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Abstract  
Material science has become an important research area in order to fulfill 

today’s requirements on lighter, cheaper and more sustainable materials. 

The European spallation source is a research center based on the world’s 

most powerful neutron source, which will enable new possibilities to 

evaluate material properties down to an atomic level. The linear accelerator 

(Linac), accelerates with help of electromagnetic fields, protons to a speed 

of 96.2 % of the light. Due to high power and the pulsing nature of the 

accelerator an extremely advanced electrical supply is required. This 

master´s thesis comprises a concept topology for solving the impact of such 

pulsed power supplies on the AC grid power quality. 

 

The electrical supply consists of two series connected stages, which will be 

stacked in modulators. The first stage is a low voltage grid connected 

capacitor bank charger, the second stage converts the power to a high 

voltage pulsing pattern. This project comprises the first stage (the capacitor 

charger) which consists of an Active Front End in series with a DC/DC-

converter. The main objectives are to fulfil the international standards 

regarding power quality, where main focus will be on flicker, low 

frequency harmonics emission and unitary power factor. In order to fulfill 

these goals with pulsating loads connected, a completely new developed 

power control introduced. Mathematical models have been derived in order 

to verify the functionality and to tune all the developed controls. A 

complete final implementation is done with the help of Matlab Simulink to 

more in-depth verify the different control parameters. This implementation 

is also used to check that the international standards are met. Complete 

calculations of power losses are also presented with evaluation of results 

and possible improvements.  

 

Together with the limitations, goals of the degree project and basic 

equations are derived in this report. The topology is shown to be extremely 

effective with very good results in terms of output voltage quality 

(capacitor charging voltage) and on flicker and low frequency harmonics 

impact on the grid. Almost every effects due to the pulsing output nature 

are totally erased seen from the grid side. 
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CHAPTER 1 

 

1 Introduction 

1.1 The European Spallation Source 

The European Spallation Source (ESS) is an international research 

institution built by at least 17 European countries, with Sweden and 

Denmark as host nations. It will be located in Lund, Sweden, where it will 

be a research center based on the world’s most powerful neutron source [1]. 

The project will enable new opportunities for improving material science 

research with positive impact on our everyday lives. With today’s new 

requirements on lighter, cheaper and environmentally sustainable materials, 

the research has to go down to atomic levels in order to study the materials 

properties. This becomes possible with neutron research so that material 

science can develop and improve all the thousand products that are used in 

people’s life [2]. 

 

 

Figure 1.1: An illustrative picture of ESS research facility together with the accelerator 

and its main components [3]. 
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ESS will also be the first sustainable research facility in the world, It will 

set a new standard for large scale research facilities and put Europe in the 

lead of sustainable development. Four key concepts will ensure ESS to be 

carbon dioxide neutral: 

Responsible – Requires that the facility uses as little energy as possible. 

Renewable – Requires that all energy must derive from renewable sources.  

Recyclable – Requires that as much surplus heat as possible is recycled. 

Reliable – Critical systems like the cooling and power systems must be 

reliable to secure the facility’s operational availability for the researchers. 

[4] 

1.2 The accelerator and how it works 

The ESS research facility is designed around a linear proton accelerator 

(Linac), Figure 1.2. With a peak power of over 100 MW, pulse length of 

2.86 ms and a repetition rate of 14 Hz it will be the most powerful neutron 

source worldwide [5]. The principle for the accelerator is as following; by 

heating hydrogen gas with rapidly varying electromagnetic fields at the ion 

source and striping the plasma from electrons, protons are created. From the 

ion source protons are guided under vacuum by beam pipes and 

accelerating structures into the accelerator beam line. The accelerating 

structures are also distributed along the Linac and accelerate the protons 

forward with electromagnetic fields. At the first approximately 50 meters 

protons travel at low speed in order to properly guide and focus the beam 

with magnets around the beam pipes. After that, superconductive cavities 

accelerate the protons to 96.2 % of the speed of light before they hit the 

target. At the target, neutrons will be created by a spallation process and 

detected at the experimental stations [6]. 
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Figure 1.2: Illustrative picture showing the accelerator concept with its main components 

[7] 

1.2.1 Ion source 

Hydrogen gas is lead in to the ion source, where the hydrogen is turned into 

plasma by heating up the gas with rapidly varying electromagnetic fields. 

The plasma is stripped of its electrons, leaving the protons which are 

injected into the accelerator [7]. 

1.2.2 Accelerator 

 

Figure 1.3: The ESS accelerator overview with its main stages [8]. 

 

In the accelerator protons pass through a large number of cavities. The first 

cavities are the Low Energy Beam transport (LEBT) section and the Radio 

Frequency Quadrupole (RFQ) where the beam of protons is bunched and 

accelerated up to 3.6 MeV.  At the Medium Beam Transport (MEBT) 
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section is the beam characteristics diagnosed and optimized for further 

acceleration in the Drift Tube Linac (DLT). After this there are 26 spoke 

cavities followed up by 36 Medium Beta Linac and 87 High Beta Linac that 

are superconducting and accelerates the protons up to 2000 MeV [9]. After 

the high beta section the proton beam will have an average power of 5 MW 

and a diameter of about 2 mm. The beam is then transferred through the 

superconducting High Energy Beam Transport (HEBT) section and will 

after this section hit the target. At the target, protons have a speed up to 

96.2% of the light when it hits the tungsten [10]. 

1.2.3 Cryogenics 

Cryogenics is the science and technology of phenomena below a 

temperature of 120 K [11]. The cavities are superconducting because of the 

high currents required to generate the magnetic and electrical fields. In 

order to reach this phenomena, liquid helium is used as cooling, which 

cools the cavities down to a temperature near the absolute zero. This will 

reduce the power consumption of the accelerator drastically [7]. 

1.2.4 Target station 

The target station is the facility where the high-energy neutrons are released 

when the protons hit the tungsten target. The collision of tungsten nuclei 

and the protons will scatter or throw off a collection of neutrons that are 

assembled into beams directed to the experimental stations [12].  

1.2.5 Experimental stations 

The assembled high-energy beams with neutrons are directed to the 

experimental stations, where the material sample is investigated. Each 

station is uniquely calibrated for particular scientific studies [7]. 

1.2.6 Cooling and heating system 

The cooling system is another large part of the accelerator and the target. In 

order to optimize the heat recovery efficiency, parts of the accelerator 

operate at three different temperature levels, 20˚C, 40˚C and 80˚C. The 

chosen cooling temperature is dependent on the maximum operating 

temperature level for the components. This will require complex cooling 

systems and well dimensioned heat exchangers. Due to the recyclable target 

in ESS key concepts the estimated 200GWh of surplus energy also needs to 

be taken care of [13]. 
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1.2.7 RF system 

In order to generate the electromagnetic fields in the cavities for beam 

acceleration, radio frequency (RF) power source are required. The radio 

frequency system converts AC grid power to RF power at either 352 or 704 

MHz, which is the required frequency for different sections of the 

accelerator [14]. In order to supply the accelerator with an average power of 

5 MW, 4 % of duty cycle and a repetition rate of 14 Hz the RF system must 

supply over 123 MW in peak power [15]. 

 

 

Figure 1.4: Illustrative picture of the RF sources together with its main components [16]. 

1.2.7.1 Modulators 

The modulators are electrical power converters that transform the AC 

power from the low voltage grid into high voltage pulse power that supplies 

the klystrons. The modulators will consist of two parts, where the first part 

is connected to the grid and charges capacitor banks at low voltage. The 

second part transforms the low voltage DC power from the capacitor banks 

into 3.5 ms long pulses at high voltage (~100 kV) that supplies the 

klystrons [14, 15]. 

1.2.7.2 Klystrons 

The klystrons convert electrical power into RF power. A low power signal 

generator generates RF signals at a frequency of 704.42 MHz or 352.21 
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MHz, which amplifies the RF signal to the cavities [15]. The modulators 

supply the klystrons with electrical power. 

1.2.7.3 RF wave guides 

The RF wave guides are conduits that transmit and guide RF power from 

the Klystrons to the RF cavities [15]. 

1.2.7.4 RF cavities 

The RF cavities generate magnetic and electrical fields that accelerate and 

guide the beam. In order to generate the electrical and magnetic field the 

RF cavities are supplied with RF power from the klystrons [15]. 

1.3 Project overview 

The RF power sources will require several high precision high voltage 

power modulators rated for peak voltages and currents of 115 kV and 100 

A. These will work under a pulsing nature with a pulse length of 3,5 ms and 

a repetition rate of 14 Hz. The project comprises the first part of these 

converters, which is the part between the AC-grid and the capacitance bank. 

Because of the connection to the low voltage AC-grid and the high power 

pulsing nature of the accelerator, the converter topology together with the 

control loops need to be designed and dimensioned in such a way that 

international standards on power quality are met. With the chosen topology, 

see Figure 1.5, using advanced control loops, a flicker-free and sinusoidal 

current absorption connection with unitary power factor is made possible. 

The approach will also have a high efficiency and a modular based parallel 

formation, which will make a hypothetical expansion easily managed. 

Because of the low voltage connection and operation, all the components of 

this power conversion stage can be chosen from the conventional market 

and the structure will not require inclusion in oil tanks for insulation 

reasons [17] [15]. 
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Figure 1.5: Block diagram of the new modulator concept. 

The concept (Figure 1.5) is that several modules are stacked, which will 

decrease the power transferred through a single system.  It’s possible to 

have n modules in parallel, where each of them is phase shifted in terms of 

switching to reduce the harmonics and interferes in the system. The first 

step of the modulator consists of a grid connected capacitor charger, where 

an AFE and a DC/DC step down converter control the voltage with high 

precision over the capacitor bank.  After the capacitor bank an H-bridge 

converts the DC-voltage into a high frequency (~15 kHz), three level AC 

square wave. The high frequency transformer submerged in an oil tank 

transforms the voltage in a one to one relation and provide a galvanic 

isolation. Because of high frequency, the transformer size is drastically 

reduced. Before the klystron body the voltage is rectified into pulses and 

filtered at high voltage in a separate oil tank. 

1.4 Goals of the degree project 

The main objectives of this Master of Science project are:  

 In depth study and mathematically derive analytical modeling of an 

AFE and a DC/DC step down converter as a capacitor bank charger. 

 Develop control/regulation loops for the AFE with the following 

specifications: 

o The current absorbed from the grid shall be sinusoidal. 

o The reactive power absorbed from the grid shall be reduced 

in order to minimize the power quality impact, particularly 

the flicker 

o The DC-link voltage shall be constant according to a 

specified level. 

 Develop control/regulation loop for the DC/DC step down converter 

with the following specifications: 
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o The power drawn from the DC-link shall be constant when 

pulsing, therefore investigating flicker problem in the AC-

network. 

o The output voltage over the capacitance bank shall 

according to the specification have reached the given level 

before the next pulse arrives. 

 Find optimal parameters for the controller/control loops at different 

power modes.  

 Dimension the system and find optimal parameters for all the 

components including the output capacitance bank at the DC/DC 

converter. 

 Derive mathematical expressions and calculate power losses for the 

AFE and the DC/DC step down converter. Compare losses at 

different switching frequencies and different power modes. 

 Simulate the full system and verify that the different control 

algorithms work as expected. The performance with respect to the 

requirements from the IEC, international standards on flicker and 

low frequency harmonics emission shall also be verified according 

to the IEC 61000-3-3 and ICE 61000-3-2. 

1.5 Limitations 

Since the time scope for the thesis is limited, focus has mainly been on 

simulating one of the three parallel connected capacitor chargers in the 

modulators in Figure 1.5. Practical implementation possibilities have not 

been evaluated but a discussion of possible ways will be included in further 

work subchapter. Due to a well establishment of Matlab/Simulink at the 

university the simulations are developed on this platform, where 

SimPowerSys is used for modeling the electric circuit. Implementation in 

other software packages such as MathCad, SABER, LTSpice, etc. has not 

been evaluated. The simulated models are ideal in terms of noise and 

losses, active components are considered ideal as well and nonlinearities 

are not included.  

In terms of control has main focus been on steady state operation of the 

capacitor charger. Limited number of control possibilities are evaluated, 

this because of strict requirements in terms of harmonics, flicker, constant 

active power and high precision. The final thesis will include one control 

methodology that will be evaluated in depth for AFE and two methods for 

the DC/DC-converter. Optimization of parameters, dimensioning and losses 

will be done for three different power levels. 

  



 

 19 

CHAPTER 2 

 

2 Power converters basic theory 
Power electronic converters are a modern technology in comparison to the 

conventional electrical theory that was mostly discovered in the 19th 

century. In the early 20th century, electricity was considered as luxury, 

today it is more considered as something important that is necessary for a 

global development and is used in almost every household.  

 

Electric energy is nowadays converted to and from other energy sources in 

many situations. The development of power electronics, as from the 60’s, 

has deeply contributed to advancement of electric energy conversion 

according to the needs of different loads and applications. A key element of 

modern switch-mode power electronics is the power semiconductors that 

form the switching cells and allow for regulation of electrical variations and 

power flow. Examples of such semiconductors are diodes, transistors and 

thyristors in various configurations. The typical form of electricity is a DC 

or an AC, with for example a frequency of 50 Hz and 400 V in the Swedish 

electrical grid. With help of power electronics this type of electric energy 

can be transformed to the required specification for controlling motors, 

power supplies, CFL (Compact Fluorescent Lights) or modulators to a 

Linear Particle Accelerator (LPA) as in this case [18, 19]. Regarding 

efficiency, the power electronic structure allows up to 99 % in extremely 

good cases [20].  

 

In this chapter the main components and general calculations for behavior 

of power converters is described. The configuration of PE can vary a lot but 

in this part the focus will mainly be on the basics of components and 

functions that are chosen for this application. Fundamental control, power 

losses calculation and dimensioning theory will also be presented. 
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2.1 Switching basics 

The principle in PE is built on switching. In a discrete environment with 

fast switching between different states the desired output can be obtained, 

after filtering the harmonics. The switching semiconductor that is mainly 

used for these applications can alter between two states – “on and off”, but 

also vary between many more states in a constellation in sub-converters 

(multi-level converters; interleaved converters). Switching structure is built 

on a triangular carrier wave in comparison with a reference signal. The 

outcome of this is a modulation wave that is in average the wanted quantity. 

In a switching circuit everything needs to be considered in average, but 

with a high switching frequency it can in some cases be deliberated as 

continuous. Due to the switching a lot of harmonics is created that always 

needs to be under consideration. In Figure 2.1, a switching example during 

a couple of micro-cycles is illustrated [19]. 

 

 

Figure 2.1: Triangular wave (red) interacts with the reference signal (green) creating the 

PWM (blue). 

2.2 Power electronic components 

In case of a PE solution there is demands in switching between different 

states or levels of voltage. This is made possible with active semiconductor 

elements such as transistors and diodes. 

2.2.1 The IGBT 

A transistor optimized for PE can switch up to several kV and conducting a 

high current up to several kA without demanding too much supplied current 

on the gate is called IGBT. This transistor has the characteristic and 

efficiency of a FET-transistor on the gate and the characteristics of BJT 

between collector and emitter which allows high power conduction. The 

IGBT is constructed to work under extreme conditions with currents and 

voltages up to 1 200 A and 3 000 V respectively and switching time under 1 

microsecond. When the IGBT is conducting there is a small voltage drop 
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between collector and emitter and when it’s not conducting there are small 

leakage currents that are considered negligible [19].  In Figure 2.2 the 

symbol and indications for an IGBT is presented.  

 

 

Figure 2.2: Structure of an IGBT. 

2.2.2 The diode 

The diode required in PE is a fast switching type for high frequencies, rated 

for high levels of current and voltages (up to several kV, kA). When the 

diode is forward biased there is a small voltage drop proportional to the 

current. In the case of reversed biased diode the conduction is almost totally 

blocked and the leakage current is negligible [19]. In Figure 2.3 the symbol 

for a diode is presented. The main challenge in the construction of such 

diodes is in obtaining fast reverse recovery time (passage from conduction 

to blocking stage), therefore minimizing the power losses due to recovery 

energy. 

 

 

Figure 2.3: Structure of a diode. 

2.3 Basic PE – The buck converter 

The Buck converter is a traditional DC/DC step down converter. With a 

steady DC-voltage provided on the input side, a switched voltage is 
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generated on the output. By controlling the transistor in a specific way and 

creating a PWM-square wave, the average output voltage is proportional to 

the desired reference. 

 

 

Figure 2.4: Basic schematic of a conventional buck-converter. 

 

With usage of the circuit in Figure 2.4 the output voltage will look as in 

Figure 2.5. Definition of the duty-cycle is expressed by (2.1). This duty-

cycle corresponds to the ratio between time of conduction for the transistor 

in respect to the switching time. 

 

  
    

   
 

  

 
 (2.1) 
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Figure 2.5: Waveform of output voltage from a buck-converter with its average voltage as 

dashed line. 

2.4 Estimation of converter losses 

The power losses in semiconductors are derived in two parts; one for the 

conduction losses and one for the switching losses. Losses due to blocking-

state are negligible. 

 

   ⁄ (   )  ∫  ( )   

   

 

     (   )          (   )           (   ) 

(2.2) 

 

Where      (   ) is the required energy for turning on the transistor per 

switching period,         (   )  energy for turning off the transistor and 

diode per switching period and          (   ) the energy loss during 

conduction for one switching period. Calculations of the different parts are 

based on datasheet information for the semiconductors. The specified losses 

in datasheets are experimentally determined with inductively clamped 

current and are valid for AFE and DC/DC etc. [18] 

2.4.1 Switching losses 

Energies for turn-on (     ) and turn-off (        ) are taken from the 

datasheet for the respective component. These are provided for a specific 

test voltage (     ) and current (    ) and depend on rise and fall times. To 

get the appropriate values they are scaled with the actual voltage (   ) and 



 

 24 

current (  ). Note that the turn-on energy for the diode is not included 

because it’s very low and therefore considered to be negligible [18]. 

 

      
     

          
        (2.3) 

 

         
      

          
        (2.4) 

 

Considering the energy loss per cycle and switching period (   ), the 

average power losses over a switching cycle is calculated. 

 

      
     

   
 

     

   
 

      
          

 (2.5) 

 

         
      

   
 

      

   
 

      
          

 (2.6) 

 

Further analysis will be presented in chapter 3, 4 and 6 for practical 

calculation. 

2.4.2 Conduction losses 

For a semiconductor there is a specific conduction IV-characteristic. This 

characteristic can be linearized in order to obtain the internal voltage drop 

(     ) and the resistance (    ) for the semiconductor based on values 

from the datasheet. This approximation is remarkably accurate and often 

used [18]. 

 

              (  )           (2.7) 

 

    (  )                 (2.8) 

 

With the help of the energy loss per cycle (2.7), forward voltage 

characteristic (2.8) and switching time (   ) the average conduction power 

losses are calculated (2.9). 

 

   ⁄       
   ⁄      

   
    ⁄ (  )        ⁄     

  
                           

(2.9) 
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Where    is the conducting current,       is the time of conduction and 

     the duty-cycle. 

 

Further analysis will be presented in chapter 3, 4 and chapter 6 for practical 

calculation. 

2.5 Grid filtering 

In an ideal case the grid voltage is expected to be perfectly sinusoidal. 

Unfortunately this isn’t true for the real world. In the real world there is 

external impact in terms of disturbances creating unwanted harmonics. If a 

harmonic grid voltage would enter a regulation-loop it may create an 

unstable system. To prevent this, a low pass filter is often constructed and 

implemented.  

 

A low pass filter attenuates disturbances with high frequencies. The 

variable,  , defines the cut-off frequency (  ) for the system. Equation 

(2.10) is an example of a first order low pass filter [21]. 

 

 ( )  
 

    
    

 

   
 

(2.10) 

 

This filter affects the phase and amplitude for certain frequencies 

differently. The Bode diagram shown in Figure 2.6 illustrates this effect. 

 

 

Figure 2.6: Illustration of a Bode amplitude and phase plot with equation (2.10) for τ=1. 
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When a signal passes through a low pass filter with a certain frequency its 

affected amplitude and phase can be calculated exactly with mathematical 

expressions [21]. 

 

| ( )|  
 

√  (  ) 
 (2.11) 

 

   ( ( ))         (  ) (2.12) 

2.6 Control 

When having a dynamic system with input variables a controller is 

constructed to manipulate the input so that the output will follow a 

requested reference. With help of a physical model the nature’s behavior 

can be identified. For electronic purpose, physical models are mainly the 

basic equations for electronics. The most conventional controller is a PI-

controller. 

2.6.1 PI-controller 

The PI-controller consists of two parts, a proportional and an integral part. 

Basic structure of the PI-controller that is used to control the system is 

presented (2.13). 

 

 ( )    ( ( )   
 ( )

   
) (2.13) 

 

Where K is the proportional gain, e(s) the error and    is the 

integral gain. 

 

2.6.1.1 P-part 

The proportional part of the controller returns a value proportional to the 

error and an unwanted proportional part produces a stationary error (2.14) 

[22]. 

 

 ( )  
( ( )    ( ))

 
 

(2.14) 

 

Where  ( ) is the controller output signal and   ( ) is the 

controller output signal with no stationary error.  
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I-part 

The integral part of the controller eliminates the remaining part of the 

stationary error. By integrating the error it contributes with a value 

proportional to the magnitude of the error accumulated over time [22]. 

2.7 Dimensioning of passive components 

Electrical circuits constructed needs dimensioning of components to work 

properly. In this part basic dimensioning of passive components are 

discussed. Dimensioning is based on the relation between voltage and 

current for an inductance (2.15) and a capacitance (2.16) [21]. 

 

    
   
  

 (2.15) 

 

    
   

  
 (2.16) 

 

For a DC/DC step down converter the inductance is dimensioned with a 

predefined current ripple. With Figure 2.4, (2.15), (2.1) and the 

approximations          ,         the formula (2.17) is derived [18]. 

 

  
(     )      

       
 (2.17) 

 

Where    is the switching time of the converter,   the duty cycle and         

the current ripple. 

 

In the same way the dimensioning of capacitance with a predefined voltage 

ripple can be calculated. With Figure 2.4, (2.16), (2.1) and the 

approximations          ,         the formula (2.18) can be derived 

[18]. 

 

  
  ̅  (   )    

     
 (2.18) 

 

Where    is the switching time,   the duty cycle,       the voltage drop 

and   ̅ the average current going into the capacitance. 
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CHAPTER 3 

 

3 Active Front End 
The main purpose of the conversion is to transform the source power at the 

AC side to a controllable DC load power. The traditional way of using 

diode or a tyristor rectifier for AC to DC conversion induces large current 

harmonic contents on the grid. Individual current harmonics and Total 

Harmonic Distortion (THD) may then exceed limits in the international 

standards regarding EMC and power quality. A possible solution to reduce 

the harmonics is to introduce passive components such as inductors and 

capacitors in conjunction with the rectifier. But with these components 

come cost, size and other disadvantages. Another way of improving the 

waveforms is to use an AFE, a traditionally diode rectifier together with an 

IGBT placed in parallel with each diode (see Figure 3.1). The power quality 

is improved and the current waveforms are sinusoidal shaped [23]. 

 

 

Figure 3.1: Active front end electrical circuit with an AC input and a DC output. 

3.1 Characteristics 

The AFE is controlled with a PWM and converts power from AC to DC or 

vice versa. Due to the possibility of controlling the power in both directions 

through the AFE together with reactive and active power individually, it’s 

possible to adjust the power factor [23]. 
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√     
    ( ) (3.1) 

 
Equation 3.1 is valid for sinusoidal currents and defines the ratio between 

the apparent power in the circuit and the load power. As a result of the 

equation, shall the reactive power   ideally be set to zero in order to 

achieve ideal power factor. The apparent power through the AFE is 

calculated by [19]: 

 

 ⃗   ⃗⃗   ⃗ 
  

  
                (  
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 (3.2) 

 

Active and reactive power can be separated (3.3), (3.4): 
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         ( )

  
) (3.4) 

 

In order to control the AFE a carrier wave, in this case a triangular wave is 

compared with a reference wave creating a modulation signal (see Figure 

2.1). The reference wave is a sinusoid in steady state (3.5). 

 

  ( )    ̂     (      ) (3.5) 

 

By increasing or decreasing the phase   or the magnitude  ̂  it’s possible 

to control both the active and reactive power through the AFE. An 

expression that describes the relation between voltage input of the converter 

as a function of  ̂  and DC-link voltage     is presented (3.6).  

 

       ̂  
   

  √ 
 (3.6) 

 

Together with equation 3.3, 3.4 and 3.6 it’s possible to express P and Q as a 

function of  ̂  and  . 
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  √    

) (3.8) 

 

The relationship in equation 3.7 and 3.8 is visualized in Figure 3.2.  

 

 

 

Figure 3.2: 3d plot of equation 3.7 to the left and 3.8 to the right. The values for Vdc is 

1100 V, Vs is 230 V and Lconv is 0.4 mH. 

3.2 Control 

The AFE is an active three phase rectifier and can be controlled by 

feedback loops. In order to simplify the control, transformations are 

established from the 3-phase AC representation to a two vectored rotating 

frame. In the dq frame the controller is optimized by derived models 

together with decoupling of variables. 

3.2.1 Clarke transformation 

The Clarke transformation is used to transform a vectored three-phase 

system in space to two-coordinated system denoted alpha beta. Both current 

and voltage vectors are transformed using the same transformation. 

 

The transformation (3.9) can be derived from the vector diagram (Figure 

3.3). 
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Figure 3.3: Vectors for three-phase system (a, b, c) and (alpha, beta). 
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(3.9) 

 

The invers transformation gives: 
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(3.10) 

 

The Clarke transformation can be simplified (3.11) by assuming a 

symmetrical load in a balanced three-phase system. 
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√ 

]  [
  

  
] (3.11) 

3.2.2 Transformation from α,β to d,q 

In the traditional Park transformation the angle theta is defined as the angle 

difference between direction alpha and the vector d. In this case the angle 

theta is instead defined as the angle between alpha and voltage vector 

(vector q).  The main reason for not keeping the traditional park 

transformation is the earning of not needing to calculate the flux. The flux 

is the integral of the voltage vector, which is a heavy operation and 

physically doesn’t exist in a grid-connected system. It would therefore only 

cost extra computational power to first integrate the grid voltage and then 

use the Park transformation instead of using this transformation directly on 

the existing voltage vector. 

 

The transformation (3.12) can be derived from the vector diagram (Figure 

3.4). 

 

 

Figure 3.4: Vectors for three-phase system (a, b, c), (alpha, beta) and (d,q). 
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] (3.12) 

 

The corresponding inverse transformation is: 

 

[
  

  
]  [

   ( )    ( )

    ( )    ( )
]  [

  

  
] (3.13) 

Calculation of the angle theta can be a difficult operation because it´s 

requiring arctangent. Therefore a more efficient way of determining the 

sin(θ) (3.14) and cos(θ) (3.15) is chosen with help of trigonometric 

equations based on the assumption that voltage and q-vector is aligned. 
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  (3.15) 

3.2.3 Adaption of α,β to d,q transformation with grid 
voltage filter 

A first order grid filter is good for attenuating disturbances, but 

unfortunately it affects the measurement. The phase and amplitude is 

changed, which will have a negative affect on the control system. To 

prevent this a compensation for the low pass-filtered voltage measurement 

is implemented. By plotting the bode-diagram the affected phase and 

magnitude can be determined depending on chosen cut-off frequency.  
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Figure 3.5: Voltage vector diagram where V is the real voltage vector and V' is the filtered 

voltage vector. 
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(3.16) 

 

Transformation from measured quantities to actual values before filter is 

presented in equation 3.16, where | (   )| is the absolute value of the 

transfer function for a first order low pass-filter (2.11). 

 

The angle   is not known but it can be computed with help of the transfer 

function (2.12). The affected angle        ( (   )) for a specific 

frequency,  , makes the angle implicitly know. By the trigonometry of 

Figure 3.5 the relation (3.17) can be derived: 

 

        (3.17) 

 

From trigonometric equations the expression of sinus (3.18) and cosinus 

(3.19) of angle   is finally presented with well-known terms. 
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3.2.4 Model of the AFE converter 

A way of modeling a modulator and an active rectifier is by a first order 

system with a gain and a delay [24]. 

 

  ( )   
  

     
 (3.20) 

 

The transfer function (3.20) describes the system where    represents the 

gain and    represents the time constant. 

 

   
   

   ̂   

 (3.21) 

 

Equation 3.21 describes the relation between   , the magnitude of the 

triangular wave  ̂    and    (visualized in Figure 3.6). 

 

 

Figure 3.6: The relation between 
   

 
 and  ̂    where the difference is the gain   . 

 

Based on the switching, the average delay    is half a switching period of    

[24]. 

 

 

    
 

    
 (3.22) 
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3.2.5 Model of the control loops 

In order to control the AFE, a mathematical analysis needs to be done. The 

goal is a constant DC-link voltage with an optimized power factor. An 

overview of the implementation with transformations, PWM and control of 

the system can be viewed in (Figure 3.7). 

 

 

Figure 3.7: Block diagram with an overview of the AFE control system. 

3.2.6 Current controller 

The physical part of the system can be described as a simplified model with 

input and output components (see Figure 3.8). 
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Figure 3.8: Simplified illustration of the AFE circuit with detailed input and output 

components. 

 

By KVL analysis of the model at the AC-side in Figure 3.8 the following 

relations are obtained: 

 

{
 
 

 
                  

   
  

   

                 
   
  

   

                 
   
  

   

 

 

(3.23) 

 

Due to symmetry reasons the line resistances and inductances are of the 

same magnitude in all three phases,                

respective               . The voltages        ,         and         

are the modulation voltages of each phase to the converter and   ,   and    

represent the voltage of the AC source and    ,    and    represent the phase 

currents. 

 

By using the transformation from      - to    -frame the equation 3.23 is 

transformed into two DC-quantities [18]: 

 

{
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(3.24) 

  

The time constant at the input is    
     

     
. 
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Equation 3.24 is the result of the transformation, where the d-part and the q-

part are dependent on each other. 

 

Figure 3.9: Block diagram representation of the rectifier in d,q frame with coupling. 

The rectifier has a coupling between the d and q part (see Figure 3.9), 

which will make the current control of the system difficult. By designing 

the controller with a feed forward compensation (see Figure 3.10) it is 

possible to decouple the system and control the currents independently [25]. 

 

 

Figure 3.10: Block diagram showing control and decupling, modulator and converter and 

system model of the AFE. 
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Due to the decoupling it is possible to independently control active and 

reactive power and optimize the power factor, where the d-part represents 

reactive power and the q-part active power. In Figure 3.10 the first part 

shows the controller and the decoupling, because of this the system can be 

represented as two separate systems, see Figure 3.11. 

 

 

Figure 3.11: Block diagram showing the two decoupled systems. 

 

The first blocks,    ( ) and    ( ), in each part of the system in Figure 3.11 

describes the controller. To control the system a PI controller is used 

(relation described in equation 3.25) with a proportional part and an 

integrating part to remove the stationary error. 

 

    ( )   
      

    
 (3.25) 

 

Implicitly the proportional gain for the current controller is    
   

   
 and the 

integral gain is 
 

  
 

 

   
. The control parameters are chosen in such a way 

that the controller together with the system is a compromise between speed 

and robustness. 

 

       
     

     
 (3.26) 

 

By analyzing the decoupled system in Figure 3.11, the control parameter 

    (3.26) is chosen in such a way that one pole is canceled and thereby 

decreasing the complexity of the system to control (Figure 3.12). 

 



 

 41 

 

Figure 3.12: Simplified block diagram of the system with chosen Tzi inserted. 

 

The second order closed loop transfer function of the system in Figure 3.12 

is: 
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(3.27) 

 

The denominator in equation 3.27 is compared with the standard form of a 

second order closed loop system and put to zero for identification of poles 

(3.28) [22]. 

 

           
    (3.28) 

 

Identification of the components gives the following relations: 

 

 

{
 
 

 
      

 

  

  
  

  

            

 

 

 

(3.29) 

 

By choosing the parameter   to 
 

√ 
, the highest possible bandwidth without 

an amplitude response over      is achieved. By solving (3.29) the 

expression for     is achieved (3.30). 

 

    
       

     
  (3.30) 

 

3.2.7 Voltage controller 

The parameters for the current controller,     (3.26) and     (3.30), 

inserted in (3.27) in the previous section gives a second order 
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closed loop transfer function (3.31). 

 
  ( )

  
 ( )

 
 

       
          

  (3.31) 

 

Due to the choice of ideal power factor,   
 ( ) is set to zero. The second 

order term in the denominator polynomial of (3.31) is neglected due to a 

lower bandwidth in the voltage controller [24]. 

 
  ( )

   ( )
 

 

        
 (3.32) 

 

In the a,b,c to d.q transformation with amplitude invariance used as a base, 

it is implied that        . The AFE DC-link voltage is then controlled by 

cascade coupling the current controller with a voltage control loop. This is 

illustrated in a block diagram in Figure 3.13. 

 

 

Figure 3.13: Block diagram with voltage controller in cascade with current controller. 

 

The controller   ( ) is a PI controller (3.33) 

 

  ( )   
      

    
 (3.33) 

 

From the block diagram in Figure 3.13 the open loop transfer function is 

derived. 

 

   
( )  

       

           (        )
 (3.34) 

 

Due to the double pole in the origin, the slope at low frequencies 

is              . In order to achieve system stability the zero (   
 

   
) 

shall be positioned before the unit gain cross over (  ) and the controller 
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pole (   
 

    
) after    so that the slope at the cross over is -20dB/decade 

[24]. The relationship for parameters and properties of the open loop 

transfer function is illustrated as a bode diagram in Figure 3.14. 

 

 

Figure 3.14: An illustrative figure of the bode plot for voltage controller design [24]. 

 

As illustrated in Figure 3.14 a possible way of choosing the desired cross 

over frequency (  ) is to take the geometrical mean of the two frequencies, 

   and    [24]. 
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              (3.35) 

 

Equation 3.35 describes the relation between     and    where   is a 

constant larger than 1. The control parameter     is derived by setting the 

gain of the open loop transfer function (3.34) to 1. [24] 
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 (3.36) 

 

By using equation 3.34 and 3.35 in expression 3.36 the following relation is 

derived. 

 

    
       

 

   
 (3.37) 

 

The parameter   is decided by applying the rule of thumb for the phase 

margin and compromise between speed and stability, suitable phase margin 

           [22]. 

3.3 AFE power losses 

The current waveforms through the AFE are as mentioned before sinusoidal 

which will cause the duty cycle to vary over time. 

 

      
( )    ̂     

    (   ) (3.38) 

 

 ( )   
 

 
 (   ̂     (        )) (3.39) 

 

Where the       
( ) is the current from the ac side into one of the rectifier 

arms and  ( ) is the duty cycle for the corresponding transistors or diodes. 

3.3.1 Conduction losses 

Due to the high switching frequency of the transistors, current and duty 

cycle is approximated to be continuous over a 50 Hz period. There are two 

possibilities of conduction in a one phase active rectifier bridge. Either the 

transistor    or the diode    conducts during the positive part of the period. 

During the negative period the transistor    or the diode    conducts. 
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Figure 3.15: The left picture shows one arm of the active rectifier, the right illustrates the 

current during switching over a part of a sinus period for diode (top) and transistor 

(bottom). 

 

The equation for average conduction losses in a transistor is defined (3.40) 

with use of the general equation for instantaneous losses in a semiconductor 

(2.9). 
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 ( )   ( )〉      〈      
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The transistor conduction losses are given by (3.40) and the two average 

parts for this equation are given by (3.41) and (3.42). The average parts are 

calculated over half a period of the sinus wave, due to symmetric reasons. 

Further calculations and expressions are presented in appendix. 
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The equation for average conduction losses in a diode are defined (3.43) 

with the use of the general equation for instantaneous losses in a 

semiconductor (2.9). Since  ( ) is the percentage of time when the 

transistor is conducting power to the load, (   ( )) is the percentage of 

time when the diode is conducting power to the load. 

 

〈          〉    
〈      

 ( )  (   ( ))〉      〈      
( )  (   ( ))〉      

(3.43) 

 

The diode conduction losses are given by (3.43) and the two average parts 

for this equation is given by (3.44) and (3.45). Further calculations and 

expressions are presented in appendix. 
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3.3.2 Switching losses 

The switching losses are based on the characteristic of the semiconductor 

and the datasheet specifies switching energy losses for a given current and 

voltage magnitude, where the voltage is set to Vdc. 
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 (3.46) 

 

The average current is calculated over half a period for one component, due 

to symmetric reasons as mentioned before. An IGBT requires energy for 

both turn on and turn off, meanwhile the diode requires only energy for turn 

off due to its characteristic (chapter 2.4.1). 
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3.4 Electromagnetic compatibility (EMC) 

The AFE is connected to the low voltage grid and has to fulfill international 

standards regarding power quality. Main focus is on fulfilling the low 

harmonic distortion and flicker according to the IEC standards. 

The ESS modulators are rated for extremely high power and currents which 

are outside the range of IEC standards. Due to this and to ensure low grid 

impact the strictest standards are applied for equipment with rated currents 

below 16A. 

3.4.1 Flicker - IEC 61000-3-3 

The IEC 61000-3-3 concerns standards regarding voltage fluctuations, 

voltage changes and flicker on applications connected to the low voltage 

grid. 

 

 

Figure 3.16: Reference network for a three-phase supply [26]. 

 

In Figure 3.16 is the test set up for the three-phase application 

where: 

EUT equipment under test (modulator) 
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M measuring equipment 

G voltage source 

S supply source consisting of the supply voltage generator G 

and test impedance Z with the following elements which 

include the generator impedance. 

( [26], p. 31)  

  is the nominal peak value of the voltage. 

 V is the difference between nominal peak voltage and measured peak 

voltage. 

 

 

Figure 3.17: The flicker level in percent as a function of number of voltage changes per 

minute [26]. 

 

For this type of application it is important to check the relative steady state 

voltage change,   , which is the ratio between the difference in peak 

voltages at the measurement points (Figure 3.16) and nominal peak voltage. 

The maximum relative steady state voltage change shall not exceed the 

limits given in the diagram in Figure 3.17 [26]. 

3.4.2 Low harmonic current – IEC 61000-3-2 

The IEC 61000-3-2 concerns the limitation of current harmonics injected 

into the low voltage grid. 
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Figure 3.18: Limits for the harmonic current in percentage [27]. 

 

The injected current harmonics are measured by doing an FFT analysis of 

the current wave forms when the application is in operating mode. At 

startup and shut down, the 10 first seconds is not taken into account and the 

FFT measurement of the current shall be performed during 1,5 seconds 

[27]. 

 

 

  



 

 50 

 



 

 51 

CHAPTER 4 

 

4 DC/DC-converter with a pulsed load 
The DC/DC step down converter is traditionally a conversion structure 

allowing power conversion from a DC-voltage input to an output load, 

having the output average voltage that is equal or lower than the input 

voltage. With a LC-filter on the output the signal is smoothened and can 

therefore be considered as a flat DC level [18]. The problem in this case is 

the pulsed load, which will imply high power fluctuations on the grid. With 

the assumption that the time between pulses and duration of them are 

known, construction of a smart power control will be feasible. This power 

control´s mission is to reduce the impact from the switched output load. 

Due to low energy storage in components, the power output on the DC/DC-

stage will be the same as input power if losses are neglected. This chapter 

covers the theory behind controllers that can solve pulsed load power 

fluctuations. In short terms a new-developed power control loop concept is 

put in cascade with a current controller. The electric structure for a DC/DC 

converter can be seen in Figure 4.1, where the transistor and diode switch 

for alternating time periods depending on the duty-cycle.  

 

 

Figure 4.1: Schematic of a DC/DC step down converter with a pulsed load. 
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4.1 Characteristics 

The DC/DC is controlled with PWM and since the levels are DC only 

active power matter. To achieve constant input power to the converter, 

output current, ILo, and output voltage, Vo, will be controlled in a way to 

make the power, PAB, constant. In order to make this work, the product of 

current and voltage has to be constant in every point due to the electric 

power law. The output power is equal to the input power and therefore the 

following relation is valid (4.1) [21]. An illustrating picture of how a 

constant power source can supply a high power pulsing load is shown in 

Figure 4.2. 

 

          
             (4.1) 

 

 

Figure 4.2: Characteristics for a constant power DC/DC-converter and graphs for load 

power, output voltage and inductance current. 

 

Due to pulsing nature of the output load, output voltage will drop to a 

certain level depending on dimensioning of the output capacitance. The 

enormous amount of power that will be fed to the load, in the pulsing 

period, will create this voltage drop and is almost impossible to counter. If 

this phenomenon should be encountered, an unrealistically big output 

capacitance would be needed. Therefore this voltage drop is accepted and 

controlled in a linear way to obtain constant power.  
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In order to control the DC/DC conventionally a triangular carrier wave is 

compared with a reference level that creates the pulsing pattern. Where the 

triangular wave amplitude is stretching from zero to input DC-level, the 

reference level is chosen depending on desired output level. Notate that the 

output DC-level is lower or equal to the input DC-level. Deeper knowledge 

about characteristics for switching is found in Chapter 2.1. 

4.2 Control 

By looking at the characteristics for switching, it can be understood, that 

adjustment of the PWM-reference will control the average voltage level 

over the diode. When demanding a specific current level on the DC/DC-

converter output a current control loop needs to be implemented [18]. 

Furthermore a voltage or a power control loop in cascade with the current 

control loop is needed to control the voltage level or power level on the 

output. In the normal situation, the power control will be in use to control 

power to the output. If the output stage under some circumstance will stop 

pulsing, the voltage control takes over and acts as a safety to not exceed 

high voltage levels. The voltage control will also be used to ensure that 

correct voltage level is held when the pulsing eventually starts again. In this 

chapter, an approach for controlling this system is presented and regarding 

the power control, two types will be described and evaluated. The final 

choice of power control type will then be presented in chapter 5 with clear 

motivations. 

4.2.1 Model of converter  

An easy way of modeling the converter is by a first order delay (4.2). The 

calculation and update of new values will be finished in average between 

two sampling periods. The delay is there for half a switching period (4.3). 

 

  ( )   
 

     
  

(4.2) 

 

    
 

    
 (4.3) 

 

4.2.2 Model of system 

The complete high-level principle of the control approach and 
system is shown in Figure 4.3. 
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Figure 4.3: A block diagram representation of the power control, voltage control, 

simplified switch between them, current control, PWM and the system. 

 

Based on KVL analysis of the circuit in Figure 4.1, a representation of the 

system can be constructed in frequency domain (4.4).  
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With help of (4.4) an expression for the current can be derived (4.5). 
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 (4.5) 

 

When having a capacitance, Co, on the output port the voltage can be 

calculated (2.16), in frequency domain (4.6). 
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 (4.6) 

4.2.3 Model of current control 

In order to eliminate stationary errors and create a current controller with 

desired performance, a PI-controller with feed forward of the output voltage 

is used (4.7). 

 

  ( )     (    
 

 
) (4.7) 

 

The block diagram in Figure 4.4 contains a mathematical description of the 

system (4.2, 4.3, 4.5 and 4.6) and the current controller (4.7) together with a 

feed-forward of the output voltage. The open loop transfer function (4.8) 

and closed loop transfer function (4.9) is derived from the block diagram in 

Figure 4.4 to make good estimations of the control parameters. 
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Figure 4.4: A block diagram representation of the current control in interaction with the 

system. 
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4.2.4 Model of voltage control 

To create a voltage controller an additional PI-controller is used in cascade 

with the current controller. This voltage controller (4.10) will set the 

reference for the current controller and needs to be relatively slow 

compared to the current controller, this to work in a stable and desired way. 
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To determine parameter values for the voltage controller the closed loop 

transfer function for current control (4.9) is used. This is a third order 

system that is approximated to a first order system in order to simplify 

calculations (4.11).  
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The block diagram in Figure 4.5 contains a simplified description of the 

system with current control (4.11), the voltage controller (4.10) and output 

voltage over capacitance (4.6). The open loop transfer function (4.12) and 
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closed loop transfer function (4.13) is derived from the block diagram in 

Figure 4.5 to make good estimations of the control parameters.  

 

 

Figure 4.5: A block diagram representation of the voltage control in interaction with the 

system. 
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 (4.12) 
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 (4.13) 

4.2.5 Model of power control type 1 

Making a control for the power is quite a challenge. The approach 

described in this subchapter is based on a predictor and a proportional 

corrector. The output voltage is used to update the power control in specific 

periods when the load is switching. A schematic picture of this 

methodology and structure can be seen in Figure 4.6.  

 

Figure 4.6: A block diagram representation of the type 1 power control structure with a 

power predictor and corrector. 
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With help of the energy equation for a capacitance (4.14) and knowing the 

time between discharges,   , the power required to charge the output 

capacitance is derived (4.15) [21]. 

 

   
  

 

 
       

  (4.14) 

 

   
 

   

  
 (4.15) 

 

When the power at the output is drawn in a pulsed formation, it is hard or 

almost impossible to keep the voltage level on the output capacitance. The 

discharge will be exponentially but over a short period of time in respect to 

the time constant (τ=RC), due to this the discharge can be approximated to 

linear. After discharge to the low voltage level,   
   , the capacitance needs 

to be charged up to a reference level,   
     so that it will be ready for next 

pulse. This needs to be done in a linear way to make the power (product of 

voltage and current) constant (Figure 4.7).  

 

 

Figure 4.7: Voltage ripple for a perfect period on the DC-output. 

In order to make this work a constant power reference needs to be 

determined. The constant power level is hard to decide because of the 

unknown characteristic of the pulsing load. Before and when the first pulse 

arrives, there will be an initial guess for the power reference based on the 

expected voltage drop. After the first cycle this power prediction reference 

will be evaluated in time t1. Where (4.16) estimates the power by measured 

voltage drop (  
   ), reference voltage level that shall be reached to the 

next pulse (  
   ), time until next pulse and capacitance value. An update 

of the power prediction is immediately done after calculation in t1. 
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) (4.16) 

 

Due to imperfections in a real circuit an implementation with only a 

prediction term will not be sufficient. Therefore the following approach 

with a correction term needs to be implemented, this to erase the errors 

from these imperfections. When a pulse arrives in t2, the voltage can either 

be above or below the reference. In the case when voltage level is below the 

reference, the measured value V0(t2) is used to calculate the power 

correction, see Figure 4.8 for the cycle. In the other case when voltage level 

is above the reference (if no voltage control loop were implemented), the 

measured value V0(t2) would also be used to calculate the power correction, 

see Figure 4.9.  

 

Figure 4.8: Voltage waveform for a period when reference level isn’t reached on the DC-

output at t2. 

 

 

Figure 4.9: Voltage waveform for a period when reference level is reached too early on 

the DC-output. 

Due to the voltage control loop, the voltage level will be limited to a given 

reference and must be estimated (Figure 4.9). By extrapolating the linear 

voltage curve a good approximation is done  (4.17), where   
    is the 

extrapolated voltage in   . 
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 (     ) (4.17) 

 

As mentioned before the measured value   (  ) can either be a voltage 

under (Figure 4.8) or above (Figure 4.9) the   
    reference in t2. With help 

of this variable a power correction term is calculated and added to the 

power reference with a proportional controller, which is calculated and 

updated immediately in time t2 for the next cycle (4.18). 

 

         
 

  (     )
    (  (  )

    
    ) (4.18) 

 

Where    is the gain of the proportional controller. 

4.2.6 Model of power control type 2 

This type of controller is constructed in a way where the perfect voltage 

waveform in Figure 4.7 is mimicked. As an outcome of this the power will 

be constant at the output and the purpose is fulfilled. By using the control 

theory in section 4.2.4 for voltage control together with an input reference 

constructed as a ramp function, this behavior will be achieved. The ramp 

voltage reference will more in detail follow the positive slope (t1 to t2) in 

Figure 4.7. After a pulse (t1), the output voltage (  
   ) will be measured 

and by knowing the reference voltage (  
   ) a straight-line function can be 

calculated. The expression used as reference for the output voltage is 

presented in (4.19). 

 

  
 ( )    

    
  

      
   

     
   (4.19) 

 

During the discharge time (t0 to t1) the output voltage (Vo) will as 

mentioned before be hard or impossible to control, due to the big amount of 

power that will be fed through the circuit. During this time the output 

capacitance will almost itself supply the output load with power. The 

current fed from the grid will not be of a big impact. A negative reference 

slope is therefore too fast and not possible to follow with a controller and 

can be neglected. If the voltage control now constructed to control the 

power is optimized to follow the slope perfectly, constant power will be 

obtained. 
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In order to decide which implementation of type 1 and type 2 that will be 

the best for this type of application, simulations will be done. Notation can 

be done regarding only evaluating two alternatives for the power control 

even though this is a completely new field in power electronics. Under the 

development other versions of the power control were investigated with no 

greater success and are therefore not presented in this report. An evaluation 

of the two types will be done in the simulation chapter, chapter 5. 

4.3 DC/DC dimensioning of passive components 

With use of equations from chapter 2.7 a complete dimensioning of the 

DC/DC can be done. Equation 2.17 is used for inductance dimensioning 

and (2.18) is used for capacitance dimensioning. The parameters needed in 

(2.17) and (2.18) are calculated below. 

 

When dimensioning the inductor an acceptable current ripple,    

       
, is 

defined. With a constant power,      the average current can be determined 

(4.20) and the current ripple is calculated by (4.21). These equations are 

based on the assumption that    
    

    

  
   since the inductor is small 

and also the current ripple. 
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 (4.20) 
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 (4.21) 

 

The output voltage is changing between pulses and an average duty-cycle 

will therefore be used: 

 

 ̅  

  
      

   

 
   

 
(4.22) 

 

Regarding dimensioning of the capacitance, the voltage ripple is defined by 

(4.23). The duty-cycle is defined from characteristics of the output load and 

the switching frequency as well. With this information and the equation for 

average current through the circuit (4.20), a determination of output 

capacitance can be done (2.18). 
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    (4.23) 

 

4.4 DC/DC power losses 

Power losses for the DC/DC are based on the approximation that variations 

from switching characteristics in the converter are neglected. Because the 

switching frequency in the converter is much higher than the switched 

output load, this is a very good estimation. Currents and voltages can 

therefore be derived into continuous perfect waveforms. Two scenarios are 

evaluated, one describing the voltage curve when output load is sinking 

power (4.24) and the other when the load is not sinking power (4.25).
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4.4.1 Conduction losses  

The equation for average conduction losses in a transistor are defined (4.27) 

with the use of the general equation for instantaneous losses in a 

semiconductor (2.9). 

 

〈         〉   〈   

 ( )   ( )〉      〈   
( )   ( )〉      (4.27) 

 

The duty-cycle (4.28) is defined as the time when transistor is 

conducting power to load, in respect to the diode. 
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(4.28) 

 

The transistor conduction losses are given by (4.27) and the two average 

parts for this equation are given by (4.29) and (4.30). Further calculations 

and expressions are presented in appendix. 
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(4.30) 

 

The equation for average conduction loss in a diode is defined (4.31) with 

the use of the general equation for instantaneous losses in a semiconductor 

(2.9). Since  ( ) is the percentage of time when the transistor is conducting 

power to the load, (   ( )) is the percentage of time when the diode is 

conducting power to the load. 
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The diode conduction loss is given by (4.31) and the two average parts for 

this equation is given by (4.32) and (4.33). Further calculations and 

expressions are presented in appendix. 
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4.4.2 Switching losses 

The switching losses are based on the characteristic of the specific 

semiconductor. The datasheet specifies the switching energy losses for a 

given current and voltage magnitude. Average current (4.34) and voltage 

(4.35) in this circuit is used for normalization of these values. The 
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expression used for normalization of turn-on energy is (2.5) and for the 

turn-off energy (2.6).  
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CHAPTER 5 

 

5 Matlab/Simulink implementation 
In order to verify that the requirements on control and dimensioning of the 

system are fulfilled, simulations have been done, where Simulink has been 

the chosen simulation tool. To derive the required control parameters, the 

implementation is separated in two parts. One part is a mathematical 

implementation which is done with continuous blocks. This to minimize the 

execution time when determining the control parameters. The other part is a 

discrete physical implementation done with Simscape/SimPowerSystems 

components and controls implemented with standard blocks.  

 

At first the capacitor charger is separated into two systems, the DC/DC and 

the AFE, this to decrease the complexity and execution time. When desired 

control and dimensioning of the two separate systems are fulfilled, the full 

system is simulated at different scenarios. The main goal is to fulfill the 

international grid standards on flicker, low harmonic distortion together 

with optimized power factor. 

 

As a starting point some parameters have been set initially as a guideline 

and a way of simplifying the implementation: 

 

 The simulation components are ideal, no losses are included. 

 The grid voltage is set to a standard 400 V three phase grid. 

 The DC-link voltage is 1100 V with a maximum ripple of 5 %. 

 The average power through the system is 200 kW. 

 The output voltage from the DC/DC is 1000 V when the load 

switches, with a precision of better than 1 %. 

 The output voltage drop is 15 % when the output load is pulsed. 

 The output load pulse frequency is 14 Hz with 5 % duty-cycle. 

 The transistor switching frequency is set to 7.5 kHz. 

 The mean current ripple of the DC/DC output is 5 %. 

 The discrete clock frequency for the controller is 4 MHz. 

 The sampling frequency of the I/O-measurement ports is 200 kHz. 
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 The discrete physical system has a sampling frequency that is 200 

times larger than the switching frequency in order to be considered 

as continuous. 

5.1 Simplifications and impact 

The physical part of the system is based on the 

Simscape/SimPowerSystems-library and is as far as the block components 

allows ideal. This implies that no losses are included in the Simulink 

model. Due to mathematical modeling the sensor delays and possible lack 

of sensor precision are not included. The rise and fall time for diodes and 

transistors are neither included. 

 

Because the combination of different sampled discrete systems the time for 

simulation is mostly dependent on the smallest step size, the complexity 

and number of elements in the model. Since the models are quite complex 

and contains many elements it takes a lot of time to simulate short 

scenarios. Due to this, the simulations are executed until steady state has 

been certainly reached. The phase angles, integral values, capacitance 

voltage, etc. are initially set to optimized values. This also to reduce 

execution time, in reality this type of concept will be valid due to pre-

charging of capacitors. 

5.2 System parameters 

To implement the model in Simulink some general parameters are required 

for the system. These parameters are defined in this subchapter and will be 

final through this chapter. 

Table 5.1: General system parameters for simulations. 

Notation Description Value 

Va,b,c Grid voltage 400 V 

Vdc DC-link voltage 1100 V 

Vdist 
Amplitude of grid 

disturbances 
32.5 V 

f Grid frequency 50 Hz 

fs 
Transistor switching 

frequency 
7.5 kHz 
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 Output pulse frequency 14 Hz 

fc 
Cut-off frequency of the 

grid filter 
50 Hz 

fdist 
Frequency of grid 

disturbances 
325 Hz 

ω Angular frequency 314.16 rad/s 

Ts 
Physical system 

sampling time 
330 ns 

Ppeak Peak power 4 MW 

   

       
 

Current ripple in DC/DC 

output inductance 
5 % 

    Output pulse width 5 % 

Fsc 
Sampling frequency 

control 
4 MHz 

Fsio 
Sampling frequency I/O-

ports 
400 kHz 

Fs 
Sampling frequency 

discrete system 
200*fs Hz 

5.3 AFE implementation 

The AFE implementations are separated in two parts, one mathematical 

simulation part and one with a physical representation of the system. In this 

subchapter the system parameters are calculated and verified. The chapter 

also comprises the controller implementation together with the physical 

system and a switched load, without taking into account the flicker and low 

harmonics. In order to simplify the understanding of the design, the same 

parameters are used through this chapter. 

5.3.1 Dimensioning parameters 

The dimensioning parameters presented in Table 5.2 are based on the 

requirements on flicker and low harmonic current content. 
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Table 5.2: Dimensioning parameters used for simulation of the AFE. 

Notation Description Value 

Lconv 
Input converter 

inductance 
0.4 mH 

Rconv 
Input converter 

resistance 
1 m𝛺 

Cdc DC-link capacitance 5 mF 

5.3.2 Control parameters 

Parameters for the current controller are calculated based on the parameters 

in Table 5.1 and Table 5.2 together with equation (3.26) and (3.30). The 

parameters for the voltage controller are optimized by mainly looking at the 

phase margin, this is done in subchapter 5.3.3.3. 

 

Table 5.3: Current control parameters used for simulation of the AFE. 

Notation Description Value 

Kc Converter gain 550 

Tc Converter delay 67 μs 

 

5.3.3 AFE mathematical model  

The AFE is controlled by a current control loop in cascade with a voltage 

control loop. This is done in order to control both the current and voltage. 

The current control loop is simulated first and then the outer voltage control 

loop is added. 

5.3.3.1 Current controller  

The mathematical model for the closed current control loop is set up in the 

frequency domain. Focus is mainly on achieving reactive power 

compensation together with a system that follows a given current reference. 

The system is modeled with an ideal three phase input that is transformed to 

the d,q-frame, this to control the currents independently. There is also a PI-

controller together with a grid voltage feed forward and decoupling of 

system. The saturation for modulation output and the anti-windup for the 
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PI-controllers are based on the maximum vector length of the d,q 

parameters.     

 

 

Figure 5.1: The mathematical system of current controller with system. 

 

By inserting the parameters from Table 5.1, Table 5.2 and Table 5.3 the 

bode-diagram for the system (Figure 5.1) is achieved (Figure 5.2). 

 

 

Figure 5.2: Bode diagram for the AFE current controller, with optimized parameters in 

open loop. 

5.3.3.2 Voltage controller  

The closed loop voltage controller is also modeled in the frequency domain. 

It consists of the current controller together with the system, modeled as a 



 

 70 

first order transfer function (3.32). This together with the PI-controller, feed 

forward of the load current and a model of the DC-link capacitance. The 

step-response of the absolute current controller and of the simplified first 

order system is compared to ensure valid approximation (Figure 5.4). 

 

 

Figure 5.3: The mathematical system of voltage controller with system. 

 

 

Figure 5.4: Step response of first order simplified current controller with system (not 

dashed) and absolute current controller with system (dashed). 

5.3.3.3 Calibration of control parameters for voltage 

controller 

The parameters from Table 5.1 and Table 5.2 are inserted into the equations 

for Tzv (3.35) and Tpv (3.37). In order to determine these parameter values 

the open-loop transfer function (3.34) bode diagram is plotted, Figure 5.5. 

The parameter   is determined by choosing the phase margin as mentioned 
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before, subchapter 3.2.7, to a value that combines speed and stability, the 

phase margin    is chosen to 60˚. 

 

 

Figure 5.5: Bode diagram for AFE voltage controller in open loop, a=4. 

 

 

Figure 5.6: Step response for AFE voltage controller, a=4. 

 

Table 5.4: Calibrated parameters for voltage controller. 

Notation Description Value 

a Gain 4 

Tzv Voltage control 0.0021 



 

 72 

gain 

Tpv 
Voltage control 

gain 
2.2756e-04 

 

5.3.4 Implementation in Simulink  

A complete overview of the simulation system can be viewed in Figure 5.7. 

The sampling block works as I/O-ports sampling delays and discretization 

which would exist in a real implementation on a NI Compact Rio platform, 

etc. On the AC-side of the AFE a 3-phase low voltage grid is connected, a 

capacitance in parallel with a switched load is connected to the DC-link. 

Blocks fulfilling functions for control and PWM are investigated more in 

the following subchapters. 

 

 

Figure 5.7: AFE simulation model overview. 

5.3.4.1 PWM  

In order to control the AFE, PWM-signals are created for each pair coupled 

transistors, where one signal per transistor pair is inverted. Dead-time 

generations are implemented to avoid short circuits in the system. The 

dead-time is usually integrated in the transistor drivers, and in this case set 

to the sampling frequency of the physical system, Ts. 
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5.3.4.2 Current controller 

The current controller implementation (Figure 5.8) is basically the same as 

the mathematical model in chapter 5.3.3.1. The major difference is that 

discretization and the feed-forward of If are implemented. 

 

 

Figure 5.8: Current controller for the AFE. 

5.3.4.3 Voltage controller 

The voltage controller is the outer loop in the cascade coupled system and 

consists of a PI-controller. The saturation for the integral part is based on 

the maximum output current that is allowed for the system. Due to the 

current measurement direction, the output sign is changed. 
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Figure 5.9: Voltage controller for AFE. 

5.3.4.4 Transformation  

The transformation block is based on the equations from AFE chapter 3.2, 

amplitude invariance is used as a basis for the transformation. Due to phase 

and amplitude impact from the grid filter compensation is done to achieve 

correct values, more in detail subchapter 2.5. 

5.3.4.5 Grid measurement filter 

Due to harmonics and flicker on the grid the input signal is filtered. This is 

done by three low pass filters, one for each phase that damps the noise. 

Transformations are based on grid voltage measurement and therefore 

compensation for this is done. 

 

 

Figure 5.10: Bode plot of 50Hz filter. 
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From (2.11) and (2.12) the gain and phase impact for a cut-off frequency of 

50 Hz is calculated: 

 

   
 

      
 

 

(5.1) 

| ( )|  
 

√ 
  

 

(5.2) 

   ( ( ))       (5.3) 

5.3.4.6 Output load 

The switching characteristic of the DC/DC is represented initially as a 

constant load, which sinks the same amount of power in average (200 kW). 

The output resistance is calculated for a given DC-level, power and the 

DC/DC output voltage. 
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(5.4) 

 

Table 5.5: Constant equivalent DC-link load. 

Notation Description Value 

    DC-link resistance 5.5𝛺 

 

 

The current    is switched and to ensure a good feed-forward to the 

controller a mean value is constructed. 

5.3.5 Results from implementation 

A restriction for the AFE is that the DC-link voltage should maximally 

differ 5 % from the reference. Another restriction is that the power factor 

should be optimized when the system is in steady state. Looking at Figure 

5.11 and Figure 5.12, the average power is 200 kW. The DC-link voltage is 

dropping 2 % in the start and has a voltage ripple of 0.2 % at steady state.  

The input currents on the AC-side are sinusoidal shaped with the transistor 
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switching ripple on top of the 50 Hz fundamental. A summary of the results 

from implementations can be seen in Figure 5.11 and Figure 5.12. 

 

 

Figure 5.11: Plots from simulations with output quantities; grid current, power from grid 

(Q @ ~ 0 kW, P @ ~ 200 kW) and DC-link voltage. 

 

Due to possible disturbances on the grid a disturbance-source is 

implemented on each phase to represent this. The impact of the DC-link 

voltage is the reduced due to the grid filters and remains constant and stable 

(Figure 5.12). 

 

 

Figure 5.12: Plots from simulations with output quantities; DC-link voltage, grid voltage 

with disturbances @ 325 Hz, 32.5 V. 
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5.4 DC/DC implementation 

The DC/DC implementations are separated in two parts, as for the AFE, 

one part with a strict mathematical model and one part with a physical 

representation of the system. System control parameters and dimensioning 

are via these models calculated and verified. This subchapter also 

comprises an implementation of the control and a physical system with the 

output load modeled as a switch, representing the pulsing power drawn. 

When simulating the DC/DC-converter a solid DC-voltage source is 

assumed on the input, represented as an ordinary DC-voltage source. The 

simulation parameters are based on equations from subchapter 4.3 and 

system parameters defined in Table 5.1. 

5.4.1 Dimensioning parameters 

In this chapter are the dimensioning parameters calculated with help of the 

theory described in subchapter 4.3. The inductance dimensioning from this 

subchapter is though not a guaranty for good current ripple all the time, 

since it is based on average values. To ensure that the current ripple is 

limited, all the time, the most critical situation must be evaluated. This 

critical situation occurs when the load is switched on and sinks power, 

where the current magnitude is determined. To get the converter output 

current to ripple on this change, the inductor must be dimensioned for four 

times this magnitude as a rule of thumb. The inductance calculated for this 

purpose is defined as        and expressed in equation (5.5). 

 

 

  
      

      ̅

  
   

       

   

     

 (5.5) 

 

The smallest inductor is chosen, under the restriction that the basic current 

doesn’t ripple over restraining conditions,    

       
. Calculation of 

inductances from (2.17) and (5.5) will generate           and   
      

       where the smallest inductance is chosen,          . 

 

Table 5.6: Calculated dimensioning parameters for simulation models (*Calculated under 

section 5.4.4.5). 

Notation Description Value 
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   Output capacitance 97.7mF 

   Output inductance 1.8mH 

  * 
Switched output load 

resistance 
214mΩ 

5.4.2 DC/DC mathematical model 

This model is set up with help of the system model in frequency domain 

(4.5) and equation for capacitor voltage (4.6). It is a model of the current 

control with feed forward of the output voltage in cascade with a voltage 

controller. The converter is modeled as a delay, which is described in 

(4.2.1). Further details can be investigated in chapter 4.2. Anti-windup is 

implemented to prevent unrealistic output values. 

 

 

Figure 5.13: Mathematical model of current and voltage control system. 

5.4.3 Calibration of control parameters 

To calibrate control parameters for both the current controller and voltage 

controller, bode-diagrams are used. A phase margin    of 60 degrees is the 

criterion for the systems to be considered both stable and fast enough. 

Corresponding step responses are also checked to make sure the system is 

stable. 

5.4.3.1 Calibration of current controller 

Parameters calibrated for the current control system can be seen in Table 

5.7. 
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Table 5.7: Calibrated parameters for current control. 

Notation Description Value 

Ki Gain 5 

Ti Gain 3 

 

 

Figure 5.14: Bode diagram of the open loop current control system with a phase margin of 

60 degrees. 
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Figure 5.15: Step response for the current control (dashed line) and an approximated first 

order version of this control (non-dashed line). 

5.4.3.2 Calibration of voltage controller 

An approximation of the current control as a first order system is used to 

simplify transfer functions and validation of parameters (4.11). The step-

responses can be seen in Figure 5.15. Parameters calibrated for the voltage 

control system from Bode-diagrams in Figure 5.16 and step-response in 

Figure 5.17 can be seen in Table 5.8. 

 

Table 5.8: Calibrated parameters for voltage control. 

Notation Description Value 

Kv Gain 0.5 

Tv Gain 9 
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Figure 5.16: Bode diagram of the open loop voltage control system with a phase margin of 

at least 60 degrees. 

 

 

Figure 5.17: Step response of the mathematical voltage model with calibrated parameters. 

 

Notation can be done regarding the phase margin to be almost around 90 

degrees in voltage controller. When reducing the phase margin to a level 
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that is closer to 60 degrees, Figure 5.16, saturation is reached and therefore 

such parameters should be avoided.   

5.4.4 Implementation in Simulink 

A complete overview of the simulation system can be viewed in Figure 

5.18. The sampling blocks are working as I/O-ports sampling delays and 

discretization which would exist in a real implementation on a NI Compact 

Rio platform, etc. On the output a switch with resistive load in series 

connected to a pulse generator is used for simulation of the pulsing power. 

Blocks fulfilling functions for control and PWM are investigated more in 

the following subchapters. 

 

 

Figure 5.18: Extraction from simulation model of the complete DC/DC simulation system. 

5.4.4.1 PWM implementation 

The PWM implementation is constructed with a discretized DC-voltage 

representing the discrete time in a controller. The reference voltage is 

compared with a triangular wave creating switched pattern for the 

transistor. 

 

Figure 5.19: Extraction from simulation model of the PWM structure. 
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5.4.4.2 Current control implementation 

The current control is very similar to the mathematical model shown in 

subchapter 5.4.2. Apart from the mathematical model a discretization of 

feed forward output voltage and inductance current are implemented. 

 

 

Figure 5.20: Extraction from simulation model of the current control structure. 

5.4.4.3 Voltage and power control implementation, type 1 

The voltage control implementation is done in the same way as for the 

mathematical model (5.4.2). The difference is the implementation of power 

control. A hysteresis checks if the output voltage is high or low and then 

controls a switch making the decision between power- or voltage-control. 

Voltage measure-block helps to construct and declare the lowest voltage 

point when drawing power and also to determine the maximum voltage 

reached in a cycle. These values are then used for calculation of the power 

prediction and correction described in subchapter 4.2, the equations are 

placed in blocks denoted f(u) in Figure 5.21.   
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Figure 5.21: Extraction from simulation model of the voltage and power control type 1. 

5.4.4.4 Voltage and power control implementation, type 2 

Voltage implementation in type 2 is identical with the one for type 1 

(5.4.4.3) and are therefore not further explained. A hysteresis will also 

check if voltage is high or low but in this case switch input reference 

between the constant   
    and ramp function (4.19). Voltage measure-

block helps to construct and declare the lowest voltage point when drawing 

power and also to determine elapsed time since most recent pulse. These 

values are then used as inputs to (4.19). 

 

 

Figure 5.22: Extraction from simulation model of the voltage and power control type 2. 

5.4.4.5 Pulsing power output implementation 

The objective is to sink a peak power of 4MW to a load through the 

DC/DC. With an average voltage of 925V on the output, the resistance for 

simulation can be calculated (5.6). Notation can be done regarding the 
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somewhat confusing symbol of the switched load (Figure 5.23), Simulink 

symbol is not correct because the resistance is in series. 

 

   
 ̅ 

 

     
         (5.6) 

 

 

Figure 5.23: Extraction from simulation model of the switched output load. 

5.4.5 Results from implementation 

A restriction for the DC/DC-converter is that the output voltage should 

maximally differ 1 % from the reference when load is pulsing. Another 

restriction is that a constant supplied power should be fed into the system in 

steady state. A summary of the results from the DC/DC simulations can be 

seen in Figure 5.24 for power control type 1. Looking at the different 

graphs the average power drawn when pulsing is 200 kW and a close to 

perfect voltage change between 850 V and 1000 V is obtained. Accuracy on 

the output voltage is better than 0.1% starting from the first pulse and 

approximately 0.01 % in steady state after 3 pulses, which is remarkably 

good. Ripple on power is unfortunately something that can’t be eliminated 

due to the switched environment. The current ripple will be reflected on the 

power, which has the same percentage of ripple and period as the current. 

In this case the current and also the power ripple are 5 % and 7.5 kHz as 

specified in the simulation parameters.  
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Figure 5.24: Plots from simulations with output quantities; power from DC/DC, power to 

load, output voltage and load current. 

 

The summary of results from implementation with power control type 2 can 

be seen in Figure 5.26 at the output voltage ripple it looks almost perfect 

between 850 V and 1000 V. Accuracy on the output voltage meets the 

criterion, less than 0.5 % starting from the first pulse and is reduced over 

time. Unfortunately a couple of imperfections can be observed when 

looking at the power. The fluctuations in power are in worst case almost 75 

% in respect to the average power of 200 kW. This fluctuation occurs when 

the load is switched on and off. Because of the changed reference level for 

the voltage control in this situation, a couple of milliseconds delay is 

present before adapting. This can be verified by looking at the voltage 

ripple in detail, where the voltage has a non-linear behavior in the 

beginning and ends up with a stationary error (Figure 5.25). If the 

stationary error should be eliminated, control parameters would have to be 

chosen in a way that makes the system unstable and are therefore not 

implemented. All these things reflect back on the power with a big impact. 
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Figure 5.25: Zoomed plot of output voltage (non-dashed) and the reference for output 

voltage (dashed) according to power control type 2. 

 

 

Figure 5.26: Plots from simulations with output quantities; power from DC/DC, power to 

load, output voltage and load current (type 2 power control). 

 

By comparing the two power controls, type 1 is the absolute best and most 

preferable. The output voltage accuracy in type 1 is better than in type 2 



 

 88 

already from the start and the power stays perfectly around 200 kW with 

not more deviation than the current ripple. By these evaluations power 

control type 1 is the only one treated further on. 

5.5 Full system implementation 

The two systems, AFE and DC/DC, is in this chapter put together into one 

system. The system shall still be able to fulfill the requirements on 

precisions together with optimal power factor and constant power. In this 

chapter flicker and low harmonic distortions are discussed as a part of the 

dimensioning. Components and control parameters will be chosen to fulfill 

the requirements and IEC-standards. A non-ideal grid as voltage supply will 

be introduced to simulate a more realistic scenario.  The full system 

implementation includes setups for three different power levels, 200 kW, 

100 kW and 50 kW. 

5.5.1 Dimensioning of a realistic grid 

In conventional transformer datasheets there is a parameter describing the 

transformer’s characteristic when short-circuited. The percentage is the 

fraction of nominal voltage level that the transformer should have at its 

input to reach nominal current when short-circuited. This percentage is 

often around five percent,        , and the nominal voltage is    
     . 

 

The rated transformer power,   , is in the case of ESS distribution network 

250 kW. Nominal current through the three phases is calculated by (5.7). 

 

   
  

√     
 

     

√     
         (5.7) 

 

Short circuit test condition: 

 

              
 

(5.8) 

Valid grid inductance to be used: 

 

      
      

    
 

         √     

              
        (5.9) 
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5.5.2 Simulation parameters 

At the different power levels the dimensioning of the system will change, 

which will impact the control parameters. The phase margin is kept to at 

least 60 degrees in all controllers, for AFE subchapter 5.3.2 and DC/DC 

subchapter 5.4.2. 

 

Table 5.9: Calculated dimensioning parameters used for simulation of the full system. 

Notation 
Value @ 200 

kW 

Value @ 100 

kW Value @ 50 kW 

Lconv 0.4 mH 0.8 mH 1.6 mH 

Rconv 1 m𝛺 1 m𝛺 1 m𝛺 

Cdc 5 mF 2.5 mF 1.25 mF 

Lo 1.8 mH 3.6 mH 7.2 mH 

Ro 0.214 𝛺 428 m𝛺 856 m𝛺 

C0 97.7 mF 48.9 mF 24.5 mF 

 

 

Table 5.10: The control parameters used for simulation of full system. 

Notation 
Value @ 200 

kW 

Value @ 100 

kW Value @ 50 kW 

Tzi 0.4 0.8 1.6 

Tpi 73.3 73.3 73.3 

a 4 4 4 

Tzv 0.0021 0.0021 0.0021 

Tpv 2.2756e-04 4.5511e-04 9.1022e-04 

Ki 5 5 5 
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Ti 3 3 3 

Kv 0.5 0.5 0.5 

Tv 9 9 9 

 

The system parameters are kept the same as previous implementations in 

DC/DC and AFE. 

5.5.3 Full system simulation 

The AFE and the DC/DC is connected and simulated at three different 

scenarios. A complete overview of the simulation system can be viewed in 

Figure 5.27. The system is initially put at steady state. 

 

 

Figure 5.27: Extraction from simulation model of the complete full system. 

5.5.4 Results from implementation 

When the full system is simulated, the same restrictions apply for all three 

scenarios. The main results of these simulations are presented in Figure 

5.28-5.36. By evaluating the figures, following results are achieved for all 

three scenarios: 

 

 The current absorbed from the grid is sinusoidal shaped with a high 

frequency switching ripple on top. 

 The power is constant with reactive power compensation, when the 

output load is pulsing. 

 The output voltage precision is better than 0.1 % at the first pulse 

and better than 0.01% at steady state. 
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Figure 5.28: Plots from 200 kW simulations with output quantities; Grid current in phase 

a, active and reactive grid power, switched output load power, output voltage. 

 

 

Figure 5.29: Plots from 100 kW simulations with output quantities; Grid current in phase 

a, active and reactive grid power, switched output load power, output voltage. 
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Figure 5.30: Plots from 50 kW simulations with output quantities; Grid current in phase a, 

active and reactive grid power, switched output load power, output voltage. 

5.5.4.1 Low harmonic current 

An FFT analysis of the line current is performed in one of the phases only, 

due to symmetry reasons. The FFT analysis is done with the internal 

“power_fftscope”-function in Matlab. The function will provide a graph 

with the harmonics compared to the 50 Hz fundamental frequency. 

 

Due to long execution time for short simulation scenarios, the analysis is 

done when the system is in steady state (time between 0.05 s and 0.45 s) for 

three sinus periods instead of during a 1.5 s period required by the standard. 

For more information see chapter 3.4.2. 

 

Table 5.11: The low harmonic current for phase a in the full system. 

Power level 

 

Harmonic  

order 

Harmonics @ 

200 kW 

Harmonics @ 

100 kW 
Harmonics @ 

50 kW 

2 0.8 % 0.11 % 0.07 % 

3 0.06 % 0.11 % 0.05 % 

5 0.16 % 0.2 % 0.16 % 
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7 0.18 % 0.1 % 0.09 % 

9 0.02 % 0.04 % 0.03 % 

11 ≤ n ≤ 39 < 1.5 % < 1.5 % < 1.5 % 

 

The harmonic content is presented in Figure 5.31-5.36, where the 10 first 

harmonic orders are presented in a separate graph. The higher harmonic 

orders (Harmonic order > 10) are shown in a frequency diagram where the 

limit is marked with a dashed line.  

 

 

Figure 5.31: Low harmonic current content for 50 kW in phase a. 
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Figure 5.32: Harmonics up to 50 kHz in phase a for 50 kW, together with the limit from 

the standard for harmonic order 11 ≤ n ≤ 39 (marked as a dashed line). 

 

 

Figure 5.33: Low harmonic current content for 100 kW in phase a. 
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Figure 5.34: Harmonics up to 50 kHz in phase a for 100 kW, together with the limit from 

the standard for harmonic order 11 ≤ n ≤ 39 (marked as a dashed line). 

 

 

Figure 5.35: Low harmonic current content for 200 kW in phase a. 
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Figure 5.36: Harmonics up to 50 kHz in phase a for 200 kW, together with the limit from 

the standard for harmonic order 11 ≤ n ≤ 39 (marked as a dashed line). 

 

 

Figure 5.37: Power factor for the three rated power levels. 

5.5.4.2 Flicker level 

The flicker level is measured by taking the maximum voltage level 

difference in all three phases and compare with the grid peak 

voltage  ̂           .   
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   (
  

 ̂     

)                

 

(5.10) 

Equation (5.10) shall be fulfilled, where    is the voltage difference 

between minimum and the maximum voltage level at the measurement 

points, see Figure 3.16. In order to verify the full functionality for the three 

rated power levels, measurements are done during the following scenario: 

 

1. No pulsing output load. 

2. Pulsing output load. 

3. No pulsing output load. 

 

The results on flicker levels for the three different power levels can be seen 

in Table 5.12. These results are derived from the information in Figure 

5.38-5.40, where the time in steady state is the only time range considered. 

 

Table 5.12: Flicker level for the three rated power levels. 

Power level Flicker level 

200 kW 0.059 % 

100 kW 0.019 % 

50 kW 0.0078 % 
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Figure 5.38: Rectified voltage levels in all the three phases at 50 kW, with the maximum 

and minimum voltage peaks (dashed lines). 

 

 

Figure 5.39: Rectified voltage levels in all the three phases at 100 kW, with the maximum 

and minimum voltage peaks (dashed lines). 
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Figure 5.40: Rectified voltage levels in all the three phases at 200 kW, with the maximum 

and minimum voltage peaks (dashed lines). 

  



 

 100 



 

 101 

CHAPTER 6 

 

6 Losses 
Today, environmental thinking is a matter of common sense, for protection 

of todays living creatures and in order to pave the way for coming 

generations. From the introduction in this report it can be understood that 

ESS cares about the environment. This chapter will therefore focus on 

calculating losses for the complete system and hopefully obtain efficiencies 

that correspond to requirements. Because of the systems high power rating, 

every part of percent in efficiency is important. The AFE- and DC/DC-

converter is considered as two independent stages in the complete system 

and therefore these efficiencies will be estimated separately and multiplied 

for a complete result in the end. For estimation of losses there are two 

ways, the first is to simulate and calculate the difference in input power and 

output power, the second is to use mathematical calculations. Due to the 

lack of flexibility in the simulation methodology, the mathematical version 

with its fast and flexible calculation possibilities is chosen. The 

mathematical solution is also remarkably accurate and often the 

methodology used in industries and described in many literature. With help 

of common components datasheet information and matching them for this 

application the estimations are done. 

As a starting point some parameters have been set as a guidelines and a way 

to simplify the implementation: 

 

 The grid is set to a standard 400 V, 50 Hz three phase grid. 

 The DC-link voltage is 1100 V 

 The average transferred active power is 200 kW and no reactive 

power. 

 The output voltage ripple on DC/DC is, as specified, exactly 15 % 

in respect to the maximum output voltage of 1 kV. 

 The component dimensioning follows Table 5.6. 

 The switched output load frequency is 14 Hz 

 The transistor switching frequency is set to 7.5 kHz 

 The current ripple of the DC/DC is 5 %. 
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 The transistors and diodes characteristics follow datasheet for 

SKM400GB176D (see appendix). 

 The gate resistance on semiconductors is 10 Ω. 

6.1 Simplifications and impacts  

When calculating the losses a couple of estimations need to be done. 

Characteristics in datasheets regarding switching losses aren’t provided in 

exact terms for this interpretation. Therefore an interpolation and 

manipulation of curves from the datasheet information in Matlab is 

arranged. Regarding the curve representing switching energy as a function 

of current, a third order polynomial has been chosen and for the switching 

energy as a function of resistance, a first order polynomial. In Figure 6.1 

the interpolated plots are provided and scaled for a voltage level of Vdc = 

1100 V. 

 

 

Figure 6.1: Plots of interpolated information from datasheet with correction for voltage-

level. 

 

Since there is an apparent impact from the gate resistance on the switching 

losses, a compensation for gate resistance also needs to be done. Values in 

the left picture in Figure 6.1 are scaled to correct values and are illustrated 

in Figure 6.2, with a change of gate resistance from 4 Ω to 10 Ω. 
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Figure 6.2: Plot of interpolated information from datasheet with correction for gate 

resistance to Rg = 10 Ω. 

Regarding losses in inductances and capacitances these are neglected based 

on the assumption that they are relative low compared to the losses from 

transistors and diodes. The same is assumed regarding stray-losses and 

impact from dead-time generation for transistors. For calculation of the 

more exact amount of losses in a PE-application, the switching impacts on 

currents and voltages would have to be included. This is extremely hard to 

do with mathematical expressions, current ripple and other effects of 

transistor switching are also neglected in this report. Instead voltages and 

currents are considered to be average over every micro-cycle. For more 

information on this, refer to chapter 3 for the AFE and chapter 4 regarding 

the DC/DC. 

6.2 AFE power losses 

For calculation of losses in the AFE-stage a Matlab-script is constructed (se 

appendix). This script contains the conduction losses equations and 

switching losses equations evaluated and described in chapter 3. In this 

script different switching frequencies, power levels and component values 

can be chosen depending on application. A table is constructed to assemble 

calculated information relevant for this application, Table 6.1. 
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Table 6.1: Power-losses and efficiencies for different power-levels and switching 

frequencies in the AFE. 

Frequency 

 

 

Power 

3 kHz 5 kHz 7.5 kHz 15 kHz 

50 kW 
1.22 kW 

(97.56 %) 

1.87 kW 

(96.25 %) 

2.70 kW 

(94.61 %) 

5.16 kW 

(89.68 %) 

100 kW 
2.31 kW 

(97.69 %) 

3.50 kW 

(96.54 %) 

4.90 kW 

(95.10 %) 

9.22 kW 

(90.78 %) 

200 kW 
4.85 kW 

(97.57 %) 

7.02 kW 

(96.49 %) 

9.73 kW 

(95.13 %) 

17.86 kW 

(91.07 %) 

6.3 DC/DC power losses 

For calculation of losses in the DC/DC-stage a Matlab-script is constructed 

in the same way as for the AFE-stage (see appendix). The content is 

derived from chapter 4 and different parameters can be chosen. The 

assembled calculations and information relevant for this application can be 

seen in Table 6.2. 

Table 6.2: Power-losses and efficiencies for different power-levels and switching 

frequencies in the DC/DC. 

Frequency 

 

 

Power 

3 kHz 5 kHz 7.5 kHz 15 kHz 

50 kW 
0.35 kW 

(99.30 %) 

0.54 kW 

(98.92 %) 

0.78 kW 

(98.44 %) 

1.49 kW 

(97.01 %) 

100 kW 
0.65 kW 

(99.35 %) 

0.97 kW 

(99.03 %) 

1.38 kW 

(98.62 %) 

2.61 kW 

(97.39 %) 

200 kW 
1.33 kW 

(99.33%) 

1.94 kW 

(99.03%) 

2.69 kW 

(98.65%) 

4.96 kW 

(97.52%) 

6.4 Full system losses  

In this part efficiency for the complete full system is calculated. 

Multiplication of the efficiency for AFE and DC/DC will manage the 

efficiency for the complete system presented in Table 6.3. 
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Table 6.3: Efficiency for different power-levels and switching frequencies in the full 

system. 

Frequency 

 

 

Power 

3 kHz 5 kHz 7.5 kHz 15 kHz 

50 kW 
1.57 kW 

(96.88 %) 

2.42 kW 

(95.21 %) 

3.48 kW 

(93.13 %) 

6.65 kW 

(87.00 %) 

100 kW 
2.96 kW 

(97.06 %) 

4.47 kW 

(95.60 %) 

6.28 kW 

(93.79 %) 

11.83 kW 

(88.41 %) 

200 kW 
6.18 kW 

(96.92 %) 

8.96 kW 

(95.55 %) 

12.42 kW 

(93.85 %) 

22.82 kW 

(88.81 %) 

 

6.5 Reflections of results  

The absolute losses for different configurations vary a lot. Since the 

transferred power also varies these will have a correlation, the focus will be 

on efficiency instead of absolute losses. When now looking at the 

efficiency for a full system (Table 6.3), the conclusion is that losses don’t 

depend on the transferred power. Efficiency for both AFE- and DC/DC-

stage are independent of the transferred power, which can be seen by 

looking at the different columns for a specific switching frequency. There is 

though a big difference when changing the transistor switching frequency. 

For example, looking at a transferred power of 100 kW for the full system 

in Table 6.3 the efficiency vary from 97 % to 88 %, which is a big 

difference. Looking at results for the different stages in Table 6.1 and Table 

6.2, the most switching frequency dependent system is the DC/DC. The 

DC/DC efficiency is impaired with 7 % per unit in the 100 kW example, 

when going from 3 kHz to 15 kHz in switching frequency. Difference for 

the AFE is though merely 2 %. In general the switching frequency has the 

absolute biggest impact on efficiency for the converters in this project. 

Unfortunately there are high requirements on the accuracy and the 

switching frequency is vital to fulfill those. If the losses would have to be 

reduced, switching frequency in relation to accuracy should be carefully 

evaluated, first for the DC/DC- and then for the AFE-stage.  
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CHAPTER 7 

 

7 Discussion and further work 

7.1 Discussion and further work 

The thesis comprises simulations and control for one grid connected 

capacitor charger that is a part of a new modulator topology concept. This 

new concept will finally consist of several capacitor chargers in parallel 

together with other steps in the full modulator. By verifying the 

functionality of the capacitor charger in a model with ideal simulations and 

losses calculations, a fundamental perception of the first step in the new 

modulator concept is given. In general are simulations within the power 

electronics area a good estimation of the reality, which makes it worth the 

effort to put some time into the simulations. Even though this argument, 

there is some further work proposed in order to improve and strengthen the 

functionality of the implementation: 

 

 The derivation and modeling of the system is ideal, therefore are 

possible impacts from sensor, such as delays or disturbances not 

included. A simulation model should also be able to take this into 

account in order to be definitive, but this will require additional time 

on the system modeling.  

 

 In Matlab/Simulink it is not possible to choose advanced models of 

specific components, such as specific dimensioning or brand of 

transistors, diodes, etc. A suggested improvement of this is to model 

the system in another software, such as SABER, and compare the 

results. 

 

 The new modulator concept is based on several parallel modules. In 

the scope of this thesis is one capacitor charger simulated, suggested 

is that further investigations of a full stacked modulator should be 

done in order to verify the full functionality and to do a correct 

implementation in terms of dimensioning and control. Possible 
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impacts of stacked capacitor chargers will be discussed later in this 

chapter.  

 

 The models for this thesis are acceptably close to the real world, but 

it’s still ideal and mathematical, which implies that there are no 

guarantees that the model will give the same result as the real one. 

It’s therefore recommended to do a real reduced-scale prototype, 

with the same controller principle to verify this. 

 

 Simulation results of power losses show that the efficiency is 

significantly higher for a converter with lower switching frequency. 

A possible improvement is to lower the switching frequency in 

order to decrease the losses. Lower switching frequency may impact 

on the precision and will require additional simulations and 

investigations to verify the requirements on precision are fulfilled. 

   

 It’s recommended to do a study on available components on the 

market, transistors, diodes, etc. together with a correct dimensioning 

in terms of peak voltages and currents, nominal voltages and 

currents, switching frequency etc. 

 

The implementation is ideal without losses since it’s easier and faster to 

calculate them separately with mathematical expressions. Losses are 

calculated separately for the active components with ideal current and 

voltage shapes based on transistor characteristics from datasheet. This is to 

give more accurate efficiency calculations based on the selection of active 

components. 

 

The main purpose behind stacked modulators is that it’s easier to do a 

hypothetical expansion, standard components are also used which have 

higher efficiency and lower costs. Due to the lack of time in the project one 

module is simulated with optimized controllers and dimensioning. A single 

module connected to the grid will still be the worst case in terms of current 

harmonics, but it’s better to consider the worst case than the best case. 

When expanding and parallel couple several modules the module signals 

for the different modulators are phase shifted. The low harmonic current 

content generated by each module will in this case be summed up and 

canceled. This will result in a possibility to re-dimension and lower the 

inductances at the grid side of the modulators and still fulfill the IEC 
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standards for low harmonic contents and flicker. Due to lower inductances 

are additional opportunities for cost reductions available.  

 

Control of the DC/DC-converter is based upon knowledge of the exact 

trigger signal to the pulse, but in another application this might not be 

possible. Because of this advantage, maximum precision and perfect timing 

is achieved. The precision on the output is up to ten times higher than the 

specified, therefore knowledge of the exact trigger signal is not mandatory 

for an implementation, and imperfections from e.g. a sensor could be 

acceptable. Another possibility for solving this problem is to use a peak 

sensor to discover the maximum and minimum voltage levels at the output. 

7.2 Conclusions 

The main purpose of the thesis was to dimension and simulate the capacitor 

charger in the modulators together with the developed control for AFE and 

DC/DC. The conclusions from this project are:  

 

 The strictest IEC standards, 61000-3-3 and 61000-3-2, for flicker 

and low harmonic currents content are applied, where the rated 

currents are lower than 16 A. This application sinks up to 4 MW in 

a pulsing pattern and has nominal sinusoidal currents up to 300 A 

and still fulfills these strict standards. 

 

 The control loops in the AFE are designed in such a way that the 

current drawn from the grid is sinusoidal and reactive power 

compensation is achieved. This means that only active power is 

drawn from the grid and the results give a power factor of close to 1 

in steady state.  

  

 The voltage drop at the DC-link when the load starts pulsing is 

dependent on the choice of DC-link capacitance and grid 

inductances. According to the results in full system simulations, the 

DC-link voltage at steady state is constant with a maximum ripple 

less than 1 %. 

 

 Power drawn from the grid is constant when the load is pulsing and 

the output voltage precision better than 0.1%. 

 

 The full system power losses and efficiency is dependent mainly on 

switching frequency for the transistors. Conduction losses are 
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merely a fraction of the total loss and the smallest contributing part 

of these two. A reduction of switching frequency could be 

considered since the accuracy margin is significantly good. 

 

 The full system has been dimensioned and optimized with final 

control parameters and works perfectly for all three different power 

modes evaluated; 50 kW, 100kW and 200kW. Power losses have 

also been determined for these power modes and states that the 

efficiency is power-independent.  

 

 A complete dimensioning of all passive components has been 

successfully managed with help of mathematical expressions or 

with a simulation methodology.   

 

 Mathematical expressions have been derived for determining the 

system characteristics and calculation of power losses for both the 

DC/DC and AFE. These expressions have successfully been 

arranged to calculate accurately the control parameters for the 

controllers.  
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AFE losses calculation in Matlab 

 
 

 

%% AFE analytical expression for losses 

  
clear all; 
close all; 

  
%P1 = Ron*D*I^2 from 0 to T 
%P2 = Vfo*D*I from 0 to T 

  
%D = (1/2)*(1-ma*sin(w*t+fi-d) 
%I = Ip*sin(w*t) 

  
%Pavgloss = (1/T)*((Ron*D*I^2) + (Vfo*D*I)) 

  
%Initial paratmeters 

  
P3 = 200e3;             % Active power three phase 
P = P3/3;               % Active power one phase 
Q3 = 0;                 % Reactive power three phase 
Q = Q3/3;               % Reactive power one phase 
L = 0.4e-3;             % Input inductor, input 

resistance assumed 0 ohm 
Vdc = 1100;             % DC-voltage 
fs = 7.5e3;             % Sampling frequency 
Vp = 325;               % Peak voltage of the grid 
f = 50;                 % Grid frequency 
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%Calculation of useful parameters 

  
Vs = Vp/sqrt(2);                                            

% RMS value of the peak grid voltage 
w = 2*pi*f;                                                 

% Omega 
X = w*L;                                                    

% Inductance impedans 
I = sqrt(2)*P3/(3*Vs);                                      

% Input current peak value 
ma = (2*sqrt(2)*P*X)/(Vdc*Vs*sin(atan(P/((Vs^2/X)-Q))));    

% Modulator factor 
t1 = 0;                                                     

% Integral start value 
t2 = 1/(2*50);                                              

% Integral end value 
T = 1/50;                                                   

% Integrational time                                                   
d = atan(P/((Vs^2/X)-Q));                                   

% Delta 
fi = atan(Q3/P3);                                           

% FI 

  
%% Transistor conduction power losses calculations 

  
Vfo = 0.9;                                                  

% Transistor forward voltage drop 
Ron = 5.2e-3;                                               

% Transistor resistance 

  

  
P1t1 = Ron*((I^2)*(3*ma*cos(-d+fi-t1*w) + 6*ma*cos(-

d+fi+t1*w) - ma*cos(-d+fi+3*t1*w) + 6*t1*w - 

3*sin(2*t1*w))/(24*w))/T; 
P1t2 = Ron*((I^2)*(3*ma*cos(-d+fi-t2*w) + 6*ma*cos(-

d+fi+t2*w) - ma*cos(-d+fi+3*t2*w) + 6*t2*w - 

3*sin(2*t2*w))/(24*w))/T; 
P01 = (P1t2 - P1t1); 

  
P2t1 = Vfo*(I*(ma*sin(2*t1*w-d+fi) - 2*ma*t1*w*cos(-d+fi) 

- 4*cos(t1*w))/(8*w))/T; 
P2t2 = Vfo*(I*(ma*sin(2*t2*w-d+fi) - 2*ma*t2*w*cos(-d+fi) 

- 4*cos(t2*w))/(8*w))/T; 
P02 = (P2t2 -P2t1); 
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PavgTran = (P01 + P02);                                     

% Average conduction power losses per transistor 
powerConLossTransistors = 6*PavgTran;                       

% Average conduction power losses for all transistors  

  
%% Diode conduction power losses calculations 

  
Vfo = 0.9;                                                  

% Forward voltage drop for diode 
Ron = 3e-3;                                                 

% Diode resistance 

  
P1t1 = Ron*((I^2)*(3*ma*cos(-d+fi-t1*w) + 6*ma*cos(-

d+fi+t1*w) - ma*cos(-d+fi+3*t1*w) + 6*t1*w - 

3*sin(2*t1*w))/(24*w))/T; 
P1t2 = Ron*((I^2)*(3*ma*cos(-d+fi-t2*w) + 6*ma*cos(-

d+fi+t2*w) - ma*cos(-d+fi+3*t2*w) + 6*t2*w - 

3*sin(2*t2*w))/(24*w))/T; 
P01 = (P1t2 - P1t1); 

 
P2t1 = Vfo*(I*(ma*sin(2*t1*w-d+fi) - 2*ma*t1*w*cos(-d+fi) 

- 4*cos(t1*w))/(8*w))/T; 
P2t2 = Vfo*(I*(ma*sin(2*t2*w-d+fi) - 2*ma*t2*w*cos(-d+fi) 

- 4*cos(t2*w))/(8*w))/T; 
P02 = (P2t2 - P2t1); 

 
P3t1 = Ron*(((I^2)/(2*T))*(t1 - (1/(2*w))*sin(2*w*t1))); 
P3t2 = Ron*(((I^2)/(2*T))*(t2 - (1/(2*w))*sin(2*w*t2))); 
P03 = (P3t2 - P3t1); 

 
P4t1 = Vfo*((I/(w*T))*(-cos(w*t1))); 
P4t2 = Vfo*((I/(w*T))*(-cos(w*t2))); 
P04 = (P4t2 - P4t1); 

 
 
PavgDiode = (P03-P01)+(P04-P02);                            

% Average conduction power losses per diode 
powerConLossDiodes = 6*PavgDiode;                           

% Average conduction power losses for all diodes 
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%% Switching losses for the diodes and transistors 

  
% This is over a full period per phase so that's why 

multiplication by 3 

  
Rg = 10;                                        % Gate 

resistance 
run('InterpolationOfCurveSwitchingLosses.m')    % 

Construct curves for calculation of switching losses 

  
I1t1 = (I/(w*T))*(-cos(w*t1)); 
I1t2 = (I/(w*T))*(-cos(w*t2)); 
Iavg = 2*(I1t2-I1t1);                           % Average 

current 

  
ETon = polyval(pETON,Iavg);                     % 

Transistor turn-on energy for a specific current 
EToff = polyval(pETOFF,Iavg);                   % 

Transistor turn-off energy for a specific current 
EDoff = polyval(pEDOFF,Iavg);                   % Diode 

turn-off energy for a specific current 

  
energySwitchLossTransistor = ETon + EToff; 
energySwitchLossDiode = EDoff; 

  
powerSwitchLossTransistors = 

3*energySwitchLossTransistor*fs;   % Average switching 

power losses for all transistors  
powerSwitchLossDiodes = 3*energySwitchLossDiode*fs;             

% Average switching power losses for all diodes  

  
%% Calculation of efficency 

  
powerTotalLossDiodes = powerConLossDiodes + 

powerSwitchLossDiodes; 
powerTotalLossTransistors = powerConLossTransistors + 

powerSwitchLossTransistors; 

  
powerTotalLoss = powerTotalLossDiodes + 

powerTotalLossTransistors           % Total power losses 

in the AFE   
efficency = 1 - powerTotalLoss/(sqrt(P3^2+Q3^2)) 

 



 

 131 

DC/DC losses calculation in Matlab 

 

%% DC/DC analytical expression for losses 

  
close all; 
clear all; 

  
% integral of P1 = Il^2*D From t1 to t2 and from t2 to t3 
% integral of P2 = Il*D From t1 to t2 and from t2 to t3 

  
% Initial paratmeters 

  
t1 = 0;                         % First integration time 
t2 = 0.05*(1/14);               % Second integration time 
t3 = (1/14);                    % Third integration time 
dt1 = t2 - t1;                  % delta t (the slope of 

Vc) 
dt2 = t3 - t2;                  % delta t (the slope of 

Vc) 
L = 1.8e-3;                     % Inductance 
P = 200e3;                      % Power 
Vmax = 1000;                    % Maximum voltage out 

from the DC/DC 
T = 1/14;                       % Integrational time 
T1 = 0.05/14;                   % First Integrational 

time 
T2 = 0.95/14;                   % Second Integrational 

time 
Vdc = 1100;                     % DC-link voltage 
fs = 7.5e3;                     % Switching frequency 

 
% Calculation of useful parameters 

  
dV = Vmax*0.15;                     % Voltage ripple/drop 
Vmin0 = Vmax - dV - (dV*t2/dt2);    % Minimum voltage out 

from the DC/DC @ t2 (zero time fix) 
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%% Transistor conduction power losses calculations 

  
Vf0 = 0.9;                      % Transistor forward 

voltage drop 
Ron = 5.2e-3;                   % Transistor resistance 

  
% Losses for falling slope 
% Ron*I^2*D 
E1t1 = Ron*((L*(P^3)/(3*Vdc*((Vmax-(dV*t1/dt1))^3))) - 

(dt1*(P^2)*log(Vmax-(dV*t1/dt1))/(dV*Vdc))); 
E1t2 = Ron*((L*(P^3)/(3*Vdc*((Vmax-(dV*t2/dt1))^3))) - 

(dt1*(P^2)*log(Vmax-(dV*t2/dt1))/(dV*Vdc))); 
E1 = (E1t2 - E1t1); 

  
% Ron*I*D 
E2t1 = Vf0*((P*t1/Vdc) + (L*(P^2)/(2*Vdc*((Vmax-

(dV*t1/dt1))^2)))); 
E2t2 = Vf0*((P*t2/Vdc) + (L*(P^2)/(2*Vdc*((Vmax-

(dV*t2/dt1))^2)))); 
E2 = (E2t2 - E2t1); 

  
EConLoss1 = (E1 + E2); 

  
% Losses for rising slope 
% Ron*I^2*D 
E1t2 = Ron*((L*(P^3)/(3*Vdc*((Vmin0+(dV*t2/dt2))^3))) + 

(dt2*(P^2)*log(Vmin0+(dV*t2/dt2))/(dV*Vdc))); 
E1t3 = Ron*((L*(P^3)/(3*Vdc*((Vmin0+(dV*t3/dt2))^3))) + 

(dt2*(P^2)*log(Vmin0+(dV*t3/dt2))/(dV*Vdc))); 
E1 = (E1t3 - E1t2); 

  
% Ron*I*D 
E2t2 = Vf0*((P*t2/Vdc) + 

(L*(P^2)/(2*Vdc*((Vmin0+(dV*t2/dt2))^2)))); 
E2t3 = Vf0*((P*t3/Vdc) + 

(L*(P^2)/(2*Vdc*((Vmin0+(dV*t3/dt2))^2)))); 
E2 = (E2t3 - E2t2); 

  
EConLoss2 = (E1 + E2);                                  % 

Energy losses per period for transistor    
powerConLossTransistor = (EConLoss1 + EConLoss2)/T;     % 

Average conduction power losses for transistor  
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%% Diode conduction power losses calculations 

  
Vf0 = 0.9;                      % Diode forward voltage 

drop 
Ron = 3e-3;                     % Diode resistance 

  
% Falling slope 
% Ron*I^2*D 
E1t1 = Ron*((L*(P^3)/(3*Vdc*((Vmax-(dV*t1/dt1))^3))) - 

(dt1*(P^2)*log(Vmax-(dV*t1/dt1))/(dV*Vdc))); 
E1t2 = Ron*((L*(P^3)/(3*Vdc*((Vmax-(dV*t2/dt1))^3))) - 

(dt1*(P^2)*log(Vmax-(dV*t2/dt1))/(dV*Vdc))); 
E1 = (E1t2 - E1t1); 

  
% Vfo*I*D 
E2t1 = Vf0*((P*t1/Vdc) + (L*(P^2)/(2*Vdc*((Vmax-

(dV*t1/dt1))^2)))); 
E2t2 = Vf0*((P*t2/Vdc) + (L*(P^2)/(2*Vdc*((Vmax-

(dV*t2/dt1))^2)))); 
E2 = (E2t2 - E2t1); 

  
% Ron*I^2 
E3t1 = Ron*((dt1*P^2)/(dV*(Vmax-(dV*t1/dt1)))); 
E3t2 = Ron*((dt1*P^2)/(dV*(Vmax-(dV*t2/dt1)))); 
E3 = (E3t2-E3t1); 

  
% Vfo*I 
E4t1 = Vf0*(-((dt1*P*log(Vmax-(dV*t1/dt1)))/(dV))); 
E4t2 = Vf0*(-((dt1*P*log(Vmax-(dV*t2/dt1)))/(dV))); 
E4 = (E4t2-E4t1); 

  
EConLoss1 = (E3-E1)+(E4-E2); 
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% Rising slope 
% Ron*I^2*D 
E1t2 = Ron*((L*(P^3)/(3*Vdc*((Vmin0+(dV*t2/dt2))^3))) + 

(dt2*(P^2)*log(Vmin0+(dV*t2/dt2))/(dV*Vdc))); 
E1t3 = Ron*((L*(P^3)/(3*Vdc*((Vmin0+(dV*t3/dt2))^3))) + 

(dt2*(P^2)*log(Vmin0+(dV*t3/dt2))/(dV*Vdc))); 
E1 = (E1t3 - E1t2); 

  
% Vfo*I*D 
E2t2 = Vf0*((P*t2/Vdc) + 

(L*(P^2)/(2*Vdc*((Vmin0+(dV*t2/dt2))^2)))); 
E2t3 = Vf0*((P*t3/Vdc) + 

(L*(P^2)/(2*Vdc*((Vmin0+(dV*t3/dt2))^2)))); 
E2 = (E2t3 - E2t2); 

  
% Ron*I^2 
E3t2 = Ron*(-(dt2*P^2)/(dV*(Vmin0+(dV*t2/dt2)))); 
E3t3 = Ron*(-(dt2*P^2)/(dV*(Vmin0+(dV*t3/dt2)))); 
E3 = (E3t3-E3t2); 

  
% Vfo*I 
E4t2 = Vf0*(((dt2*P*log(Vmin0+(dV*t2/dt2)))/(dV))); 
E4t3 = Vf0*(((dt2*P*log(Vmin0+(dV*t3/dt2)))/(dV))); 
E4 = (E4t3-E4t2); 

  
EConLoss2 = (E3-E1)+(E4-E2);                            % 

Energy losses per period for diode 
powerConLossDiode = (EConLoss1 + EConLoss2)/T;          % 

Average conduction power losses for diode 

 
%% Transistor and Diode switching losses 

  
Rg = 10;                                        % Gate 

resistance 
run('InterpolationOfCurveSwitchingLosses.m')    % 

Construct curves for calculation of switching losses 

  
% Falling slope 
I1t1 = -((dt1*P*log(Vmax-(dV*t1/dt1)))/(T1*dV)); 
I1t2 = -((dt1*P*log(Vmax-(dV*t2/dt1)))/(T1*dV)); 
Iavg1 = (I1t2-I1t1); 
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% Rising slope 
I1t2 = ((dt2*P*log(Vmin0+(dV*t2/dt2)))/(T2*dV)); 
I1t3 = ((dt2*P*log(Vmin0+(dV*t3/dt2)))/(T2*dV)); 
Iavg2 = (I1t3-I1t2); 

  
% Whole slope 
Iavg = (Iavg1+Iavg2)/2;                         % Average 

current 

  
ETon = polyval(pETON,Iavg);                     % 

Transistor turn-on energy for a specific current 
EToff = polyval(pETOFF,Iavg);                   % 

Transistor turn-off energy for a specific current 
EDoff = polyval(pEDOFF,Iavg);                   % Diode 

turn-off energy for a specific current 

  
energyTransistor = ETon + EToff; 
energyDiode = EDoff; 

  
powerSwitchLossTransistor = energyTransistor*fs;    % 

Average switching power losses for the transistor  
powerSwitchLossDiode = energyDiode*fs;              % 

Average switching power losses for the diode  

  
%% Calculation of efficency 

  
powerTotalLossTransistor = powerConLossTransistor + 

powerSwitchLossTransistor; 
powerTotalLossDiode = powerConLossDiode + 

powerSwitchLossDiode; 

  
powerTotalLoss = powerTotalLossDiode + 

powerTotalLossTransistor         % Total power losses in 

the DC/DC  
efficiency = 1-(powerTotalLoss)/P                                       

% Efficiency for the DC/CD 
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Interpolation for data sheet SKM400GB176D

 

%% Inerpolation for datasheet SKM400GB176D 

  
figure(1); 
hold on; 
grid on; 

  
% Rg and Vdc is declared by the calling script 

  
Rg0 = 4;                                            % 

Gate resistance in datasheet 
Vnom = 1200;                                        % 

Voltage in datasheet 

  
%% Diode turn off energy losses resistance 

  
xList = [4 30];                                     % 

Gate resistance 
yList = (1e-3).*(Vdc/Vnom).*[80 40];                % 

Energy required to switch with modification to correct 

voltage 

  
g1 = plot(xList, yList, 'ko'); 

  
pEDOFFR = polyfit(xList, yList, 1);                 % 

Interpolation 
x = linspace(4,30);                                 % 

Plot interval 
g2 = plot(x,polyval(pEDOFFR,x), 'k');               % 

Function plot 
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%% Transistor turn off energy losses resistance 

  
xList = [4 30];                                     % 

Gate resistance 
yList = (1e-3).*(Vdc/Vnom).*[120 160];              % 

Energy required to switch with modification to correct 

voltage 

  
plot(xList, yList, 'ko'); 

  
pETOFFR = polyfit(xList, yList, 1);                 % 

Interpolation 
x = linspace(4,30);                                 % 

Plot interval 
g3 = plot(x,polyval(pETOFFR,x), '--k');             % 

Function plot 

  
%% Transistor turn on energy losses resistance 

  
xList = [4 30];                                     % 

Gate resistance 
yList = (1e-3).*(Vdc/Vnom).*[170 520];              % 

Energy required to switch with modification to correct 

voltage 

  
plot(xList, yList, 'ko'); 

  
pETONR = polyfit(xList, yList, 1);                  % 

Interpolation 
x = linspace(4,30);                                 % 

Plot interval 
g4 = plot(x,polyval(pETONR,x), ':k');               % 

Function plot 
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%% Axis, legends and labeling 

  
axis([0 40 0 (1e-3).*600]) 

  
xlabel('Resistance R[ohm]') 
ylabel('Energy E[J]') 
title('Switching energy as a function of gate 

resistance') 
legend([g1 g2 g3 g4],{'Interpolation points','Diode turn-

off energy','Transistor turn-off energy','Transistor 

turn-on energy'},'Location', 'NorthWest') 

  
%% New plot 

  
figure(2); 
hold on; 
grid on; 

  
%% Diode turn off energy losses 

  
xList = [50 200 300 400 500];                       % 

Given values for Rg0 
yList = (1e-3).*(Vdc/Vnom).*[20 60 80 90 100];      % 

Energy required to switch with modification to correct 

voltage 

  
g1 = plot(xList, yList, 'ko'); 

  
pEDOFF = polyfit(xList, yList, 3);                              

% Interpolation 
pEDOFF = pEDOFF*polyval(pEDOFFR,Rg)/polyval(pEDOFFR,Rg0);       

% Modification of interpolation to correct gate 

resistance 
x = linspace(50,500);                                            
g2 = plot(x,polyval(pEDOFF,x), 'k'); 
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%% Transistor turn off energy losses 

  
xList = [50 200 300 400 500];                       % 

Given values for Rg0 
yList = (1e-3).*(Vdc/Vnom).*[20 85 120 155 190];    % 

Energy required to switch with modification to right 

voltage 

  
plot(xList, yList, 'ko'); 

  
pETOFF = polyfit(xList, yList, 3);                              

% Interpolation 
pETOFF = pETOFF*polyval(pETOFFR,Rg)/polyval(pETOFFR,Rg0);       

% Modification of interpolation to correct gate 

resistance 
x = linspace(50,500);  
g3 = plot(x,polyval(pETOFF,x), '--k'); 

  
%% Transistor turn on energy losses 
xList = [50 200 300 400 500];                       % 

Given values for Rg0 
yList = (1e-3).*(Vdc/Vnom).*[40 110 170 245 330];   % 

Energy required to switch with modification to right 

voltage 

  
plot(xList, yList, 'ko'); 

  
pETON = polyfit(xList, yList, 3);                               

% Interpolation 
pETON = pETON*polyval(pETONR,Rg)/polyval(pETONR,Rg0);           

% Modification of interpolation to correct gate 

resistance 
x = linspace(50,500);  
g4 = plot(x,polyval(pETON,x), ':k'); 

  
%% Axis, legends and labeling 

  
axis([0 600 0 (1e-3).*450]) 

  
xlabel('Current I[A]') 
ylabel('Energy E[J]') 
title('Switching energy as a function of conducting 

current') 
legend([g1 g2 g3 g4],{'Interpolation points','Diode turn-

off energy','Transistor turn-off energy','Transistor 

turn-on energy'},'Location', 'NorthWest') 
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Datasheet SKM400GB176 
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Appendix B 

 

 

AFE implementation figures 

 

 

Figure B.1: First order low pass filters for grid voltage measure in AFE. 

 

 

Figure B.2: PWM generator, sinusoidal input signals is compared with a triangular wave 

and output signals are sent to the gate on the transistor. 
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Figure B.2: The current transformation from abc to d,q. 

 

 

Figure B.3: The voltage transformation from abc to d,q together with filter compensation 

and angel generation. 

 

 

Figure B.4: The voltage transformation from d,q to a,b,c. 
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Appendix C 

 

 

AFE simulation results 

 

Figure C.1: Plot from simulation with output quantities; AFE DC-link voltage @ 200 kW, 

Lgrid = 0. 
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Figure C.2: Plot from simulation with output quantities; AFE grid current @ 200 kW, Lgrid 

= 0. 

 

 

 

Figure C.3: Plot from simulation with output quantities; AFE grid power (Q @ ~ 0 kW, P 

@ ~ 200 kW, Lgrid = 0). 

 

 

Figure C.4: Plot from simulation with output quantities; AFE grid voltage @ 200 kW, 

Lgrid = 0. 
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DC/DC simulation results 

 

Figure C.5: Plot from DC/DC-simulation of the output voltage type 1. 

 

Figure C.6: Plot from DC/DC-simulation of the output voltage type 2. 
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Figure C.7: Plot from DC/DC-simulation of the inductance current type 1. 

 

 

Figure C.8: Plot from DC/DC-simulation of the inductance current type 2. 
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Figure C.9: Plot from DC/DC-simulation of the capacitance current type 1. 

 

 

Figure C.10: Plot from DC/DC-simulation of the capacitance current type 2. 
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Figure C.11: Rectified voltage levels in all the three phases at 50 kW. 

 

 

Figure C.12: Rectified voltage levels in all the three phases at 100 kW. 
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Figure C.13: Rectified voltage levels in all the three phases at 200 kW. 

 


