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Abstract

It is well-known that long memory and regime switching in the first moment of

a stochastic process are easily confused. But the relation between long memory

in the second moment and regime switching in the second moment is less well

understood. We perform a simulation study in which we assess the possibility

to distinguish the two properties in the case that data with long memory

in the second moment is generated as a FIGARCH(0,d,0)-process, and when

regime switching is modelled by HMM with switching variance. Those model

specifications are common in the modelling of financial returns, and conform

to several well-known stylised facts of financial data. The simulation study

lends evidence to the risk of confusing long memory and regime switching in

the case studied.

Keywords: Long memory, Regime switching, HMM, FIGARCH, Simulation

study, Returns
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1 Introduction

In an influential paper by Diebold and Inoue (2001), it is argued that long memory

of and regime switching in a stochastic process are properties that are easily confused

in empirical economic and financial work. They even argue that they are ”intimately

related concepts” (p. 131) and that they are ”effectively different labels for the same

phenomenon” (p.157), at least if only a small amount of regime switching occurs. That

is perhaps surprising as the models they consider appear to be very different, but the

risk of confusing the two phenomena that they warned of was taken seriously by many

authors. They support that claim by theoretical results and simulation evidence from a

number of different models with the property of regime switching. Among others they

consider models of fractional integration as a prototype for long memory, and the Hidden

Markov Model (HMM) as a model of regime switching. However, to substantiate the

claim that long memory and regime switching are effectively the same phenomenon, we

should also expect series generated with long memory to be hard to distinguish from

regime switching ones. They do not simulate models of long memory, however, to show

that those are in a similar fashion easily misrepresented as models of regime switching. A

simulation study in which a special case of this is done is presented in the working paper

(Shi and Ho, 2014a), and another special case is presented in (Shi and Ho, 2014b). We

therefore perform a simulation study in which we simulate series with long memory and

examine the possibility of correctly rejecting regime switching models in favour of long

memory ones in a case that we find particularly interesting for applications in finance.

To keep relevant to applications in financial modelling, we will examine models with

long memory in the second moment, rather than in the first moment. This is because

commonly accepted stylised facts regarding financial returns data state that there is no

long memory in the mean of the returns series, but that there is long memory in squared

returns (Cont, 2001). Since the empirical mean of daily returns series is close to zero, and

V (x) = E(x2)− E(x)2 (1)

the squared returns series can be seen as an approximation of the conditional variance

of the series. Having a good model for the conditional variance of financial returns is

crucial in applications as it affects risk management (such as calculation of Value at Risk,

or such as the Artzner et al. (1999) Expected Shortfall risk metric), as well as for the

valuation of derivative assets (Hull and White, 1987). The model for long memory in

the second moment that we will study is the Fractionally Integrated Generalised Auto

Regressive Conditional Heteroscedasticity FIGARCH(0,d,0) model. Our model for regime

switching is the two-state HMM in which the conditional variance is state-dependent. We

chose those models based on their ability to reproduce stylised facts, while also being

well-known in the literature.
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We simulate data generated by a FIGARCH model, and fit FIGARCH as well as HMM

models to the data. The aim is to assess whether there is a clear risk of confusing the

two models in this case. The model selection procedure relies on residual analysis that

is standard in small sample inference, as suggested by Diebold and Inoue (2001). This

means that the distribution and dependence structure of the residual series are compared

with what is expected under the model estimated. If the residual analysis can reject the

estimated HMM model, but cannot reject the estimated FIGARCH model when fitted to

simulated data, we argue that there is no clear risk of confusing the two phenomena in

our case.

We find that our simulation evidence, restricted to our case, supports the claim by

Diebold and Inoue (2001) that there is a risk of confusing long memory with regime

switching in the second moment when applying standard small-sample inference. However,

the claim that long memory and regime switching are so intimately related that they

should be seen as the same phenomenon can be challenged. In Shi (2015) and Perron and

Qu (2010), estimation procedures have been suggested which are claimed to be able to

distinguish the two phenomena when generated by restricted families of models. In the

simulation study at hand, we find preliminary results indicating there are cases in which

the small sample inference can reject the HMM model in favour of the FIGARCH one.

We argue that these results might be possible to formalize to a statistical test, similar to

the one in Shi (2015).

The rest of the text will continue by presenting previous research on the risk of con-

fusing long memory and regime switching, together with a presentation of the statistical

models investigated as well as their relevance for modelling financial data in Section 2. In

Section 3, the results from the simulation study are presented. We conclude in Section 4.

2 Statistical Models

In this section, we discuss previous results on the relation between long memory and

regime switching. We will study long memory in the second moment, and our model for

that will be the FIGARCH model. The model for regime switching in the second moment

will be the HMM model with switching variance. Those are defined and the models’

respective ability to reproduce stylised facts of financial returns data is discussed as well.

We also present the parameter estimation procedure that will be employed when fitting

those models to simulated data.

2.1 The Confusion of Long Memory and Regime Switching

Diebold and Inoue (2001) argue that long memory of and regime switching in a stochastic

process are properties that are easily confused in empirical economic and financial work.
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They even argue that they are ”intimately related concepts” (p. 131) and that they are

”effectively different labels for the same phenomenon” (p.157), at least if only a small

amount of regime switching occurs.

They support that claim by theoretical results and simulation evidence from a number

of different models with the property of regime switching. Their theoretical results are

valid in some restricted cases, but show that there is a possibility of confusion between

long memory and regime switching in those cases. In the simulation study, they apply

statistical tests for long memory to data simulated from models with regime switching.

The aim is to ”characterize the finite-sample inference to which a researcher armed with

a standard estimator of the long-memory parameter would be led” (p.141). The result

is that the rejection frequency is well above the confidence level of the tests, indicating

significant long memory. One of the models with regime switching from which they

simulate data is a HMM in which the mean is a switching parameter, but the variance

is not. They find that the empirical size of the tests depend on the length of the series

estimated, as well as on the Markov transition probabilities. The dependence appears not

to be a linear one.

However, they do not simulate models of long memory, to show that those are in a

similar fashion easily misrepresented as models of regime switching. A simulation study in

which a special case of this is done is presented in the working paper of Shi and Ho (2014a).

That simulation study focuses on models with long memory and a heavy tail distribution,

and fit HMM with t-distributed mixture components. The long-memory model from which

they simulate data is a t-ARFIMA(0,d,0) model, that is a ARFIMA(0,d,0) model with

innovations having a Students’ t distribution. It is a well-known property of financial data

that the distribution has fat tails (Cont, 2001), which is the motivation for their choice of

model. A feature of empirical financial data that is not captured by the t-ARFIMA(0,d,0)

model is long memory in squared returns. To reproduce that property, Shi and Ho (2014b)

simulate data from a variant of a FIGARCH(1,d,1)-model to assess whether long memory

in the second moment is easily confused with regime switching in the second moment.

The data they simulate is not from the FIGARCH(1,d,1)-model defined by Baillie et al.

(1996), but from a modification of it in which the errors are t-distributed.

The t-FIGARCH(1,d,1)-model is one which of relatively little use. We see no justifica-

tion in letting p=q=1 in the FIGARCH(p,d,q)-model, as this does not make the generated

data conform better to the stylised facts of (Cont, 2001). We will therefore perform a

simulation experiment similar to the one in Shi and Ho (2014b), but we will simulate data

from a FIGARCH(0,d,0)-model with normal distributed errors. We furthermore want to

examine if the confusion of long memory with regime switching in the second moment is

a property that can be reproduced also with normal distributed errors.

While accepting the notion of a risk of confusing long memory and regime switch-

ing using standard modelling procedures and tests, Perron and Qu (2010) challenge the
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interpretation of (Diebold and Inoue, 2001) that this means that the long memory and

regime switching are ”different labels for the same phenomenon” (Diebold and Inoue, 2001,

p.157). Instead they propose a test that they claim can disentangle the two phenomena

in the first moment, for a special case of model for long memory. In the same fash-

ion, Shi (2015) propose a two-stage two-state ARFIMA model, and perform a simulation

study which they claim shows that their proposed model can distinguish a pure-ARFIMA

process from a pure HMM one.

2.2 The FIGARCH Model

A generalisation of the GARCH model (Bollerslev, 1986) is the FIGARCH(p,d,q)-model

(Baillie et al., 1996), in which p is the number of autoregressive (AR) lags, d is the

R∩ [0, 1)-valued1 order of integration and q is the number of moving average (MA)-terms.

It is defined for the process {rt}Tt=−∞ as

rt = ztσt (2)

(1− α(B)− β(B))(1−B)dr2t = ω + (1− β(B))νt (3)

where {zt}Tt=−∞ is an iid N(0, 1) stochastic process and νt is defined as νt = r2t − σ2
t . B is

the back-shift operator and α and β are polynomials in B, of order p and q respectively.

The fractional difference operator is defined as

(1−B)d =
∞∑
k=0

Γ(k − d)

Γ(k + 1)Γ(−d)
Bk (4)

and Γ denotes the Gamma function

Γ(t) =

∫ ∞
0

xt−1e−x dx (5)

While introduced and defined by Baillie et al. (1996), the existence of a stochastic process

satisfying the definition was not proven until Douc et al. (2008).

It is possible to interpret the polynomials α and β as a model for the short term, so

that it is the integration order d that controls the long memory of the process (Baillie

et al., 1996). Our interest lie in the long run, and so we will set α = β = 0 when simulating

data. That is, we will simulate FIGARCH(0,d,0) models.

The reason for our interest in long memory in the second moment is its application

in modelling of financial returns. Cont (2001) presents an empirical overview of stylised

facts of financial data, which we list below:

1The term ”fractional” is a misnomer in this context. But it is standard in the econometrics literature,
as well as in operator theory.
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1. Absence of autocorrelations.

2. Heavy tails.

3. Gain/loss assymetry.

4. Aggregational Gaussianity.

5. Intermittency.

6. Volatility clustering.

7. Conditional heavy tails.

8. Slow decay of autocorrelation function in absolute returns.

9. Leverage effect.

10. Volume/volatility correlation.

11. Assymetry in time scales.

The FIGARCH model presented above satisfies several of those stylised facts. The process

{rt} is unconditionally uncorrelated (Baillie et al., 1996), and the squared process {r2t } as

well as the process for the absolute value, {|rt|}, has a slowly decaying2 autocorrelation

function (Tayefi and Ramanathan, 2012). The unconditional distribution has heavy tails

(Baillie et al., 1996). The model is defined such that the conditional variance is itself a

random variable, and volatility clustering (the property that ”large changes tend to be

followed by large changes, of either sign, and small changes tend to be followed by small

changes” (Mandelbrot, 1963, p.26)) is also a defining property of the model. This means

that the stylised fact number 1,2,5,6,7 and 8 of Cont (2001) are satisfied. Stylised fact

number 4, 10 and 11 deal with properties that are not defined by the stochastic process,

or that concern continuous time and are thus not relevant for our purpose. Two of the

stylised facts are, however, not obviously satisfied by the FIGARCH model. Stylised fact

number 3 is that financial returns typically exhibit gain/loss-assymmetry, meaning that

”one observes large drawdowns in stock prices and stock index values but not equally

large upward movements” (Cont, 2001, p.224). To reproduce this stylised fact, a model

with stochastic jumps could have been examined instead of the FIGARCH(0,d,0)-models.

While interesting for applications in finance, doing so means that the model considered are

quite different from the ones considered in Diebold and Inoue (2001), Shi and Ho (2014a)

and Shi (2015), however. We therefore avoid that altogether. Stylised fact number 9, the

”leverage effect”, is that ”most measures of volatility of an asset are negatively correlated

with the returns of that asset” (Cont, 2001, p.224). A generalization of the FIGARCH

2The rate of decay is hyperbolic.
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model that can capture this effect is proposed by Hwang (2001), but Ruiz and Perez

(2003) show that model to be ill specified, and proposes another specification. This was

not explored further.

An alternative to the model specified above for example is to let zt in equation (2) to be

t-distributed instead of N(0, 1) distributed (Bollerslev, 1987) or normal-inverse Gaussian

(NIG)-distributed (Kiliç, 2007). By such distributional assumptions, it is argued that the

model can fit empirical data better by allowing for fatter tails of the distribution. However,

the number of parameters to estimate also increases. In the case of t-distributed error

terms for example, a degrees of freedom-parameter is to be estimated from data. We will

study models with normal distributed errors only.

Different approaches to estimating the parameters in a FIGARCH model have been

proposed (Tayefi and Ramanathan, 2012). We follow the approach by Baillie et al. (1996),

which is to maximise the likelihood function in (6). The log likelihood function can be

derived from an ARCH(∞)-representation of (2).

logL(θ, r1, r2, . . . , rT ) = −0.5T log(2π)− 0.5
T∑
t=1

(log(σt) + r2t σ
−1
t ) (6)

Each observation is dependent on the entire history of a realisation, and so there are out-

of-sample conditional variances that are unavailable in finite-sample inference. Those are

set to the unconditional sample variance in the estimation procedure. This is standard

procedure when estimating the parameters of GARCH-family models and is suggested in

Baillie et al. (1996) and Tayefi and Ramanathan (2012) also for FIGARCH models.

The infinite sum (4) has to be truncated to perform simulation of FIGARCH-series or

when estimating parameters. This is commonly done at the 1000th term. The expression

(4) for the fractional difference operator was introduced by Hosking (1981) and is the

one that is given in Baillie et al. (1996) and that is standard in time series analysis.

But there are also alternatives that could have been used, such as defining it through

the Laplace transform. Doing so leads to an equivalent operator. But it is not obvious

that the truncation of operator (4) is equivalent to a truncation of the Laplace-fractional

difference operator. We stick to the procedure of Baillie et al. (1996) since it is standard

in the literature. But it might be an interesting question for future work to examine the

properties of the alternative operator.

2.3 HMM

In a HMM (Hamilton, 1988, 1989)3, the probability distribution of the stochastic process

at a time t depends on an underlying and unobserved Markov process. The HMMs that

3Hidden Markov Models are also named Markov Regime Switching models.
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will be estimated are defined as

rt = βSt + εt,St (7)

εt,St ∼ N(0, σ2
St

) (8)

where St ∈ {1, . . . k} is the (unobserved) states of the Markov chain {St}∞t=1, and where

k is the number of states. The transition probability pij is defined by

pij = P (St+1 = j|St = i) = P (St+1 = j|St = i, St−1 = k, . . . ) (9)

and the second equality is the definition of the Markov (chain) property. The parameters

β and σ2 are said to be non-switching if they are restricted to be equal in any state, that

is they do not depend on St. Otherwise the parameters are said to be switching. A model

with switching β and switching σ2 will be estimated.

One feature that makes HMM models popular to practitioners is that the states are

seen as easily interpretable, at least as long as the number of states is small. For example,

in a two state model for financial applications, they are sometimes interpreted as one state

representing ”normal times” and the other state representing some kind of ”financial stress

situation”. As an example of the interpretation of what the states represent, Hamilton

(1988) applies a two-state HMM model to the US Treasury bill interest rate. He finds

that ”[t]he period 1979:4-1982:3 is thus identified as a time of dramatically higher and

more volatile short-term interest rates than that seen before or since” (p.408), and writes

that ”[t]his dating of an apparent shift in the process for the short-term interest rate

corresponds precisely with a profound change in Federal Reserve operating procedures”

(p.408). This means that his interpretation of the different states is that the low volatility

state represents the normal operating procedure of the Federal Reserve, and that the high

volatility state represents a different operating procedure that was conducted during a

period of three years. Another property that makes HMM useful for applications is that

the Markov property for the state process greatly simplifies forecasting from them. The

reason for that is that the Kolmogorov-Chapman equation can be used for simplifying

the computation of the n-step ahead transition probabilities, which are in turn needed

for the computation of the n-step ahead forecast of rt. Let the transition probabilities be

collected in a matrix P , and the n-step ahead transition probabilities in a matrix P (n).

Then P (n) = P n, which is a special case of the Kolmogorov-Chapman equation (Shiryaev,

1995, p.116).

Rydén et al. (1998) examine if HMM models can generate series that have the prop-

erties that are described by the stylised facts of financial data. They compare the models

with a different set of stylised facts than those in (Cont, 2001), but their conclusion is

that the HMM models can reproduce all of the stylised facts examined apart from one:
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the form of the decay of the autocorrelation function. While they are able to reproduce

a slow decay, the form of it is not the same as in the stylised facts. Nystrup et al. (2015)

suggest that continuous-time HMM can give a better fit to daily financial returns data

while restricting the number of parameters to estimate. The number of parameters in a

continuous-time HMM grows linearly with the number of states, rather than quadrati-

cally which is the case for the HMM (Nystrup et al., 2015). In particular, they show that

the slow decay of the empirical autocorrelation function from a set of real-world financial

returns data is better captured by a continuous-time HMM than with a HMM with a

comparable number of parameters. Of the stylised facts presented in Cont (2001), it is

easy to see that a HMM with switching variance can reproduce fact number 2 that the

unconditional distribution has heavy tails. That is because the distribution of the errors

of a HMM is a mixture distribution of normal distributions, which is a convex combina-

tion of distributions. An so, depending on model parameters, an error distribution with

fat tails can be reproduced. See figure 1 for an example of a mixture probability density

function. Fact number 6, Volatility clustering, is also a feature of HMM with switching

variance. That is an immediate consequence of the definition, as the variance at t depends

on what state is realised at t.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1: Probability density function of a mixture distribution (thick, black) with heavy
tails. A N(0, 1)-pdf (thin, blue) for comparison. The scaled mixture components are
depicted as dashed blue lines.

Estimation of HMM can be done either by optimisation of the likelihood function,

or through Gibbs-sampling. Gibbs-sampling is a Markov Chain Monte Carlo (MCMC)

method. Optimisation of the likelihood function is implemented here, and the log likeli-

hood function is given by

logL(θ, r1, r2, . . . , rT ) =
T∑
t=1

log
k∑
j=1

(f(rt|St = j, θ)Pr(St = j)) (10)
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where f(rt|St = j, θ) is the likelihood for state j conditional on the parameter vector θ.

The probabilities Pr(St = j) are latent and estimated with Hamilton’s filter (Hamilton,

1988, 1989). This is done before the optimisation of (10). The HMM-estimation of the

simulated data is performed using the MS Regress Package of Perlin (2014), implemented

in Matlab. Both HMM-models where the mean and the variance are switching variables

and models where only the variance is switching between regimes are estimated.

The number of parameters to estimate increases quadratically with respect to the

number of states k, which means that computation time increases dramatically with k.

Because of that, it is not deemed feasible to estimate models with more than two states.

The likelihood function for the two state model is then

logL(θ, r1, r2, . . . , rT ) =
T∑
t=1

log
2∑
j=1

(f(rt|St = j, θ)Pr(St = j)) (11)

=
T∑
t=1

log
2∑
j=1

(
1√

2πσj
exp(
−(rt − µj)2

2σj
)Pr(St = j)) (12)

3 Simulation Study

We simulate data from a FIGARCH(0,d,0) process. Then we fit HMM with switching

variance as well as FIGARCH(0,d,0)-models to the data. The distribution and dependence

structure of the residual series from the estimation procedures are analysed to assess the

risk of not being able to reject the incorrect HMM specification in favour of the correct

FIGARCH(0,d,0) specification.

3.1 Simulation of FIGARCH data

Data from FIGARCH(0,d,0) models are simulated. The choice of setting the AR and

the MA parameter to zero is to conform to the stylised facts of Cont (2001) regarding

empirical financial returns. We simulate series with fractional integration order d equal

to 0.15, 0.25, 0.35 and 0.45, following Shi and Ho (2014a). The process has well defined

variance only if d < 0.5. The length of the simulated series is chosen to 7000, and we

then truncate all but the last 2500 points away in each series. The aim of the truncation

is to remove entries that are affected by initial value bias as a result of the truncation of

the operator in equation (4). The chosen series length corresponds to roughly ten years

of daily trading data, calculated at 252 trading days per year. In Diebold and Inoue

(2001), the length of the simulated series range between 100 and 5000, and so 2500 is in

the middle of that interval. Investigating the effect of the length of the series is outside

the scope of the present simulation study. The number of simulated series is 5000, which

is chosen so that computations can be done in a feasible length of time. We set ω = 0.1
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in all simulations, following Shi and Ho (2014b). The simulation is done with the MFE

Toolbox of Sheppard (2014), implemented in Matlab.

To build some intuition for the data, figure 2 shows one series from each FIGARCH(0,d,0)

model. Volatility clustering appears to be more apparent with rising fractional integration

order d. No autocorrelation is expected in the simulated series. This is supported by the

autocorrelation plots in figure 3 where the autocorrelation functions for ten simulations

with d = 0.15 and d = 0.45 are shown. In figure 4 the same plot is presented for the

square of the simulated series. We can see that there are a large number of significant

lags in the autocorrelation function of the squared series. The number of significant lags

increases when d is closer to 0.5. This means that the simulated data appears to have an

autocorrelation structure that is consistent with the stylised facts in Cont (2001).
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Figure 2: Simulated FIGARCH series
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Figure 3: Autocorrelation function of simulated series, d = 0.15 (left) and d = 0.45 (right)
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Figure 4: Autocorrelation function of squared simulated series, d = 0.15 (left) and d =
0.45 (right). Note the difference in scale of the x-axis.

3.2 Results from HMM estimation of FIGARCH Data

Two state HMM in which the variance and the mean are allowed to switch are fitted to

the simulated data, and residual diagnostics are performed on the estimated residuals.

Since the estimation of HMM is more computationally intensive than the estimation of

FIGARCH models, only the first 1000 of the simulated series are estimated, rather than

5000 which is the case in the estimation of FIGARCH models. This means that the

models are not fitted to exactly the same data series, which could be an error source in

the Monte Carlo experiment. The alternative would have been to restrict also the number

of series to which the FIGARCH model is fitted to 1000.

Estimation of a HMM is computationally expensive. The computations were made

in parallel on computers with Intel Core i7 processors, and the total run time when

performing the parameter estimations was about three days (70 hours). The HMM-

estimation of the simulated data was performed using the MS Regress Package of Perlin

(2014), implemented in Matlab. The parallelisation of the code was made by splitting the

simulated data in four subsets, one with each value of the parameter d. After that, four

PC’s were performing the model estimation procedures on all series in one subset each, and

the results were sent back to one PC which collected them to perform residual tests. The

most time-consuming part of the computation appears to have been the implementation

to each series of Hamilton’s filter.

d Mean p11 Mean p22 Mean β1 Mean β2 Mean σ2
ε,1 Mean σ2

ε,2

0.15 0.9699 0.9359 -0.0005 -0.0007 0.2550 0.6112
0.25 0.9741 0.9364 -0.0008 0.0002 0.5164 1.8027
0.35 0.9760 0.9382 -0.0006 -0.0004 0.9371 5.1673
0.45 0.9761 0.9345 0.0010 0.0026 1.3788 14.8580

Table 1: Parameter estimation results from estimated HMM to simulated FIGARCH data.
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d Mean Skew Mean Absolute Skew Mean Kurtosis Mean RSS
0.15 0.0016 0.0436 3.2823 898
0.25 0.0032 0.0712 4.1345 2155
0.35 -0.0039 0.1281 5.9987 5176
0.45 0.0112 0.2584 9.9728 13112

Table 2: Diagnostic statistics from HMM-estimation of FIGARCH series.

d ARCH10 Q10 BDS10

0.15 1.000 0.095 1.000
0.25 1.000 0.211 1.000
0.35 1.000 0.477 1.000
0.45 1.000 0.683 1.000

Table 3: Rejection frequencies from residual tests from HMM-estimation of FIGARCH
series.

In table 1 the estimated parameters are reported for the estimation of (7) in which β

and σ are both switching. We can see that the switching probabilities pii are all above

0.9, and that the p11 parameters rise marginally with d. This means that the conditional

probability of remaining in state 1 when starting in state 1 rises, and that there will be

fewer regime shifts. This pattern holds also for p22, except when d = 0.45.

The columns with the mean of σ2
ε,i present the mean of the estimated variances in

state 1 and 2 respectively. We see that the difference between them is more pronounced

with larger d, and also that the variances rise with d. The series with higher fractional

integration parameter d are expected to have more pronounced volatility clustering, as

was indicated in figure 2. This larger amount of volatility clustering when d is large is

assumed to be the reason for the larger difference in estimated volatility between the

states.

We turn now to residual analysis. If the model is well specified, the errors from the

estimated models are independent and identically normal N(0, 1) distributed. We analyse

first the distribution of the errors, and then perform standard residual tests to see if there

is any dependence in the residual series. When we analyse the distribution of the errors,

the residual series should have no skew, zero mean and a kurtosis equal to 3. In table

2, residual diagnostics are reported. Each parameter is the average of the parameters

calculated from the residual series from the fitting of the HMM model with switching

βSt and variance σSt . We present the absolute skew as well as the skew to be able to

detect any cancellation effect. If the estimator of the skew is normal distributed, then the

absolute value of the skew has a folded distribution. The table indicates that the residual

series tend to have a kurtosis larger than 3, which means that the series have fat tails. The

kurtosis is more pronounced with larger d, that is when there is more long memory in the

12



second moment. There appears also to be some skew, in particular when the fractional

integration order d is larger. This means that the estimated model could be claimed not

to fit the data very well. It is possible that estimating a HMM model with three states

instead of two would generate residuals with a distribution closer to a normal distribution.

The reason for that is that a mixture distribution with three mixture components can fit

even fatter tails than a two-state HMM. We have not estimated three-state HMMs, as the

computational burden would be prohibitive. In the present experiment, we simulate the

data as FIGARCH(0,d,0), and so unless that model is in some sense equivalent to a HMM

model, we estimate a misspecified model. Then the result should not be too surprising.

The purpose of the simulation experiment is to assess whether there is a risk of mistaking

the FIGARCH data for HMM data. Therefore we will, for the sake of comparison, also

have to do this same analysis on residuals from estimated FIGARCH models, which we

do in section 3.3.

We continue now with analysing the dependence structure in the residual series by

performing standard residual tests. In table 3, the rejection frequencies from three stan-

dard residual tests are reported. We use them to assess whether the residual series have

the property that their entries are iid. The ARCH Lagrange Multiplier (Engle, 1982) test

(ARCH10) at lag length 10 is a test for remaining conditional heteroscedasticity. We see

that the null hypothesis of no remaining heteroscedasticity is rejected in each residual

series. Hence, the test lends evidence against the estimated model. The next test, the

Ljung-Box (Ljung and Box, 1978) test (Q10) is a portmanteau test of no remaining au-

tocorrelation. The rejection frequency appears to depend on the parameter d, with the

rejection frequency rising with d. This is in line with the results on the distributional fit,

in which we noticed that the distribution is more leptokurtic when d is large. Lastly, the

Brock Dechert Scheinkman (Brock et al., 1987, 1996) test (BDS10) is sometimes applied

to test for general nonlinearity as well as for general mis-specification. The computation

of the test statistic was carried out by using a program provided in Kanzler (1999). It

was chosen in favour of implementing the C-program by (Brock et al., 1996), as it is

numerically more efficient than that one, while implementing the same test. No attempt

to use small-sample correction is made as the difference is expected to be small given

the length of the estimated series. The rejection frequency is again 1, that is the null

hypothesis that the series are iid is rejected for each residual series. The choice of setting

the lag lengths and the embedding dimension to ten in the residual tests was made to

agree with Shi and Ho (2014a). Choosing a shorter lag length and embedding dimension

does not appear to affect the result. We did not try to perform the tests with a very

large number of lags because of the computation time that would have been needed for

doing so. In figure 5, a panel of simulation convergence plots for the Ljung-Box Q test is

presented. It demonstrates that the simulation experiment presented in table 3 appears to

have converged. Each plot depicts the cumulative rejection frequency. If the cumulative
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frequency appears to stabilise, this is an indication that the simulation has converged.

The conclusion is then that the number of simulated series is large enough. If it would

not converge, that would mean that the simulation experiment is of little value, perhaps

because too few series have been simulated.
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Figure 5: Simulation convergence plot depicting the cumulative rejection frequency of the
Ljung-Box Q-test applied to residuals from HMM-estimation of FIGARCH data.

The overall view from the residual diagnostics in table 2 and from the residual tests in

table 3 is that fitting a HMM-model to simulated FIGARCH(0,d,0)-series lead to serious

problems that are obvious when inspecting the residual series. The residuals do not have

a normal distribution, as they have excess kurtosis. Moreover, the residual tests indicate

that there is dependence in the residual series.

We will continue by fitting a FIGARCH-model to the simulated series for comparison.

3.3 Parameter Estimation in FIGARCH models

We fit FIGARCH(0,d,0) models to the simulated FIGARCH(0,d,0) data, for the purpose

of comparison with the residual diagnostics that is performed on the estimated HMM-

models. In particular, we will examine the distributions of the residual series, and perform

residual tests to examine the iid-ness of the residual series. The parameter estimation

was implemented by the MFE Toolbox of Sheppard (2014), implemented in Matlab. The

estimation procedure was less time consuming than the one in which HMM were fitted,

and we did not parallelise the code.

The estimated parameters are close to the parameters set in the simulation. In table 4,

diagnostic statistics are reported. We see that the skew is small, and in particular smaller

than when a HMM model is estimated. There are, however, indications of leptokurtosis
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in the residuals, in particular when the fractional integration order is closer to 0.5. The

Residual Sum of Squares (RSS) is lower than in the HMM estimation. Since the data

is simulated as FIGARCH(0,d,0)-models, the model is not misspecified as was the case

in the previous section. The source of deviation from the correct distribution is instead

likely to be a finite-sample phenomenon. Each realisation evaluated at t, rt, is dependent

on the entire history of the realisation. But when the model is fitted to finite-sample

data, out-of-sample conditional variances are unavailable. In the estimation procedure,

they were set to the unconditional sample variance, following Baillie et al. (1996). This

effect is stronger when d is closer to 0.5, as the long-memory effect is more pronounced

then. That is in line with the observation that the kurtosis in the residual series is larger

when d is large. This source of error appears to affect also the dependence structure in

the residuals, as we will see.

As in section 3.2, we now turn to residual tests to examine the existence of dependence

in the residual series. In each of the tests and for each d, the theoretical rejection frequency

of the tests is 0.05 if the data is drawn from a FIGARCH(0,d,0) process. The results are

reported in table 5. We see that the ARCH LM test and the BDS test does not always

reject the null hypothesis, as was the case when applied to the residuals from the HMM

estimations. The rejection frequency of the ARCH LM test is still very high, though.

This could be a sign of the difficulty mentioned above of estimating FIGARCH models.

It could also indicate that the ARCH LM residual test is of little value when deciding

between a HMM and a FIGARCH specification when analysing financial returns data.

d Mean Skew Mean Absolute Skew Mean Kurtosis Mean RSS
0.15 -0.0014 0.0442 3.1695 3404
0.25 -0.0006 0.0520 3.4882 888.1
0.35 -0.0002 0.0659 4.0004 2673
0.45 -0.0006 0.0818 4.5620 9299

Table 4: Diagnostic Statistics from FIGARCH-estimation of FIGARCH series.

d ARCH10 Q10 BDS10

0.15 0.9948 0.0334 0.9864
0.25 0.9532 0.0440 0.8328
0.35 0.8818 0.0680 0.1572
0.45 0.9486 0.0902 0.0772

Table 5: Rejection frequencies from residual tests from FIGARCH-estimation of FI-
GARCH series.

In the Ljung-Box test, the null hypothesis is rejected less often than is the case when

applied to the HMM residuals, and relatively close to the correct frequency of an iid pro-

cess. The rejection frequency is closest to the correct frequency when d is between 0.25
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and 0.35. The rejection frequency of the BDS test appears to depend on the fractional

integration order d, and it appears to be more reliable when d is large. When d = 0.45,

the empirical rejection frequency is 0.0772, which is not far from the correct theoreti-

cal frequency. As in the previous section, we present simulation convergence plots that

demonstrate the convergence of the simulation experiment. The simulation convergence

plots for the ARCH LM test is presented in figure 6, the plots for the Ljung-Box Q-test

in figure 7, and the plots for the BDS-test in figure 8.
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Figure 6: Simulation convergence plot depicting the cumulative rejection frequency of the
ARCH LM test applied to residuals from FIGARCH-estimation of FIGARCH data.

Our aim is to evaluate the risk of confusing long memory in the second moment with

regime switching in the second moment. When evaluating that risk, the method used

by Diebold and Inoue (2001) was to characterise ”the finite-sample inference to which a

researcher armed with a standard estimator of the long-memory parameter would be led”

(p.141). We use the same method, applied to long memory in the second moment as in Shi

and Ho (2014b). We argue, based on the simulation results, that such a researcher would

see two models whose distribution deviate from the one expected under the respective

correct model. That deviation is larger when the estimated fractional integration order

d̂ is small. Furthermore, the researcher would conclude that under both models, the

residuals are non-iid. That conclusion would follow as it is likely that at least two of

the presented residual tests reject its respective null hypothesis of no heteroscedasticity,

no autocorrelation or no nonlinear dependence. The probability of rejecting iid-ness in

residuals is large when the estimated d̂ is small. This means that our results are in line

with the conclusion in Diebold and Inoue (2001), Shi and Ho (2014a) and Shi and Ho

(2014b), that long memory and regime switching can be easily confused. We thus add

the FIGARCH(0,d,0) model, which has long memory in the second moment to the list of
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Figure 7: Simulation convergence plot depicting the cumulative rejection frequency of the
Ljung-Box Q-test applied to residuals from FIGARCH-estimation of FIGARCH data.

model specifications for which this empirical feature has been demonstrated. The previous

results regarded models with long memory in the first moment, as well as models with

long memory in the second moment generated as a t-FIGARCH(1,d,1)-process.

Among the main possible sources of error in the study which restricts the interpretation

of the results, we mention again that all data is simulated with ω = 0.1. This is not

expected to affect the results, but we have not examined that. To examine that, a

replication of the simulation study for different values of ω could be performed. Similarly,

we have fixed the length of the simulated series to 2500. A replication of the simulation

study with other lengths of the series would make the results more widely applicable.

While the above results support the risk of confusing long memory and regime switch-

ing when using standard estimation procedures, we agree with Perron and Qu (2010) and

Shi (2015) and argue that this need not preclude the possibility of developing testing

procedures that can disentangle the two phenomena. We propose based on our simu-

lation results that there is a situation in which the Ljung-Box residual test could lend

evidence to a FIGARCH model specification in favour of a HMM specification. That is

the case when the estimated d̂ ≥ 0.35 in the FIGARCH model specification and the null

hypothesis of the Ljung-Box residual test is not rejected when applied to the FIGARCH

residuals, while it is rejected when applied to the HMM-residuals. The test is then a

conservative one, built on the results from the present simulation study. In the case that

the estimated d̂ ≤ 0.25, the test give no guidance however. If the rejection frequency

depends monotonically on the fractional integration order d, it is possible that extending

the present simulation experiment to the case d = 0.30 would extend the parameter space

in which the above testing procedure would be applicable. In a situation similar to the
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Figure 8: Simulation convergence plot depicting the cumulative rejection frequency of the
BDS-test applied to residuals from FIGARCH-estimation of FIGARCH data.

one just described, the BDS-test could be used to lend evidence to the FIGARCH model.

These observations could be used to formulate tests that can be used to distinguish long

memory from regime switching in the second moment, as in Shi (2015). We also see that

the ARCH LM-test might be unreliable. This could be an artifact pointing towards sim-

ulation problems, for example stemming from the truncation of operator in (4). If that

is so, the reason for it should be examined and software procedures should be corrected.

Otherwise, the ARCH LM-test should be used with care when examining models with

long memory.

4 Conclusion

In an influential paper by Diebold and Inoue (2001) it was argued that there is a clear

risk of confusing long memory and regime switching using standard estimation procedures

and tests. We have performed a simulation study which extends the models for which this

has been demonstrated to data simulated as a FIGARCH(0,d,0)-process with normal dis-

tributed error terms, which is a model of long memory in the second moment. Previously,

this has been demonstrated by simulating data with regime switching in the first mo-

ment, by simulating data with long memory in the first moment, as well as by simulating

data with long memory in the second moment generated as a t-FIGARCH(1,d,1)-process.

We furthermore show that the theoretical models studied are relevant for applications in

modelling of financial returns data since they both satisfy many of the stylised facts that

have been observed by Cont (2001) and Rydén et al. (1998). Furthermore, we identify
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properties of the tests used in the simulation study that can possibly serve as a starting

point for finding an estimation procedure which can be used to distinguish long memory

and regime switching, similarly to Perron and Qu (2010) and Shi (2015).
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