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Abstract

The spectrum of a linear, constant coefficient operator A can help us characterize
the system ẋ = Ax satisfactorily, but in the case of a nonlinear dynamical system
such methods are not suitable. In this thesis we discuss the insufficiency of only
studying the eigenvalues along the Jacobian of the solution trajectory and discuss
possible indicators to better characterize such systems.

In Söderlind et al. [17] a stiffness indicator was derived, and we seek to investi-
gate the possibility to define an oscillation indicator, i.e. an indicator that accurately
captures the phenomenon known as oscillations. This is of scientific interest since
a rigorous and computationally relevant characterization of oscillations is still
missing. Furthermore, we discuss problems that are not due to nonlinearity, but
non-normality, and derive a normality indicator.

For applications one would need computationally inexpensive indicators, and
we make suggestions of such, called estimators, mimicking the behavior of the stiff-
ness indicator and the proposed oscillation indicator. In order to demonstrate the
theory sixteen computational experiments serve to illustrate a variety of different
phenomena.





Populärvetenskaplig
sammanfattning

Lösningarna till linjära system med konstanta koefficienter, ẋ = Ax, har varit kända i
över hundra år och deras karaktär bestäms med hjälp av egenvärdena till matrisen A.
Det är inte konstigt att konceptet egenvärde förbryllar matematik- och ingenjörs-
studenter: Vad är den korrekta tolkningen? Vad betyder det? Det är inte ett enkelt be-
grepp att förstå, eftersom det finns många olika perspektiv på hur det ska tolkas. Inom
numerisk analys talar egenvärdena om huruvida din metod kommer att konvergera och
hur snabbt detta sker, men i populationsekologi förutspår egenvärdena de långsiktiga
förhållandena mellan olika arter i ett ekosystem. I kvantmekanik kan egenvärdena vara
energitillstånd för en partikel i en kvantbrunn och i hållfasthetsläran talar de om för
dig hur du ska designa en bro för att motstå starka vindar och jordbävningar.

När man väl förstår vilket omfattande begrepp egenvärden utgör kommer ett
ännu större problem – för icke-linjära dynamiska system räcker det inte att studera
egenvärden. Det är dessa problem som är av intresse ute i näringslivet. För att kunna
lösa sådana problem behöver vi kunna karakterisera dem, eftersom olika problem
kräver olika lösningsmetoder. Detta är inte problem som du kan skriva ner för hand,
utan består av miljontals ekvationer som behöver lösas, vilket även är svårt för datorer
att göra om inte rätt metoder används.

I denna avhandling presenteras några förslag på hur styvhet och oscillation kan
karakteriseras. Idag finns det inga vedertagna definitioner för dessa fenomen, men
begreppen har existerat i forskningsvärden i över sextio år. En anledning till att det
inte finns är för att det rör sig om komplexa fenomen som inte bara har en specifik
egenskap. Styva ekvationer är en typ av differentialekvationer där en del numeriska
metoder (explicita) är numeriskt instabila om inte steglängden är väldigt liten. Även
för moderna datorer kan detta innebära långa simuleringstider och ofta överväger man
att istället använda implicita metoder för att bli av med steglängdskravet. Oscillationer
är inte endast lösningar till periodiska system utan även till kvasiperiodiska system
och kaotiska system. Dessa kan ha olika egenskaper, t.ex. kan de vara invarianta längs
med en lösningstrajektorie eller ha stabila självsvängningar.

För att demonstrera teorin analyseras sexton välkända problem med olika egen-
skaper och ursprung.
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Nomenclature

AT Transpose of the matrix A
A∗ Complex conjugate transpose of the matrix A
Tr A Trace of the matrix A
[A, B] Commutator of A and B

∇ f Gradient of f
div f Divergence of f

He A Hermitian part of the matrix A
i She A Skew-Hermitian part of the matrix A
No A Normal part of the matrix A
Ano A Non-normal part of the matrix A

µ Logarithmic norm
m2 Upper logarithmic norm w.r.t. the spectral norm
M2 Lower logarithmic norm w.r.t. the spectral norm

λ Eigenvalue
σ Singular value or s-number
Λ(A) Spectrum of A
ρ(A) Spectral radius of A
Λε(A) ε-pseudopectrum of A
W(A) Numerical range of A
ω̃(A) Numerical abscissa of A

s Stiffness indicator
ω Oscillation indicator
ε Complementary oscillation indicator
κ Normality indicator

τ Stiffness estimator
χ Oscillation estimator
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Chapter 1

Introduction

The solution to linear, constant coefficient systems such as ẋ = Ax has been known for
at least a century and the characterization of such systems are almost solely determined
by the eigenvalues of A. The importance of eigenvalues, or more generally, spectra,
as a tool for the mathematical sciences is unquestionably great, and throughout the
evolution of computers in the 20th century, the study of spectra has been a standard
tool in scientific computing. If A is diagonalizable the problem can be transformed
into an eigenfunction basis and speed up the computation time. But eigenvalues are of
great importance for many reasons – not only algorithmic. Lloyd N. Trefethen argues
in [18] that:

There is a psychological reason for the usefulness of eigenvalues. Much of the
human brain is specialized for the processing of visual information, and eigenvalues
take advantage of this biological trait, supplementing the abstract notion of a matrix
or operator by a picture in the complex plane. They give an operator a personality.

In addition, researchers from different fields have their own interpretation of
eigenvalues. In quantum mechanics they correspond to energy levels for a particle in a
well and in population ecology they describe the long term relationship between present
species. More important, however, is that the spectrum does not hold all information to
all problems. For nonlinear dynamical systems such as

ẋ = f (x), x(0) = x0, t ∈ [0, T]

one typically cannot expect a satisfying characterization by the spectrum of the corre-
sponding operator. Nevertheless, it is important to be able to characterize these systems
accurately, since different systems need to be treated differently.

One must keep in mind that not all complex behavior is due to nonlinearities and
even linear problems may cause behavior hard to capture by analyzing the spectra. Non-
normality is such a phenomenon. A normal matrix A satisfies the condition A∗A = AA∗

where A∗ denotes the complex conjugate transpose. These matrices have nice features,
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such as an orthogonal eigenvector basis. Non-normal matrices may have the opposite,
causing distorsions when trying to transform the problem to an eigenvector basis.
Since theoretically such distorsions are bounded they do not influence the system
characteristics as t → ∞, however, in a world with finite computing time they may
cause difficulties making them almost impossible to treat with standard methods.

1.1 What is stiffness?

Although the concept of stiff problems is “known” to mathematicians and engineers
alike, the absence of a rigorous definition is apparent. As Higham and Trefethen [6]
expresses it:

What makes a stiff problem? No single answer seems right for all problems.

Despite this, a stiff problem is commonly thought of as a problem for which explicit
methods do not work. Typically the step sizes needed would have to be unreasonably
small to guarantee convergence of the numerical method and one would need an
implicit method to (greatly) speed up the performance.

In [17] Söderlind et al. propose a stiffness indicator that captures most of the
commonly known characteristics of a stiff problem in a computationally relevant
way. This is done by using the concept of logarithmic norms and suitable matrix
decompositions to extract more information from the Jacobian along the solution
trajectory than the eigenvalues alone will provide.

1.2 What are oscillations?

There are numerous examples of oscillatory systems in every field of science – from a
simple pendulum in elementary physics to current research topics in complex biological
models. The term oscillatory, however, is very broad and contains more than recurring
motions. In fact, oscillatory systems include the obvious, periodic systems but also
quasi-periodic systems and chaotic systems exhibiting complex dynamics. This diversity
of solutions is one of the main problems in characterizing oscillatory systems. In [13]
Petzold et al. writes about highly oscillatory systems:

What is a highly oscillatory system, and what constitutes a solution of such a
system? As we will see, this question is application-dependent, to the extent that
it does not seem possible to give a precise mathematical definition which would
include most of the problems that scientists, engineers and numerical analysts have
described as highly oscillatory.

2



1.3. Aim of this thesis

1.3 Aim of this thesis

Despite the obvious doubts from previous authors the aim of this thesis is to investigate
the possibility to construct an oscillation indicator that captures most of the phenomena
that commonly fall under the classification as oscillatory. By extending the analysis in
[17] we seek to answer the following questions:

• Is it possible to define a rigorous and computationally relevant characterization
of oscillations?

• Are stiffness and oscillations two independent phenomena?

• How does non-normality influence stiffness and oscillations?

An important question, that naturally arises, is whether or not there is a need for
an oscillation indicator. Does science suffer without it? The answer is: Probably not.
Ekeland et al. [4] writes similarly about stiffness:

It is perhaps true that a precise definition of stiffness is not crucial for practical
purposes.

I would like to think the same way about oscillations; however, it does not make the
subject any less interesting, but rather captures the complexity of the phenomenon.

3





Chapter 2

Theory

2.1 Matrix theory

2.1.1 Cartesian decomposition

Let A ∈ Cn×n and define its Hermitian and skew-Hermitian parts as

He A =
1
2
(A + A∗) and She A =

1
2i
(A− A∗),

where A∗ denotes the complex conjugate transpose of A. Clearly

A = He A + i She A and A∗ = He A− i She A.

We will refer to this as the Cartesian decomposition of the matrix A, since in the scalar case
z ∈ C it is simply He z = Re z and She z = Im z. Thus, the Cartesian decomposition
can be seen as a generalization of the real and imaginary parts of a complex number.
Some elementary properties are listed in Table 2.1.

Table 2.1: Elementary properties of Cartesian decomposition.

Operation A∗ iA A∗A He A i She A She A

He(·) He A She A∗ A∗A He A 0 She A
She(·) − She A He A∗ 0 0 She A 0

As He A and She A are Hermitian, they are unitarily similar to diagonal matrices,
i.e. there exists matrices U and V such that

U∗He AU = M = diag µk,

V∗ She AV = Ω = diag ωk,

where µk are called logarithmic values and ωk the angular values of the matrix A. Further-
more,

Re(Tr[A]) = Tr[He A] and Im(Tr[A]) = Tr[She A].

Also, for real matrices, Tr[A] = Tr[He A], since She A has zero trace.
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2.1.2 On normality and non-normality of matrices and operators

Let A ∈ Cn×n and define its normal and non-normal parts as

No A =
A∗A + AA∗

2
and Ano A =

A∗A− AA∗

2
,

giving A∗A = No A+Ano A. If A is normal, then No A = A∗A = AA∗ and Ano A = 0.
For all matrices, No A∗ = No A and Ano A∗ = −Ano A giving

‖No A‖ = ‖No A∗‖ and ‖Ano A‖ = ‖Ano A∗‖.

The commutator is defined by [A, B] = AB− BA, giving the relationship

A∗A = (He A)2 + (She A)2 +
1
2
[A∗, A],

or equivalently
A∗A = (He A)2 + (She A)2 + i[He A, She A]. (2.1)

Hence A is normal if and only if He A and She A commute.

Theorem 2.1. For every matrix A ∈ Cn×n the following norm bounds hold

0 ≤ ‖Ano A‖2 ≤
‖A∗A‖2

2
≤ ‖No A‖2 ≤ ‖A∗A‖2.

Not all bounds hold for an arbitrary norm; however, the right-hand side can be replaced by
max{‖A∗A‖, ‖AA∗‖}.

Proof. First note that ‖A∗A‖2 = ‖Σ‖2
2 = ‖AA∗‖2, with Σ = diag σk, where σk are the

singular values. The triangle inequality yields

‖No A‖2 =
‖A∗A + AA∗‖2

2
≤ ‖A∗A‖+ ‖AA∗‖2

2
= ‖A∗A‖2.

This holds for any norm, except the last equality, which can be replaced by the inequality
max{‖A∗A‖, ‖AA∗‖}. Consider the quadratic forms

0 < x∗AA∗x = x∗No Ax− x∗Ano Ax,

0 < x∗A∗Ax = x∗No Ax− x∗Ano A∗x,

for x 6= 0. Since ‖Ano A‖ = ‖Ano A∗‖ we may pick a vector x such that the quadratic
form x∗Ano Ax is positive and x∗Ano Ax = ‖Ano A‖2 (if not, we work with Ano A∗

and use the second relation instead of the first). Then

0 < x∗AA∗x = x∗No Ax− ‖Ano A‖2,

6
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giving ‖No A‖2 ≥ ‖Ano A‖2. It immediately follows that

‖A∗A‖2 = ‖No A + Ano A‖2 ≤ ‖No A‖2 + ‖Ano A‖2 ≤ 2‖No A‖2 ≤ 2‖A∗A‖2,

establishing
‖A∗A‖2

2
≤ ‖No A‖2 ≤ ‖A∗A‖2.

Finally, in order to prove that ‖Ano A‖2 ≤ ‖A∗A‖2/2 we again consider the quadratic
form

2x∗Ano Ax∗ = x∗A∗Ax− x∗AA∗x ≤ x∗A∗Ax ≤ ‖A∗A‖2,

where the first inequality is due to A∗A and AA∗ being positive semi-definite. Hence
2‖Ano‖2 ≤ ‖A∗A‖, and

0 ≤ ‖Ano A‖2 ≤
‖A∗A‖2

2
≤ ‖No A‖2 ≤ ‖A∗A‖2.

2.2 Logarithmic norms and the stiffness indicator

Classically the logarithmic norm µ of a matrix A is defined

µ[A] = lim
h→0+

‖I + hA‖ − 1
h

,

for some norm ‖·‖, see e.g. [16]. When deriving the stiffness indicator the upper (l.u.b.)
and lower (g.l.b.) logarithmic norms are used. In the spectral norm, i.e. the operator
norm induced by the Euclidean vector norm, this simplifies to

M2[A] = max Λ(He A) and m2[A] = min Λ(He A).

Definition 2.1 (Söderlind et al. [17]). The stiffness indicator s for a matrix A is defined
as

s[A] =
m2[A] + M2[A]

2
.

From the definition it immediately follows that:

Theorem 2.2 (Söderlind et al. [17]). The stiffness indicator has the following elementary
properties

1. s[0] = 0

2. s[I] = 1

3. s[λI + A] = λ + s[A]; λ ∈ R

4. s[αA] = αs[A]; α ∈ R

5. m[A] ≤ s[A] ≤ M[A]

7
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2.3 Pseudospectra and numerical range

2.3.1 Definitions and elementary properties

Define the spectrum Λ(A) of a complex-valued square matrix A as the numbers λ in
the complex plane where A− λI is not invertible, i.e. the spectrum for an n× n matrix
consists of at most n points, namely, the eigenvalues. This concept can be generalized
to operators. Denote by B(H) the Banach algebra of all bounded linear operators on
a complex Hilbert space H.1 If dimH = n < ∞ we have the finite dimensional case
discussed above. Let A ∈ B(H). Then

Λ(A) = {z ∈ C : zI − A is not invertible in B(H)}.

The spectrum of a matrix or operator is directly related to quantities such as ‖An‖ and
‖exp(tA)‖ if it is normal; however, for non-normal matrices they might have nothing
in common. Therefore, researchers propose a related quantity, the pseudospectrum (see
e.g. [1, 2, 3, 5, 6, 7, 18]). The ε-pseudospectrum is defined by

Λε(A) = {z ∈ C : ‖(zI − A)−1‖ ≥ ε−1},

where (zI− A)−1 is known as the resolvent. In the spectral norm the following definition
is equivalent

Λε(A) = {z ∈ C : σmin(zI − A) ≤ ε},

with σmin denoting the smallest singular value in the matrix case and the smallest
s-number for an operator [18]. There are other equivalent definitions of the pseudospec-
trum, see e.g. [3]. The importance of studying the pseudospectrum is that it describes
how the spectrum Λ(A) transforms under small ε-perturbations. If A is normal then
Λε(A) is the set of points at distance less than or equal to ε from Λ(A). This is not the
case if A is non-normal. Note also, that no matter what A is Λ(A) ⊆ Λε(A).

Let the numerical range W of an operator T in a Hilbert space H be the subset in
the complex plane

W(T) = {(Tx, x) : x ∈ H, ‖x‖ = 1}.

In the finite dimensional case, where A ∈ Cn×n, this becomes

W(A) = {x∗Ax : x ∈ Cn, x∗x = 1},

in the spectral norm. It is a direct consequence that the numerical range is the range
of the Rayleigh quotient. Note that Λ(A) ⊆W(A) and if A is normal then W(A) is the
convex hull of its eigenvalues. In fact, by the Toeplitz-Hausdorff theorem W(A) is
always convex. To illustrate this, the pseudospectra and numerical range for a normal
and a non-normal random 5× 5 matrix are presented in Figure 2.1.

1This can be generalized to Banach spaces, see e.g. [1, 15].

8
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
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0.5

1

1.5

2

(a) Normal matrix

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(b) Non-normal matrix

Figure 2.1: The ε-pseudospectra of a normal and a non-normal matrix. The dashed line is the boundary
of the numerical range. Note that the numerical range of the normal matrix (a) is the convex hull of the
spectrum, whereas this is not the case for the non-normal matrix in (b).

When characterizing stability, the numerical range is a useful tool. This is perhaps
not surprising, since it is a crude estimate of the spectrum. Notably the Lax-Wendroff
condition involves the numerical range (cf. [9], Theorem 3).

The numerical abscissa of A is defined by

ω̃(A) = sup
z∈W(A)

Re z.

It follows from the Hille–Yosida theorem [12] that

d
dt
‖exp(tA)‖

∣∣∣∣
t=0

= ω̃(A),

hence describes the behavior of ‖exp(tA)‖ as t → 0. In case of the spectral norm we
have ω̃(A) = µ[A] = M2[A].

2.3.2 Stability and ε-pseudospectrum

Consider the initial value problem

d
dt

u(t) = Au(t), u(0) = u0, t ∈ R+
0 .

Applying any Runge-Kutta method to this ODE, with a fixed step size h, yields a
scheme

Un = p(hA)nU0,

9
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where Un is the numerical approximations computed successively starting from given
initial data U0 = u0, and p is a polynomial. For the classic RK2-method this is
simply p(x) = 1 + x + x2/2, i.e., the second degree Taylor expansion of ex. The above
discretization may come from a semi-discretization of a PDE, thus not limited to ODEs.
The error propagation is directly linked to the growth ‖p(hA)‖n. Such a quantity
satisfies

ρ(p(hA))n ≤ ‖p(hA)n‖ ≤ ‖p(hA)‖n,

where ρ denotes the spectral radius. The main reason to introduce the pseudospectrum
is that these inequalities are not sharp for non-normal matrices. In [6] Higham &
Trefethen illustrates this by the matrix

A =



−10 5 5
−10 5 5

. . . . . . . . .
−10 5 5

−10 5
−10


∈ R16×16,

for which ρ(p(hA)) = 0.78125 and ‖p(hA)‖2 ≈ 2.003, hence the bounds diverge as
n→ ∞. In Figure 2.2 the result is replicated.

0 5 10 15 20 25 30 35 40 45 50

10
−10

10
−5

10
0

10
5

10
10

t

(a)

x

y

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

Figure 2.2: (a) The blue line is the function ‖p(hA)n‖2 and the bounds are the spectral radius and the
norm respectively. Note that after t ≈ 10 the bounds are off by more than ten orders of magnitude in both
directions. In (b) the stability region (black line) of the RK2 method and the pspeudospectrum of hA, for
ε = 10−10, . . . , 10−1 is shown. The dot at x = −1.75 is the spectrum.

If zoomed in, the ε-pseudospectrum for ε = 10−6 is contained in the stability region
of the RK2-method, and for ε = 10−7 it is not. Higham & Trefethen argue that this
explains the hump of the blue line in Figure 2.2a being of magnitude 106. The following
result is of importance.

10
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Theorem 2.3 (Higham & Trefethen [6]). Let u̇ = Au be modeled as described above by an
explicit Runge-Kutta formula with stability region S that satisfies certain technical assumptions.
Then there exist positive constants C1 and C2, depending only on the Runge-Kutta formula and
on N, such that

C1K ≤ sup
n≥0
‖p(hA)n‖ ≤ C2K, K = sup

z/∈S
dist(z, S)‖(zI − hA)−1‖,

Here dist(z, S) denotes the usual distance of z to the set S. The constant C1 is of modest size,
depending only on the Runge-Kutta formula, while C2 depends on the Runge-Kutta formula
and also linearly on N.

For the previous example K ≈ 1.6 · 104 and supn≥0‖p(hA)n‖ ≈ 1.5 · 105, yielding a
more satisfactory bound. Furthermore, the authors conclude that

A problem is stiff for t ≈ t0 if the pseudospectra of this linear approximation extend
far into the left half-plane as compared with the time scale of the solution for t ≈ t0.

The stiffness criterion from Higham & Trefethen is summarized in Table 2.2.

Table 2.2: Summary of stiffness criterion in [6].

“Linear” theory
(based on eigenvalues)

(t→ ∞)

“Nonlinear” theory
(based on norms)

(t→ 0)

“Intermediate” theory
(finite t)

A has a large spectral
radius but a small
spectral abscissa

A has a large norm but a
small logarithmic norm

A has large
pseudospectral radii but

small pseudospectral
abscissae

2.3.3 Relation to the logarithmic norm and the stiffness indicator

After some comparison, there are several similarities in the different approaches pre-
sented by Söderlind et al. and Trefethen & Higham. In fact, the numerical abscissa is
equivalent to the logarithmic norm in the Euclidean topology.

In [14] Ransford & Rostand present a pair of 4× 4 matrices having identical pseu-
dospectra but whose squares have different norms. Furthermore, these matrices only
have simple eigenvalues. This demonstrates that pseudospectra do not determine norm
behavior. By our hypothesis stiffness and oscillations are topological phenomena, and
the topology is induced by the norm; hence, using the pseudospectrum as the main
tool to quantify these might not capture all system properties.
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Chapter 3

Indicators

In this section we will present the indicators and discuss why we choose to work with
them from our a priori knowledge.

3.1 Previous attempts

There has been several attempts to characterize stiffness in the past. Lambert [8] was
one of the first to propose a qualitative way, by introducing the stiffness ratio defined as
max |Re λ[A]|/ min | Im λ[A]|, for λ ∈ C−. This definition, however, has obvious flaws;
Söderlind et al. [17] write: Although such a span in negative real parts of eigenvalues is often
observed, it is neither necessary nor sufficient for stiffness.

Since stability is a topological phenomenon, and eigenvalues are not, one needs
to introduce a norm. Higham and Trefethen [6] propose to characterize stiffness by
observing the pseudospectrum. This approach is similar to the one used by Söderlind
et al. in [17]; however, the latter introduces the logarithmic norm in the definition. I
believe introducing a norm is a key component to analyze stiffness; however, it does not
exclude the possibility of other definitions. The benefit of the stiffness indicator is that
the norm is already in the definition, whereas the pseudospectral method introduces it
via the resolvent, which makes the connection to the norm-dependence indirect.

There has not been any attempts to characterize oscillations as rigorously as stiffness.
Although a lot of research has been done on normal and non-normal operators the
relationship to oscillations seems not to have been investigated thoroughly.

3.2 Definitions and elementary properties

The motivation behind the stiffness indicator is in [17]. The reason why we choose
to include the stiffness indicator in this thesis is to investigate possible relationships
between stiffness and oscillations.



Chapter 3. Indicators

The idea of characterizing oscillations is to expand the theory of the stiffness
indicator. Since the Hermitian part of the operator carries information about the
stiffness of the corresponding system, perhaps the oscillation indicator can be defined
by using the same idea for the skew-Hermitian part. By observing that the linear system
ẋ = Ax, where A is skew-Hermitian (thus having purely imaginary eigenvalues) is
oscillatory, strengthens this hypothesis. In order to get a scalar quantity the norm of
She A is the easiest but perhaps also the most efficient way to do so.

Further analysis show that this approach still bears a strong resemblance to the
one used in the derivation of the stiffness indicator. Using the g.l.b. and the l.u.b.
logarithmic norms respectively, will not work for real-valued matrices, as these have
complex conjugate eigenvalues. Adding the g.l.b. and the l.u.b. logarithmic norms,
like for the stiffness indicator, results in such an indicator being identically zero for
problems with a real-valued vector field. This cannot reflect oscillations even in a
linear constant coefficient system. A possibility is to choose the g.l.b. alone, but since
He(She A) = She A, this is equivalent to the maximum eigenvalue of She A, which in
turn is equivalent to ‖She A‖, since She A is Hermitian

These observations lead to the following definitions:

Definition 3.1. For a given matrix A ∈ Cn×n the oscillation indicator is defined by

ω[A] = ‖She A‖2.

Furthermore, the complementary oscillation indicator is defined by

ε[A] = max | Im λ[A]|.

With these definitions it immediately follows that:

Theorem 3.1. The oscillation indicator has the following elementary properties

1. ω[0] = 0

2. ω[I] = 0

3. ω[sI + A] = ω[A]; s ∈ R

4. ω[αA] = |α|ω[A]; α ∈ R

Proof. The first two properties are trivial. Assume s ∈ R, then

ω[sI + A] = ‖She(sI + A)‖2 = ‖She A‖2 = ω[A],

proving property 3. The last property follows directly from She(αA) = α She A for
α ∈ R.

Since the elementary properties in Theorem 3.1 are desirable features of an indicator
measuring oscillations we expect the same results for ε.

14



3.2. Definitions and elementary properties

Theorem 3.2. The complementary oscillation indicator has the following elementary properties

1. ε[0] = 0

2. ε[I] = 0

3. ε[sI + A] = ε[A]; s ∈ R

4. ε[αA] = |α|ε[A]; α ∈ R

Proof. The first two properties are trivial. Let λk denote the eigenvalues of A. Then
sI + A has eigenvalues s + λk, and if s ∈ R, Im(s + λk) = Im λk, and property 3 follows.
Property 4 is due to the eigenvalues of αA are αλk.

In theory ε[A] should only be markedly different from ω[A] if A is highly non-
normal, due to the first being norm-dependent, and the latter norm-independent.
However, one would expect ω[A] ≈ ε[A] for normal matrices, due to the nice features
of such matrices. Theorem 3.3 shows that this is true – in fact equality holds in the
normal case.

Theorem 3.3. Let A ∈ Cn×n.

1. If A is Hermitian, then ω[A] = ε[A] = 0.

2. If A is normal, then ω[A] = ε[A].

Proof. The first property follows from Hermitian matrices having real eigenvalues
and that She A = 0 for such matrices. The second follows from the fact that if A is
normal it is unitarily diagonalizable, i.e. A = UDU∗, where U is a unitary matrix and
D = diag λk. Then A∗ = UDU∗, where D = diag λk and

ω[A] =
1
2
‖A− A∗‖2 =

1
2
‖D− D‖2,

where we use that ‖AU‖2 = ‖UA‖2 = ‖A‖2 for any square matrix A and unitary
matrix U of the same size. Let λk = αk + iβk, then

D− D = diag(λk − λk) = 2i diag βk,

giving ω[A] = max{|βk|} = max{Im |λk|} = ε[A].

Since A is normal only if She A and He A commute (c.f. (2.1)) one could expect
ω[A] ≈ ε[A] if the quantity ‖[He A, She A]‖ is small. However, we wish to handle this
more rigorously. So far we have only discussed whether a matrix is normal or not.
It is interesting to ask how close to a normal matrix a non-normal matrix is, i.e. we
would like an indicator for normality. Such an indicator is of interest, since we then
may compare possible correlations between non-normality and oscillations.

15
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Recall that No A = (A∗A + AA∗)/2 and Ano A = (A∗A− AA∗)/2. By the decom-
position of A∗A = No A + Ano A one could proceed as with the Cartesian decomposi-
tion, A = He A + She A, to produce indicators. Similar to the oscillation indicator we
choose the norm to measure normality and non-normality, i.e. ‖No A‖ and ‖Ano A‖.
Rearranging the terms in Theorem 2.1 we get upper and lower bounds on the norms,
i.e.

0 ≤ ‖Ano A‖2

‖A∗A‖2
≤ 1

2
≤ ‖No A‖2

‖A∗A‖2
≤ 1.

Due to these bounds we may scale both of the quantities to be in the interval [0, 1] and
by subtracting them we get an indicator in the interval [−1, 1].

Definition 3.2. For a given non-zero matrix A ∈ Rn×n the normality indicator is defined
by

κ[A] = κa[A]− κn[A],

where

κa[A] =

√
2‖Ano A‖
‖A∗A‖ ,

κn[A] =

√
2‖No A‖
‖A∗A‖ − 1 .

One notable difference to the previous case is that we are only interested in quanti-
fying normality (instead of two quantities, in the case of the Cartesian decomposition,
i.e. stiffness and oscillations). Therefore, it seems superfluous to have two indicators;
however, we cannot pick only κn[A] or κa[A] – we need both – which is motivated by
Theorem 3.4 and Theorem 3.5 below. The main reason is that one can find a matrix
A such that κa[A] = κn[A] = 1 can occur simultaneously, showing the insufficiency of
choosing to work with either κn[A] or κa[A].

Lastly, since we are comparing normality against non-normality, dividing by the
norm results in a relative indicator, giving a more intuitive understanding of how normal
a matrix is.

Theorem 3.4. The following statements are true

κa[A] = 0 ⇒ κn[A] = 1, (3.1)

κn[A] = 0 ⇒ κa[A] = 1, (3.2)

but the converse does not hold, i.e.

κn[A] = 1 ; κa[A] = 0, (3.3)

κa[A] = 1 ; κn[A] = 0. (3.4)
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Proof. Consider (3.1) and assume κa[A] = 0. By definition

κa[A] = 0 ⇒ ‖Ano A‖2 = 0 ⇔ Ano A = 0,

and by the decomposition A∗A = No A + Ano A = No A, it follows that

κn[A] =

√
2‖No A‖
‖A∗A‖ − 1 =

√
2‖A∗A‖
‖A∗A‖ − 1 = 1.

Consider (3.2) and assume κn[A] = 0. Then

κn[A] = 0 ⇔ 2‖No A‖2 = ‖A∗A‖2,

We shall prove that in this case ‖Ano A‖2 ≥ ‖No A‖2. Choose a unit vector x such that
x∗A∗Ax = ‖A∗A‖2. Then

0 < x∗(A∗A + AA∗)x ≤ ‖A∗A + AA∗‖2 = ‖A∗A‖2 = x∗A∗Ax,

but since AA∗ is positive semi-definite, AA∗x = 0. Therefore, for this specific x, we
have

x∗(A∗A− AA∗)x = ‖A∗A‖2,

hence ‖A∗A− AA∗‖2 ≥ ‖A∗A‖2, or equivalently 2‖Ano A‖2 ≥ ‖A∗A‖2 = 2‖No A‖2.
By Theorem 2.1 ‖Ano A‖2 ≤ ‖No A‖2 holds for all matrices A, and consequently
‖Ano A‖2 = ‖No A‖2 = ‖A∗A‖2/2 giving

κa[A] =

√
2‖Ano A‖2

‖A∗A‖2
=

√
‖A∗A‖2

‖A∗A‖2
= 1.

We present a counter-example to (3.3) and (3.4) simultaneously. Consider

A =

0 0 0
1 0 0
0 0 1

 ,

then

A∗A =

1 0 0
0 0 0
0 0 1

 , No A =

1/2 0 0
0 1/2 0
0 0 1

 , Ano A =

1/2 0 0
0 −1/2 0
0 0 0

 ,

hence ‖A∗A‖2 = ‖No J‖2 = 1, and ‖Ano A‖2 = 1/2, giving κa[A] = κn[A] = 1.

Theorem 3.5. A matrix A is normal if and only if κ[A] = −1.

17
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Proof. Assume A is normal. Then No A = A∗A and Ano A = 0, giving κa[A] = 0 and
κn[A] = 1, thus κ[A] = −1. Now, assume that κ[A] = −1. Then κa[A] = 0 implying
Ano A = 0, hence

A∗A = No A ⇔ A∗A = AA∗,

proving that A is normal.

We are now ready to list some elementary properties:

Theorem 3.6. The normality indicator has the following elementary properties

1. −1 ≤ κ[A] ≤ 1

2. κ[I] = −1

3. κ[αA] = κ[A]; α ∈ C

Proof. The only non-trivial property is 3, which follows from the norm axioms and
No (αA) = |α|2 No A and Ano (αA) = |α|2 Ano A.

Since we have seen a matrice A having κa[A] = κn[A] = 1 (c.f. the proof of
Theorem 3.4) thus giving a normality indicator κ[A] = 0, we want to emphasize the
property κ[A] = 1.

Definition 3.3. A matrix A ∈ Cn×n is called maximally non-normal if κ[A] = 1.

3.3 Computationally inexpensive estimators

The idea in this section is to propose estimators, computationally inexpensive indicators,
that replicate most of the properties of the stiffness indicator and the oscillation indicator.
These estimators should be of low complexity and ideally Jacobian-free, i.e. one should
not have to compute the complete Jacobian matrix along the solution trajectory in order
to be able to compute the estimators. Such estimators could, e.g. be implemented as
a step size regulator, or possibly a smooth switch between Implicit-Explicit Hybrid
Methods.

Given a matrix A ∈ Cn×n, the stiffness indicator is the mean value of the largest
and smallest eigenvalue of He A, whereas for a real matrix Tr[A] is the sum of all
eigenvalues. Moreover, due to the linearity of the trace,

Tr[A] = Tr[He A] + i Tr[She A],

and if A is real Tr[A] = Tr[He A], i.e. the trace is the sum of all eigenvalues to He A. By
normalizing the trace with the dimension of the matrix, this quantity and the stiffness
indicator coincide in the case where n = 2. It is feasible that these quantities are related
for larger n as well, if the eigenvalues are not clustered. But, there are further reasons
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why we should consider the trace. The flow of a system can be analyzed in terms
of how the phase volume evolves. Note that in a system ẋ = f (x), the divergence of
the vector field is div( f ) = Tr[∇ f ]. For a linear system ẋ = Ax, this means that the
divergence is governed by Tr[A]. Indeed, for the flow exp(tA), we have

d
dt

det[exp(tA)] = Tr[A]det[exp(tA)],

implying that det[exp(tA)] = exp(t Tr[A]) describes the evolution of the phase volume.
Phase volume preserving systems have zero trace, meaning that det[exp(tA)] remains
constant. Such systems are not stiff, but “oscillatory” in character, as they have the
same behavior in forward and reverse time. Stiff problems, on the other hand, typically
dissipate phase volume very fast in forward time. In these problems, the vector field
has a large negative divergence, and consequently the matrix A (or the Jacobian) also
has a large, negative trace. This has the further benefit, that one can obtain a rough
estimate of stiffness by inspecting the diagonal of the Jacobian alone. In addition,
such an estimate will directly distinguish phase volume preserving systems from stiff
systems, by the direct observation of a zero trace.

With these observations in mind we make the following definition.

Definition 3.4. For a given matrix A ∈ Cn×n the stiffness estimator is defined by

τ[A] =
1
n

Tr[A].

Theorem 3.7. The stiffness estimator has the following elementary properties

1. τ[0] = 0

2. τ[I] = 1

3. τ[zI + A] = z + τ[A]; z ∈ C

4. τ[αA] = ατ[A]; α ∈ C

5. τ[A + B] = τ[A] + τ[B]

Proof. The first two properties are trivial, and the remaining are due to the trace being
linear.

Note that the stiffness estimator does not necessarily need the complete matrix, but
only the main-diagonal. Consequently, the computation time for computing the trace
of a matrix is significantly less than for computing the eigenvalues (O(n) compared to
O(n3)).

It seems harder to capture oscillations with only the information from the main-
diagonal, as the off-diagonal elements describe the interaction between the different
components, which are likely to cause oscillations. Since τ[A], as defined above, can be

19



Chapter 3. Indicators

thought of as the “mean of the eigenvalues”, our hypothesis is that oscillations could be
characterized as the “standard deviation of the eigenvalues”, which should be large if
the eigenvalues are unevenly positioned in the complex plane. For a moment, assume
that the hypothesis is true. Then, the following definition is an attempt to to still use
the trace, and possibly reuse τ[A] if computed.

Definition 3.5. For a given matrix A ∈ Cn×n the oscillation estimator is defined by

χ[A] =
√

τ[A∗A]− |τ[A]|2 .

Theorem 3.8 below strengthens our hypothesis, as the oscillation estimator has all
elementary properties of the oscillation indicators (c.f. Theorem 3.1 and Theorem 3.2).

Theorem 3.8. The oscillation estimator has the following elementary properties

1. χ[A] ≥ 0

2. χ[0] = 0

3. χ[I] = 0

4. χ[sI + A] = χ[A]; s ∈ R, A ∈ Rn×n

5. χ[αA] = |α|χ[A]; α ∈ R

Proof. The first property follows directly from Cauchy-Schwarz inequality

n2|τ[A]|2 =

∣∣∣∣∣ n

∑
i=1

λi

∣∣∣∣∣
2

≤ n
n

∑
i=1
|λi|2 = n2τ[A∗A] ⇔ τ[A∗A]− |τ[A]|2 ≥ 0.

Properties 2 and 3 are trivial. Let s ∈ R and A ∈ Rn×n then

χ2[sI + A] = τ [(sI + A)∗(sI + A)]− (τ[sI + A])2

= τ
[
s2 I + sA + sA∗ + A∗A

]
− (s + τ[A])2

= s2 + sτ[A] + sτ[A∗] + τ[A∗A]− s2 − 2sτ[A]− (τ[A])2

= τ[A∗A]− (τ[A])2 = χ2[A],

since τ[A] = τ[A∗] if A is real. The last property is due to the linearity of τ[A].

In the case n = 2 we have shown that s[A] = τ[A], and we wish to investigate any
connections between ω[A] and χ[A]. In Theorem 3.9 and Theorem 3.10 we present
bounds relating ω[A], χ[A] and τ[A]. For this we need the following lemma.

Lemma 3.1. Let A ∈ Rn×n with real eigenvalues. Then

τ[A] + χ[A]/(n− 1)1/2 ≤ λmax[A] ≤ τ[A] + χ[A](n− 1)1/2 .
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Proof. Let τ[A] = τ, etc. Since the trace is the sum of the eigenvalues, we get

nχ2 =
n

∑
i=1

λ2
i −

1
n

[
n

∑
i=1

λi

]2

=
n

∑
i=1

(λi − τ)2

thus giving

n2(λmax − τ)2 =

[
n

∑
i=1

λmax − λi

]2

≥
n

∑
i=1

(λmax − λi)
2 =

n

∑
i=1

(
(λmax − τ)− (λi − τ)

)2

=
n

∑
i=1

(λmax − τ)2 − 2(λi − τ)(λmax − τ) + (λi − τ)2

=
n

∑
i=1

(λmax − τ)2 + (λi − τ)2 = n[(λmax − τ)2 + χ2],

giving
λmax ≥ τ + χ/(n− 1)1/2 .

Let 1 denote the one-vector, ej the vector with 1 at at the j:th entry and 0 elsewhere,
and λ = (λ1, . . . , λn). Then the lower bound follows from a Cauchy-Schwarz type
inequality, noting that the matrix X = I − 11T/n is symmetric idempotent, hence
positive semidefinite. Thus

(λj − τ[A])2 = (ejXλ)2 ≤ eTj Xej · λTXλ = (n− 1)χ2,

giving
−χ(n− 1)1/2 ≤ λj − τ[A] ≤ χ(n− 1)1/2,

and rearranging the terms, picking λj = λmax, finishes the proof. A similar proof can
be found in [20].

From Lemma 3.1 it immediately follows that:

Theorem 3.9. The following bounds hold

τ[(She A)2]+χ[(She A)2]/(n− 1)1/2 ≤ (ω[A])2 ≤ τ[(She A)2]+χ[(She A)2](n− 1)1/2 .

Proof. Just note that

(ω[A])2 = ‖She A‖2 = λmax[(She A)∗ She A] = λmax[(She A)2] .

If n = 2 we have the equality

ω[A] =
√

τ[(She A)2] + χ[(She A)2] .

The inequality implies that when τ[(She A)2] is small, and n reasonably small, that
ω[A] ≈ χ[(She A)2]. The remaining question is how χ[(She A)2] is related to χ[A]. This
is partly answered by Theorem 3.10, for which we need the following lemma.
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Lemma 3.2. The assignment 〈A, B〉 = Tr(BTA) yields an inner product. The norm induced
by this inner product is the Frobenius norm ‖·‖F and is submultiplicative (although it is not an
operator norm). In this inner product space the class of symmetric matrices are orthogonal to
the class of skew-symmetric matrices.

Proof. It is well-known that the trace induces the Frobenius norm and that it is sub-
multiplicative. Moreover, assume AT = A and BT = −B, i.e. A is symmetric and B is
skew-symmetrric. Then

Tr(BTA) = Tr(−BAT) = −Tr(ATB) = −Tr((ATB)T) = −Tr(BTA),

hence 〈A, B〉 = 0, proving that A and B are orthogonal.

We are now ready to prove the last theorem, which strengthens the connection
between the oscillation indicator and the oscillation estimator.

Theorem 3.10. If A ∈ Rn×n then

χ[(She A)2] ≤
√

n(χ[A])2.

Proof. Let 〈A, B〉 = Tr(ABT) and ‖·‖F the Frobenius norm. Then, for any matrix
A ∈ Rn×n, we have

n2(χ(A))2 = ‖A‖2
F‖I‖2

F − 〈A, I〉2.

Since χ((She A)2) = χ((i She A)2), we may work with symmetric and skew-symmetric
parts instead, i.e. He A = (A + AT)/2 and i She A = (A − AT)/2. Furthermore,
‖i She A‖4

F = 〈(i She A)2, I〉2 hence

n4χ(A)4 =
(
‖A‖2

F‖I‖2
F − 〈A, I〉2

)2
=
(
‖i She A‖2

F‖I‖2
F + ‖He A‖2

F‖I‖2
F − 〈He A, I〉2

)2

≥
(
‖i She A‖2

F‖I‖2
F
)2

= n2‖i She A‖4
F ≥ n2‖(i She A)2‖2

F

≥ n
(

n‖(i She A)2‖2
F − ‖i She A‖4

F

)
= n

(
‖(i She A)2‖2

F‖I‖2
F − 〈(i She A)2, I〉2

)
= n3χ((i She A)2)2

and rearranging the terms yields the desired inequality.

Theorem 3.9 and Theorem 3.10 suggest that if τ[(She A)2] is relatively small (com-
pared to χ[A]) then ω[A] and χ[A] are closely related. Since

τ[(She A)2] =
1
2
(
τ[A∗A]− τ[A2]

)
,

we see that if A is not maximally non-normal, or close to, it is plausible that ω and χ

are in the same magnitude.
The oscillation estimator is, unfortunately, not as ideal as the stiffness estimator,

since the complete Jacobian is needed in order to determine τ[A∗A]. This also requires
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matrix multiplication, which in the general (naive) case is of the order O(n3), giving
the same complexity as the oscillation indicator. A benefit is that one does not need
to call any subfunctions, hence computing χ[A] is more time efficient than ω[A], see
Figure 3.1.
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Figure 3.1: Computation time for (a) ω and χ, (b) s and τ.
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Chapter 4

Numerical examples

In order to demonstrate the theory proposed in previous chapters, a series of compu-
tational experiments were made from well-known problems. Several of the problems
are gathered from the the Bari test set for IVPs [11]. In addition, a couple of highly
oscillatory problems from different fields of applied sciences are tested and analyzed.
High precision solutions were computed with Matlab’s ode15s solver.



Chapter 4. Numerical examples

4.1 Lorenz equations

Lorenz equations is well-known for exhibiting chaotic behavior for certain parame-
ter values and initial conditions. The Lorenz equations was originally a model for
atmospheric convection, and is a system of three ordinary differential equations

dx
dt

= σ(y− x)

dy
dt

= x(ρ− z)− y

dz
dt

= xy− βz

where σ, ρ, and β are constants. Most commonly studied values are σ = 10, β = 8/3
and ρ = 28, for which the system exhibits chaotic behavior, see Figure 4.1. We will use
these values in the experiment, and (x0, y0, z0) = (10, 14, 10) over t ∈ [0, 10].
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Figure 4.1: Phase portrait of Lorenz equation for σ = 10, β = 8/3 and ρ = 28, with (x0, y0, z0) = (10, 14, 10)
over t ∈ [0, 10].

The Jacobian depends only on state, implying that the indicators also will. In
Figure 4.2 the stiffness indicator is negative and mimics the behavior or the first
solution component well – the maxima and minima in stiffness seems to be correlating
well with the solution. The equations, however, are not what would be considered a
stiff problem, but this does not necessarily mean that the stiffness indicator should be
constantly zero – such problems do exist, e.g. Hamiltonian systems, and have very
special structure. This shows that stiffness is something that can be present, but not
necessarily dominant in a system.

The oscillation indicators ω and ε have almost identical maxima but deviate slightly
from each other as the normality indicator reaches a minima. Note also that as the
minima of the oscillation indicators correlate well with the maxima of the stiffness
indicator.
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4.1. Lorenz equations

The normality indicator has four distinct dips where ε = 0 due to the Jacobian
having only real eigenvalues. However, note that ω is not identically zero, suggesting
that the skew-Hermitian part still has influence on the solution trajectory, despite the
lack of complex eigenvalues.

The estimators correlate well with the corresponding indicators, i.e. s and τ as well
as ω and χ are in the same magnitude. It is not a defect that τ is constant; on the
contrary, this is a nice feature for a possible step size regulator. Also, note that ω and χ

have approximately the same extrema.

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

20
Solu tion c omponent 1

0 1 2 3 4 5 6 7 8 9 10
−6.5

−6

−5.5

−5

−4.5

−4
s (b lu e ), τ (re d )

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25
ω (b lu e ), χ (re d )

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25
ε

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1
κ

Figure 4.2: Indicators. Lorenz equation.
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Chapter 4. Numerical examples

4.2 Chen’s equation

Chen’s equation is a modification of Lorenz equation and is given by

dx
dt

= a(y− x)

dy
dt

= (c− a)x− xz + cy

dz
dt

= xy− bz

where a, b, and c are constants. This system is interesting as it is in the chaotic regime
when the Lorenz equation is not [19]. See phase portrait in Figure 4.3. In the experiment
we use a = 35, b = 8/3 and c = 28, with (x0, y0, z0) = (10, 14, 10) over t ∈ [0, 10].
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Figure 4.3: Phase portrait of Chen’s equation for a = 35, b = 8/3 and c = 28, with (x0, y0, z0) = (10, 14, 10)
over t ∈ [0, 10].

Although Chen’s equation is a modification of Lorenz equations and resembles the
visual behavior in phase-space, the indicators, see Figure 4.4, suggests that the proper-
ties of Chen’s equation are quite different from Lorenz equations. The most remarkable
difference is the non-normality, which, in comparison to the Lorenz equations, are
above 0.5 in magnitude along most parts of the trajectory, but has small dips where
the behavior of the oscillation indicators are similar to that of the Lorenz equations as
ε tends quickly to zero. Note also that the ω & ε which should be expected since the
system exhibits strong non-normality; a property that is not prevalent in the Lorenz
equations.

Note also that the stiffness indicator has not been significantly altered, thus the
change in non-normality in this case seems to have a larger impact on oscillations.

Again, the estimators approximate the corresponding indicators well. The stiffness
estimator is constant, as in Lorenz equations, but is still in the same magnitude. The
extrema of ω and χ correlate well.
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4.2. Chen’s equation
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Figure 4.4: Indicators. Chen’s equation.
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Chapter 4. Numerical examples

4.3 Duffing oscillator

The Duffing oscillator is a periodically forced oscillator with a nonlinear elasticity, given
by

ẍ + δẋ + βx + αx3 = γ cos ωt

which is rewritten
dx1

dt
= x2

dx2

dt
= γ cos ωt− δx2 − βx1 − αx3

1

where α, β, γ, δ and ω are constants. For α > 0, β < 0 and δ > 0 some interesting
dynamics occur, see phase-plot in Figure 4.5. In the experiment we use x0 = (1, 1) over
t ∈ [0, 40] with α = 1, β = −1, γ = 0.3, δ = 0.2 and ω = 1.
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Figure 4.5: Phase portrait of the Duffing oscillator for α = 1, β = −1, γ = 0.3, δ = 0.2 and ω = 1, with
x0 = (1, 1) over t ∈ [0, 200].

The Jacobian, and therefore the indicators, depend only on state. The system shows
different characteristics from the previous problems as the stiffness indicator is constant.
The maxima of the oscillation indicators again coincide with the maxima along the
solution trajectory. Since the normality indicator is & 0.5 along parts of the trajectory
the deviation between ω and ε is not surprising.

There is, however, an interesting recurring phenomenon; the normality indicator
drops to −1 at certain intervals. This is when the solution along the trajectory has a
fixed directional derivative, and thus the Jacobian matrix is a good approximation of a
linear model to the otherwise complex dynamics.

Analytical computations verify that the stiffness is only dependent on the param-
eter δ, more precisely, the stiffness indicator (and the estimator) s[A] = − δ

2 and the
oscillation indicator ω[A] = 1

2 |3αx2
1 + β + 1|.
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4.3. Duffing oscillator

Interestingly, ω and χ seems to correlate well when |κ| . 1
2 , but deviates otherwise,

i.e. for highly non-normal matrices. It is, however, unclear whether the deviation
between ω and χ when the normality indicator drops to −1 is due to normality.
Perhaps this phenomenon is due to the rapid change in normality.

0 5 10 15 20 25 30 35 40
−2

−1

0

1

2
Solu tion c omponent 1

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1
s (b lu e ), τ (re d )

0 5 10 15 20 25 30 35 40

0

2

4

ω (b lu e ), χ (re d )

0 5 10 15 20 25 30 35 40
0

1

2

3
ε

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1
κ

Figure 4.6: Indicators. Duffing oscillator.

31



Chapter 4. Numerical examples

4.4 Stiff spring pendulum

The following system from multibody dynamics is described in Petzold et al. [13]

dx
dt

= u

dy
dt

= v

du
dt

= −λx

dv
dt

= 1− λy

where ε2λ = (r − 1)/r and r =
√

x2 + y2. The solution consist of a low frequency
oscillation and a superimposed high-frequency oscillation, see Figure 4.7. This sys-
tem is claimed to be highly oscillatory by the authors. In the experiment we use
(x0, y0, u0, v0) = (0.9, 0.1, 0, 0) and ε2 = 10−3.
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Figure 4.7: Solutions to the stiff spring pendulum for ε2 = 10−3 and initial values (0.9, 0.1, 0, 0) over
t ∈ [0, 10].

The stiffness indicator is constantly zero due to the non-normality but what is even
more interesting is that the rest of the indicators are as well. This is to be expected, since
the motions are periodic and do not change drastically during a period; however, the
spectrum is constantly changing along the solution trajectory. This is not reflected by
the indicators, as the large purely imaginary eigenvalues (the high frequency) remain
the same. This is a good feature of the oscillation indicator, since it shows that it can
filter out the essential phenomenon that we want to analyze.

Note that the normality indicator is constantly 1, which is to be expected from
a periodic system. The observations from earlier problems suggest that high non-
normality reflects in prevalent oscillations; however, this example shows a constant
behavior. Perhaps what causes oscillations in a system, stiff or nonstiff, is the change in
normality rather than a high magnitude of non-normality.
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4.4. Stiff spring pendulum

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2
Solu tion c omponent 1

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1
s (b lu e ), τ (re d )

0 1 2 3 4 5 6 7 8 9 10
490

495

500

505

510
ω (b lu e ), χ (re d )

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50
ε

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1
κ

Figure 4.8: Indicators. Stiff spring pendulum.
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Chapter 4. Numerical examples

4.5 Stellar Orbit Problem with Resonance

In [10] Lee & Engquist study a highly oscillatory system from the theory of stellar
orbits in a galaxy,

ẋ =
1
ε2


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 x +


0

x2
3/a
0

2x1x2/b


where a = 2 and b = 1, ε2 = 10−4 over t ∈ [0, 30]. The components originates from
a reference circular orbit and a secondary term measuring the deviation of the orbit
from the galactic plane. In Figure 4.9, the high frequency solutions are impossible to
distinguish but the low-frequency resonance modes are visible.
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Figure 4.9: Solution components with initial conditions (1, 0, 1, 0).

The indicators show that the Stellar Orbit Problem exhibits similar behavior as in
the stiff spring pendulum in the sense that they are constant; however, the Jacobian
along the solution trajectory is normal. This is reflected in the oscillation indicators ω

and ε being identical, in accordance with Theorem 3.3. This is the opposite of what was
observed in the stiff spring pendulum, although the physical models are similar – both
are highly oscillatory. The reason they differ substantially is because in the stiff spring
pendulum the low-amplitude, high frequency is superimposed on the low frequency
mode, whereas in this problem the low frequency is modulating a high frequency.
Clearly, the systems have totally different characteristics, despite both being nonstiff.

The estimators are again in the same magnitude as the corresponding indicators.
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4.5. Stellar Orbit Problem with Resonance
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Figure 4.10: Indicators. Stellar Orbit Problem with Resonance.
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Chapter 4. Numerical examples

4.6 Double pendulum

The double pendulum is a simple physics experiment known to exhibit chaotic behavior.
The equations are given by

dx
dt

= u

du
dt

=
ed− b f
ad− cb

dy
dt

= v

dv
dt

=
a f − ce
ad− cb

where

a = (m1 + m2)`1 b = m2`2 cos(x− y)

c = m2`1 cos(x− y) d = m2`2

e = −m2`2v2 sin(x− y)− g(m1 + m2) sin x f = m2`1y2 sin(x− y)−m2g sin y

for some constants m1, m2, `1, `2 and g. In the experiment we use m1 = m2 = `1 =

`2 = 1 and g = 9.81 with (x0, u0, y0, v0) = (π/2, 0, π/2, 0) over t ∈ [0, 10].
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(a) Solutions to the double pendulum and initial
values (π/2, 0, π/2, 0) over t ∈ [0, 20], with m1 =
m2 = `1 = `2 = 1 and g = 9.81.

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

x

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

y

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

u

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

v

(b) Solutions to the double pendulum and initial
values (π/2, 0, π/2, 0) over t ∈ [0, 10], with m1 =
m2 = `1 = `2 = 1 and g = 9.81.

The stiffness indicator and the corresponding estimator correlate well, but the
estimator is smoother. The oscillation indicator and the corresponding estimator are
almost identical. Due to the non-normality the difference between ω and ε is not
surprising.

The stiffness indicator is changing signs, indicating that the system is indefinite, or
possibly changing between dissipative and accretive (such characterizations are due to
the sign of the g.l.b. and l.u.b. logarithmic norms).
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4.6. Double pendulum
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Figure 4.12: Indicators. Double pendulum.
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Chapter 4. Numerical examples

4.7 Lotka-Volterra

The Lotka-Volterra equations is a simple predator-prey model given by

dx
dt

= x(a− by)

dy
dt

= −y(c− dx)

for constants a, b, c and d. The solutions to the systems are limit cycles, depending on
the choice of constants, see Figure 4.13. In the experiment we use (x0, y0) = (1, 1) over
t ∈ [0, 2.5] with a = 3, b = 9 and c = d = 15.
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Figure 4.13: Phase portrait suggesting periodic solutions of the Lotka-Volterra equations for different
initial conditions.

Since it is a 2× 2 system we can compute some of the indicators analytically

J =
(

a− by −bx
dy c− dx

)
thus

He J =
(

a− by 1
2 dy− 1

2 bx
1
2 dy− 1

2 bx c− dx

)
and She J =

(
0 −( 1

2 bx + 1
2 dy)

1
2 bx + 1

2 dy 0

)
which gives the stiffness indicator s[J] = 1

2 (a− c− by + dx) and oscillation indicator
ω[J] = 1

2 |bx + dy|.
Interestingly stiffness is caused by all parameters, whereas oscillations are caused

only by b and d, which are the constants modeling the interaction between the species.
The peaks of the normality indicator does not seem to correlate with the other

indicators. This indicates that non-normality is not sufficient to cause stiffness nor
oscillations in the system.
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4.7. Lotka-Volterra
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Figure 4.14: Indicators. Lotka-Volterra, for a = 3, b = 9, c = d = 15 over t ∈ [0, 2.5]
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Chapter 4. Numerical examples

4.8 Oregonator

The Oregonator is a theoretical model for a chemical reaction and is given in a normal-
ized form by

dx1

dθ
= 320 · s(x1 − x1x2 + x2 − qx2

1)

dx2

dθ
= 320 · (x3 − x2 − x1x2)/s

dx3

dθ
= 320 · w(x1 − x3)

where θ = t/320, with t being the original time scaling. The solutions to the Oregonator
are limit cycles, as shown in Figure 4.15. The Oregonator is a well-known stiff problem.
In the experiment we use s = 77.27, q = 8.375 · 10−6 and w = 0.161 with x0 = (1, 1, 2)
over t ∈ [0, 1].
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Figure 4.15: Phase portrait suggesting periodic solutions of the Oregonator.

In Figure 4.16 the indicators show that the problem is indeed stiff, but that stiffness
and oscillations are not two separate phenomena. Rather, they seem to be coupled
if the Jacobian matrix along the solution trajectory is highly non-normal; however,
oscillations can be present with or without stiffness or non-normality, as observed in
many problems before (e.g. Stiff spring pendulum).

With recent observations and the rigorous mathematical definition of stiffness and
oscillations proposed in this thesis, one may criticize the expression stiff problem, in the
sense that most such problems, as with the Oregonator, is not always stiff, but rather
exhibits certain phases in which it is stiff.
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4.8. Oregonator
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Figure 4.16: Indicators. Oregonator, s = 77.27, q = 8.37 · 10−6 and w = 0.161.
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Chapter 4. Numerical examples

4.9 Van der Pol oscillator

The Van der Pol oscillator is an oscillator with nonlinear damping designed to model
an electric circuit. The normalized van der Pol equation is given by

dx1

dt
= 2µx2

dx2

dt
= 2µ2(1− x2

1)x2 − 2µx1

where µ is a positive parameter. For large values of µ the system is known to be stiff.
The solutions are limit cycles, see Figure 4.17. In the experiment we use µ = 200, with
x0 = (2, 0) over t ∈ [0, 1].
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Figure 4.17: Phase portrait suggesting periodic solutions of the normalized van der Pol equation.

In Figure 4.18 we note that the stiffness indicator is positive when t ≈ 0.42 where
the transition occurs, but otherwise negative. Interestingly all indicators peak around
this point, which suggests that even though the problem is considered stiff perhaps the
terminology should be that it is stiff at certain parts along the solution trajectory, rather
than considering the whole system as stiff.
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4.9. Van der Pol oscillator
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Figure 4.18: Indicators. Normalized van der Pol, with µ = 200.
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Chapter 4. Numerical examples

4.10 Verwer’s Pollution model

Verwer’s Pollution model is a stiff system of 20 non-linear ODEs and describes chemical
reaction between a number of compounds. The solutions are shown in Figure 4.19.
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Figure 4.19: Solutions to Verwer’s Pollution model.

This is the third and final problem that exhibits the property that all indicators are
(almost) constant. Clearly, the stiffness indicator suggest that the problem is indeed
stiff, see Figure 4.20, and unlike the Van der Pol oscillator it is constantly stiff, meaning
that any attempt of using an explicit method on any part along the solutions trajectory
will be in vain.

In the two previous problems where the indicators were constant the normality indi-
cator was either 1 or −1. In this case it is constantly zero and so is the complementary
oscillation indicator ε, meaning that the imaginary parts of the eigenvalues are zero.
Although, as seen in Figure 4.19, the solutions are not what one would intuitively call
oscillatory, the directional derivative is changing and some of the solution component
have local extremas – this is where the oscillation indicator ω reveals the influence of
the skew-Hermitian part.

For this system s/τ ≈ 10 which might underestimate the stiffness, and could cause
problems with step size regulation.
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4.10. Verwer’s Pollution model
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Figure 4.20: Indicators. Verwer’s Pollution model.
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Chapter 4. Numerical examples

4.11 Airy’s equation

Airy’s equation originates from early studies in optics and is given by

ẍ− tx = 0,

which we may rewrite
dx1

dt
= x2

dx2

dt
= tx1

The solutions are shown in Figure 4.21. The problem is interesting because we may
compute the eigenvalues analytically, and thus have a good a priori knowledge of the
system. In the experiment we use x(−10) = (−0.25, 0) over t ∈ [−10, 5].
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Figure 4.21: First solution component to Airy’s equation over t ∈ [−10, 2].

The Jacobian is

A =

(
0 1
t 0

)
giving

He A =

(
0 ν

ν 0

)
and She A =

(
0 ρ

−ρ 0

)
with ν = 1

2 +
1
2 t and ρ = 1

2 −
1
2 t, giving s[A] = 0 and ω[A] = 1

2 |t− 1|.
The eigenvalues are purely imaginary for t < 0 and real for t > 0, which is seen

in complementary oscillation indicator ε, see Figure 4.20. What is more interesting
though is the transition phase −1 ≤ t ≤ 1, where the problem changes character. The
oscillation indicator is interesting to observe here since it is zero at x = 1 (instead of
x = 0 where the spectrum is degenerate). The information coming from only observing
the eigenvalues does not capture this transition phenomenon.
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4.11. Airy’s equation
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Figure 4.22: Indicators. Airy’s equation.
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4.12 Brusselator

The Brusselator models an autocatalytic, oscillating chemical reaction. In such reactions
a species acts to increase the rate of its producing reaction. The equations are given by

dx
dt

= a− (b + 1)x + ax2y

dy
dt

= bx− ax2y

where a, b > 0. The solutions approach a limit cycle, see Figure 4.23. In the experiment
we use a = 1, b = 2 with (x0, y0) = (1.5, 3) over t ∈ [0, 14].
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Figure 4.23: Phase portrait of the Brusselator for a = 1, b = 2 over t ∈ [0, 60] for some different initial
conditions.

In the initial phase, in the interval 0.4 ≤ x ≤ 0.9 the complementary oscillation
indicator is constantly zero, meaning that the eigenvalues are real-valued; however,
judging by the phase portrait and intuition, this does not mean that the problem is
non-oscillatory during this part of the solution trajectory. The oscillation indicator ω is
more robust in the sense that it does not rapidly change, since it does not depend on
the eigenvalues.

Also, the normality indicator has certain peaks, e.g. at x = 4.80 and x = 10.95
which does not seem to affect any of the other indicators nor cause any irregularities
along the solution trajectory. This indicates that non-normality is not sufficient for
oscillations nor for stiffness.
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Figure 4.24: Indicators. Brusselator.
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4.13 Pleiades problem

The Pleiades problem is a celestial mechanics problem modeling the orbits of seven
stars in the plane. The system is nonstiff and consists of 28 equations (7 bodies each one
having two spatial components and two velocity components) During the movement of
the seven bodies several quasi-collisions occur, which creates some interesting dynamics,
see Figure 4.25.
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Figure 4.25: Solution components to Pleiades problem.

The star trajectories are shown in Figure 4.26a, and a zoomed in version of a quasi-
collision in Figure 4.26b. The notable peaks in the oscillation indicators ω and ε seen in
Figure 4.27 are directly correlated to the quasi-collisions.
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Figure 4.26: (a) All star trajectories for t ∈ [0, 5], and (b) zoomed-in quasi-collisions.

It is interesting to see that the normality indicator is not constant, yet suggests that
the problem is highly non-normal. Hence maximal non-normality is not necessarily a
global property as seen in the stiff spring pendulum, but can also be a local.
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Figure 4.27: Indicators. Pleiades problem.
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4.14 Robertson

The Robertson problem, like the Brusselator, is a model of an autocatalytic reaction, but
differs since the reaction rate constants differ significantly from each other, leading to
completely different dynamics, see Figure 4.28. The equations are

dy1

dt
= −0.04y1 + 104y2y3

dy2

dt
= 0.04y1 − 104y2y3 − 3 · 107y2

2

dy3

dt
= 3 · 107y2

2

with the initial condition y0 = (1, 0, 0) over t ∈ [0, 1010].
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Figure 4.28: Solution components to Robertsons problem.

In Figure 4.29 we note that the problem gradually becomes stiffer, which is not the
case in the Brusselator. In the interval x > 105 the oscillation indicator is large although
the solution components have found an equilibrium, which is not a good property of
the indicator. This tells us that a large skew-Hermitian part does not affect a system’s
properties of reaching an equilibrium. We also note that the normality indicator is
almost constantly zero.

Note that the estimators deviate from the corresponding indicators over time,
despite κ ≈ 0 along the trajectory.
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Figure 4.29: Indicators. The Robertson problem.
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4.15 E5

The E5 problem is a chemical model for pyrolysis (thermochemical decomposition
of organic materials) where six chemical compounds react, where two reactants are
decoupled from the other (hence the dynamics for these are discarded). The system
was originally posed on a smaller interval but several interesting properties occur for
larger times, making it an interesting test problem. Also, the system is considered stiff.
Solutions are presented in Figure 4.30.
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Figure 4.30: Solution components to E5 problem.

In Figure 4.31 we note an interesting change in the system behavior around x = 104,
where all indicators except the complementary oscillation indicator ε change. This,
again, suggests that changes along the solution trajectory is not only due to the eigen-
values. The non-normality indicator is correlating well with the oscillation indicator at
this point. Note that the normality indicator increases after this point but the oscillation
indicator is lower than before.

In comparison to the previous problem, The Robertson problem, where we observed
that the estimators deviated from the indicators with time, the E5 problem exhibits the
opposite characteristics; the estimators approach the indiactors with time. Again, this
happens when κ ≈ 0.
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Figure 4.31: Indicators. E5 problem.
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4.16 HIRES

The HIRES problem originates from plant physiology and models High Irradiance
Responses (HIRES) of photomorphogenesis on the basis of phytochrome. The sys-
tem contains eight reactants leading to a stiff system of eight ODEs. The solution
components can be seen in Figure 4.32.
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Figure 4.32: Solution components to HIRES problem.

As in the Robertson problem the eigenvalues are real-valued except in the initial
phase, 0 < t < 0.1, but again the skew-Hermitian part and the non-normality have
a big impact on the solution trajectory. Note that the skew-Hermitian part becomes
larger, but the normality indicator remains constant for t & 1.
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Figure 4.33: Indicators. HIRES problem.
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Chapter 5

Discussion

5.1 Theory and numerical experiments

The numerical experiments show that lots of interesting dynamics, that are intuitively
related to oscillations, may be observed without the eigenvalues having a large imagi-
nary part, and that the eigenvalues alone give a poor understanding of these dynamics.
In fact, the imaginary parts can be constantly zero, as in the Oregonator, Verwer’s
Pollution model, the Robertson problem and HIRES.

The correlation between the oscillation indicators ω and ε is good when the problem
is normal; however, as the system becomes non-normal, or the change in normality is
large, the correlation weakens. In such cases the oscillation indicator ω and the nor-
mality indicator are better correlated. Also, there are cases, e.g. the double pendulum,
were all three correlate well.

Non-normality is not a sufficient condition for stiffness nor oscillations, as seen in
Lotka-Volterra, the stiff spring pendulum and Airy’s problem; however, it is prevalent
in many cases such as the Oregonator and the Van der Pol oscillator. Furthermore, max-
imal non-normality can be a local phenomenon as well as a global phenomenon. The
stiff spring pendulum is an example where it is global, whereas the double pendulum,
the Oregonator, the Van der Pol oscillator and Pleiades problem are examples where it
is only local.

The theory developed in Section 3.3 about the estimators did not give any strict
bounds relating s and τ or ω and χ; however, special cases were treated, that suggested
that they, most likely, would be in the same magnitude. The numerical experiments
verify this, at least for practical problems as in Chapter 4, which is the target group of
the indicators. The only exception is Verwer’s Polltuion model, where τ underestimated
s by a factor of ten.

It is interesting to notice that for |κ| . 1
2 the estimators correlate well with the

corresponding indicators, and deviate otherwise, as seen in the Duffing oscillatior;
however, this is not a sufficient conditions, since there are cases where κ ≈ 0 such
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as the Robertson problem, the E5 problem and HIRES, where the distance between
them grows (or shrinks) with time. Furthermore, many systems have the property
κ = 0, locally, or even globally, along the solution trajectory. We discuss this in property
further in Appendix A.

5.2 Stiffness and oscillations: A rigorous definition?

We have sought to extend the analysis of the stiffness indicator by looking at the skew-
Hermitian part of a matrix A, instead of the Hermitian part. Indeed the oscillation
indicator ω has some interesting properties; however, the question remains whether
or not it actually measures oscillations. It is clear that the complementary oscillation
indicator, based on the eigenvalues of A, is insufficient, and in many of the cases where
it does not provide sufficient information the oscillation indicator does. For non-normal
problems this is clear since ε is smaller, sometimes much smaller, than ω. There are also
problems, such as Verwer’s Pollution model, where ω is very large and ε = 0 along
most of the solution trajectory. Judging by the solution components, is this problem
really oscillatory? Perhaps not. But this leads us to a second interesting question:
Are stiffness and oscillations two independent phenomena? The answer is no. Surely
one can have a nonstiff highly oscillatory system, such as the stiff spring pendulum;
however, judging by the analyses in this thesis, it is hard (impossible?) to construct a
problem having the opposite characteristics, i.e. in non-normal systems stiffness comes
oscillations, at least in the sense oscillations are defined here. Perhaps one may want to
discuss quantities such as ω/s for systems (where s 6= 0) to quantify the conceptual,
“visual” properties of oscillations.

5.3 Alternative definitions

Can one make an analogous definition of oscillations using the pseudospectrum instead?
From Section 2.3.3 we know that there are many similarities between using the stiffness
indicator and a pseudospectral method to characterize stiffness; however, it is not clear
how the skew-Hermitian part translates into the latter framework. Since both methods
are norm dependent, and the psuedospectrum for non-normal matrices (and operators)
have nice properties, which could translate into a similar behaviour as the normality
indicator, it is feasible that a similar approach can be made using this methodology. It
is important to keep in mind that pseudospectra are computationally expensive and
such methods probably would not be efficient for practical use, whereas the proposed
estimators arise naturally in the framework of this thesis.
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5.4 On the estimators

The estimators correlate very well with the corresponding indicators in the sense that
they are always in the same magnitude in the test problems, with the exception of
Verwer’s Pollution model, where τ is off by a factor 10. Since τ is a lot cheaper to
compute than s it is a strong candidate for a step size regulator. For the same reason it
is unclear whether χ is a good regulator, since it is in the same order, O(n3), as ω.

In Lorenz equations and Chen’s equation we saw that the estimator has a smoothing
effect – they are constant when the corresponding indicators are not. Such an effect,
although not constant, can be seen in the double pendulum as well. This is a nice
feature for a step size regulator; however, in the stiff spring pendulum χ varied when
ω did not, suggesting that it could cause the opposite effect. Step size regulation;
however, is usually desired in stiff problems, and the stiffness estimator did not show
such behavior – this is perhaps only a property of the oscillation estimator.
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Chapter 6

Conclusions & future work

6.1 Conclusions

The aim of this thesis has been to establish a mathematically rigorous formalism
for stiffness and oscillation, which can be applied to general systems of ordinary
differential equations. Chapter 1 provided motivation of the topic, and in Chapter 2
the essential theory was presented. In Chapter 3 an overview of previous attempts was
given, followed by the proposed indicators; the properties and the motivation behind
them were thoroughly investigated analytically. The benefits and shortcomings of the
indicators were evaluated in detail in Chapter 4, where they were tested on well-known
problems. The overall discussion was presented in Chapter 5.

The key contribution of this thesis is the development of a typology for the classifi-
cation of initial value problems. Furthermore, we problematize the commonly known
concept of oscillations, and discuss the complexity of the terminology. We propose a
rigorous mathematical definition that captures most of the phenomena known as oscil-
lations. Analogously, a normality indicator is derived. The interactions and correlations
between stiffness, oscillation and normality are discussed.

Lastly, we propose two estimators that replicate the behavior of the stiffness indicator
and the oscillation indicator. Such estimators could be implemented to support step
size regulators, which is of interest in many applications, e.g. stiff problems.

6.2 Future work

The typology proposed in this thesis is a strong fundament for future work. A natural
step, after working with matrices, is to extend the theory to operators. A benefit of
working with pseudospectral methods is that such extensions already exist, and is
a current research topic. The transition between the finite dimensional case and the
infinite dimensional case is straight-forward; however, as discussed in Section 2.3.3
psuedospectra do not always determine norm behavior accurately. Since stiffness and
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oscillations depend on the topology induced by the norm, one might be better off
avoiding these pseudospectal methods in characterizing these phenomena.

One of the benefits of working with the spectral norm, as in this thesis, is that it
is a natural next step to extend to Hilbert spaces, which have nice properties. Such a
transition to infinite dimensional cases is perhaps not as straight-forward as in working
with psuedospectra. Note, also that some of the theorems involving upper and lower
bounds rely on constants involving the dimension n, which will not hold in the infinite
dimensional case.

Lastly, it would be of interest to investigate further applications, not restricting the
theory to step size control, nor ODEs. Consider, e.g. the convection-diffusion equation
ut = uxx + ux, discretized in space using symmetric FDM. We then obtain the MOL
ODE u̇ = (T∆x + S∆x)u, where the symmetric Toeplitz matrix T∆x is negative definite,
and the Toeplitz matrix S∆x is skew-symmetric. Hence

He(T∆x + S∆x) = T∆x and i She(T∆x + S∆x) = S∆x,

suggesting that applications can be found in splitting methods of PDEs.
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[17] G. Söderlind, L. Jay, and M. Calvo. Stiffness 1952–2012: Sixty years in search of a
definition., 2014.

[18] L. N. Trefethen. Pseudospectra of Linear Operators. SIAM Review, (3):383, 1997.

[19] T. Ueta and G. Chen. Bifurcation analysis of Chen’s equation. International Journal
of Bifurcation and Chaos in Applied Sciences and Engineering, 10(8):1917–1931, 2000.

[20] H. Wolkowicz and G. Styan. Bounds for eigenvalues using traces. Linear Algebra
and Its Applications, 29(C):471–506, 1980.

66



Appendix A

On matrices with κ = 0

How come so many systems have κ[A] = 0. What does it mean?

κa[A] = κn[A] ⇒ ‖A∗A + AA∗‖2 − ‖A∗A− AA∗‖2 = ‖A∗A‖2.

Note that if A is normal then A = 0 (but then κ[A] is not defined). By randomly
generating matrices one easily finds this property among matrices having det A = 0,
e.g.

A =

(
1 1
0 0

)
, κ[A] = 0,

but after further study this is neither necessary nor sufficient. Consider, e.g.

A =

−2 2 0
0 0 4
−2 −2 0

 ,

where det A = −32, also having this property. Note that the structure of A is quite
special. It has both rows and column mutually orthogonal, so both A∗A and AA∗ are
diagonal. This is however, not the case for all matrices. In the 4× 4 case

A1 =


0 −1 1 1
1 0 1 0
−1 −1 0 0
0 1 1 0

 and A2 =


1 0 1 1
0 −1 −1 0
−1 1 0 1
−1 0 1 −1

 ,

has the properties κ[Ai] = 0, det A1 = 2, det A2 = 4 but with A∗i Ai and Ai A∗i non-
diagonal. To investigate this phenomenon further we make the following definition:

Definition A.1. Consider the class of matrices

AK = {A ∈ Cn×n; κ[A] = 0} .

If A ∈ AK we say that A is semi-normal.
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We immediately get the following basic property:

Lemma A.1. If A ∈ AK, then λA ∈ AK, for every nonzero λ ∈ C.

Proof. Follows directly from the properties of the normality indicator.

It is not in the scope of this thesis to explore the properties of the elements in AK;
however, we show some basic results for rank 1 matrices, inspired by the previous
observations.

Theorem A.1. If A is a rank 1 matrix, A = u⊗ v, with ‖u‖2 = ‖v‖2 = 1 and |〈u, v〉|=1/
√

2
then A ∈ AK.

Proof. Consider A = u⊗ v, where u, v ∈ Cn are nonzero vectors, such that ‖u‖2 =

‖v‖2 = 1 (otherwise we normalize them, as in Lemma A.1). If u ‖ v the matrix A would
be normal, and by Theorem 3.5 it follows that κ[A] = −1, hence A /∈ AK. Furthermore,

A∗ = v⊗ u, AA∗ = u⊗ u, A∗A = v⊗ v,

hence A∗Au = u, A∗Av = v, A∗Au = 〈v, u〉u and AA∗v = 〈u, v〉v. Let λ > 0 be an
eigenvalue of 2 No A and x = αu + βv corresponding eigenvector, then

2 No Ax = λx ⇔ [u⊗ u + v⊗ v](αu + βv) = λ(αu + βv),

giving
α + β〈u, v〉 − λα = 0 and α〈u, v〉+ β− λβ = 0,

since u and v are linearly independent. For α 6= 0 or β 6= 0 we deduce that
λ = 1± |〈u, v〉| and ‖No A‖2 = 1 + |〈u, v〉|. Similarly, ‖Ano A‖2 =

√
1− |〈u, v〉|2

and
κ[A] = 0 ⇔ 1 = 1 + |〈u, v〉| −

√
1− |〈u, v〉|2,

giving |〈u, v〉| = 1/
√

2.

Theorem A.2. If A ∈ AK and is of rank 1, with ‖u‖2 = ‖v‖2 = 1 and |〈u, v〉| = 1/
√

2
then A⊕ B ∈ AK if ‖B‖2 ≤ 1, ‖No A‖2 ≤ (2 +

√
2)/4 and ‖Ano A‖2 ≤

√
2/4.

Proof. Properties of direct sum.

From Theorem A.2 we may generate as large matrices as we wish in AK, and it
explains the special structure observed in some of the matrices; however, far from all
matrices, have this property. We conclude this section with the following open problem.

Problem A.1. Determine necessary and sufficient conditions for a matrix A ∈ AK.
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