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Abstract

The thesis deals with how to price swing options in the electricity market
by using a least squares Monte Carlo method. This is a simulation method
which uses a backwards moving algorithm where the optimal decision is
calculated at every time step. Regression is used for the optimal decision and
in this thesis both a polynomial regression and a cubic smoothing spline are
used. They are both shown to be rather good estimators for the regression.

Two variation of contracts are priced. For the first only one exercise
right that can be used when exercising and for the second one several exer-
cise rights can be used when exercising. Volume restrictions are also used.
The algorithm implemented in this thesis give similar results to the ones of
previous authors and when we can not compare with other authors it give
us results fairly close to our expectations.

The thesis also examines the optimal exercise strategy for a swing option
and the boundaries for when to use an exercise right are calculated.
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Chapter 1

Introduction

1.1 Electricity Markets

In the 90s the electricity market started to get deregulated in some countries
and now many more have followed. In a regulated market the spot price for
electricity and prices for different contracts are set by the regulators. In a
deregulated market the prices is set by demand and supply. Determining
the price process of electricity is difficult since electricity cannot be stored
and the demand is uncertain and inelastic. Since the electricity prices are
volatile it is good for a buyer of electricity to hedge against the risk of the
price going up. Therefore it is common to use a forward contract with a
predetermined price and quantity. The seller of the contract also gets a
decrease in risk since they are certain to sell an amount for a fixed price
over an amount of time. This makes it easier for them to invest in new
facilities. Swing options can be seen as a risk management tool since it lets
the buyer have flexibility in the contract by buying less or more quantity
and the buyer can choose between different opportunities to use it. Buyers
usually do not know when they might need less or more volume and since
electricity can not be stored, a swing option is a good hedging tool.

1.2 Swing Options

A swing option is an exotic derivative with multiple exercise rights, which
means that the holder of the option can exercise more than once during the
lifetime of the option. Swing options are mainly found in the energy sector
for purchasing oil, gas and electricity. In this thesis we are only focusing on
the electricity market. Swing options are traded over the counter (OTC)
and for electricity there are electricity exchanges (e.g. Nord Pool, APX
and NYMEX). A swing option can be settled either with physical delivery
or financially. Like an American option it is possible to exercise at any
point in time before the maturity, although it is common that these are



discrete points in time (like a Bermudan option), which is also assumed in
this thesis. Usually can only one exercise right at most be exercised at each
exercise opportunity.

It is common that the swing option is written in conjunction with a set
of forward contracts where the option holder has contracted to buy a certain
amount of volume at a certain price over a certain amount of time, a so called
base load agreement. Due to variability in consumption the holder might
want to buy more or less volume at certain time points. The holder of the
swing option can then swing up (buy more volume) or down (sell volume) at
the strike price K. K is set either at the initialization of the contract or at a
future date before the duration of the contract. The strike price can be the
same during the whole contract or different for every exercise opportunity
(Jaillet, Ronn and Tompaidis (2004)).

Contracts specify over a time interval when the delivery of electricity is
to take place, not at a specific time point. For example a contract that is
written at time 0 and is specified over [T7,T5] with 0 < T} < T5. Then
the exercise opportunities are 71 < 71 < 13 < ... < 7, < Tp where n is the
number of exercise opportunities and we have for the number of exercise
rights N that N < n.

When using an exercise right, there is usually a local volume restriction
for how much the buyer is allowed to swing up or down at each exercise
opportunity. There is usually also a global volume restriction for how much
the buyer is allowed to swing up or down during the lifetime of the swing
option.

Assuming one unit can be bought with each exercise right and there are
no global constraints, we can get the upper and lower bound for the op-
tion (Jaillet, Ronn and Tompaidis (2004)). The upper bound is given by N
identical Bermudan options. The price of the swing option is lower since it
is restricted to only exercising the rights on different opportunities whereas
the Bermudan options can all be exercised on the same opportunity. The
lower bound is given by a set of European options where the exercise oppor-
tunities are calculated as the optimal N exercise opportunities among the
set of all possible exercise opportunities. Since these the exercise points are
pre-determined the price of a swing option with it’s flexible exercise oppor-
tunities is higher. For the extremes N = 1 and N = n, if the swing option
only has one exercise right, it has the same price as a Bermudan option. If
the swing option has as many exercise rights as exercise opportunities, then
the price is the same as a string of European options with each and every
exercise opportunity as expiration date.

In this thesis two variation of swing option contracts are implemented.
They are based on the Least squares Monte Carlo (LSM) algorithm that Dérr
(2003) described which is an extension of the LSM algorithm that Longstaff
and Schwartz (2002) used to price American and Bermudan options with.
For the first contract only one right can be exercised at each opportunity.



There is a local volume restriction but no global volume restriction. For
the second contract there is no restriction on the number of exercise rights.
Instead the global volume restriction is discretized into volume blocks but
work in the same way as the exercise rights did in the first contract. The
difference is also that more than one volume block can be exercised at each
opportunity (up to the local volume restriction, which is also discretized).
In this thesis no penalty function is assumed but it can be used. With
a penalty function it would be possible to exercise beyond the volume re-
strictions, although it would result in a penalty. We also assume that it is
not specified how many of the exercise rights are reserved for upswings or
downswings. The algorithm can for each exercise right choose to swing up
or down depending on which will optimize the value. This is also the case
for the second contract when we use global volume instead of exercise rights.

1.3 The aim of the thesis

The aim of this thesis is to use a realistic spot price model for electricity
spot prices to determine the price of an swing option. Since swing options
are mostly traded over the counter it is more difficult to find the specifics of
swing contracts and their prices. Therefore in this thesis we only compare
with other articles on swing options. In order to do that, spot price models
of other authors are used to compare our algorithm with the ones of the
other authors. It is desirable to know when to use the exercise rights and
therefore the spot price boundaries for when to exercise are also investigated.
The programming language used for this thesis is MATLAB.

The method chosen to estimate the price is the extended Least Squares
Monte Carlo method, which is a simulation method. Other methods which
can be used to price swing options are for example dynamic programming
approaches or finite differences to calculate the price.



Chapter 2

Theory

2.1 Spot price process

It is concluded that the spot price of electricity exhibit these characteristics
among others (Dorr (2003)):

Seasonal pattern: Since the use of electricity is not the same throughout
the year, the spot price process has a seasonal pattern. For countries with
very cold winters, the electricity is at its highest in the winter. For countries
with warm summers, electricity is also high in summer due to the use of air-
conditioning. There are also seasonal variations over the week with high
use during weekdays and low use during the weekends. This is due to that
many industries, which use a lot of electricity, are closed on weekends. Also
during the day there is a change in the use of electricity, it is lower during
the night when people sleep and many industries are closed.

Mean-reversion: Electricity prices tend to revert to a mean value when-
ever it starts to drift. Prices tend to increase when there is a the demand
increases and when the supply decrease. This will be adjusted as the supply
will be increased and the price will go down. The same if the demand is low
and the supply is high the price will go down and the supply will decrease
and thus rendering the price to increase again.

Price spikes: Positive price spikes occur when the current demand ap-
proaches the maximum supply. This is usually due to a failure in the produc-
tion or distribution of electricity. The price will increase rapidly and when
the supply has increased the price will fall back to normal level, since this
will occur within a short amount of time the price process will get the shape
of a spike. Negative price spikes do also occur, but are not as common.

2.2 Former research of spot price models

Since the deregulation of the energy market a variety of research on how to
model the spot price process and how to price derivatives has been done.



Lucia and Schwartz proposed in 2000 a model for the spot price process
which is a stationary mean-reverting process (an Ornstein-Uhlenbeck pro-
cess) with seasonal pattern. Hambly, Howison and Kluge proposed in 2005
a model that is an extension of Lucia and Schwartz model with the addition
of spike prices process. Deng also proposed in 2000 a mean-reverting jump
diffusion models but without a seasonality pattern. Instead he took the
volatility into account in his models. Cartea and Figueroa (2005) also used
a one-factor mean-reversion jump diffusion model which is adjusted to in-
corporate seasonality effects but it differs from Hambly, Howison and Kluge
model in the sense that Hambly, Howison and Kluge used an independent
jump process.

The model presented by Hambly, Howison and Kluge (2009) for the
spot price process S use the characteristics presented in 2.1. It contains a
deterministic periodic function f(t) which should represent the seasonality,
an Ornstein-Uhlenbeck (OU) process X and a mean-reverting process Y
which exhibits jumps which represents price spikes.

S = exp(f(t) + Xi + V),
dXt == —OéXtdt + O'th, (221)
dY; = —BY;_dt + J,dNy,

where o and 8 are independently the speed of mean-reversion, o is the
volatility, W; is a standard Brownian motion, V; is a Poisson process and
the independent identically distributed process J; represents the jump size.

The spot price process used in this thesis is mainly the one described in
Hambly, Howison and Kluge (2009), but some others are applied in order to
try the accuracy of the algorithm, namely Meinshausen and Hambly (2004)
and Dorr (2003).

Meinshausen and Hambly use an AR(1) model for the logarithm of the
energy price where the price S; on day t is simulated with:

log S; = (1 — k)(log St—1 — p) + 1 + oey, (2.2.2)

where e; is a standard normally distributed random variable with unit vari-
ance and k, u and o are constants.
Dorr uses among others a spot price model he calls the one-factor model:

S, = F(t)e (2.2.3)

dY; = —aYdt 4+ o(t)dW, (2.2.4)

where « is the mean-reversion factor, F(t) is a deterministic mean reversion
level, o(t) is the deterministic volatility and W; denotes a standard Brownian
motion. For the case where o is constant it is discretized to:
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where €441 again is a standard normal variable.
The model of Hambly, Howison and Kluge is discretized to:

Yip1=Ye 4o eti1, (2.2.5)

X1 = e "X, + o

}/t+1 e e_ﬁhyt + e_ﬂh(l_u)‘]bl*l (226)
1 1 1

Jir1 = —log(1 — u)(]lkp(nT + 772) - 772)

where u, @ and u are independent uniformly distributed random vari-
ables, e;y1 is again a standard normal variable, h is an increment of time
and n; and ng are the mean size of the jumps inverted.

An example of simulated spot price processes with Hambly, Howison and
Kluges model is seen in figure 2.1. The parameters used are the ones that
they use in their article, i.e. K=1,a =7, § = 200 and ¢ = 1.4. The below
figure is done with 180 time points occurring daily. Starting points X and
Yy are zero and no seasonality is assumed.

Spot price process over time

Spat price value

a a0 100 150 200
Tirme points, daily

Figure 2.1: Spot price processes over time using the model of Hambly, How-
ison and Kluge, without seasonality.

2.3 Former research of pricing swing options

Various methods has been used for pricing swing options. Carriere (1996)
presented a simulation algorithm which uses regression to approximate con-
ditional expectations that can be used to price American options. This is
similar to the work of Longstaff and Schwartz (2002) who used a least square



Monte Carlo based approach to pricing American options. Dérr (2003) ex-
tended this approach to swing options. Cartea and Williams (2008) also
uses an extension to the Longstaff and Schwartz (2002) algorithm to price
swing options.

Keppo (2004) modeled electricity swing options using regular electricity
derivatives. He showed that a swing option can be replicated by using regular
electricity forwards and call options.

Jaillet, Ronn and Tompaidis (2004) used a dynamic programming ap-
proach for the pricing of swing options, more precisely they used a bino-
mial/trinomial forest which is an extended version with several layers of
the traditional binomial/trinomial tree used to price options with only one
exercise right. As the spot price model they used a one-factor model with
mean-reverting process with seasonality.

Hambly, Howison and Kluge (2009) used a grid method to price swing
options. The grid method uses approximations to the conditional density
of the spot process. The grid method is a modification of the method used
by Jaillet, Ronn and Tompaidis but Hambly, Howison and Kluge use a grid
instead of a trinomial tree. The downside with this method was that the
speed of the algorithm was not satisfactory.

10



Chapter 3

Least Squares Monte Carlo
method

The least squares Monte Carlo method (LSM) uses the optimal stopping
rule to decide when to exercise the rights of the option. The disadvantage
with this is that we can practically never reach the optimal stopping rule,
which means that the price is just a lower bound of the true price (Cartea
and Williams (2008)). The advantage is that the method is not model
dependent which means that a multi-factor model is as easily priced as a
simpler model.

In order to understand the contracts presented in this thesis we first
look at the method presented by Longstaff and Schwartz (2002) and then
the extension of the method that Dérr (2003) presented.

3.1 The LSM algorithm

The method developed by Longstaff and Schwartz (2002) for American and
Bermudan options uses least square regression to decide whether to exercise
the option or keep it. This decision is made for each simulated spot price
path and at each time step as the algorithm moves backwards in time. In
order to make the decision we need to determine the value in continuing
with the option versus the cash flow received when exercising the option
at the current time point. We can express the continuation value as the
expectation of the future payoffs conditional on the information up to the
current time point. We are now looking at an option that can only swing in
one direction.

Since we use a backwards moving algorithm we start from the last exer-
cise opportunity. If the option has not been exercised already, it is always
optimal to exercise if it is in the money at the last exercise opportunity.
We move backwards and at each time point evaluate whether the value of
exercising is greater than the value of continuation, which we get by using

11



least squares regression. We regress the discounted future cash flows real-
ized from continuing onto a finite set of basis functions of our values for the
spot price. The regression is done by using the values from all of the paths.
The set of the basis functions for the regression is in this thesis polynomial
regression but it could also be Legendre or Chebyshev for example. The
regression can also be done using a smoothing spline, which we will look at
later. The continuation value for a path w with values X at time tx_q is
(Dérr (2003)):

F(X, tK—l) = Zaj(tK—1>Bj(X) (311)
Jj=0

where X is the price, a; are coefficients and B; is the set of basis func-
tions. For example if we have a second order polynomial regression then:
F(X,tg-1) =ao(tx—1) + a1(tx—1)X + a2(tK_1)X2.

A pseudo code for the algorithm is given next, followed by a practical
example of how the algorithm works. The option used is an American put
option (downswing) with payoff if K > S; for each time t.

3.2 Pseudo code LSM

For this pseudo code a polynomial regression is used with MATLABs built-
in functions "polyfit" and "polyval". The cash flow matrix C is where
all the cash flows are saved and M is the number of trajectories, C is the
cash flow matrix where all the cash flows from exercising are saved.

3.3 Example

In order to explain the principle we here give a small example with is set up as
the example of Longstaff and Schwartz (2002). For a deeper understanding
the reader is referred to their example.

In this example we use 10 simulated trajectories with starting point 1.0
at t=0 and maturity at t4. We will here only show 5 of the trajectories, as
more trajectories will not add to the understanding of the principle. The
spot price process used is 2.2.1 but without the jump process. The strike
price is K=1 and we assume a risk-free rate of 5%. A polynomial regression
is used of order 2. The spot prices are:

12



Algorithm 1 Longstaff and Schwartz algorithm
1: set C" = max(K-S7,0) for i=1,.... M
2. fort=(n—1) —1do
3: fori:1—>M,WhereSf<Kdo

4: Xf — Sf

5: Yf + future values of C discounted back to t
6: end for

7: polt = polyfit(Xt, Yt 3)

8: for i =1 — M, where S! < K do

9: continuation! = polyval(pol,X})
10: exerciseg = K—Sf

11: if exercisel > continuation! then
12: C’f = exercisef

13: C" =0, where m >t

14: end if

15: end for

16: end for

17: V; < values of C discounted to tg over all ¢ for i=1,....M

M
18: OptionValue = & > V;
i=1

Spot price paths
Path | t=0 t=1 t=2 t=3 t=4
1.0000 0.9388 0.8681 0.8322 0.9264
1.0000 1.0057 1.0080 1.0644 1.0860
1.0000 0.9151 0.9544 0.9420 0.9568
1.0000 0.9219 1.0006 1.0677 1.1976
1.0000 0.9995 1.1189 1.0558 0.9945

QU s W N =

We start at t4 and exercise the option for the trajectories that are in the
money:

Cash flow matrix at time t=4

Path | t=1 t=2 t=3 t=4
1 S = 0.0736
2 - — 0

3 - - . 0.0432
4 - — 0

5 - - —~ 0.0055
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Then we move on to the t3. Let X denote the spot price at t3 and
Y denote the cash flows received after t3 discounted back to t3, for the
trajectories that are in the money (here 1 and 3). We then have:

Regression basis at time t=3
Path Y X
0.0736 x 0.9512 0.8322

0.0432 x 0.9512 0.9420

U W N~

Let us use the basis functions B; = a1 X?, By = as X' and Bz = a3 X?,
i.e. basic polynomial regression of order 2. The conditional expectation
function is then E[Y|X] = 4.06681 — 8.70601X + 4.71905X2. The continua-
tion values we get when inserting the X-vector into the function are:

Early exercise decision at t=3
Path | Continuation Early exercise
0.0899 0.1678

0.0533 0.0580

Ui W N+~

This means that is is optimal to exercise for both the first and third
trajectory. The cash flow matrix now looks like:

Cash flow matrix at time t=3

Path | t=1 t=2 t=3 t=4
1 — — 0.1678 0

2 — — 0 0

3 — — 0.0580 0

4 — — 0 0

5 — — 0 0.0055

Note that the cash flows for trajectory 1 and 3 will move from ¢4 to ts.
We only have one exercise right so there can only be one cash flow received
for each trajectory.

14



This goes on in the same manner until ;. The cash flow matrix at point
t1 now looks like this:

Cash flow matrix at time t=1

Path | t=1 t=2 t=3 t=4
1 0 0 0.1678 0
2 0 0 0 0
3 0.0849 O 0 0
4 0.0781 0 0 0
5 0.0006 O 0 0

We have now filled the cash flow matrix and can calculate the option
price by discounting all cash flows back to ¢y and then taking the average
over all paths. The price in this case is 0.0611. We will now go into the
details of the extended LSM that Dorr (2003) describes. Both up- and
downswing will now be used which means that all the trajectories will be in
the money.

3.4 Extended LSM

When using the extended LSM (XLSM) we need to add one more dimension,
i.e. number of exercise rights left to use, to our already existing dimensions
for paths and time. We can let this extra dimension to be represented by
levels, one for each number of exercise rights left to use. The algorithm
work in a similar way to the one by Longstaff and Schwartz (2002). The
difference is that when comparing whether to exercise or not, we need to
compare keeping the option as it is (staying at a certain level) or exercising
one right an continuing with one less exercise right (one level lower). We
also need to consider that when we decide to exercise a right for a certain
path, the subsequent cash flows for that path need to be substituted to
the subsequent cash flow of the option with one exercise right less than the
original one. This becomes obvious when considering that if we would not
do that then payoffs could be received at more time points than we have
exercise rights. The substitution need to be done before the level under is
evaluated since the level under might exercise one right at the current time
point and the subsequent cash flow we substitute to will be one too few.

3.5 Pseudo code XLSM

For this pseudo code we use the same functions and notations as before, but
now we also have exercise rights, where N is the number of exercise rights
for the option.

15



Algorithm 2 Extended LSM

1: for J=1— N do

2: fort=n—-n—-(J—-1)do

3: set C! = max(K-S!) for i=1,...,.M

4: end for

5: end for

6: fort=(n—1) —1do

7 fori=1— M do

8: Xlt — Sf

9: for J =1— min(n —t,N) do

10: YitJ — C’imJ discounted back to t, where m >t
11: end for

12: exercisel = K-S}

13: end for

14: for J =1 — min(n —t,N) do

15: polt” = polyfit(X?, Y, 3)

16: fori=1— M do

17: continuationﬁj = polyval(poltJ,Xi)
18: end for

19: end for
20: if min(n —t,N) > 1 then
21 for J = min(n —t,N) — 2 do
22: fori=1— M do
23: if eazerciseg + continuationgkl > continuationf then
24: C’fJ = emerciseg
25: cm’ = cm’™! | where m > t
26: end if
27: end for
28: end for
29: end if
30: if exercise!l > contimmtion’;1 then
31: Cfl = exercisel
32: C’Zm1 = 0, where m >t
33: end if
34: end for
35: for J=1— N do

VZ»J + values of C discounted to ty over all ¢ for i=1,...,M

w
>

M
37: OptionValueJ = ﬁ 231 ViJ
1=

38: end for

16



3.6 Extended LSM example

We use the same trajectories for the price as before. The difference is that
we now have 3 exercise rights instead of one, although we can still only
exercise one right at each opportunity. They all have the same strike price
K=1. In this example we now also assume that we can both swing up (buy
at the price K) and swing down (sell at the price K), which means that the
payoff is now | (K — S;) |. This example follows the same structure as the
one that Dorr used. This example is however shorter and we will still only
show 5 trajectories. For a more elaborate example the reader is referred to
Dérr (2003).

We start again from the last time point. The difference is that for level
three we can in the initial step exercise not only at T but at T-1 and at
T-2. This is because when we reach T-2 with all three exercise rights left it
is optimal to use them all at the last three time points. The same goes for
level two, where we can exercise the remaining two rights at time T-1 and
T. The cash flow matrix after the initial step then is:

3 exercises left
Path | t=1 t=2 t=3 t=4
— 0.1319 0.1678 0.0736
— 0.0080 0.0644 0.0860
0.0456 0.0580 0.0432
— 0.0006 0.0677 0.1976
— 0.1189 0.0558 0.0055

U W N =
|

2 exercises left
Path | t=1 t=2 t=3 t=4
1 — — 0.1678 0.0736
2 — — 0.0644 0.0860
3 — — 0.0580 0.0432
4
5

— — 0.0677 0.1976
— — 0.0558 0.0055

17



1 exercise left
Path | t=1 t=2 t=3 t=4
1 — — — 0.0736
2 — — — 0.0860
3 — — — 0.0432
4
5

— — —  0.1976
— — — 0.0055

This means that at time t3, the cash flow matrix is already done for level
two and three and they will remain the same. We only need to update level
one, which can be calculated almost the same as in our first example above,
but now all trajectories are in the money. The cash flow matrix for level one
after using LSM is then:

1 exercise rights left, cash flow at t=3

Path | t=1 t=2 t=3 t=4
1 — — 0.1678 0

2 — — 0 0.0860
3 — — 0 0.0432
4 — — 0.0677 0

) — — 0 0.0055

At time to we still don’t need to update level three since we already have
the cash flows for that time point. We want to evaluate level one and two so
we need the spot price vector X and the vector Y7 for the cash flows at level
one discounted back to to and Y5 for the cash flows at level two discounted
back to ts.

Regression
Path Y, Y1 X
0.1678 x 0.9512 + 0.0736 x 0.9512% 0.1678 x 0.9512 0.8681
0.0644 x 0.9512 + 0.0860 x 0.95122 0.0860 x 0.95122 1.0080
0.0580 x 0.9512 + 0.0432 x 0.95122 0.0432 x 0.95122 0.9544
0.0677 x 0.9512 + 0.1976 x 0.95122  0.0677 x 0.9512  1.0006
0.0558 x 0.9512 + 0.0055 x 0.95122 0.0055 x 0.95122 1.1189

U W N =

Each Y is regressed separately onto X and gives two different vectors of
continuation values. The values are shown in the table below. Also shown
is the values we would receive for level two when choosing to exercise one

18



right and continue with only one right left. For level one we need to choose
between exercising our only exercise right or continuing with it.

Early exercise decision at t=2

Path | Continue 2 Exercise 1 & Continue 1 | Continue 1 Exercise 1 & stop
1 0.2788 0.2997 0.1678 0.1319

2 0.0856 0.0376 0.0297 0.0080

3 0.1326 0.1085 0.0629 0.0456

4 0.0901 0.0334 0.0328 0.0006

5

0.0942

0.1571

0.0382

0.1189

For the trajectories at level two where it is optimal to exercise we take
the cash flows for the same trajectories from level one. When we decide to
exercise for level 1 for a certain trajectory we substitute the previous cash
flow for the new one, as in our first example. As mentioned earlier we need
to exercise the highest level first.

Note that the cash flow when exercising trajectories for level two is not
the values under ”Exercise 1 & Continue 1”. If we choose to exercise 1 and
continue with only one right left the cash flow will be from exercising one
right, i.e. the same cash flow that we would get for those trajectories in level
1 if we would choose to exercise.

So for t9 the cash flows for 1 and 2 exercise rights left are now:

2 exercises left

Path | t=1 t=2 t=3 t=4
1 — 0.1319 0.1678 0

2 — 0 0.0644  0.0860
3 — 0 0.0580 0.0432
4 — 0 0.0677 0.1976
5 — 0.1189 0 0.0055

1 exercise rights left

Path | t=1 t=2 t=3 t=4
1 — 0 0.1678 0

2 — 0 0 0.0860
3 — 0 0 0.0432
4 — 0 0.0677 0

5 — 0.1189 0 0
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The same is then done for ti, but then also for level 3. For level 3
we need to compare continuing with three exercise rights or using one and
continuing with two exercise rights. When we have all the cash flows it is
time to calculate the price. When calculating the price for the option with
3 exercise right, we use the third level cash flow table. If we want the price
of an option with 2 rights we do not need to rerun the algorithm, we only
need to look at the cash flow table for level 2. This is because exercise rights
are not affected by what happens in the exercise levels above. This means
that if we have calculated the price for a certain number of exercise rights,
we can easily obtain the price for an option with less exercise rights. The
price of the swing option is 0.2678, 0.1975 and 0.1080 for three, two and one
exercise rights.

3.7 Variation of swing option contracts

The two different variation of swing option contracts used in this thesis is
described below.

3.7.1 Contract 1

The first contract used to price swing options in this thesis is the extended
LSM method described above. There is a local volume restriction but no
global one. The local volume is assumed to be maximized always, which is
known as ”bang bang”. It means that when faced with the opportunity to
execute all local volume it is also optimal to do so. In this thesis, for contract
1 it is assumed that this will always happen and therefore the algorithm is
written so that it will always use all local volume. This is intuitive, since for
those exercise opportunities where the most payoff can be made, we want
to use us much volume as possible.

3.7.2 Contract 2

In the second contract we use volume blocks for our exercise levels instead
of exercise rights. The volume blocks are our global volume restriction dis-
cretized into a number of exercise levels. The global volume is the accumu-
lated deviation from the contracted volume for the whole time period, where
at each time period a certain deviation is allowed, which is the local volume.
Since we want to be able to exercise more than one volume block at each
opportunity (up to the local volume restriction) we can now exercise more
than one level at a time. The local volume is now not assumed to always be
maximized, although we are expecting it to happen. In this contract the lo-
cal volume restriction is also discretized (with the same factor as the global
volume restriction) and the algorithm will choose how many volume blocks
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will be exercised at each opportunity. Dividing the global volume into very
small blocks will cost a lot of time so we are dividing into bigger volume
blocks in this thesis. It is still a realistic contract since when purchasing
volume it is often sold in bigger volume units. The volume restrictions can
be expressed as:

T

‘/global Z g "/contracted,dayt - Vdelivered,dayt’ (371)
t=1

Wocal 2 ‘%ontracted,dayt - Vdelivered,dayt| (372)

An example is a global volume restriction of 1000 units over 20 days and
a local volume restriction of 300 units per day. The discretization factor is
100 units which means that we have 10 exercise levels and for every day we
can chose to exercise 0,1, 2 or 3 levels.

3.8 Matlabs built-in function

Matlab has a built in function called "hswingbyls" which calculates the
price of a swing option. The function uses a minimum and maximum local
volume but no restriction on global volume. This algorithm also uses the
bang bang principle for the optimal early exercise strategy. The regression
can be done using interpolating spline or by using polynomials of the third
order. This function does the same as our contract 1.

3.9 Early exercise strategy

The regression technique used in this thesis is a simple polynomial regression.
A desirable aspect which can then easily be obtained when running the
algorithm is to be able to get the threshold of prices for when it is optimal to
exercise, the early exercise strategy. This is done by saving the polynomials
received during the regression and then solving the equation we get when
when want the s where the continuation value of staying at the current
exercise level J is equal to the value of exercising L number of levels and
continuing on the level J-L:

F(t,8,J) = f(t,S,J — L) + L&(S), (3.9.1)

where f(t,5,J) is the same as in 3.1.1 and has the shape ag + a1s + ags® +
azs3+... and ®(S) depend on if it is the boundary for upswings or downswing
we want to find, i.e. for upswings we have ®(S) = S — K and for downswing
®(S) = K — S. Depending on the degree of the polynomial we get different
amount of roots. We only want to use the non-imaginary roots. If more
than one non-imaginary root exist we choose the one closest to K. When
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we have the s for each point in time and for each L for a certain number of
exercise rights, we can create a figure that show how the boundary changes
with time and for different L for that amount of exercise rights.
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Chapter 4

Computational results

4.1 Comparing with existing algorithms

We first start with comparing our algorithm with the ones that Dorr (2003)
and Meinshausen and Hambly (2004) used. In their reports the only time
we can compare to their algorithm is when they only used upswings.

Dorr uses 10 time steps, where Ay = 1, K = 20, o = 0.5 and 0.05,
the mean reversion level F=20.7387, 0=0.392 and 6 exercise right (only
upswings) are used. Different spot prices are used to depict how the option
value changes with the spot price. Two different o are used. Doérr does
not write out the values but looking at a graph taken from Dorr (2003) in
figure 4.2 it seems that the values we get with our algorithm in figure 4.1
are pretty much the same.

Meinshausen and Hambly set the values of the constants to be: ¢ = 0.5,
k=0.9 and p=0 with K=0 and S; = 1. They use T = 1000 and up to n=100
exercise opportunities. B; = a1 X? and By = as X! are the basis functions
used. The results show that our algorithm gives the same results as theirs.

4.2 Contract 1

From now on we will use the spot price model of Hambly, Howison and
Kluge (2009) with So =1, K=1,a =7, 8 = 200, 0 = 1.4, 10 time points
(daily) and no seasonality, if not stated otherwise.

For our first contract we have a local volume restriction but not a global
volume restriction. We can compare this contact to the built-in function
in MATLAB. Our algorithm gives the same result as the built-in algorithm
in MATLAB if both up- and downswings are allowed, even if the regression
function is not always the same. If not both up- and downswings are allowed
the results will differ about 0,6 % for M=100000, which is an acceptable
result. The underlying trajectories, number of swing rights and exercise
opportunities are of course set the same.
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Figure 4.1: The values of the option price with our algorithm, as a function
of the spot price. Two different « are used.
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Figure 4.2: The values of the option price with Dorrs algorithm, as a function
of the spot price. Two different « are used.
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Figure 4.3: Regression between the underlying price and the continuation
value with the discounted future cash flows as blue scatter, at the last exer-
cise date before maturity using a third order polynomial

An example of how the regression looks like is shown in figure 4.3. 10000
trajectories are used and the number of exercise rights are 5. The volume
when swinging up or down is of the unit one. A third order polynomial is
used for the regression.

The figure shows blue scatter with the spot prices on the x-axis and the
future cash flows discounted back to time T-1 on the y-axis. The red line is
the conditional expectation function with continuation values as a function
of the spot price.

The last exercise date before maturity is used because this should be
when the trajectories are the most spread, and hence the regression is better.
The closer we get to the initial time ¢y the spot prices of the trajectories
will be around the value 1 (Sp) and closer to each other, which means that
the regression will not be as good. This could be prevented by assuming a
starting point that is not ¢ty but rather an arbitrary point in time. We will
use this later.

The function seems to fit the points rather well, which would mean
that the regression is probably accurate. Intuitively one could think that
a polynomial of order two would be a good fit, by looking at the shape of
the curve the scatter plots create. This is not the case though. With a
second order polynomial the curving around the central points of interest,
i.e. in this case around 1, is too flat. A third order polynomial is used
instead, since it will give a better fit around the central points. However,
the function will then have the problem that it will not be a good fit around
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Figure 4.4: Regression between the underlying price and the continuation
value with the discounted future cash flows as blue scatter, at the last exer-
cise date before maturity using a third order polynomial

the extreme values of the spot price, which can be seen in figure 4.3 and
4.4. This is not a concern though since at the extreme values of the spot
price, the option will usually be exercised and then it does not matter if the
continuation value is not accurate. We will now use a spline instead and
look at the results.

As we can see in figure 4.5 the regression looks much better with the
use of a spline. The settings are the same as in the previous two figures,
except that now we use a spline for the regression. The regression with a
spline is usually better at the central points of interest. Although sometimes
the spline will wobble around these points. This can be prevented to some
extent by changing the smoothing parameter, which in our case is set to
0.7. For a more smooth curve we can decrease this parameter, but then the
curve will be further away from the scatter points.
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Figure 4.5: Regression between the underlying price and the continuation
value with the discounted future cash flows as blue scatter, at the last exer-
cise date before maturity using a spline

The MATLAB function "csaps" is used by both our algorithm and the
built-in function in MATLAB, which means that the figure looks the same
for both algorithms. The results will in contrast differ a bit. If we use a
spline we get an approximate 0.1% deviation when both up- and downswings
are allowed and approximately 0.3 % if only one of up- or downswings are
allowed, which are both acceptable results.

Another thing to test is to see if the algorithm uses up all of the exercise
rights. Since both up and downswings are possible at all exercise opportu-
nities and therefore for each opportunity there is always a positive payoff
to be made. So it is always optimal to use up all exercise rights. This can
easily be calculated and the result shows that the algorithm indeed uses all
the exercise rights.

4.3 Contract 2

In the second contract we are also interested in the price of the swing option
but the difference from the previous section is that we do not have other
work to compare with since we have designed this contract ourselves. But
we can adjust the parameters in contract 2 to make it equal to contract 1
and compare the results, i.e. by letting only one level be exercised at a time
in contract 2 and having as many exercise levels in contract 2 as exercise
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rights in contract 1. The results show that the values are the same down to
the tenth significant digit.

Like with contract 1 we are interested to see if all global volume (com-
pared to exercise rights in the previous section) and all local volume is used,
which it should. All global volume is not always used, but almost. This
means that there is a deviation from what we expect. This is for when
the local volume restriction for up and down are the same. When they are
not the deviation is bigger. When only up- or downswings are allowed, the
global volume is not always used up, which is reasonable since a profit is
made by swinging in only one direction and so the global volume used will
depend on the spot price process.

It is optimal to use all local volume when exercising, but our algorithm
does not always do that. One example can be seen below in figure 4.6, where
the red dots represent an exercise of two levels at the same time and the
blue dots represent an exercise of one level. The blue dots are moved 0.1
time units to the left in order for them to be more visual. The global volume
has four levels, two can be exercised at most at each time point (both up-
and downswings). As we can see the local volume is maximized most of the
time, but sometimes just one level is exercised (in this case four times).
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Figure 4.6: Local volume used, red dots represent an exercise of two levels
at the same time and the blue dots represent an exercise of one level. Total
amount of exercise levels are four. The blue dots are moved 0.1 time units
to the left.

Figure 4.7 show an example with the same settings as above but now

the global volume has five exercise level. As we can see, the exercise of only
one level is more frequent which is to be expected since when we now have
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five exercise levels, which is an odd number.
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Figure 4.7: Local volume used, red dots represent an exercise of two levels
at the same time and the blue dots represent an exercise of one level. Total
amount of exercise levels are 5. The blue dots are moved 0.1 time units to
the left.

In the figures we can see at which spot prices the exercises are made.
This is an indicator of the early exercise boundary which we will show the
results for next.

4.4 Early exercise strategy

We are interested to find the optimal exercise values for the spot price at
each time point. By using the technique in section 3.9 we can find the
empirical values for the boundaries. The results are depicted in figures. In
all the figures used in this section a swing option with seven exercise levels
and local restriction of three levels exercised at the same time (both up and
down) is used. The settings of the spot price process is the same as before.

Figure 4.8 shows the lines drawn between the prices where it is optimal
to swing up if the spot price is above the line or swing down if the spot
price is below the line. At t19 which is outside the figure we already know
that if we have exercise levels left then we should use them. What the figure
tells us is that at tg we should also use all the levels we can with the local
restriction. At tg we should always use one exercise right.

The idea with the early exercise boundaries are to be able to determine
when to exercise the option. In the figure, two trajectories are also included.
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If we use the boundaries in the figure, it would mean that for trajectory 1,
3 levels should be exercised at t7, 1 at tg and 3 at t9. For trajectory 2 we
should exercise 3 levels at tg, 3 levels at t7 and one level at tg (since we will
only have one left then).

Early exercise boundaries
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Figure 4.8: Early exercise boundaries for the spot price in the form of lines
through time, global volume is 7 exercise levels and local volume is 3 exercise
levels (both up and down). Trajectory 1 and 2 are examples of spot price
processes.

For this spot price model (Hambly, Howison and Kluge) the lines are not
smooth. This is due to the existence of price spikes. The lines below are
smoother than the ones above. This is because the values of the spot price
process are sometimes extreme, i.e. far away from K, for prices above K.
This will give a less accurate estimate for the above price lines. The prices
below K are bounded by zero, so the spot prices are there not so extreme.
The price lines above are further away from K than the ones below, which
is because the spot price process is moving upward.

The line for using 3 exercises should be further from K than the one
with using 2 exercises and so on but this is not always the case. The lines
lie relatively close together which is reasonable considering that when it is
optimal to exercise one or two levels it is usually optimal to exercise 3 levels
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(if possible).

In order to get a smoother lines we can use the trick we mentioned
earlier. We assume that another point than ¢y is the starting point for the
trajectories, to make them more spread out. Since they are independent and
time homogeneous it does not matter at which point in time we start our
algorithm. This is done by creating a longer spot price process but only using
the last time points, e.g. 10 out of 30 time points. When using the trick we
get figures (e.g. figure 4.9) that look like before and after several iterations
we conclude that there is not much difference. This is probably due to the
fact that the spot price processes are already well dispersed without this
trick, when including jumps. When jumps are not included the figure will
become too volatile at the first time steps to be of any use. This is because
the values of the underlying price distribution is not as dispersed as for the
case including jumps. In order to fix this we can use the trick.
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Figure 4.9: Early exercise boundaries for the spot price in the form of lines
through time, global volume is 7 exercise levels and local volume is 3 exercise
levels (both up and down). Here the trick to use later time points is used.

Figure 4.10 shows the early exercise boundaries with the model of Ham-
bly, Howison and Kluge but without price spikes. Now we have used our
trick. As we can see the lines are now much smoother, which they should
be.

We have now looked at two different regression types and the impact
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of volume restrictions when pricing swing options. We have also seen how
the optimal exercise strategy can be found. It is now time to make some
conclusions of our findings.
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Figure 4.10: Early exercise boundaries for the spot price in the form of lines
through time, global volume is 7 exercise levels and local volume is 3 exercise
levels (both up and down). Here the trick to use later time points is used
and the are no jumps in the spot price process.
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Chapter 5

Conclusion and Outlook

5.1 Conclusion

In this thesis we have examined how to price a swing option with two dif-
ferent contracts and when the optimal time to exercise is.

Our algorithm seem to work as well as Dérr (2003) and Meinshausen
and Hambly (2004). It also seem to work as well as the built in MATLAB
function for our first contract. The spline seem to be a better fit for the
regression, but can sometimes be unstable at the area where we have greatest
interest. The polynomial regression will usually give a worse regression but
will only be unstable around the extreme points.

The algorithm does sometimes not give us the expected results, as with
the local and global volume used, but it is usually close. This might be due
to some error in the algorithm. The early exercise boundaries seem also not
to be accurate since we would expect them to be smooth but they are not
always smooth. It can even so be an indicator of the optimal early exercise
strategy.

We tried to used the trick of using spot price trajectories with a later
starting point than ty to get the trajectories more spread out. This gave a
better regression and increased the accuracy of the algorithm.

To maximize the profit of the swing option, one could use the early
exercise boundaries to find the optimal stopping strategy. The strategy is
easily applicable, however it can not be used exactly when we have a contract
with physical delivery. It might be profitable to use the swing option to buy
extra electricity, but it does not always mean that it is a good idea to do so
if the buyer do not have any use for the extra electricity. Since electricity
can not be stored the buyer would have to resell it to someone else. This
would induce a profit but the profit might be less than the costs for buying
and selling the electricity. Therefore it might not always be a good idea to
use the swing option even though it theoretically it optimal to do so.
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5.2 Outlook

A further expansion of the contracts used in this thesis could be to use both
number of exercise rights with local and global volume at the same time. It
could also be to divide the global volume restrictions to a certain amount for
upswings and for downswings. It would be a much more complicated task
than here where we only look at the deviation from the baseload volume.

There are great variation of swing option contracts and since they are
often bought over the counter they can be adjusted to fit the specific buyer
and seller. Therefore there are many different variations of swing options to
price and there are also numerous ways to do so.
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Appendix A

MATLAB function

SwingPrice = hswingbyls(Paths, Times, RateSpec, Settle, Maturity,
Strike, ExerciseDates, NumSwings, DCQ, minDCQ, maxDCQ, useSpline,
P, LSplot)

where the inputs are:

Paths are the simulated trajectories.

Times are the time points for the exercise opportunities.

RateSpec is used to represent the interest-rate term structure.
Settle is the settlement date, i.e. the date before the first exercise
opportunity.

Maturity is the date of maturity.

Strike is the strike price K.

ExerciseDates is a vector of all possible exercise dates between Settle
and Maturity. If left empty, it will be possible to exercise at all time
points.

NumSwings are the number of exercise rights.

DCQ is the daily contract quantity, which for our comparison is
simplest set to 0. Note that it does not have to be set to 0, if it
is set to DCQ > 0, we would just have to adjust the local volume
restriction to that. The base load value of the contract is not included
in SwingPrice.

minDCQ is the level that the local quantity can not go below.
maxDCQ is the level that the local quantity can not go above.
useSpline is set to true if a spline is preferred over polynomials.

P is the smoothing parameter.

LSplot is set to true if we want to create a plot of the regression be-
tween the underlying price and the continuation value at the exercise
date before maturity.
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