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Abstract

This masters thesis presents a new approach to enable complex illumination
and shadowing for transparent objects such as glass or smoke. This is achieved
by combining two algorithms which are intended to run in a real-time envi-
ronment commonly found in modern computer games. The first algorithm is
called "Light Linked List", it solves the problem of illuminating transparent
objects and was recently presented at the SIGGRAPH2014 conference. The
second algorithm is used for shadow calculations and is a new take on the
"Deep Shadow Maps" technique. Both algorithms use linked lists to a high
degree. The lists are constructed on the GPU by taking advantage of recent
hardware improvements and updates to the OpenGL API. By using these two
algorithms together, we enable illumination and shadow casting of transparent
object with a performance that allows for real-time frame rates.
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Chapter 1
Introduction

Demands on modern real-time rendering is always increasing. One of the big challenges
is calculating which parts of a scene is illuminated and the shadows that are created as a
result. The commonly used methods today do not allow for object with transparency to be
correctly lit. Another missing feature is having part of the light pass through transparent
objects when they are illuminated. These technical limitations make todays algorithms
produce unsatisfactory illumination and shadows for objects such as glass or thin fabric.
Having these capabilities would also be advantageous when rendering volumetric objects
such as clouds or smoke, because light propagation and self shadowing is an important
factor in producing a credible image for these types of objects.

This thesis investigates the usage of an older algorithm proposed for offline rendering
called "Deep Shadow Maps". This technique would provide us with the means to attain
the light attenuation at any distance from a light source. This will also make it possible to
color a light by the medium it is passing through. In addition, a newly proposed technique
called "Light Linked Lists" is studied. This algorithm will make it possible to determine
which lights are affecting any visible point in the scene.

With this chapter we will first introduce the reader to the background of light and
shadow calculation. Then we will move on related work which either lays the foundation,
or is otherwise relevant, to the work in this thesis.
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1. Introduction

1.1 Background
1.1.1 OpenGL
OpenGL is anAPI for interactionwith the graphics cardmanaged by the non-profit Khronos
Group. It provides a graphical pipeline to render images on a computer. With version 4.3,
"Shader Storage Buffer Object" was introduced [12]. This made it possible to allocate
memory on the GPU which could be read and written from the graphic card. Having this
capability is an important part for the algorithms investigated in this project since it allows
for a more general purpose computing approach to the necessary calculations.

OpenGL also includes the specifications for the programming language GLSL. It has
a C like syntax and is used to write shader programs that are executed on the GPU. Sim-
plified, a shader program, or a shader for short, computes the samples in a render pass.
Thus they are normally used to determine the color of the pixels on the screen. Different
geometries or objects in a scene can have different shader assigned to them. This makes it
possible to create specific visual properties for different materials.

1.1.2 Render Pipeline

Vertex Shader

Geometry Shader

Rasterizer

Fragment Shader

Frame Buffer

Figure 1.1: An example of the render pipeline.

An illustration of the render pipeline can be seen in figure 1.1. In each frame the pipeline
takes the triangle representing the scene. The converts the triangles into pixels and finally
determines a color for the pixels [1].
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1.1 Background

The vertex shader handles the processing of the individual vertices for all the triangles
given to theGPU. It is used to transform the 3D position of the vertex into the 2D coordinate
it should have on the screen. The vertex shader is programmable and can modify things
such as position, texture coordinates and colors.

The geometry shader is an optional step in the pipeline. It can be used to create new,
more complex geometries. One typical use is to remove the flatness of rough surfaces. This
is done by dividing the triangle mesh into a finer grid, and then applying small offsets to
the new vertices.

In the rasterizer phase, the triangles are converted into pixels. It determines which
triangles covers each pixel. The result for each pixel and triangle intersection is called a
fragment. So the input to the rasterizer is triangles and the output is fragments. This phase
is not programmable.

The fragment shader handles the fragments produced by the rasterizer. It is mainly
used to output a color corresponding to each fragment. The fragment shader can write
output to several buffers and the data do not necessarily have to represent a color. This
is the stage where the bulk of the algorithms for this thesis is implemented. Where we
instead of creating a color output for the next phase in the pipeline, construct linked lists
to save in the GPUs memory.

With the frame buffer all the fragments are put together to create the final color of
the pixels. When fragments are located in the same pixel they can be blended together or
discarded based on the distance to the camera. The result can either be sent to the monitor
or be saved in memory. As the rasterization, this phase is not programmable.

1.1.3 Render Passes
An important part of todays light and shadow calculations is using extra render passes. A
render pass samples the scene, from the point of view of a virtual camera, and produces
an image. This image is usually the picture displayed to the end user on the screen. When
preforming the light and shadow calculation the render pass is instead used to collect data
that can be used later. Instead of displaying the image on the screen it is sent to be saved
in the RAM. The pixels in the images can be used to store different types of data. For
example, this can be the distance to the camera or the normal of the surface visible in
that pixel.[3] This data can then be used in other calculations, such as using the normal to
determine how light is reflected off a surface.

The render pass runs on the GPU and each sample of the scene is executed in a separate
thread. This effectively takes advantage of the parallel computing power of the GPU and
is the main reason for it being a popular technique in graphics. However this also puts
some restrictions on what algorithms can effectively do in extra render passes. It needs to
be possible to split the computation into a large amount of threads without introducing to
much overhead. Therefore some general computing algorithms is unsuited to run on the
GPU.

Both the algorithms investigated in this thesis use extra render passes to collect data
in the scene. But instead of producing an image, the result is stored on the memory of the
graphics card. Because of this the result can be stored in other forms than images, which
we take advantage of.
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1. Introduction

1.1.4 Deferred Shading
Deferred shading and its cousin deferred lighting are very common techniques in modern
computer games. They use extra render passes to collect information about the scene
before performing the illumination of the final image. [10] Since the result of the render
pass is represented as an image, the algorithms are unsuited to handle transparent objects.
Each "pixel" can only store information about one visible surface. In the case of transparent
objects, we have several visible surfaces and therefore the scene can not be accurately
represented by the flat data structure of the image. This master thesis can be seen as a way
to work around this by allowing such information to effectively be separated by depth from
the camera.

1.1.5 Shadow Mapping
Shadow mapping was introduced as early as 1978 [13]. It is a technique where a render
pass is performed from a light sources point of view. The result of the render pass is
stored as a texture where each pixel contains a depth value, effectively giving the distance
form the light to the parts of the scene being illuminated. This texture is called a shadow
map and can later be used to do a shadow lookup which determine whether a point in the
scene is in the shadow of another object. There are many advantages with using shadow
mapping. First of all it is fast as it effectively uses the GPUwith a render pass. Another big
advantage is that the result of the shadow lookup can be considered a picture, this enables
the application of different image processing algorithms. For example, it is popular to use
blur in order to create a softer edge on the resulting shadow [4].

(a) (b)

Figure 1.2: (a) A cubic structure. (b) Depth map corresponding
to the cubic structure. Points further away appears lighter.

Source: Wikipedia page for depth map.

Figure 1.2 is a example of a depth map. The distance between the scene and the camera
is stored as a gray scale value where points further away has a lighter color.
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1.1 Background

There are some inherent problems with shadow mapping. Many of the problems can
be attributed to the resolution of the shadow map. A resolution that is to low can result
in visual artifacts. While a higher resolution produces a better image, the computational
cost is often to high. One common problem is artifacts caused by a surface shadowing
itself. This can be worked around by applying a small offset when checking if a surface
is in shadow or not. With this offset the surface is calculated as being closer to the light
source and is therefore less likely to be in shadow. However the size of the offset is scene
dependent which means it has to be adjusted on a case-by-case basis.

1.1.6 Game Engine
For game logic and scene handling a Java based game engine called JMonkeyEngine[5]
was chosen. This choice was made primarily because of previous experience with the
engine which speeds up the implementation of function not directly related to the two
algorithms investigated in this project. The other reason was that it was an easy way to get
portability for the purpose of testing on different platforms.

A game engine sets up a platform for a lot of underlying features required for an in-
teractive 3D environment. One important part is the scene graph. It handles the location,
rotation and scale of all the objects placed in the scene. The JMonkeyEngine also acts as
a layer in between the OpenGL API and the game code. However, it does not support the
features from OpenGL 4.3 that was required for this project. In order to solve this we had,
too some extent, work around this layer in order to take advantage of the lower level APIs.

Overall we consider the choice of game engine to be a good one as it provided a solid
platform to build on and made portability between different operating systems easy.
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1. Introduction

1.2 Related Work
There are many algorithms that do illumination and shadow calculations but there are few
that aim to solve this for transparent objects. In this chapter we give a brief description of
previous work that are relevant to this thesis.

1.2.1 Clustered Deferred and Forward Shading
Algorithm similar to the Light Linked List in that it preprocesses the lights and supplies
information about what parts of the scene, in relation to the screen, is illuminated [8]. It
is not aimed at handling transparent objects but is focused on performance and handling
many light sources. The algorithm considers a 3 dimensional grid inside the camera frus-
tum where the tiles are called clusters. Each cluster is paired with a list of relevant lights.
The strength of the algorithm is that the structure is divided by depth from the camera along
with the screen position. This makes the performance less view dependent and makes it
possible to process an impressive number of lights.

Figure 1.3: Example of a camera frustum.
Source: Wikipedia page for viewing frustum.

Figure 1.3 shows an example of a camera frustum. Everything inside the box is con-
sidered visible. Geometries outside of the frustum is ignored when a render is performed
and will therefore not show in the result. This also gives the camera a limited view range
and objects far away will not be visible.
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1.2 Related Work

1.2.2 Real-Time Concurrent Linked List Construc-
tion on the GPU

This is a paper that presents an algorithm which achieves order independent transparency
[14]. While this technique does not target light and shadow calculations and is outside
the scope of this project, it does provide a thorough explanation of implementing linked
lists on the GPU. Linked list is used extensively in constructing both the light volumes and
deep shadow maps ands is an integral part of this thesis.

The linked list data structure on the GPU consists of three parts. The first part is a
buffer containing the elements of all lists which we call the element buffer. Second part
is the index buffer which contains pointers to the first element in each list. The pointers
position within the buffer corresponds to a set of pixels on the screen. The third and final
part is a counter for the total amount of stored elements over all the lists. When a list is
empty the pointer in the index buffer has the value negative one.

-1 -1 -1 -1 -1
-1 0 -1 -1 -1

-1 -1 -1 -1 5
-1 -1 -1 -1 -1
-1 -1 -1 3 -1

Index Buffer Element Buffer

-1 -1 -1 -1 -1
-1 0 -1 -1 -1

-1 -1 -1 -1 5
-1 -1 -1 -1 -1
-1 -1 -1 3 -1

-1 -1 -1 -1 -1
-1 0 -1 -1 -1

-1 -1 -1 -1 5
-1 -1 -1 -1 -1
-1 -1 -1 3 -1

(a)

(b)

(c)

Counter: 6

Counter: 6

Counter: 6

Figure 1.4: Example of three linked lists and how they are stored
in the buffers.

In figure 1.4 we have an example of the linked list structure for the GPU. The first list
is marked red and is trailed in example (a). The pointer to the first element in the first list
is stored in the index buffer at coordinate (1,4) and point to position zero in the element
buffer. Example (b) trails a second list marked in green. This example demonstrates how
elements in a list do not have to be stored consecutively in the element buffer. The third and
final list is marked yellow and shows that the order of the elements in a list is independent
of the order they are stored in the element buffer. For this example the element counter
would have the value six.
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1. Introduction

When entering an element into a list the index of the first element in the list have to be
determined. This is done by doing a lookup in the index buffer where the screens x- and
y- coordinates are used to select the position in the index buffer. This gives a pointer to the
first element in the list. Then an atomic operation is performed on the counter that reads
the current value and increments by one. The returned value is the position in which the
entered element will be written to in the element buffer. After that the correct position in
the list is determined and address pointers are adjusted so the new element is part of the
list.

-1 -1 -1 -1 -1
-1 0 -1 -1 -1

-1 -1 -1 -1 5
-1 -1 -1 -1 -1
-1 -1 -1 3 -1

Counter: 7

Figure 1.5: Example of an element insertion.

In figure 1.5 a new element have been inserted into the first list from the examples in
figure 1.4. The new element is stored at position six in the element buffer. This position
was determined from the counter variable. Our new element is located between the two
previous elements in the linked list and the pointer are adjusted accordingly. The counter
is incremented to seven to account for the new element.

1.2.3 Real-Time Lighting via Light Linked List
The "Light Linked List" algorithmwas first presented byAbdul Bezrati at the SIGGRAPH-
2014 conference and no technical paper have been released that go into detail of an im-
plementation. This technique is the foundation of the light calculations used in this thesis.
The presentation shows that it is possible to illuminate transparent objects using buffers
containing linked lists on the GPU [2]. Each linked list represents an area of the screen and
the elements in the list contains information that identifies a light source and two depth val-
ues representing distances to the camera. Together the two depth values creates a volume
of light and if a point in the scene is located between these depth values it is illuminated
by the identified light source.

Since these "light volumes" are constructed based on the pixels on the screen, the
algorithm is bounded to screen space. This means that any parts of the scene outside of
the camera frustum, that are affected by a light, will not be taken into account. Effectively
this avoids unnecessary calculation that would not yield any visible result on the screen.

The presentation also show it is not necessary to have a linked list for each screen pixel,
instead the buffers can be constructed with a virtual resolution a fraction the size of the
images rendered to the screen. This saves a lot of memory usage and calculation time and
the performance results shows that there is no problem running the algorithm in real-time.
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1.2 Related Work

1.2.4 Deep Shadow Maps
Introduces a technique for rendering with deep shadow maps [6] and is the foundation for
the deep shadow map algorithm implementer in this master thesis. The algorithm is made
for offline rendering and is therefore not directly applicable to the goals of this project.
The paper presents the idea that instead of storing a single depth value in each pixel of a
shadowmap, it is possible to store a visibility function that approximates howmuch light is
passed through to any possible depth from the light source. This allows light to propagate
through materials and enables features such as self-shadowing for clouds, smoke and high
detailed geometries like hair or fur. The visibility function can be described as points along
the z-axis of the camera. Each point represents the light attenuation at the corresponding
depth.

The visibility function is calculated by taking several samples per pixel in the shadow
map. Each sample measures how much the light drops off at different depths from the
camera. An average of all the samples in a pixel is determined and the result is called a
transmittance function. The transmittance function for surfaces and volumetric objects are
calculated in separate steps and then joined together. The resulting function is compressed
to save memory and the visibility function of the pixel is complete.

1.2.5 Deep Shadow Maps from Volumetric Data on
the GPU

This paper investigates deep shadow maps with a real-time render technique[11]. It has
many similarities to the objective of this thesis but has a more narrow scope which focuses
on volumetric objects. The paper discusses how to sample a volumetric object that is
represented as a 3D texture and how to use the acquired data to construct a deep shadow
map. The deep shadow map is represented as a normal texture where the RGB color
channels corresponds to the depths from the light source at which the light is decreased by
10%, 50% and 90%. When preforming a shadow lookup the lights opacity is determined
by linearly interpolating between two of the three values depending on the distance to the
light source. So if a point is in the middle of the 50% and 90% depths, the drop in light
intensity will be calculated to 70%.

1.2.6 Ray tracing
Ray tracing is an alternative method of rendering for computer graphics. Rays are sent
from the camera and bounce around the scene in order to determine howmuch light reaches
the camera [9]. This technique is a more accurate simulation of the real world and it does
solve the problem of handling transparent objects. So from that point of view it is an
alternative to the algorithms investigated in this thesis. However, ray tracing is in general
not used in real time graphics. The reason for this is that it is to calculation heavy. There
is much research being done to make ray tracing more effective and with future hardware
it could be a viable option even in real time applications.
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1. Introduction
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Chapter 2
Algorithm

In this chapter we will go through the details of the "Light Linked List" and "Deep Shadow
Mapping" algorithms implemented in this thesis. But first we will give a short explanation
of the general system.

The system supports three different types of light, directional, spot- and cone-light.
Volumetric objects are represented as 3D textures contained within a cube. Two different
types of volumetric objects are implemented. The first is fully homogeneous and mainly
used for testing purposes. The other is a procedurally generated smoke column.

17



2. Algorithm

2.1 Light Linked List
In the implementation of the "Light Linked List" algorithm each light source is represented
by a geometrical shape called the light geometry. For example, this light geometry can have
the shape of a cone or a sphere. The light emanating from a point will be contained within
this geometry.

We construct linked lists as explained in 1.2.2, where each list covers a set of pixels
on the screen. An element in the lists represent a light affecting that part of the screen.
Each element contains two depth values called the front and back depth. These values are
determined by the front- and back-face of the light geometry. It is therefore important the
lights geometry is of the nature that for any possible line passing through, it will always
intersect two faces and two faces only.

(a) (b) (c) (d)

(L1) (L2)

Figure 2.1: Example scene with two lights. (a, c) Front-faces of
the light geometries. (b, d) Back-faces of the light geometries.

When determining whether a point in the scene is illuminated by a light, we can com-
pare the distance between the point and the camera to the distances for the front- and
back-face of the light. Figure 2.1 shows an example scene with two lights. Note that the
illustration is simplified in order to be represented in two dimensions.

The required amount of memory for this algorithm is scene and view dependent which
means it can be hard to predict. The worst case scenario is if every light geometry in
the scene is covering the whole screen. However this is unlikely to happen in a practical
scenario so allocating less memory than the worst case scenario is a good idea. In this
implementation the lists covers 16 pixels on the screen and each element is 16 byte. In
the case of 100 light in the scene and a screen resolution of 1920x1080, the worst case
scenario would have a required memory space of approximately 207MB.

In each frame before the construction starts, the element counter is reset to zero and all
the values in the index buffer are set to negative one which effectively makes all the linked
lists empty.

18



2.1 Light Linked List

2.1.1 Constructing the Light Linked List
When the linked lists are constructed, the lights are processed one by one. Each light re-
quires two render passes where the only geometry being rendered is the shape representing
the light. Because we only render one geometry in each render pass along with the practi-
cal resolution being a fraction of the actual screen resolution, these two render passes can
be performed at a low computational cost.

The first render pass calculates the depth to the face closest to the camera. This is the
front depth. The information is saved for the second render pass where the depth to the
face furthest away from the camera, the back depth, is determined. If the front depth is
larger then the back depth the camera is within the light geometry and the front depth is set
to zero. Continuing with the second render pass the two depth values are entered, together
with a reference to the currently processed light source, into a light element. This element
is inserted into the light linked list as specified in 1.2.2. When the element is inserted the
position is chosen so that the list is sorted based on the front depth in ascending order,
i.e. the closest light will be first in the list. After all the lights have been processed in this
manner the light linked list is complete and can be used in any following render passes.

2.1.2 Using the Light Linked list
To determine which lights are illuminating a specific point in the scene, a light lookup is
performed. We use the fragments x- and y-coordinates of the point to obtain a pointer to
the first element in the list via the index buffer. The algorithm loops through the list and
compares the depth value of the fragment to the front and back depth. If the depth from
the camera to the point is between the two values, it is affected by the light corresponding
to the current element. When the algorithm reaches the end of the list or if the fragment
depth is smaller than the front depth, all the lights that could affect the fragment have been
tested and the light lookup is done. The color of the fragment can be adjusted according
to which light are affecting it.

Light = L1
Front-depth = da
Back-depth = db

Light = L2
Front-depth = dc
Back-depth = dd

Figure 2.2: An example of linked list in one pixel for the camera
in figure 2.1. dx = distance to face x.

In the example of figure 2.1, a pixel would contain a linked list with two elements.
An example of such a list is illustrated in figure 2.2. If we want to find out if a point is
illuminated by light one, we would first find the correct list and loop through it until we
find element corresponding to L1. Then we compare the distance to the point with da and
db. If the point is between those values we know it is illuminated by the light.
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2. Algorithm

2.2 Deep shadow maps
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Figure 2.3: Example of light attenuation through different ob-
jects. The first object in front of the camera represents a translu-
cent surface. The second a volumetric object. The third an opaque
surface.

A deep shadow map is used to represent a drop in light intensity at any possible distance
from a light source. Figure 2.3 show an example of this, where the light passes through
a transparent surface, a volumetric object and finally an opaque object object. The graph
shows how the light intensity drops for the different objects. This is calculated for each
"pixel" in our shadow map which stores a linked list. Each element in the linked list
corresponds to a drop in light intensity. The example in figure 2.3 would result in a linked
list with three elements.

The implementation of deep shadow mapping in this thesis is conceptually based on
the algorithm introduced in 1.2.4, however they are technically very different. In order to
achieve real-time rendering performance, we opted to not use supersampling when con-
structing the deep shadow map. The supersampling was mainly aimed at creating good
shadows for high detail geometries like hair or fur, however such geometries are rare in
real-time environments because of their high computational cost. Another thing that we
cut in our implementation was the compression step. Once again we rely on the fact that a
real-time environment is less complex and will have fewer points along the camera depth
where the light is attenuated. We take advantage of the fact that we can specify different
shader programs on a per object basis. This means we don’t have to calculate surfaces and
volumetric objects in different steps.
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2.2 Deep shadow maps
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Figure 2.4: (a) Visibility function from the original deep shadow
map algorithm. A drop in light intensity is represented with two
nodes. (b) Visibility function implemented in this thesis. A drop
in light intensity is represented with only one node.

Our implementation also use a more memory efficient way to represent the light at-
tenuation along the camera depth. Instead of having each node in the visibility function
of 1.2.4 represent a fixed light attenuation, we have each node represent a drop in light
intensity. This way the amount of points required is effectively halved. Figure 2.4 shows
a visual example of this. As each node is represented as an element in a linked list, the
number of nodes has a direct correlation with the required amount of memory.

As with the "Light Linked List" algorithm, predicting the required amount of memory
can be a hard task. Even more so with deep shadow mapping as the length of the linked
lists will also depend on the complexity of objects in the scene. Naturally themore surfaces
light passes through the longer the linked lists will be.

The deep shadow map algorithm has many things in common with a regular shadow
map. This brings along the inherent problems with the shadow map. Problems that are
resolution dependent could even be considered more severe for the deep shadowmap since
the computational cost for each pixel is higher. However this means that many of the image
processing techniques used along with shadow mapping also applies to the deep shadow
map algorithm.

In our implementation, the deep shadow map algorithm is performed with one render
pass for each light, where all the shadow casting geometries in the scene are rendered.
Each rendered object can have its own shader program for construction of the deep shadow
map. This makes a flexible system where objects with specific materials can have different
effects on the resulting shadow.
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2. Algorithm

2.2.1 Constructing the Deep Shadow Map
First the screen x- and y-coordinates are used to determine the position in the index buffer.
When we have access to a list, the current depth of the shadow casting surface is used to
find the correct position in the list. Each list is sorted in ascending order by depth. If the
new element is located behind another element with zero light pass through, we do not
have to insert it. With the position determined, our new element is created and entered
into the list. The drop in light intensity contained in the new element is determined by the
shader program assigned to the object casting the shadow.

Each element consists of a depth value, a range value, three separate values represent-
ing the light pass through for each of the RGB channels and finally there are 8 bits that can
be used as flags. The range value is used when it is a volumetric object casting a shadow
which lacks a single depth position where the light is decreased. This makes it possible to
represent light attenuation trough the volumetric object with only one element in a linked
list. Using only one element is quite a coarse approximation. For some highly detailed vol-
umetric objects it might be desirable to have a more accurate approximation. This should
be quite easy be achieve by using more elements to represent the light attenuation inside
the volumetric object. However, this was not implemented because of time constraints and
that it would be hard to test accurately.
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Figure 2.5: Example of light attenuation where the closest object
to the camera is opaque.

When constructing the deep shadow map, there is no guarantee of the order in which
surfaces will be processed. In the case where we have an opaque surface in front of other
surfaces, we would ideally avoid handling the blocked surfaces. Figure 2.5 is an example
of this scenario. If the first surface we handle is the one closest to the camera, there is
no problem since we can abort an insertion once we know an element is behind another
element with zero light pass through.

However, if the first processed surface is behind the closest one, we will enter it into the
linked list unnecessarily. When we process the closest surface, the elements behind it in
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2.2 Deep shadow maps

the linked list will be removed from the list but still be in memory. In figure 2.5 the worst
case would be that we process all three surfaces. This would mean we perform three times
as many memory operations and take up three times as much space as we actually need.
This is of course unfortunate from a performance point of view, it also is a big reason for
why predicting the required amount of memory is hard.

2.2.2 Concurrency
There are some scenarios where we run into concurrency issues that has to be addressed. If
an object is shaped so it can cast a shadow on itself, we might try to enter several elements
into the same list at the same time. This can corrupt some pointers, which means we lose
elements from the list. To avoid write collisions in the linked list we implemented a spin
lock system. The pointer stored in the index buffer is also used as a lock value. When a
thread wants to access a list, it needs to read the pointer from the index buffer. Instead
of simply reading the value, the thread replaces it with a value that indicates the list it is
locked. If another thread wants to access the list, it has to wait for the first thread to finish.
The replacement of the value in the index buffer is done with an atomic operation to avoid
write collisions on the pointer.

By doing this we can lock each list separately. If no collision occurs we have not
introduced much overhead since we replaced a read with an atomic swap operation. In a
practical scenario, write collisions should be fairly rare and therefore the performance cost
of dealing with them should not be to severe.

2.2.3 Using the Deep Shadow Map
The deep shadow map is constructed and a shadow lookup can be performed. For each
light affecting the current fragment, the position in the shadow map is determined and the
list is traversed until the fragments depth value has been reached. The light pass through
value for each traversed element is multiplied together to find the final light attenuation.
If the range value is not set to zero the light pass through is linearly interpolated based on
the range to determine the actual light attenuation.

Depth = 0.1
Light Drop= a1

Depth = 0.3
Light Drop= a2

Depth = 0.5
Light Drop= a3

Depth = 0.7
Light Drop= a4

Depth = 0.9
Light Drop= a5

Figure 2.6: An example of linked list in one pixel for the shadow
camera.

Figure 2.6 illustrates a linked list stored in a pixel of the deep shadow map. Say we
want to find the light intensity of a point located at a distance of 0.6 from the camera. The
first thing we do is find the correct list. Lets say this list is represented by figure 2.6. Then
we would loop through the list to the third element. As we loop through our list, the light
intensity at the point would then be calculated as L × a1 × a2 × a3, where L is the light
emanating from our light source.
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2. Algorithm

2.2.4 Flags
The flags in the shadow elements are mainly a by-product of 32-bit blocks, there where
simply some bits left over. How they are used is up to the shader programs used in the
scene. We have implemented two use cases for them. The first is that an object can use
the flags to identify a shadow cast from itself, which makes it possible to turn off self
shadowing for objects where this is desirable. This is done by setting the flags to a unique
identifier associated to the shadow casting object when constructing the element. When
performing a shadow lookup of a surface on the same object, it can check the flag to see
if a shadow is cast by itself. We can then chose to ignore the drop in light intensity of the
current element.

When light passes through several surfaces of the same model it could be desirable to
only cast a shadow once. In a similar manner as the first use case, an object can identify a
shadow cast by itself. When inserting a new element, we can check the neighbors to see if
their shadow is cast by the current object. If so, we can abort the insertion and thus avoid
casting more than one shadow from the object.
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Chapter 3
Result

This section will start with the specifications of the test setup. Then we will move on to
the visual results where we will present some test cases to demonstrate the output of our
implementation. After that we continue with performance tests for the two algorithms.

All the test are done in the crytek sponza scene, which is a popular test model for
light algorithms. The curtains in the scene have been made transparent to show how light
interacts with transparent objects. The resolution for all rendered images is 1024x768 and
the test are performed on a linux system using a nvidia 660 gtx graphics card with driver
version 346.47 [7].

We have the constraint that the algorithms should be run at real-time frame rates. We
consider any frames per second (fps) over 30 to be real-time. It should be noted that what
is considered real-time is dependent on the application and personal preferences. Figure
3.1 to 3.6 all show the running fps for the corresponding scene in the description. In each
frame we precalculate and store data for all the lights and shadows and perform light and
shadow lookups for the visible surfaces. There is also some time required for handling the
scene, such as updating the lights and moving the camera.
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3. Result

3.1 Visual Results

(a) Runs at ∼ 105 fps (b) ∼ 205 fps

Figure 3.1: Light shining through fabric.

Figure 3.1.a shows a point light behind a curtain. Each of the three illuminated curtains
throws a shadow colored after the fabric. This demonstrates how the light is colored by
the object it passes through. Figure 3.1.b shows a similar scenario but uses a spot-light
and the camera is on the same side of the curtain as the light.

(a) ∼ 89 fps (b) ∼ 150 fps

Figure 3.2: Test cases for volumetric objects.

Figure 3.2 displays three test cases for volumetric shadowing where all the geometries
are being illuminated directly from above. Image 3.2.b gives a clear illustration of how the
shadow becomes darker when the light propagates through the thicker parts of the volume.
The geometry is shaped like a three step staircase and the shadow have threematching areas
of shadow intensity. Image 3.2.a illustrates the same property but the geometry is a cube
rotated so light passes through areas with different thickness. This makes the projected
shadow appear like a gradient instead of discreet steps like in image 3.2.b.
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3.1 Visual Results

(a) ∼ 51 fps (b) ∼ 22 fps

Figure 3.3: (a) Smoke casting shadow. (b) Light propagating
through smoke.

Figure 3.3 shows light interacting with smokewhich can be considered amore complex
volumetric object than displayed in figure 3.2. 3.3.a shows a picture of a shadow cast by a
smoke column. In image 3.3.b the camera is located slightly behind the smoke column, it
illustrates how the light attenuates as it passes through the volume.

Figure 3.4: Shadow from a transparent teapot. ∼ 110 fps

Figure 3.4 and 3.5 illustrates some examples of what effect can be applied to the shadow
when it passes through a surface. In 3.4 the drop in light intensity is calculated based on
the angle between the light direction and the normal vector. This gives a larger drop in
light intensity for the edges of the teapot which results in a more dynamic shadow.
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3. Result

Figure 3.5: Shadow colored by texture. ∼ 476 fps

Figure 3.5 shows the light passing through a textured quad. This shadow is colored
after the texture which makes it possible to project images on other surfaces.

Figure 3.6: Colored shadow interacting with smoke. ∼ 49 fps

In figure 3.6 we see light passing through a surface and then a volumetric object. The
colored light from the surface can clearly be seen in the smoke column. And the combined
shadow of both objects can be seen on the ornamental lion head in the background.
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3.1 Visual Results

Figure 3.7: Smoke intersecting with other geometry.

Figure 3.7 to 3.9 shows instances where the algorithm produces artifacts and unwanted
results. In figure 3.7 we see what happens when a volumetric object intersects with another
geometry. Volumetric objects are contained within a bounding box and are rendered with
front face culling. This means that the back-face of the bounding box needs to be visible
to the camera. Any object inside the bounding box of the volume will block the back face,
which stops the volume from rendering. The result is that the smoke will not rendered in
those pixel where other objects are inside the bounding box.

Figure 3.8: Point light in smoke.

Figure 3.8 shows an artifact that is inherited from the shadow map algorithm. Getting
a bad result from the shadow lookup may happen depending on shadow map resolution
and angle of the incoming light. The artifacts appears as shaded lines on the floor.
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3. Result

Figure 3.9: Point light in smoke.

In figure 3.9 a point light is located within a volumetric object. The smoke above the
light is not self shadowing. Once again, front face culling is the reason. In this case the
light do not reach the edge of the volumetric object. This means the back-face is outside
the frustum of the shadow camera and no render call for shadow casting is made.

3.2 Performance
The performance is in general good. This is of course highly dependent on the scene and
view complexity but the frame rate is for most tested use-cases well above what is required
for real-time graphics. There is however one case where performance is a problem. Due
to the sampling done when rendering a volumetric object, several shadow lookups have
to be performed for each fragment. Depending on how much of the screen is covered by
the volume and the sample rate, the calculation cost can easily become very large. So in
general, close-ups of illuminated volumetric objects has a much higher performance cost
than the rest of the scene.

When testing the performance of the two algorithms implemented in this thesis, there
are basically an infinite amount of possible variations of different scenes and setups that
could be considered. We have chosen three test cases that we think represents practical and
common scenarios. The first test case is for the light linked list algorithm. The second is
for the deep shadow map algorithm and the third test case is for both algorithms together.
These test cases should give a good idea of the general performance of our implementation.

In each test, the average execution time is measured over 10 000 frames.
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3.2 Performance

3.2.1 Light Linked List

(a) (b) (c)

Figure 3.10: (a) Test scene for 50 lights. (b) Test scene for 100
lights. (c) Test scene for 200 lights.
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Figure 3.11: The gray bar displays the average construction time
for the light linked list. The black bar shows the average total frame
time.

This is a test case devised to measure the performance of the "Light Linked List" imple-
mentation. Because of that the shadow calculations have been turned off. We test five
scenes with 50 to 250 cone-lights. The average time for constructing the light linked lists
each frame along with the average total frame time is measured. Figure 3.10 shows the
test scene for the different number of lights. The result is displayed in figure 3.11.

It is worth noting that running the scenes with the time measurements off gives a per-
formance boost of about 50%. The reason is that we need to wait for the GPU to finish a
calculation before staring another. If this is not done we can not separate one calculation
from the others, making any measurement meaningless.
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3. Result

3.2.2 Deep Shadow map

Figure 3.12: Test scene for deep shadow map performance.
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Figure 3.13: The gray bar represents average construction time
for the deep shadow map. The black bar shows the average total
frame time.

Figure 3.12 shows the setup for this test case. A single spot light intersects a flat surface.
The test case is performed with four different resolution on the shadow map. The execu-
tion times for each resolution can be seen in figure 3.13. Running the test case without
measuring time has a significant increase in performance for the lower resolution, 2562

runs about 50% faster while 20482 gets a boost of about 8%.
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3.2 Performance

3.2.3 Light and Shadow

(a) (b) (c)

Figure 3.14: (a) Test scene for 5 lights. (b) Test scene for 15
lights. (c) Test scene for 25 lights.
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Figure 3.15: The white bar displays the average construction time
for the light linked list. The gray bar represents the deep shadow
map construction time. The black bar shows the average total
frame time.

In this test we measure the execution times for both the algorithms combined. Each light
has a shadow map resolution of 5122. The images in figure 3.14 shows examples of the
test scenes. The test-case has five different scenarios with 5, 10, 15, 20 and 25 lights.
Figure 3.15 displays the result of the test. When turning off the time measurements, the
performance boost is about 29%.
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3. Result
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Chapter 4
Discussion

Overall the algorithms can be run with real-time frame rates which we consider a success.
The exception to this is when taking many samples of volumetric objects, as such the prob-
lem does not lie in the construction of the deep shadow map but in the sheer number of
required lookups. This could be mitigated by simply optimizing the method of sampling
a volume. Another way to increase performance would be to be stricter with the memory
management. Reducing the amount of data stored in each list element the required mem-
ory space and bandwidth usage could be minimized. To achieve this, reducing the float
precision to store two floats in on 32-bit block was considered during the development
phase. However this was not implemented as a high precision is also desirable.

The error introduced by measuring the execution times does provide some uncertainty
to the results but they give a good indication of how much the work load increases and
how large part of the frame time is spent with the measured algorithm.

The construction time for the light linked lists seems to be increasing roughly linearly
with the number of lights being processed. Although the execution time of scene manage-
ment and light lookup are not separated, the result indicates that the cost for light lookup
also increases linearly. When examining the algorithm, one would assume that the exe-
cution time would increase linearly with the number of screen pixels each light covers.
The test case is of a practical scenario where all the lights are placed randomly in the
scene. This causes different lights to cover different amounts of pixels, which introduces
some variance to the execution times. Having a more synthetic test case where each light
is identically placed in the scene could yield a result closer to a strict linear increase in
calculation time.
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4. Discussion

When looking at the execution time for the deep shadow maps, the result is a bit harder
to interpret. For each power of two increase in the resolution, the amount of work needed
to construct a deep shadow map is expected to increase by a factor of four. This is not the
case and the increase is less then expected. This can be explained with the other factors
having too much of an impact on the execution time, especially for the lower resolutions.
When looking at the two largest resolutions, the increase is closer to what is expected
but does not reach it. It might be that rendering at even higher resolutions would yield
more insight into the time complexity for the algorithm but at that point the memory space
requirements became unfeasible for the test system.

The third performance test case is probably closest to what one would see in a mod-
ern computer game. It shows that a large majority of the time in each frame is spent on
constructing the deep shadow maps. Once again he execution time looks to increase lin-
early. This would be expected since the two algorithms seams to behave similarly when
measured separately.

Visually the algorithms mostly works as expected. Light interacting with volumetric
objects and the ability to customize shadows are very nice features. This creates a more
believable and visually appealing image. The problem with surfaces blocking volumetric
objects when they intersect is most likely the worst of the artifacts. There is probably many
ways to solve this problem. One solution would be to implement the rendering technique
for order independent transparency as presented by the paper in 1.2.2.

The problems inherited from the general shadow map technique have no known solu-
tion. The impact of these problems is limited and there is a lot of experience in dealing
with them, providing workarounds that can be applied.

When light is attenuated in volumetric object, the decrease in light intensity is repre-
sented as a linear function across the whole object, this approximation might be bad for
complex objects with a high variation in density. To increase the accuracy of the light at-
tenuation, the algorithm could be expanded to create several elements in the deep shadow
map. Depending on the number of extra elements chosen this could be a low cost upgrade
to the algorithm that produces a better visual result.

Another way to increase the accuracy could be to generate the volumetric objects on the
GPU using noise functions. This way the light attenuation inside a volumetric object could
be calculated when doing the shadow lookup. This could yield an even more accurate
visual result. Also it might have additional benefits with regards to the artifacts in figure
3.7 and 3.9, since this could make the shadow casting algorithm for volumetric objects
independent of geometrical faces.

There are many implementation details that could affect the result and therefore a lot
of room for further optimization. One obvious optimization would be to look into whether
the required amount of data for each list element could be lowered.

One of the biggest problems with the algorithms is the difficulty in estimating how
much memory they will use. The problem is to some extent inevitable as the basic idea
of the thesis was to work around "flat" data structure of textures and instead store data
with regards to a dynamic depth. As a direct result of this dynamic structure, the memory
requirements of the algorithm will be unbounded.
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The memory estimation problem is in general worse for the deep shadowmaps then for
the light linked lits. Since the deep shadow maps are naturally larger and in the worst case
scenario, we will store elements for surfaces that are not visible to the shadow camera.
It could be possible to implement a system where the memory space of such element are
returned so that they can be reused. However, this would most likely come at a large
computational cost. Another and better solution would be to avoid the problem. This
might be done by introducing an extra render pass for shadow calculations. In this pass
a regular shadow map to all the opaque object could be computed and then used to cull
redundant elements in the deep shadow map.

Together the two algorithms make a solid foundation for light and shadow calculations.
Compared to the commonmethods today they will naturally bemore costly in performance
and memory. However they do provide more usable data that makes it possible to handle
transparent object in a better way. Since that data provides general information about the
scene, having access to it could be a great benefit for other algorithms. One example is
volumetric light scattering which could benefit from the precomputed light volumes.
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38



Chapter 5
Conclusion

The goal of this master thesis was to investigate the usage of linked lists on the GPU for
illumination and shadow casting of transparent objects in a real-time environment. This
was done by using the "Light Linked List" and "Deep Shadow Mapping" algorithms.

The visual results are pleasing except for a few scenarios where the rendered images
contain artifacts. The visual problems specific to this implementation could, with a high
probability, be corrected with further development. The performance results is also good
as the algorithms can in general be run at real-time speed. There is no getting around
that deep shadow maps is more costly than regular shadow maps as they simply contain
more data. But if shadow casting for transparent objects is a desired feature, deep shadow
mapping is a viable technique.

Overall we consider the project a success. Using these algorithms provides a solid
foundation for rendering light and shadows in general and enables features that have pre-
viously been restricted in real-time graphics. The system is very flexible allowing us to
casting complex shadows and enables high customization with regards to the materials
being illuminated.
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A big challenge in computer graphics is calculating light and shadows. Common 
methods today do not produce these correctly for transparent objects. The objec-
tive of this master thesis is to solve that.

To do so we combine a newly presented light algorithm 
together with a new approach to an old shadow algo-
rithm. By doing this we make it possible to correctly 
illuminate and create complex shadows for objects such 
as glass, thin fabric, smoke or fog. This enables us to 
create a more visually appealing picture when dealing 
with transparent objects. It is especially important when 
handling volumetric objects such as smoke as it can now 
cast a shadow on itself. This means that when the light 
shines trough the smoke it will gradually decrease in in-
tensity the deeper it gets into the smoke.
 Our method also makes it possible to color the light 
as it passes trough a medium. For example shining a 
light through a blue colored piece of glass will create a 
blue light. This also works for complex patterns such as 
those found in stained glass windows where the diffe-
rently colored parts of an object will produce a different 
colored light. Thus it is possible to project an image in a 
similar fashion to how a slide projector works.
 Performance is of utmost importance as the algo-
rithms is targeted at interactive real time media such as 

computer games. To make this possible we utilize the 
powerful processing power provided by modern grap-
hics cards.
 This first algorithm we use is called ”Light Linked 
List” and is used to determine which parts of the vi-
sible scene are illuminated. This technique differs from 
the ones common in modern 3D graphics by separating 
data by distance from the camera. This makes it possible 
to differentiate between light affecting an object close 
to the camera from another object further away. The 
second algorithm, called ”Deep Shadow Mapping”, is 
similar to the first. The main difference is that the sepa-
ration in depth is performed in relation to a light source. 
This enables us to have light pass through objects at dif-
ferent depths from the source.
 In conclusion, these algorithms create a flexible sys-
tem for light and shadow calculations. They make it 
easier to use transparent objects in computer games as 
they will behave more natural when interacting with 
light. This is important for creating a credible visual ex-
perience.
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