was adopted as an input interface (Figure C.1).

Table C.1 shows the input and output pin of the camera module. In the implementa-
tion, preview mode with 30 fps (800 x 600 pixels) and 565 RGB output data format are
selected. Therefore, FPGA receives 800 x 600 x 16bit data in each frame. FPGA and
camera module are connected via Pmod interface on ZedBoard.

For receive image data from the camera module, the FPGA sends pixel clock (XCLK)
with 36 MHz. Then, the camera module sends back pixel data (D0 to D7) with output
clock (PCLK), vertical synchronization signal (VSync) and horizontal synchronization
signal (HREF). SCL and SDA signals are for Serial Camera Control Bus (SCCB), which
is designed by OmniVision Inc., and these signals are used for the settings of output image
size and data format.

Figure C.1: MT9D111 Camera Module

45

46 Camera Module

Table C.1: Pin List of MT9D111 Camera Module

Pin Number Pin Name I/O Function Pmod Port
1 Vcc - Power source JA6
2 GND - Ground source JA5
3 SCL I SCCB Clock JA1
4 SDA I/O SCCB Data JA7
5 VSync O Vertical Synchronization JA2
6 HREF O Output Enable JA8
7 PCLK O Output clock JA4
8 XCLK I Input clock JA10
9 D7 O pixel data JB1
10 D6 O pixel data JB7
11 D5 O pixel data JB2
12 D4 O pixel data JB8
13 D3 O pixel data JB3
14 D2 O pixel data JB9
15 D1 O pixel data JB4
16 D0 O pixel data JB10
17 GND O pixel data JB5
18 STANDBY O standby mode JA3
19 DRIVER_IN I -
20 DRIVER_EN O -

Table C.2: Key Performance Parameters (excerpt)

Parameter Value
Full resolution 1,600 x 1,200 pixels (UXGA)
Maximum frame rate 15 fps at full resolution,

30 fps in preview mode (800 x 600)
Selectable output data format YCbCr, 565RGB, 555RGB, 444RGB,

JPEG4:2:2, JPEG4:2:0, and raw 10-bit
Maximum data rate / 80 MB/s
master clock 6 MHz to 80 MHz

