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Abstract 
Purpose   There is a need to find a quick way to assess the impacts of the growing amount of globally 
manufactured and emitted chemical substances. This paper evaluates the use of Quantitative 
Structure Activity Relationships (QSAR) for predicting environmental effects of plastic additives in Life 
Cycle Impact Assessment (LCIA). It also evaluates the impact on so called Characterization Factors 
(CF) when including toxicity on algae as opposed to only chordate and arthropod. 
Method   A review concluded that few (39) toxicity data for algae (experimental and QSAR predicted) 
were available for the 159 plastic additives of concern. To fill the data gap, a QSAR for algal toxicity 
was constructed that was able to predict toxicity for 54 substances. CFs were calculated and assessed 
based on; 1. QSAR predicted data for arthropod and chordate, 2. QSAR predicted data for arthropod, 
chordate and algae and 3. Experimental data for all three phyla. 
Results and discussion   CFs could be calculated considering algal toxicity for totally 97 out of the 159 
substances. Algae were overall less sensitive to the substances leading to lower CFs when it was 
included. The correlation between the effect data of algae and the other two phyla was very small 
resulting in an altered internal rank when algal data was included.  
Conclusions & recommendations 
- The sensitivity of the species varied both between phyla and between substances. 
- The inclusion of algal effect data did alter the internal rank of the resulting CFs although not 

extensively. 
- Algae generally exhibited lower sensitivity to the additives. Not including algae in LCIA studies 

might therefore result in more conservative CFs. 
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1. Introduction 
 

1.1   Background 
Emissions of chemicals from anthropogenic sources have become a growing problem globally. To be 

able to regulate the usage of chemicals that causes the greatest threats there is a need to assess 

these emissions and their impact on humans and the environment. LCIA (lifecycle impact analysis) 

has become a commonly used tool where cumulative environmental impacts from all phases in a 

products lifecycle are assessed and characterization factors (CF) are derived representing the 

different types of impacts e.g. ecotoxicity. LCIAs make it possible to distinguish critical stages where 

the most significant emissions are from the initial raw material extraction and manufacturing process 

to the disposal, reuse or recycling (SAIC, 2006). However these models often demand an extensive 

amount of data of e.g. physiochemical properties and toxic effects, and empirical data is not always 

available. In these cases the use of data derived from QSAR-models (Quantitative Structure-Activity 

Relationship) for prediction of environmental fate and toxicity and could be an alternative to fill in 

the gaps where data is missing. With these models it is also easy to rapidly gather a vast amount of 

data which makes it a suitable tool to use for a first prioritization among a large set of substances. 

Usage and development of QSAR models also save monetary costs and reduces the need of animal 

testing (OECD, 2014).    A lot of focus has been put on submitting data for e.g. environmental fate 

and human exposure while data for freshwater toxicity has received less attention and thus there are 

large gaps in the experimental ecotoxicological effect data, especially for new or less well-known 

substances (Henderson et al, 2011). Payet (2004) conducted a review of the data availability for 

calculation of Effect Factors for LCIAs where he assessed six of the largest databases for aquatic 

toxicity; Aquire, Pesticide Ecotoxicity Database (PED), IUCLID, Acute Toxicity Database (ATD), Fathead 

Minnow database (FMD), and ECETOC Aquatic Toxicity Database (EAT). Out of totally 113031 acute 

toxicity tests chordate represented 56% and arthropods 30%. Algal data represented only ca 5% with 

totally 5006 tests among all algal species. This highlights a great gap in the already scarce ecotoxicity 

data.  

   In the Swedish research program ChEmiTecs, emissions of additives from plastics in the Swedish 

societal material stock was assessed and the results projected that large quantities of additives are 

emitted each year through plastic migration (Westerdahl et al., 2010). It was estimated that about 

2% are emitted to the environment every year which corresponds to approximately  

50 000 tons. Some of these additives have been shown to have a negative impact on living cells e.g. 

by affecting the endocrine system (Stein, 2004).  Despite this, in LCA literature additives are mostly 

disregarded and it is therefore hard to determine to what degree they contribute to the overall 

environmental impact. Van der Voet (2013) highlighted the importance of taking additives seriously 

and include them in LCI’s as well as to improve LCIA databases by developing characterization factors 

for additives. 

   In a subsequent study, these additives were assessed using the LCIA tool ‘USEtox’ developed under 

the UNEP-SETAC Life Cycle Initiative. Due to the scarce amount of experimental toxicity data of 

plastic additives the applicability of using toxicity data derived from QSAR-models were evaluated 

(Rahmberg et al., 2012). This was done by comparing CFs derived using QSAR data to CFs derived 

using experimental data. However, only species from two phyla were included in the QSAR data due 

to lack of available QSAR models for algae and hence the obtained CFs were considered interim 

according to USEtox guidelines (Henderson, 2011). Therefore it was difficult to draw evident 

conclusions from the results. 
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   In this study QSAR data of species from three different phyla will be used to meet the requirements 

in USEtox and EC’s directive 67/548/EEC, Annex VI.  

   Species were chosen based on OECD guidelines; fish; 96-hour LC50, (OECD Test Guideline 203), a 

crustacea species; 48-hour EC50 (OECD Test Guideline 202) and an algal species; 72- or 96-hour EC50 

(OECD Test Guideline 201). These are considered to best represent all aquatic organisms (OECD, 

2013).    

 

1.2   Purpose and Scope 
The paper aims to assess the impacts of some of the plastic additives of concern in previous study by 

Westerdahl et al. (2010) while examining the compatibility of using QSAR predictions in USEtox. The 

purpose is also to investigate the availability of algal toxicity data, both QSAR and experimental, and 

to evaluate how substance characterization factors attained in USEtox is affected by including algal 

toxicity when calculating the ecotoxicological effect factor. 

 

The intention is to answer the following questions: 

1. How many of the substances of concern have available experimental toxicity data for algae, i.e. how 

large is the data gap?  

2. Are there any QSAR models for algal toxicity that can be used to derive data for these substances and 

if not, is it possible to construct a QSAR model that is applicable to these substances? 

3. For how many substances on the list can algal toxicity be predicted and how many substances have 

neither QSAR nor experimental values? 

4. Which of the substances has the largest impact on freshwater ecosystems, based on CFs derived 

both with and without algal toxicity included? 

5. How much and in what way does including data for algae affect the outcome when calculating CFs 

for freshwater toxicity in USEtox?  

6. Do the differences in QSAR-predicted and experimental data result in large differences in assessed 

CFs and if so, are they more or less conservative? 

 

The study comprises a list of 159 plastic additives, selected based on an earlier study where 

emissions of organic chemicals from consumer products containing plastic materials in Sweden were 

assessed (Westerdahl et al., 2010). 

   Characterization factors for freshwater aquatic ecotoxicological effects will be derived and the 

factor for impacts from emissions directly to freshwater will be used for the analyse. Since the aim of 

the paper concerns ecotoxicity the human toxicity impact are not included in this report.  

   Some of the substances on the list were identified as dissociating and due to this their 

physiochemical properties, environmental fate and ecotoxicity could not be predicted by the 

available estimation software programs. These substances were therefore not assessed further but 

were excluded from the dataset.  

 

1.3  Environmental relevance  
Ecosystems globally are exposed to chemical stress as result of large quantities of various substances 

being emitted everyday world wide. Many chemicals are not fully assessed before being commercially 

used which poses a threat to both humans and the environment. Plastic additives is an example of an 

organic substance group that has relatively recently received attention e.g. for being endocrine 

disruptive. 

http://ec.europa.eu/environment/archives/dansub/pdfs/annex6_en.pdf
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   On the whole, this work will contribute to a better understanding of plastic additive’s spread and 

effect in the environment and to clarify the extent to which different species are exposed and 

affected.  

    By developing a QSAR model and also compile data from existing models, it will facilitate and 

increase the efficiency of the evaluation and prioritization process which in turn will lead to a faster 

reduction and replacement of hazardous chemicals. Since the purpose of USEtoxTM is that it should be 

a free and globally accessible software the development of models and completion of data assists in 

the dissemination of information within and outside the EU. Production of QSAR models also helps to 

reduce the need for toxicity testing in animals. 

 

 

2. Background 
This section provides more detailed information of the underlying principles and components of the 

analytical methods (LCA, LCIA) and models (QSAR and USEtox) that will be employed and referred to 

in this paper. This part is meant for readers who are new to this area of studies and is intended to 

help in the understanding of the concept of LCA/LCIA and QSAR.  

2.1 LCA and LCIA 
Life-cycle assessments (LCAs) is a widely used tool to assess the environmental and human health 

impacts of products and processes and it has become the basis of EU’s integrated product policy (IPP) 

(Hauschild, 2005).  LCA uses a cradle-to-gate approach and as opposed to risk analysis strives to 

demonstrate relative differences between various options more than to quantify specific impacts in 

the system (EPA, 2006a). Therefore it is commonly used in comparative studies (Hauschild, 2005). It 

consists of four steps; goal definition and scoping, inventory analysis, impact assessment, and 

interpretation (EPA, 2006a).  

   In the impact assessment; LCIA (Life cycle impact assessment), the inventory data on input and 

output (resources, materials, emissions and waste) are evaluated based on environmental and 

human impact as well as resource consumption (Hauschild, 2005). The human and ecological health 

effects of each identified impact category are assessed and characterized (EPA, 2006a). The 

characterizations of chemical emissions are calculated by using multimedia models where several 

factors including environmental fate, exposure and effect are used. However, the CF from a model 

vary a lot depending on which model that is used. The models typically only cover CFs for around 

1000 substances and therefore, when conducting a LCIA for a large amount of substances, the 

obtained CFs can vary a lot depending on which model has been used and some substances might 

lack CFs altogether (Henderson et al., 2011). 

 

2.1.1 USEtox: Scientific consensus model 

The variation in the CFs depending on which models are used contributes to the undermining of the 

reliability and comparability of the concept of characterization scores (Pant, 2004). To overcome this 

problem, in 2005, an extensive comparison of LCIA toxicity characterisation models was commenced 

by the United Nations Environment Program (UNEP)–Society for Environmental Toxicology and 

Chemistry (SETAC) Life Cycle Initiative.  

   The efforts resulted in a scientific consensus model, “USEtox”, developed through harmonization 

between environmental fate models. It models the stages from emission to environmental fate, 

exposure and toxic effect in humans and the environment and derives characterization factors for 
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the assessed chemicals (Henderson et al., 2011). The CFs represents the impact per emitted unit of 

the substance of concern and combined with data of the mass emitted gives a total impact score (IS). 

This makes it possible to recognize the relative importance of separate emissions which is the main 

purpose of LCIAs (Mark Huijbregts and Tom McKone, 2010).   

USEtox provides CFs for a large amount of substances and it is also possible to calculate CFs using the 

model matrix.  

 

2.1.2 Limitations and uncertainty in LCIA modelling 

There are several difficulties involved in LCIAs concerning choices of models, assumptions, absence of 

data and questionable quality of data.  

   Limitations that are often cited are; unclarity in what should be included (impact categories, 

stressors etc.), consistency within the categories when including severity/potency of stressors, only 

uncertainty related to data and the capacity of the model is assessed, difficulties in the interpretation 

of results and the weighting of impacts for compilation of results.  

   Compared to the more developed human risk-assessments in LCIAs there are more impact 

categories, more life-stages and a larger number of stressors which decreases the ability to produce 

results with high certainty, yet many practitioners do not perform uncertainty analyses. Because of 

the broad perspective of LCIAs, local impacts and risks are usually not assessed in detail. For 

chemicals this issue can typically imply that an LCIA may not account for background concentrations 

at specific locations but provide a more general picture of emissions during the life-cycle of a product 

(Bare, 2006). However an analysis by Hertwich et al. (1999) showed that compared to chemical, 

physical, and toxicity data parameters such as background concentrations represent an insignificant 

part of the uncertainty when assessing a large set of chemicals. 

 

2.1.3 Uncertainties in the USEtox model 

Rosenbaum et al. (2008) estimated uncertainty in USEtox based on an assessment between different 

LCIA models and found that the relative precision for the CFs are within a factor of 100-1000 for 

human health and 10-100 for freshwater ecotoxicity. This uncertainty range is just based on variation 

between the models not including uncertainty for the parameter input data. 

   Some uncertainty is related to the absence of valid mechanistic QSARs for estimation of substance 

properties. For freshwater ecotoxicity the sources of parameter uncertainty and variability are e.g. 

scarce data on bioconcentration factors for fish, chemical degradation rates and mostly; ecotoxicity 

effect data (e.g. extrapolations between chronic-acute data and assumption of linear dose-response 

curves). Further the application of homogenous compartments and the use of QSAR methods 

contribute to the uncertainty in USEtox (Jolliet and McKone, 2011). 

   There are freshwater toxicity CFs available for 2546 substances out of which 1247 are interim. 

These chemicals are flagged based on their properties where e.g. metals, dissociating or 

amphiphilic/surfactant substances are marked as interim. CFs are also classed as interim if the effect 

data does not cover at least three phyla (Rosenbaum et al., 2008). This is to make sure that the 

variations in physiology in different species are reflected and thereby ensure that the chemicals do 

not give a large variance in biological reactions (USEtoxTM, Hauschild & Larsen 2007). Rosenbaum et 

al. (2008) highlight that interim factors can be used but with precaution. 
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2.2 Quantitative structure–activity relationship 
 

2.2.1  QSAR 

QSAR models creates relations between chemical structures and physiochemical properties and 

these can be used to predict substances impact in the environment (Rodgers et al., 2011). The goal of 

QSAR modelling is to develop a mathematical expression that best describes this correlation between 

chemical properties and biologic responses (Eriksson et al., 2003). The QSAR model consists of a 

relationship between three elements; 1. a descriptor, 2. an endpoint that is being predicted (e.g. 

physiochemical property or biological activity), 3. the relationship between the two.  Descriptors are 

structural properties that are used to describe molecular structures in the models (Walker, 2003). 

Common descriptors are e.g. molecular weight, Kow and acid/base strength (pKa) etc. Training set 

data of substances with known descriptors and properties are first plotted in multiple regression 

models. These are then used to predict properties of query compounds with unknown properties 

(Rodgers et al., 2011). 

 

2.2.2  Purpose and applications of QSAR  

From the relationships between structure, chemistry and biology effect data achieved by QSAR 

methodology it is possible to construct predictable models that can be used within industry, 

academia or governmental agencies. Historically SARs and QSARs have typically been used by 

pharmaceutical companies and pesticide manufacturers to develop biologically active substances. In 

later years it has become an important tool for prioritizing among chemicals that have not yet been 

tested before making more costly experimental tests or to predict environmental fate, exposure and 

biological effect when experimental data is missing (Walker et al., 2002). It is also a useful instrument 

to predict combined effects of molecules which is useful to foresee what effects mixtures of 

chemicals could have in the environment or in formulations (Puzyn et al., 2010). 

 

2.2.3  Principles for validation of QSARs    

As a result of the complexity in methods to measure resemblance and accounting for multifaceted 

chemical behaviour the nature of QSAR modelling is complex.  As the regulatory interest and 

acceptance for QSAR modelling grows it is important to make sure the construction and usage of the 

models are correct and that the validation process is transparent and objective. To help keep a solid 

scientific foundation in the development and use of QSAR in regulatory applications in 2004 the 

member countries of the OECD decided on five principles for validating QSAR models that are to be 

used for regulatory purpose (OECD, 2007). To assist inte the validation process a (Q)SAR model 

intended for regulatory purposes it should be coupled with the following information: 1. a defined 

endpoint; 2. an unambiguous algorithm; 3. a defined domain of applicability; 4. appropriate 

measures of goodness-of-fit, robustness and predictivity; 5. a mechanistic interpretation, if possible 

(OECD, 2004). 

   The OECD principles underline some of the main concerns in developing and using QSAR models 

which will be touched upon in the following section. 

 

2.2.4  Developing QSAR models 

In the original OECD document it is stated that “the intent of Principle 1 was to ensure clarity in the 

endpoint being predicted by a given model”. This includes providing thorough descriptions of test 

protocols used for deriving the measurements that were used in the training set data, including 



12 
 

factors affecting variability, knowledge and uncertainties (OECD, 2004). Also the quality of the 

endpoint data is essential since the data used in the training set regulates and defines the resulting 

QSAR (Walker, 2003). To produce a reliable model the measured data (y-variable) that are used to 

train the model therefore must originate from studies using equivalent methods, preferably from the 

same study (Rodgers et al., 2011). To make a QSAR for regulative purpose it is desired that the data 

used for the training set is derived using standardized test protocols such as OECD Test Guidelines, 

this will also speed up the validation process (OECD, 2007).  

   The second principle stresses that all algorithms that are used when producing a QSAR model are 

documented and submitted together with the QSAR model.  This includes information on both the 

algorithm and the way the algorithm was developed. All stages in the modelling procedure should be 

specified so that the procedure is transparent and reproducible for the scientific community (OECD, 

2007).  

   Third principle; “a defined domain of applicability“ relates to the fact that QSAR models are limited 

to a certain group of chemicals for which it can make reliable predictions called the QSAR’s 

applicability domain (AD). Netzeva et al. (2005) defined the AD as “The applicability domain of a 

(Q)SAR model is the response and chemical structure space in which the model makes predictions 

with a given reliability.” The AD can be more or less constrained where a more constrained model 

often can make more accurate predictions for a smaller group of chemicals and vice versa. The 

information of the model AD helps the user to determine how reliable the prediction will be for a 

specific substance(OECD, 2007). 

   The purpose of the forth OECD principle is to assure that the performance of the models are tested. 

This part is also called the statistical validation and is made during the development of the model to 

find the optimal model complexity. The internal performance is assessed by looking at the goodness 

of fit and robustness of the model using only the training set data. The goodness of fit is determined 

by assessing how well the variance in the response training set is accounted for while the robustness 

is determined by looking at the stability of the parameters and hence stability of resulting predictions 

(OECD, 2007). The external performance of the model is tested by assessing predictions for new data 

that were not included in the training set (Eriksson et al., 2003, OECD, 2007). 

   The last principle on the OECD list urges the developer of the QSAR model to, if possible, include 

mechanistic interpretations to the model, meaning; if the model is consistent with other scientific 

knowledge in basic chemistry or toxicology this will be beneficial in the authentication process and 

shall therefore be documented. In the QSAR modelling mechanistic interpretation basically means to 

find relationships between descriptors and endpoints and to integrate a mechanistic and/or 

biological understanding of that relationship (OECD, 2007). 

 

2.2.5  QSARs in LCIAs for screening and prioritization of chemicals 

A LCIA serves as a screening-level impact evaluation for assessing the relative potential impacts of a 

system. Substances are characterized and the ones that warrant further investigations are usually 

evaluated in detail in qualitative risk screening analyses. However LCAs are often limited by the 

availability of quality data as well as by time constraints (collecting empirical data is time consuming). 

Since chemical toxicity data often are both scarce and involves relatively large uncertainties (e.g. fate 

calculations and extrapolations from animal-to-human and acute-to-chronic toxicity) chemical 

toxicity is often excluded from LCAs (Socolof, 2001).  

   When toxicity is included in LCIAs estimated data is typically used as an alternative to experimental 

data. Peer-reviewed data is preferred (e.g. HEAST, IRIS, HSDB), followed by other databases and 

literature and finally estimation methods like QSAR (Socolof, 2001, Pant, 2004). This order is also 
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applied in USEtox where experimental data is preferred, followed by specific QSARs (specific 

substance groups) and lastly generic QSARs (e.g. organic compounds). The uncertainty is generally 

decreased if this priority is applied (USEtox, 2013). 

   Over the last decade many countries have however adopted the QSAR methodology for chemical 

prioritization since it is a cost effective way to screen large inventories of chemicals.  

 

 

3. Method 
 

3.1  Data and implementation 
This section describes the methods and tools that were employed in the study. It gives detailed 

information about how the data was gathered, and how the multimedia models were used to 

produce characterization-factors for the additives.  

   USEtox recommends that preference should be given to experimental data for physiochemical 

properties. However, in previous studies large variations were detected in experimental and 

estimated water solubility and it was reasoned that the datasets would be more comparable if only 

estimated data was used (Rahmberg et al., 2012). This reasoning was applied also in this study. 

    Toxicity data were gathered using several software tools and online databases described below.  

SMILES notations (Simplified Molecular Information Line Entry System) were used as input when 

searching the different databases to be sure that the same molecular structures were used.  

 

3.1.1  Tools and databases 
 

Physiochemical properties, degradation and bioaccumulation factor 

- EPI Suite (Estimation Programs Interface) 4.11.is a screening tool produced by EPA’s Office 

of Pollution Prevention Toxics and Syracuse Research Corporation (SRC) and contains 

several physical/chemical property and environmental fate estimation programs  

- PBT Profiler (Persistent, Bioaccumulative, and Toxic Profiles Estimated for Organic Chemicals) 

is an online screening tool developed by EPA for predicting chemicals tendency to persist in the 

environment, bio-concentrate in organisms, and be toxic (EPA, 2012)  
 

QSAR predicted ecotoxicity data 

- TEST (Toxicity Estimation Software Tool) 4.1. is based on the The Chemistry Development Kit 

(CDK) and estimates acute toxicity using QSAR methods. 
 

Experimental ecotoxicity data   

- QSAR toolbox 3.2 (ECHA/OECD) integrates several databases for ecotoxicity including US-EPA 

Ecotox, Aquatic ECETOC, Danish EPA Database, Aquatic Japan MoE and ECHA CHEM (OECD, 

2014a).   

- ECOTOX 4.0 is one of the largest databases and includes the previously independent 

databases AQUIRE, PHYTOTOX, and TERRETOX (EPA, 2014).  

- Aiida 3.0. (Aquatic Impact Indicator Database) consists of the 70 largest worldwide aquatic 

ecotoxicity databases (Payet, 2013).   
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3.1.2  Physiochemical properties, degradation and bioaccumulation 

factor 

Table 3.1 displays the required substance specific inputs parameters in USEtox. EPI Suite was used to 

derive the physiochemical properties and degradation parameters (air, soil water, sediment), and 

bioaccumulation factor in fish was attained from TEST 4.1 (consensus method).  

   For detailed description of how the parameters were derived see Appendix A. 

 
Table 3.1 Required substance specific input parameters (Mark Huijbregts and Tom McKone, 2010) 

 
 

3.1.3  Ecotoxicity effect data 

To be able to assess the impacts of including algae when calculating CFs and also to compare 

experimental data to QSAR data; three datasets of ecotoxicological effect data were compiled (table 

3.2). 

 
Table 3.2 Description of ecotoxicological datasets that were used to calculate CFs  

Dataset Content Source 

1 Effect data derived from QSAR models for two species 
from two different phyla; Chordate and arthropod 

TEST. 

2 Effect data derived from QSAR models for three species 
from three different phyla; Chordate, arthropod and 
algae 

TEST, QSAR (model developed 
in present study)  

3 Experimental effect data from three phyla ECOTOX, QSAR toolbox, Aiida 

 
Dataset 1 
To derive predicted effect data TEST software tool was used. TEST was considered the best available 

QSAR-tool since it does not make predictions for substances out of a model’s applicability domain 

and also have shown to give good predictions in comparative studies (Milan, 2012).  

   Effect data was predicted for common test species; fathead minnow (chordate) 96-hour LC50 
(50% lethal concentration) and D. Magna (arthropod) 48-hour LC50 using the consensus 
method. 
 
Dataset 2  

Dataset 2 is composed of the same data as dataset 1 but QSAR-predicted data for algae species 

Pseudokirchneriella subcapitata (72-96 hour IGC50 (50% inhibitory growth concentration)) was 
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added as a third phyla. The algae data were derived from a QSAR model which was constructed for 

this study. The model, as well as the methods and tools that were used are described in section 4.2. 

P. subcapitata was used since it is known as a highly sensitive species and is therefore recommended 

as test species by OECD, EPA and ISO guidelines for legislative purposes when only one species is to 

be used (Aruoja, 2011). P. subcapitata also had the most complete set of measured data for the 

substances on the list.  

 

Dataset 3 

The third dataset was made out of experimental effect data for species from same three phyla as 

dataset 2. ECOTOX and QSAR toolbox were used for the first screening. From ECOTOX all data from 

the taxonomic groups “Fish”, “Crustaceans” and “Algae, moss fungi” was extracted and from QSAR 

toolbox all aquatic taxonomic groups were included. The Aiida database was then used to fill in the 

gaps since it did not comprise a batch search function, e.g. where data for only one phyla was 

missing. Due to the short time limit of this study the original sources from which the experimental 

data originated were not examined in detail. In the short summaries provided by the Aiida database 

the data was rated depending on its reliability from 1-4 where 1 equals “reliable without 

restrictions”. Sources marked 3 or lower were not included in this study. Data that were documented 

as, or did not appear reliable were excluded from the study. 

 

3.2  Acute and chronic data 
Most of the sources for experimental data gathered from both ECOTOX and QSAR toolbox did 

frequently not declare if the data were acute or chronic. To help determining what duration 

represent what type of test a table compiled by Payet (2004) was used (Table 3.3). 

   Payet (2004) reviewed the availability of toxicity data from some of the largest databases databases 

e.g. ECETOC, 2002; EU-Commission 2000; US-EPA 2001 and found that the availability was 

substantially higher for acute data than sub-chronic and chronic data.  

   Also in this study the major part of the experimental toxicity data that were found are acute. 
Likewise are the predicted data generated by the TEST tool acute (96h/48h LC50). Therefore, either 
would only chronic values extrapolated from acute data be used or these would be used where there 
were no chronic data available. Payet (2004) recommended in “Procedure for calculation of AMI 
Effect Factors “ (s. 40), if the chronic data for a specific substance did not cover three phyla then 
chronic data would be derived using acute-to-chronic extrapolation factors. Since there were no 
substance for which three phyla were represented with chronic data all effect data was derived using 
an acute-to-chronic extrapolation factor. In USEtox the recommended extrapolation factor is set to 2 
for organic substances based on a study by Rosenbaum et al. (2008).  

Table 3.3 Time durations for different types of tests that were used to determine if retained data were respective acute, 
sub-chronic or chronic (Payet, 2004). (‘Based on guidelines from ISO, OECD, US-EPA. FIFRA, ASTM, UBA, and publications 
from Heger et Al, (Heger, Jung et al. 1995), ECETOC (ECETOC 1993), and the European Technical Guidance Document (EU-
Commission 2002)).
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3.3  Ecotoxicological effect factor 
In USEtox the ecotoxicological effect factor (EF) is determined by identifying HC50 (ΔPAF = 0.5) in a 

concentration- response relationship (figure 3.1). The HC50 is the average of the species-specific 

EC50 data and represent the concentration at which half of the species are exposed to 

concentrations higher than their EC50. The effect factor; EC50 is used due to its robustness which is 

considered to be critical in comparative studies such as LCAs instead of the more sensitive NOEC or 

HC5 (Rosenbaum et al., 2008). The EF is calculated using EQ 1. 

 

    ( 
   

    
)         (Eq. 1) 

 

 
Figure 3.1 The figure displays how the EF factor is derived from the concentration-response curve (Huijbregts et al. 2010) 

USEtox employs the AMI method developed by Payet (2004). In accordance with this method the 

species-specific EC50 is derived using the geometric mean of all effect data gathered for a specific 

species. This is a common method to use when deriving means of populations since it draws the 

extreme values towards the middle of the data, making it a more robust by making it less sensitive to 

outliers (Hauschild, 2007).  

   USEtox uses toxicity factor logHC50 to represent toxicity which is calculated using the equation 
provided in the USEtox manual (EQ 2.) (ns = number of species) (Mark Huijbregts and Tom McKone, 
2010).  
 

         
 

  
 ∑                 (Eq. 2) 

 
In this study for the experimental effect data in dataset 3 the HC50 was derived by first calculating 

the geometric mean of the predicted EC50s (mg/l) for each species. Since only acute data were used 

both for experimental and predicted data the default acute-to-chronic extrapolation factor; 2, was 

used to derive the chronic-equivalent EC50 for all species (see section 3.1.5). The geometric 

meanEC50 were then logarithmized and the average of the logs were calculated to derive a logHC50 

(mg/l) value for each substance. This value was implemented in the avlogEC50-colum in the USEtox 

template. 

   The same procedure was used for dataset 1 & 2 except there were only one species per phyla (48-

hour Daphnia magna, 96-hour fathead minnow and for dataset 2 also; 72-96-hour P. Subcapitata) 

and thus HC50 was derived simply by calculating a mean of the three EC50s. 
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3.4  Uncertainty analysis 
An uncertainty analysis was performed to evaluate how large change in CF one could expect by 

adding algae and to get a clue of what impact adding actual algae values may have on the 

assessment of CFs. Monte Carlo simulation (MCS) was performed in “R” v3.1.1. where data for  

P. Subcapitata were sampled from the experimental training set data that were used to construct the 

QSAR model. The samples were imported to the USEtox model which is implemented in Excel and 

then exportet back to R for the analyis.  The sampling was made with 20 iterations and each 

substance were assigned a new sampled value. It is acknowledged that 20 iterations may be too 

small, but it was here considered sufficient to detect trends in this analysis. 

 

 

4. Results 
 

4.1 Review over algal toxicity data 
Experimental algae toxicity data based on any algal species were found for totally 39 out of the 159 

substances of concern. No existing QSAR model was found that were applicable for most substances 

of concern and it was decided to construct a QSAR to predict algal toxicity for these substances. The 

QSAR model that was trained on experimental data of algal species; P. Subcapitata, available from 

the substances on the list and from other substances. The QSAR was able to predict algal toxicity for 

54 out of the 159 substances, leaving in total  66 substances with neither experimental nor QSAR 

toxicity data on algae.  

 

4.1.1  Overview of available experimental data 

The experimental data on algal toxicity were scarce on all databases that were used (QSARtoolbox, 

ECOTOX, Aiida). When EC50 (24-96h) for all algal species were included in the search; data for 16 

substances were found in ECOTOX and 24 were found in QSARtoolbox (of which 16 were also found 

in ECOTOX). Data for totally 36 substances were found for arthropods and for chordate totally 43.  

The Aiida database was only used to fill gaps, yet Aiida included algae data for 13 substances that 

were not in either of the other databases and therefore appeared to be the most comprehensive 

database.  

 

4.1.2  Overview of available QSAR models 

QSAR models for predicting algal toxicity of the compounds were very scarce.  

   ECOSAR which is a software included in EPIsuite had models applicable for only 3 of the substances 

in the list; Bisphenol A (80-05-7), 1,2,3,6-Tetrahydro-N-(trichloromethylthio)phthalimide (133-06-2) 

and Butyl benzyl phthalate (85-68-7) belonging to the chemical groups poly phenols, 

thiophthalimides and esters.  

   TEST had no QSAR models for algal toxicity but included models for the uniform ciliate 

Tetrahymena pyriformis. T. Pyriformis is a unicel organism belonging to the group ciliates which in 

turn belongs to the protozoan phylum. Ciliates feed on bacteria and algae and also have no 

photosynthesis (Lynn, 2011). A study by (Schafer et al., 1994) demonstrated different sensitivity to 

toxins for algae (Chlamydomonas reinhardi and Scenedesmus subspicatus) and T. Pyriformis. For this 

reason, it was decided that the T. Pyriformis could not be used as a substitute for algae in dataset 2. 
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  QSARtoolbox includes a number of external databases for QSAR models such as ECOSAR, Danish 

EPA database, Multicase Inc. etc. However there is no simple batch function that makes it possible to 

make predictions for a large number of chemicals. It is possible to make categorizations which can be 

saved as QSAR models and be applied on data within that domain. Yet, if the list includes chemicals 

from various chemical groups, as in this paper, this can be time demanding. It also requires some 

knowledge about chemical grouping. 

 

4.2 Construction of QSAR model for algal toxicity 
The model was trained using experimental data of algal toxicity for 35 chemicals from the list derived 

from QSAR toolbox, ECOTOX 4.0 and Aiida 3.0 as well as data for 45 related chemicals gathered in a 

study by (Furusjö et al., 2005). The measured endpoint was EC50 P. Subcapitata (72-96h).  

 

1. To transform SMILES codes to sdf. Open Babel 2.3.2 was used  

2. Discovery studio 4.0 “Clean Geometry” function was employed to optimize the geometry of 

the structures by accounting for element types, bond orders, number of bonds, and valences.  

3. Hydrogen atoms were added to the structures using Open Babel 2.3.2. 

4. To calculate molecular descriptors Dragon 6.0 software was used (Todeschini et al., 

(undated)). The descriptors were imported to SIMCA together with the ecotoxicity data of  

P. Subcapitata. 

5. In SIMCA, Partial least squares regression (PLSR) was performed to examine the relationship 

between the x-values (descriptors) and the y-values (biological responses) as proposed by 

(Lindgren et al., 1996).  

 
 Table 4.1 Description of the methods that were used to develop and validate the model 

 

 

 

 

 

 
 

 

 

4.2.1  PLS 

In this study PLS Regression (partial least squares) method was used to examine the relationship 

between the x-values (descriptors) and the y-values (biological responses) as proposed by (Lindgren 

et al., 1996). One important advantage of the PLS model is that it can treat datasets that contains 

more variables than observations which MLR (multi linear regression) cannot. It typically uses several 

hundreds to thousands of descriptors. Since the experimental data for algal toxicity was limited for 

the chosen substances, there were only a small set of observations on which the QSAR model could 

be based and therefore the PLS model was suitable in this study. Latent vector models like PLS also 

makes it easier to graphically display results which facilitate the interpreting of the results (Lindgren 

et al., 1996). 

 

 

 

Endpoint EC50 P. Subcapitata (72-96h) 

Algorithm PLSR 

Molecular descriptors Dragon 6.0 (1D, 2D, 3D) 

Applicability domain DModX/PModX 

Validation Internal: R2, Q2, RMSEE 
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4.2.2  Applicability domain 

The applicability domain was tested using SIMCAs DModXPS (Distance to Model in X space for the 

Prediction Set) and DModXPS+ that also take into consideration the distance in the model plane. 

From these measures the probability that a new (predicted) substance belongs to the model 

PModXPS+ was determined. Substances with a probability of less than 5% (PModXPS+ <0.05) was 

excluded. 

 

4.2.3  Validation 

For validation of the model three quality measures were used: goodness of fit, predictive ability and 

performance. 
 

Goodness of fit 

R2 is a measure of fit and shows how well the model explains the training data. It expresses the 

fraction of the sum of squares that is explained by the model. 
 

Predictive ability  

The predictive ability was assessed using PLS cross validation (internal validation). 

A 7th of the data was systematically excluded and a model was calibrated for the remaining data 

whereupon the model was validated based on the predictions for the excluded data.   

Q2 is the percent of the total variation of the Y that can be predicted by a component (Eq. 3).   
 

Q2= (1.0 - PRESS/SS)         (Eq. 3) 
 

Prediction error sum of squares (PRESS) is the (squared) difference between predictions and 

observed values for the excluded Y-data. For each component PRESS/SS is calculated where SS (sum 

of squares) is the residual sum of squares of the previous component.  

   According to UMETRICS (2005) a good QSAR model has R2 and Q2 values approximate to 0.78 

respectively 0.65 or higher. The model did not reach this standard but were considered good enough 

to be used for this study ‘s particular purpose. 
 

Performance  

The performance of the model was evaluated using the root mean squared error of estimation 

(RMSEE). RMSEE specifies the average error in the predictions (absolute terms) (Eq. 4). No external 

validation was performed. The statistics of the model is presented in table 4.2. 
 

RMSEE = 
∑ (          )

 
 

     
        (Eq. 4) 

Table 4.2 Statistical performance of the model selected for the calculation of P. Subcapitata EC50.  N: Number of 
observations. R2X(cum): Cumulative SS of the entire X explained by all extracted components. R2Y(cum): The cumulative 
SS of all the y-variables explained by the extracted components. Q2(Cum): The cumulative Q2 for all the y-variables for 
the extracted components. RMSEE: Root Mean Square Error of the Estimation (the fit) for observations in the workset 
(UMETRICS, 2005). 
 

Type N R2X(cum) R2Y(cum) Q2(cum) RMSEE 

PLS 78 0.78 0.653 0.496 0.636 

 

  



20 
 

4.3 Analysis 
 

4.3.1  Data availability 

Out of the 159 plastic additives of concern data availability of toxicity of the three phyla resulted in 

that CFs could be derived for in total 97 substances; 80 for dataset 1 (QSAR predicted data for 2 

phyla, fish and daphnia), 44 for dataset 2 (QSAR predicted data for all 3 phyla, fish, daphnia and 

algae) and 39 for dataset 3 (experimental data for all 3 phyla). Despite the efforts to collect more 

data, there were still large data gaps on the substances of concern (Figure 4.1). All derived CFs are 

listed in Appendix B. 

   For dataset 1 and 2 there was an overlap of 38 substances out of which 5 had isomeric structures 

resulting in totally 44 corresponding structures on both sets. SMILES strings of the structural isomers 

are listed in Appendix E. 

   Dataset 3 contained 19 substances that were also in dataset 1 and 2. Experimental CFs for 3 

additional substances (84-75-3, 128-37-0, 68515-51-5) were derived using recommended effect data 

from USEtox’s organic database resulting in totally 22 overlapping substance CFs over all three sets.  

 

 
Figure 4.1 Available effect data of all species. Values on EC50 (mg/l) are plotted on a log scale and substances are 
distributed on the x-axis. Blank areas on the x-axis represent substances with data gaps and where no CF could be 
derived. 
 

4.3.2   Substances of most concern 

CAS numbers for the 10 highest ranked substances according to  CFs representing impacts for 

emissions to continental fresh water (PAF.m3.day.kg-1) are shown in Table 4.3. No substances are 

found on all three lists, however,  2,2’-((1-methylethylidene)bis(4,1-phenyleneoxymethylene))bis-

oxiran, 2-(3-hydroxyquinolin-2-yl)-1h-indene-1,3(2h)-dione and Tritolyl phosphate  match in dataset 

1 and 2 (bolded in black) and 1,3-Dichloro-2-propanol phosphate (3:1) and Triphenyl phosphate  in 

dataset 3 match the other two lists (bolded in red). The small agreement between the top ten 

substances is not alarming, since as is shown below, the overall ranks did not vary much between the 

different lists. 

 

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 50 100 150 200

lo
g 

EC
5

0
 (

m
g/

l)
 

Substance # (1-159) 

Available toxicity data 

F. minnow

D. Magna

P. Sub.



21 
 

Table 4.3  The table displays the substances (CAS) with the top 10 highest CFs in descending order in all three 
datasets. Substances that occur in more than one dataset are marked bold. Total number of substances in the 
datasets are also included in table. 

Rank CAS Dataset 1 CAS Dataset 2 
Dataset 2 

CAS Dataset 3 
Dataset 3 #subst. in DS 80 44 39 

1 13674878 1675543 64359815 
2 1675543 7576650 133073 

3 37853591 3896115 1118463 

4 30125474 26444495 133062 

5 7576650 1330785 683181 

6 87843 26444495 (2) 25637994 

7 1330785 78320 131577 

8 13674845 115866 13674878 

9 60348609 68411461 115866 

10 20566352 85687 
 

118796 

 

 

4.3.3  Algal impact on substance characterization factors 

Including algal toxicity in the assessment of CFs resulted in lower CF compared to CFs derived based 

on fish and Dapnia only (independent samples t-test, p=0.02). There were high correlations between 

the 44 CFs derived from dataset 1 and 2 (figure 4.2a, R2=0.921) and between the ranks of the 44 

substances (Figure 4.2b, R2= 0.844). Ranks are studies as they show the internal orders of the 

substances , and how they consequently would be prioritized in a screening based on CFs. This shows 

that the impacts of including algal data lowered the level of the CFs, but had a small impact on the 

relative order between substances.   

 

 
Figure 4.2a Dataset 1 and 2 are plotted against each other based on value of CFs (PAF.m3.day.kg-1) (R

2
=0.921) 

The dashed line represents a 1:1 line. 
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Figure 4.2b Rank of CFs for each substances in dataset 1 and 2 (R
2
=0.844). The dashed line represents a 1:1 

correlation. The lowest rank scores represent the highest CFs. 

To further illustrate the differences in ranks following including algal toxicity, substances were color-

coded into five levels where the red represents the highest ranked substances and green the lowest 

ranked substances based according to CFs derived from dataset 1. Including algal toxicity results in a 

rearrangement on some of the substances, but the majority stay within their original level (compare 

upper layer to bottom layer in Figure 4.3).  

 
Figure 4.3 Illustration of the change in substance rank based on CF. Top layer: rank in dataset 1, Bottom layer: rank in 

dataset 2. Red represents the highest ranked substances in dataset 1 and dark green the lowest. 

 

4.3.4  Comparison of effect data to investigate algal impact 

Differences in CFs between the datasets depend solely on differences in effect data and therefore  

the variation between the species were assessed. Results show that P. Subcapitata  in general is less 

sensitive to the additives and also that it exhibits smaller variation in sensitivity to the different 

compounds compared to D. Magna and F. Minnow (Figure 4.4).  
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Figure 4.4 Histogram displaying log EC50 values for each species on the x-axis and proportion on the y-axis 

Differences were also assessed by a Kruskal-Wallis H test using SPSS 22.0. The test showed that there 

was a statistically significant difference of sensitivity between the species χ2(2) =14.36, p = 0.001. The 

null hypothesis of sensitivity being equal between the species, assuming the data points on the list is 

a representative random sample, could therefore be rejected. The overlap of D. Magna and F. 

Minnow shown in the histogram (figure 4.4) as well as the mean rank (F. Minnow: 51.33, D. Magna: 

61.38 and P. Sub.: 86.80) indicates that this difference lies between algae and the two other groups.  

   A Mann-Whitney U test confirmed that the sensitivity (logEC50) of P. Sub. (Mdn=-0.186mg/l) were 

lower than sensitivity of D. Magna (Mdn=-0.594), U = 601, p = .002, r =-0.327. The sensitivity of P. Sub 

was also lower than the F. Minnow (Mdn=-0.727), U = 442, p < .001, r =-0.468. However no 

statistically significant difference could be seen between the sensitivity of D. Magna and F. Minnow, 

U = 826.5, p = .238, r =-0.126. This implies that the D. Magna and F. Minnow overall have similar 

sensitivity, and that P. Sub. in general is more tolerant to the substances considered, which explains 

the lower CFs for dataset 2 (Figure 4.2a).  

   Locking at substance specific differences between the P. Sub. and the other two species there is a 

slight negative correlation and a large spread between the data (Figure 4.5, R2=0.084) implying that 

algae is sensitive to other substances than D. Magna and F. Minnow. The inter species variation is a 

likely explanation to why all substances except 4 had a different ranking when including algae. 
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Figure 4.5 Regression plot of effect data for algae (P. Sub.) and hazard concentration for Dataset 1 (D. Magna and 
F. Minnow) (R

2
=0.084). The red line represents the trend of the data.  

The uncertainty analysis made it possible to derive 95% confidence intervals (CI) on CFs calculated 

based on randomized experimental algae data combined with data for D. Magna and F. Minnow 

(black interval in Figure 4.6). The intervals show what impact to expect by including algal toxicity 

without any substance specific information. Comparing these intervals to the CFs derived using the 

factual experimental effect data for P. Subcapitata (red series in Figure 4.6) showed that 88% of the 

substances with experimentally derived CFs were inside the 95% intervals. Thus, the CFs calculated 

based on factual experimental algal data (red series) are not deviating from the CFs calculated with 

non-substance specific information on algal toxicity. This confirms that including algal information 

does not change CF much since there is no strong relationship in sensitivity between algae and the 

two other species.  
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Figure 4.6 Uncertainty analysis of logCF (PAF.m3.day.kg-1) when algae is included (y-axis) versus not included (x-
axis). Black interval: Interval of CFs based on dataset 1 + randomized samples of exp. data for P. Subcapitata. 
Black points: x-axis = CFs based on dataset 1, y-axis= mean of randomized samples. Red points: CFs calculated 
based on dataset 1 + factual experimental algal data. The dashed line represents a 1:1 correlation. 

 

4.3.5  Differences in QSAR and experimentally based characterization 

factors 

QSAR predicted algal data showed a relatively strong correlation with experimental algal data 

(R2=0.5135) and the points are spread out on both sides of the 1:1 line indicating that there is no 

notable trend of over- or underestimation in the QSAR predictions compared to the experimental 

data (figure 4.7). 

   The comparison of dataset 2 and 3 (figure 4.8) on the other hand show that 7 out of 22 CFs were 

higher in dataset 2 than in dataset 3 implying that QSAR generally overestimates hazard compared to 

experimental data. The correlation between experimental and QSAR data is moderate. 
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Figure 4.7 Plot of experimental versus predicted algal effect data logEC50 (mg/l). The dashed line represents a 1:1 
correlation and the red line represents the trend of the data. 
 

 

 

Figure 4.8 Plot of CFs for 22 substances in dataset 2 and 3. The dashed line represents a 1:1 correlation and the 
red line represents the trend of the data. 

 
  

R² = 0.5135 

-2

-1

0

1

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Ex
p

e
ri

m
e

n
ta

l l
o

gE
C

5
0

 (
m

g/
l)

 

Predicted logEC50 (mg/l) 

Algal effect data 

R² = 0.235 

300

3000

30000

300 3000 30000

C
F 

d
at

as
e

t 
3

  

CF dataset 2 

Characterization factors of dataset 2 and 3 



27 
 

5. Discussion 
 

5.1 The algal data gap and the potential of QSARs 
Despite a search for existing toxicity data in some of the largest databases in the world, only 39 out 

of the 159 plastic additives considered had data from publically available experimental tests for algal 

toxicity. Further, existing QSAR models for algal toxicity could only predict toxicity for three of the 

substances. This highlights  the large data gap for aquatic toxicity on algae, which also was shown by  

Payet (2004) who found that algal data represented only ca 5% of the acute aquatic toxicity data 

when reviewing six of the largest databases for aquatic toxicity. The scarce experimental data can 

partly explain the lack of algal QSARs, which have the potential to fill some of the data gaps. Here, a 

QSAR were constructed that could make predictions for 54 of the substances, still leaving 94 of the 

total 159 substances with neither experimental nor QSAR predicted values on algal toxicity. A 

relevant question to ask is what implications data gaps may have on chemical safety. When no data 

of high quality is available, are we to use default values, conservative values or not carry out any 

assessments at all? For example, how should the forthcoming Life Cycle Assessment on plastic 

additives treat the lack of data on a large part of the substances on the list? The small agreement 

between the three sets’ top ten most hazardous substances in this study was not primarily due to 

differentiating data but due to data gaps leaving a large part of the substances unassessed. The need 

to overcome data gaps in chemical safety has led to an enhanced use of non-testing information (van 

Leeuwen et al., 2009), but such information is not unproblematic (see discussion below). The 

questionable agreement between CFs based on experimental data only and CFs based on QSAR data, 

shown in this study, is a potential concern, which highlights the need to address uncertainty and 

weaknesses in different types of data, such as testing and non-testing information, in impact 

assessments (Hung and Ma, 2009, Sahlin, 2013).   

 

5.2 The impact of algal toxicity on life-cycle impact 

assessment of plastic additives  
A question asked was; what difference it makes if algal toxicity is included or not, and why. Such 

questions provide important understanding of what the consequences of including and excluding 

different phyla in LCIAs are and for which phyla data is available. Varying sensitivity between phyla 

can depend on differences in biological response and the results highlight the importance of 

including species from various phyla to be able to account for variations in biological systems. Here, 

algae respond differently to the substances on the list and generally seems to be less sensitive to the 

substances than the other two species. 

   USEtox guidelines of using at least 3 phyla when calculating HC50 is based on the AMI method 

developed in a study by Payet (2004) where he studied how the reliability in HC50 varied depending 

on how many phyla were included. He found that the confidence intervals and correlation when 

using one, two or 3-5 phyla were [0.01; 246.93] R=0.56; [0.07; 8.12] R=0.86; [0.28; 3.88] R=0.95 

respectively. Hence he concluded that using one or two phyla would be too uncertain. The difference 

between the species HC50 in this study highlights that the sensitivity among phyla can vary greatly 

and thereby supports Payet’s conclusion of the importance of including toxicity data from several 

phyla.  

   The goal when conducting LCIAs is to achieve as high physiological variability as possible; ideally as 

many species and phyla as possible would be included (Henderson et al., 2011). When available 

effect data was assessed by Payet (2004) it was found that chordate  and arthropod data represented 
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56% and 30% of the data respectively. Since data for chordate and arthropods are so dominating, 

including as many species as possible and calculating HC50 on a species-specific basis could lead to 

an under representation of effect data of phyla for which data are more scarce. The results from this 

study suggest that underrepresentation of algae would generally lead to higher HC50 and thereby 

more conservative CFs. 

   Larsen and Hauschild (2007b) assessed ecotoxicity effect indicators (EEI) for USEtox and concluded 

that to obtain a more representative CF; instead of calculating the HC50 based on species-specific 

EC50 the “GM-troph” method should be used. The method involves calculating the geometric mean 

of three different levels; species, genus and trophic level where totally three trophic levels are 

included; algae, invertebrates (crustaceans) and fish. This would put equal weight on each trophic 

level and thereby reduce the chance of biased data due to unequal representation of trophic levels. 

In a another study Larsen and Hauschild (2007a) suggested that to improve the PAF-based effect 

indicators; species and phyla included in the LCIA studies should not be randomly collected but be 

selected more carefully based on possibly affected ecosystems.  

   The comparison between phyla made in this study supports the suggestions of Larsen and 

Hauschild by showing that P. Sub. exhibits sensitivity to other substances than the chordate F. 

Minnow and the arthropod D. Magna. Despite this the rank of the substances were not significantly 

affected by including algae. A probable explanation is firstly; the small variation in the algal effect 

data, secondly; that two out of three data points on which HC50 was based were the same as well as 

all physiochemical data in dataset 1 and 2 making the influence of the algal factor minor. The algal 

data did however significantly alter the absolute values of the CFs with an average of 20% decrease 

in substance CF when algal effect data were included. 

   The intended LCIA will use the actual CFs to determine the relative impact of different chemicals. 

The results in this study suggest that including algae would not give a significantly different outcome 

in a relative assessment such as a LCIA. Mixing assessments with and without algal toxicity may 

however lead to differences between substances that depend on differences in underlying phyla and 

not due to actual differences in their impact.  

   This highlights the importance and difficulties of including algal effect data in LCIAs for this chemical 

group and stresses the need for further studies of algal toxicity to increase the availability of 

experimental data as well as new QSARs covering a wider domain of applicability.  

 

5.3 Differences in QSAR and experimentally based 

characterization factors 
The comparison of CFs based on experimental and QSAR data were based on a small dataset (22 

substances) due to a minor overlap between the sets and hence no confident conclusions can be 

drawn. Yet, that about 70% of the substances got higher CFs when QSAR data was used indicates that 

using QSAR predicted data mostly leads to more conservative CFs. The low correlation between 

QSAR and experimentally based CFs (R2=0.235) could either be due to low quality predictions e.g. 

that predictions are made on the edge of the models AD or that the experimental data for some 

reason is not representative e.g. overrepresentation of species with more extreme 

sensitivity/tolerance to the specific substances than D. Magna, F. Minnow and P. Subcapitata.  

   Few studies are available where QSAR has been compared to experimental data in an LCIA context. 

However, one study was found that assessed differences in experimental versus predicted and 

extrapolated chronic toxicity data for four structured analogues of chlorinated anilines (Dom et al., 

2012). Here it was found that the QSARs and set ACRs could not account for the inter-substance and 
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inter-species variations. Hence, ECOSAR produced predictions that sometimes overestimated and 

sometimes underestimated toxicity, similarly to what the results showed in this study, and the ACR 

determined in D. Magna were greatly differentiating between the 4 analogues. Another interesting 

finding was that the fundamental relationship on which most QSARs are based; higher log KOW equals 

higher toxicity, was not applicable for these substances, but an opposite trend was seen. 

   The study highlights the complexity in predicting biological responses and problematics in using 

fixed ACRs (discussed in section 5.5 and 5.4 respectively). 

   In this study Dihexyl phthalate (84-75-3) and Diisooctyl phthalate (27554-26-3) exhibited the largest 

difference in QSAR and experimental CFs. Dihexyl phthalate is one of the three substances for which 

the effect data was imported from USEtox database and therefore it is not possible to evaluate the 

source. For Diisooctyl phthalate the experimental effect data were based on five species of chordate, 

three species of arthropod and one species of algae with EC50’s ranging between 0.13-0.55mg/l. The 

predicted effect data were 1.82, 2.1 and 0.45 mg/l for chordate, arthropod and algae respectively. 

Apparently, for this substance only the QSAR constructed in this study made predictions similar to 

the experimental data while TEST’s predictions resulted in effect concentrations 3 or 4 times higher. 

In this case the experimental EC50 was based on  can be considered rather reliable since it was based 

which all exhibited similar sensitivity. It is therefore likely that the predictions derived from TEST are 

uncertain for this particular substance.   

    

5.4 Handling of information in LCIA 
Consistency in the information on which a LCIA is based is essential to produce an accurate 

assessment. The use of different types of data is a common problem, such as the use of acute or 

chronic data. In LCA studies chronic data are typically preferred as it is considered more reliable. 

Using acute data for LCA studies has low environmental relevance since the in vivo exposure to 

ecosystems could realistically only be chronic (Larsen and Hauschild, 2007a). With acute data there is 

also a chance that the steady state between test species and the test medium was not reached 

(Payet, 2004).  

   Even though USEtox recommends that preference should be given to chronic data, in this study 

chronic data extrapolated from acute data was used exclusively. The motive was mainly that by 

treating the experimental data the same as the QSAR data the CFs would be more analogous. 

Another reason was the lack of chronic data. When Payet (2004) assessed the availability of effect 

data in the largest available databases for aquatic toxicity he found 109840 values for acute EC50 

versus 9313 sub-chronic and chronic values.  He also found that acute and chronic data are highly 

correlated (R2=0.93). Thus, in the same way as basing CF assessments with and without algal toxicity, 

the results by Payet (2004) suggests that even though the absolute value of substance CFs might 

have been different if chronic data had been used, using acute data did not necessarily affect the 

rank of the substances. Finally, there are uncertainties related to factors used to extrapolate from 

acute to chronic, since they differ depending on e.g. what type of substance is being assessed and if it 

has a specific TMoA (toxic mode of action) or not (Larsen and Hauschild, 2006). This was 

demonstrated in the study by Dom et al. (2012) mentioned in section 5.3. Therefore even though the 

experimental CFs calculated in this study are recommended according to USEtox guidelines, using 

chronic data for substances where such data were available likely would have improved the quality 

of the CFs.   

   Another source of error that could influence the LCIA is the physiochemical data which here were 

derived using EPIsuite, which is a collection of estimation programs for physiochemical property and 
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environmental fate data. Both EPA and USEtox developers recommends that if measured values are 

available these should be used instead (USEtoxTeam, 2014). 

   In this study solely EPIsuite data was used for all physiochemical data as well as BAF. This might 

have increased the uncertainty in the CFs that was derived. Yet, the foremost purpose of this study 

was to evaluate the applicability of QSAR data in USEtox and what impact algal data has on the 

derived CFs. Similarly to using acute data instead of chronic; using predicted physiochemical data has 

not affected the results of this evaluation since the data was handled the same for all three sets. 

 

5.5 Reliability in experimental and QSAR information  

The experimental data used in the study was mainly obtained from EPA, QSAR toolbox and Aiida 

containing data from predominantly peer reviewed scientific literature. Yet, for several substances 

the effect data were scarce and hence the HC50 was calculated based on only a few data points 

which increase the chance of misrepresenting HC50s.  

   Due to the short time limit of this study the original sources from which the experimental data 

originated were not examined in detail. In the short summaries provided by the Aiida database the 

data was rated depending on its reliability from 1-4 where 1 equals “reliable without restrictions”. 

Many of the data points were marked as 2: “reliable with restrictions” or 3: “not reliable”. Sources 

marked 3 or lower were not included in this study.  

   A typical issue was that the effect concentration exceeded the maximum solubility of the 

substances (this was the case for many effect data on algae). Hence, no EC50 concentration could be 

calculated but the > (greater-than signs) were used combined with the highest obtained 

concentration. This is a common issue when testing substances that are poorly soluble. In this paper 

the experimental details such as how test solutions were prepared and how undissolved test solution 

was handled was not taken into account when collecting the data although it is well known that 

different testing methodologies can produce significantly different results. According to Weyman et 

al. (2012) if tested endpoints are above a substance solubility limit and no effect can be observed the 

effect concentration should be considered to be the solubility limit. Weyman et al. (2012) also 

suggested that if a substance exerts no toxicity at its solubility limit it could be an indication that the 

substance has a water solubility below the ETNCaq (aquatic exposure threshold of no concern). 

Hence, it would present a low environmental risk and could be down prioritized or excluded from the 

study in an early phase. These occurrences were not accounted for when collecting data in this 

paper. 

   Another source of uncertainty in the experimental data is that the reported EC50s differed 

between the sources. Sometimes this difference could be as great as up to a factor of 100. In these 

cases the data that had the highest reliability according to the Aiida rating system was used. For data 

obtained at ECOTOX or QSAR toolbox the value most similar to other analogous species were used. 

   The reliability of information becomes more complex to evaluate for QSAR prediction compared to 

experimental information. There are several extra sources of uncertainty to consider. Firstly, 

predictions from a model always come with an associated model error. Still, QSAR predictions are 

often given as point estimates, also in this study. Generally, QSAR models predicting toxicity data are 

associated with larger uncertainty than models predicting e.g. physiochemical properties. This is due 

to the larger variations associated with biological endpoints since there are numerous of factors that 

influence how organisms reacts (Sahlin, 2014).There are several ways to limit these variations; one 

way is to use consistent training data that ideally originates from the same study (Rodgers et al., 

2011). Secondly, the extent to which a substance falls inside a model’s domain of applicability 
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determines the quality of the predictions. Therefore relevant measures should be used in the 

evaluation phase to account for the reliability in the predictions. The data obtained from TEST is 

considered quite reliable since the software does not make predictions for substances outside the 

models’ applicability domains. 

   Finally, the quality of a QSAR depend on the quality of the training data. In TEST all experimental 

data that were used to train the models for D. Magna and F. Minnow was obtained from EPA’s 

ECOTOX database which consists of mainly peer-reviewed data (EPA, 2014). However, which models 

were used for which substances and how applicable and accurate these models were has not been 

evaluated in this study. 

   The data used to construct the algal model was collected from reliable sources e.g. EPA, ECHA and 

Aiida that contain mostly peer-reviewed papers but originated from a vast amount of different 

studies. It is possible that the test methodology differed in these studies which would increase the 

uncertainty of the model predictions. Furthermore, it is essential to have a clear biological endpoint. 

For this model a single species of algae was used (P. Subcapitata) but due to scarce ecotoxicological 

data on the assessed substances the observation duration ranged between 72-96h, instead of only 

one fixed time. This might have contributed to some variation in the data underlying the model.  

 

5.6 Environmental relevance 
Plastic additives are a group of chemicals that have often been disregarded in LCA literature (Van der 

Voet, 2013). In a study by Westerdahl et al. (2010) emissions of plastic additives from Swedish 

societal material stock was assessed where results showed that 2% corresponding to ca 50 000 

tonnes were emitted to the environment each year. In this paper the impacts of a group of plastic 

additives that was identified for constituting a large part of the Swedish emissions in previous study 

by Westerdahl et al. (2010) was assessed. To accurately assess impacts and minimize the risk of 

damaging ecosystems there is a need to include a high physiological variability in species when 

conducting LCIAs (Henderson, 2011). However, the review of ecotoxicological data in this study 

confirms what other studies has concluded that that there is a large gap in the toxicity data for 

aquatic organisms and that algal data is particularly scarce (Larsen and Hauschild, 2006, Payet, 2004). 

Therefore, another aim of the study was to assess the possibility of using QSAR-predicted toxicity 

data where experimental data is missing.  

    This study has resulted in a compilation of toxicity data for plastic additives for species from three 

aquatic phyla; chordate, arthropod and algae. A QSAR-model has also been constructed based on the 

experimental data that was gathered. The CFs that has been derived will be used for further studies 

of environmental impact where they combined with the emission loads derived by Westerdahl et al. 

(2010) can be used to calculate total impact scores (IS) for the additives. The QSAR model that has 

been constructed and the data that has been compiled can also be used in future studies of plastic 

additives e.g. in LCIAs.  

  

 

6. Conclusions & recommendations  
- There is a large data gap in algal toxicity for the 159  plastic additives of concern. 

- It was possible to construct a QSAR model for algal toxicity that was applicable for about 1/3 of the 

substance on the list. 

- CFs have been derived to identify the substances of most concern, but are limited to substances for 

which experimental or QSAR information are available. 



32 
 

- The sensitivity of the species varied both between phyla and between substances implying that 

which phyla is included is crucial for outcome of the impact assessment. 

- Algae generally exhibited lower sensitivity to the substances on the list. When algae was included in 

the HC50 the CFs decreased by an average of 20%. Underrepresentation of algae in LCIA studies of 

similar substances might therefore lead to more conservative CFs. 

- The inclusion of algal effect data in logHC50 did alter the internal rank of the substances based on 

CFs although no extreme alterations were seen. This is most likely due to the low variation in 

sensitivity that algae expressed to the different substances compared to the other two species. 

When assessing plastic additives including algal data is therefore of greater importance if the 

purpose is to derive valid CFs than if the purpose is to assess relative toxicity. 

- Assessments based on experimental data are different to those based on QSAR predictions, but the 

difference may not be larger than the errors due to other sources of uncertainty such as quality in 

data, ambiguous endpoints, different representation of certain species and phyla, extrapolations 

between acute and chronic tests, model errors, and limited applicability of models.  

- More tests of algal toxicity to plastic additives would not only lead to a more representative species 

distribution in online databases, it would also improve the possibilities to construct QSAR-models for 

algal toxicity.  

 

 

7. Future work 
- In this study the minimum diversity; three phyla to produce a recommended result was used for all 

datasets. There are several important freshwater phyla that were not included in the study e.g. 

Protozoans, Rotifera, Cnidarians, Platyhelminthes and Mollusca. To produce more accurate CFs and 

also to be able to make more valid comparisons between QSAR and experimental data future studies 

could involve a higher diversity of species.  

- One of the conclusions in this study is that algal data does affect the CFs significantly and also that 

different phyla are sensitive to different substances. Therefore, it would be interesting to evaluate if 

the experimental CFs would differ if the logHC50s were calculated based on a phyla level where 

average of each phyla would be derived before calculating the mean e.g. using the GM-troph method 

(Larsen and Hauschild, 2006). This would prevent overrepresentation of e.g. arthropod and chordate 

effect data. 

- The substances that were assessed in this paper were selected based on lists that Swedish research 

program ChEmiTecs assembled when assessing emissions of additives from plastics in the Swedish 

societal material stock. Future work might include combining CFs derived in this study with mass 

emissions for calculation of impact scores (IS) which is a more environmentally relevant measure. An 

interesting approach would be to examine if the substances are ranked similarly when emissions are 

considered.  

- Due to scarce data the comparison between CFs derived using experimental versus QSAR data were 

based on only 22 substances. There is a need for more comprehensive studies to draw any certain 

conclusions about the compatibility of QSAR in LCIA. 

- Further sensitivity analyses of the parameters in USEtox are needed to determine the importance of 

accuracy in different input data. 

- In this study physiochemical data was predicted using EPA’s EPIsuite software. This might have 

affected the CFs. A proposal for additional studies is therefore to address the uncertainty of using 

QSAR predicted physiochemical data as opposed to experimental. 
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10. Appendix 
 

Appendix A - Extracting data 
 

Physiochemical properties 

When deriving data from EPIsuite the following tools and methods were used: 

Kowwin: Kow  -  atom/fragment contribution method (the molecular structure is divided into 

fragments or larger groups) 

Kocwin: Koc (L/kg) MCI (Molecular connectivity index)  

Henrywin: Henry’s constant - Bond Estimation method 

Mpbpwin: Vapour pressure – Modified grain estimation method 

Waternt: Solubility (mg/L 25 deg. C) - regression calculations of Kow and melting point 

Aopwin: kdegA (degradation parameter in air), OVERALL OH Rate Constant in cm³/molecule/sec,  

 

Degradation in sediment, soil and water 

Degradation rate in air was calculated using the second order output OVERALL OH Rate Constant in 

(cm³/molecule/sec) from AOPWIN. To get a first order rate constant the OVERALL OH Rate Constant 

was multiplied with 1.5E+06 OH/cm³ and divided by 2 (assuming 12h effective removal per day) in 

accordance with the USEtox instructions (Henderson, 2011). 

   Degradation rates in water, soil and sediment were extracted from the BIOWIN 3 output (Ultimate 

Servey Model) and the assigned half-lifes were converted to degradation rate (1/s) as recommended 

by USEtox guidelines (Mark Huijbregts, 2010). The division factors 1:2:9 were used to extrapolate 

degradation rate in water, soil and sediment respectively as proposed by Patel and Boethling (2006).  

 

Calculating logHC50 

Instructions below were taken from the USEtox User’s manual (Mark Huijbregts and Tom McKone, 

2010):  

1. Gather experimental or estimated EC50 data for the chemical of interest; 

2. Specify for every EC50-value whether it is chronic or acute exposure; 

3. Calculate the geometric mean chronic or acute EC50 (mg/l) for every individual species 

(this can e.g. be done with the function =GEOMEAN() in Excel). 

4. In case of acute EC50-data, derive the chronic-equivalent EC50 per species by dividing 

by a factor of 2 (acute-to-chronic extrapolation factor) 

5. Take the log of the geometric mean EC50s and calculate the average of the log-values. 

This average equals the logHC50 (log mg/l). 

6. Implement this value in column 20 of the sheet “Substance data” of USEtox.xls. 

7. Always be careful with the units 
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Appendix B – Substance CF 
All calculated CFs are documented in the table below.  

 

Ecotox. Charact. factor [PAF.m3.day.kg-1]

Em.fr.waterC
# CAS Name Dataset 1 (QSAR) Dataset 2 (QSAR) Dataset 3 (Exp)

1 123284 Dilauryl thiodipropionate 2255.647422 n/a n/a

2 128370 2,6-Di-tert-butyl-4-methylphenol 3008.839163 2202.910509 1744.370658

3 80057' Bisphenol A 13327.37863 19272.62252 6256.043329

4 2082793 Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate 86.31066734 n/a 0.052312318

7 31570044 Tris(2,4-ditert-butylphenyl) phosphite n/a n/a 0.000151156

9 4130421 2,6-Ditert-butyl-4-ethylphenol 26956.23594 17146.04205 n/a

11 6683198 Pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) n/a n/a 8.23131E-11

12 693367 Distearyl thiodipropionate 1.405886714 n/a 0.001038011

13 108781 Melamine 365.207758 n/a 26.12763238

14 118796 2,4,6-Tribromophenol 74580.39241 n/a 15371.50655

15 103231 Bis(2-ethylhexyl) adipate 568.8932894 553.9295941 1106.928555

16 21850442 Tetrabromobisphenol A bis(dibromopropyl ether) 40528.45286 n/a n/a

17 32534819 Pentabromodiphenyl ether 22059.57922 n/a n/a

21 615587 2,4-Dibromophenol 51198.22095 n/a n/a

22 103242 AZELAIC ACID DI(2-ETHYLHEXYL) ESTER 4169.091516 3635.553905 n/a

23 115866 Triphenyl phosphate 41045.83211 31673.39112 17227.68843

29 30125474 3,4,5,6-Tetrachloro-N-[2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-8-quinolyl]phthalimide 424825.1069 n/a n/a

40 5567157 2,2'-[(3,3'-dichloro[1,1'-biphenyl]-4,4'-diyl)bis(azo)]bis[n-(4-chloro-2,5-dimethoxyphenyl)-3-oxobutyramide] n/a n/a 23.17124712

49 81776 14,18-anthrazinetetrone,6,15-dihydro-9 n/a n/a 48.76689267

51 112845 cis-13-Docosenoamide 6949.533569 8349.385155 n/a

52 1843056 Octabenzone n/a n/a 41.57092447

53 25973551 2-(2H-Benzotriazol-2-yl)-4,6-ditertpentylphenol 7403.425031 4653.463299 n/a

54 3896115' Bumetrizole 64136.23741 53462.84218 n/a

55 52829079 Bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate 15060.67194 7919.892533 3409.904322

56 1709702 1,3,5-Trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene 7.95219E-06 n/a n/a

58 40601761 Tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate 194.4257585 n/a n/a

59 25637994 Hexabromocyclododecane n/a n/a 117350.3584

60 25637994 (2) Hexabromocyclododecane 20070.32284 n/a 117350.3584

63 2440224 2-(2H-Benzotriazol-2-yl)-p-cresol 13533.87645 23208.54844 n/a

64 3864991 2-(2'-Hydroxy-3',5'-di-tert-butylphenyl)-5-chlorobenzotriazole 56494.55584 23563.85591 n/a

65 63843890 Bis(1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl]butylmalonate 246.0130275 n/a n/a

66 115968 Tris(2-chloroethyl) phosphate 19685.59868 n/a 1.0151E-57

67 117817 Bis(2-ethylhexyl) phthalate 1529.983223 2216.554036 552.2827891

68 1330785 Tritolyl phosphate 308328.6521 50876.14189 3716.238034

69 1330785 (2) Tritolyl phosphate 56830.42287 16471.72189 3716.238034

70 1330785 (3) Tritolyl phosphate 31819.96226 11189.69329 3720.17215

71 20566352 2-(2-hydroxyethoxy)ethyl 2-hydroxypropyl 3,4,5,6-tetrabromophthalate 154340.4688 n/a n/a

72 25155231 TRIXYLYL PHOSPHATE 77698.48979 16741.27127 1624.573337

73 25155231 (2) TRIXYLYL PHOSPHATE 17465.43304 6189.177728 1624.573337

74 26444495 Cresyl diphenyl phosphate 80890.80502 52781.10174 n/a

75 26444495 Cresyl diphenyl phosphate 64796.85049 45524.82423 n/a

77 78400 Triethyl phosphate 4923.595185 n/a 60.3924907

78 78513 Tris(2-butoxyethyl) phosphate 1284.649648 1739.150573 418.2002481

79 119471 2,2'-Methylenebis(6-tert-butyl-4-methylphenol) 6981.037441 2502.941566 n/a

80 126738 Tributyl phosphate 10084.8192 9831.148364 1132.325665

81 26761400 Diisodecyl phthalate 3083.158494 2065.731166 3766.913872

82 26761400 (2) Diisodecyl phthalate 2023.569795 1560.110501 3766.913872

83 27554263 Diisooctyl phthalate 1179.157304 1918.892147 10911.11788

84 28553120 Diisononyl phthalate 2770.327291 2696.204191 5891.650307

85 3319311 Trioctyl trimellitate 117.6853391 n/a n/a

86 131577 Oxybenzone n/a n/a 22748.97454

87 33703081 Diisononyl adipate 4346.407765 3042.629103 n/a

88 3648202 Diundecyl phthalate 1118.372515 638.3397129 349.8429931

89 68515515 1,2-Benzenedicarboxylic acid, di-C6-10-alkyl esters 996.4809809 2139.888363 517.1081414

90 78422 Tris(2-ethylhexyl) phosphate 2557.821048 850.8155589 n/a

91 133062 1,2,3,6-Tetrahydro-N-(trichloromethylthio)phthalimide n/a n/a 153361.7221

92 84742 Dibutyl phthalate 2827.494675 6357.753707 7248.869072

93 85687 Butyl benzyl phthalate 17117.86533 25694.52026 8911.621274

94 13560899 1,6,7,8,9,14,15,16,17,17,18,18-Dodecachloropentacyclo[12.2.1.16,9.02,13.05,10]octadeca-7,15-diene 11035.71892 n/a n/a

95 25973551 2-(2H-Benzotriazol-2-yl)-4,6-ditertpentylphenol 35724.55272 13156.19083 n/a

99 7576650 2-(3-hydroxyquinolin-2-yl)-1h-indene-1,3(2h)-dione 377998.9876 162023.2874 n/a

100 1118463 Butyltin trichloride n/a n/a 177208.0046

101 1118463 Butyltin trichloride n/a n/a 177208.0046

114 683181 Dibutyltin dichloride n/a n/a 133157.48

115 683181 Dibutyltin dichloride n/a n/a 133157.48

116 77587 Dibutyltin dilaurate n/a n/a 2230.292739

117 77587 Dibutyltin dilaurate n/a n/a 2230.292739

120 133073 1H-Isoindole-1,3(2H)-dione, 2-[(trichloromethyl)thio]- n/a n/a 243512.8889

121 26530201 2-Octyl-2H-isothiazol-3-one n/a n/a 215948.7598

123 64359815 4,5-Dichloro-2-octyl-isothiazolone n/a n/a 1380718.692

125 115775 Pentaerythritol 2.601883096 n/a n/a

126 126589 Dipentaerythritol 15.72440591 n/a n/a

127 25550985 DIISODECYL PHENYL PHOSPHITE 17342.56702 7506.672068 n/a

128 50704 D-Sorbitol 4.642612243 n/a n/a

130 77996 Trimethylol propane 8.385858626 n/a 1.525866258

131 79947 Tetrabromobisphenol A 97872.72048 n/a 9729.619113

132 8013078' Epoxidized soya bean oil 0.127495522 n/a n/a

137 23128747 3,3'-Bis(3,5-di-tert-butyl-4-hydroxyphenyl)-N,N'-hexamethylenedipropionamide 14.5121889 n/a n/a

138 36443682 Triethylene glycol bis(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate 21764.47671 n/a n/a

139 70321867 2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol 558.2697334 n/a n/a

142 1675543 2,2’-((1-methylethylidene)bis(4,1-phenyleneoxymethylene))bis-oxiran 696363.3252 305427.0493 n/a

143 3147759 Octrizole 17747.02735 15026.20476 n/a

144 68411461 Benzenamine,N-phenyl-,reactionproductswith2,4,4-trimethylpentene 47026.21291 26936.41673 n/a

145 13674845 Phosphoric acid tris(2-chloro-1-methylethyl) ester 260129.3971 n/a 810.0422144
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146 13674878 1,3-Dichloro-2-propanol phosphate (3:1) 1293241.157 n/a 17704.96039

147 3296900 2,2-Bis(bromomethyl)propane-1,3-diol 210.8037389 n/a n/a

148 87843 1,2,3,4,5-Pentabromo-6-chlorocyclohexane 343865.8103 n/a n/a

149 123955 N-BUTYL OCTADECANOATE 1585.509129 1772.659245 n/a

150 10081671 Bis[4-(2-phenyl-2-propyl)phenyl]amine 4785.649839 n/a n/a

151 85609 4,4'-Butylidenebis(6-tert-butyl-3-methylphenol) 2214.248181 437.0631805 n/a

153 1843034 1,1,3-TRIS(2-METHYL-4-HYDROXY-5-TERT-BUTYLPHENYL)BUTANE 55.71427447 n/a n/a

154 991844 2,4-Bis(octylthio)-6-(4-hydroxy-3,5-di-tert-butylanilino)-1,3,5-triazine 83.57415829 n/a n/a

155 37853591 1,2-Bis(2,4,6-tribromophenoxy)ethane 529892.8596 n/a n/a

156 60348609 2,2',4,4',5-PENTABROMODIPHENYL ETHER 156263.1477 n/a n/a

157 78320 TRI-P-TOLYL PHOSPHATE 59988.14701 31716.25877 n/a

158 78308 TRI-O-CRESYL PHOSPHATE 31819.96226 15752.63613 n/a

159 84753 DIHEXYL PHTHALATE 1019.036216 1720.967781 7727.830542
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Appendix C – CFs used in the analysis of dataset 1 and 2 
The table contains the matching substances from dataset 1 and 2 that were used in the assessment of the effect of 

including algal data. The table includes predicted CFs and ranks of CFs. 

 

 

  

Ecotox. Charact. factor [PAF.m3.day.kg-1]

Em.fr.waterC Em.fr.waterC

# CAS Name Rank Dataset 1 (QSAR) Rank Dataset 2 (QSAR)

2 128370 2,6-Di-tert-butyl-4-methylphenol 31 3008.84 33 2202.91

3 80057' Bisphenol A 23 13327.38 13 19272.62

9 4130421 2,6-Ditert-butyl-4-ethylphenol 16 26956.24 14 17146.04

15 103231 Bis(2-ethylhexyl) adipate 44 568.89 43 553.93

22 103242 AZELAIC ACID DI(2-ETHYLHEXYL) ESTER 29 4169.09 28 3635.55

23 115866 Triphenyl phosphate 12 41045.83 8 31673.39

51 112845 cis-13-Docosenoamide 27 6949.53 22 8349.39

53 25973551 2-(2H-Benzotriazol-2-yl)-4,6-ditertpentylphenol 25 7403.43 27 4653.46

54 3896115' Bumetrizole 7 64136.24 3 53462.84

55 52829079 Bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate 21 15060.67 23 7919.89

63 2440224 2-(2H-Benzotriazol-2-yl)-p-cresol 22 13533.88 12 23208.55

64 3864991 2-(2'-Hydroxy-3',5'-di-tert-butylphenyl)-5-chlorobenzotriazole 10 56494.56 11 23563.86

67 117817 Bis(2-ethylhexyl) phthalate 38 1529.98 32 2216.55

68 1330785 Tritolyl phosphate 3 308328.65 5 50876.14

69 1330785 (2) Tritolyl phosphate 9 56830.42 16 16471.72

70 1330785 (3) Tritolyl phosphate 14.5 31819.96 20 11189.69

72 25155231 TRIXYLYL PHOSPHATE 5 77698.49 15 16741.27

73 25155231 (2) TRIXYLYL PHOSPHATE 18 17465.43 26 6189.18

74 26444495 Cresyl diphenyl phosphate 4 80890.81 4 52781.10

75 26444495 (2) Cresyl diphenyl phosphate 6 64796.85 6 45524.82

78 78513 Tris(2-butoxyethyl) phosphate 39 1284.65 38 1739.15

79 119471 2,2'-Methylenebis(6-tert-butyl-4-methylphenol) 26 6981.04 31 2502.94

80 126738 Tributyl phosphate 24 10084.82 21 9831.15

81 26761400 Diisodecyl phthalate 30 3083.16 35 2065.73

82 26761400 (2) Diisodecyl phthalate 36 2023.57 40 1560.11

83 27554263 Diisooctyl phthalate 40 1179.16 36 1918.89

84 28553120 Diisononyl phthalate 33 2770.33 30 2696.20

87 33703081 Diisononyl adipate 28 4346.41 29 3042.63

88 3648202 Diundecyl phthalate 41 1118.37 42 638.34

89 68515515 1,2-Benzenedicarboxylic acid, di-C6-10-alkyl esters 43 996.48 34 2139.89

90 78422 Tris(2-ethylhexyl) phosphate 34 2557.82 41 850.82

92 84742 Dibutyl phthalate 32 2827.49 25 6357.75

93 85687 Butyl benzyl phthalate 20 17117.87 10 25694.52

95 25973551 (2) 2-(2H-Benzotriazol-2-yl)-4,6-ditertpentylphenol 13 35724.55 19 13156.19

99 7576650 2-(3-hydroxyquinolin-2-yl)-1h-indene-1,3(2h)-dione 2 377998.99 2 162023.29

127 25550985 DIISODECYL PHENYL PHOSPHITE 19 17342.57 24 7506.67

142 1675543 2,2’-((1-methylethylidene)bis(4,1-phenyleneoxymethylene))bis-oxiran 1 696363.33 1 305427.05

143 3147759 Octrizole 17 17747.03 18 15026.20

144 68411461 Benzenamine,N-phenyl-,reactionproductswith2,4,4-trimethylpentene 11 47026.21 9 26936.42

149 123955 N-BUTYL OCTADECANOATE 37 1585.51 37 1772.66

151 85609 4,4'-Butylidenebis(6-tert-butyl-3-methylphenol) 35 2214.25 44 437.06

157 78320 TRI-P-TOLYL PHOSPHATE 8 59988.15 7 31716.26

158 78308 TRI-O-CRESYL PHOSPHATE 14.5 31819.96 17 15752.64

159 84753 DIHEXYL PHTHALATE 42 1019.04 39 1720.97
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Appendix D – CFs used in the analysis of dataset 1, 2 and 3 

The table contains the matching substances from dataset 1, 2 and 3 that were used in the assessment of differences in CFs 

that are based on QSAR-predicted or experimental data. The table includes predicted CFs and ranks of CFs.  

 

 
  

Ecotox. Charact. factor [PAF.m3.day.kg-1]

Em.fr.waterC Em.fr.waterC Em.fr.waterC

# CAS Name Rank Dataset 1 (QSAR) Rank Dataset 2 (QSAR) Rank Dataset 3 (Exp.)

2 128370 2,6-Di-tert-butyl-4-methylphenol 12 3008.839163 14 2202.910509 14 1744.370658

3 80057' Bisphenol A 9 13327.37863 4 19272.62252 6 6256.043329

15 103231 Bis(2-ethylhexyl) adipate 22 568.8932894 22 553.9295941 18 1106.928555

23 115866 Triphenyl phosphate 4 41045.83211 2 31673.39112 1 17227.68843

55 52829079 Bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate 8 15060.67194 9 7919.892533 13 3409.904322

67 117817 Bis(2-ethylhexyl) phthalate 16 1529.983223 13 2216.554036 19 552.2827891

68 1330785 Tritolyl phosphate 1 308328.6521 1 50876.14189 11.5 3716.238034

69 1330785 (2) Tritolyl phosphate 3 56830.42287 6 16471.72189 11.5 3716.238034

70 1330785 (3) Tritolyl phosphate 5 31819.96226 7 11189.69329 10 3720.17215

72 25155231 TRIXYLYL PHOSPHATE 2 77698.48979 5 16741.27127 15.5 1624.573337

73 25155231 (2) TRIXYLYL PHOSPHATE 6 17465.43304 11 6189.177728 15.5 1624.573337

78 78513 Tris(2-butoxyethyl) phosphate 17 1284.649648 18 1739.150573 21 418.2002481

80 126738 Tributyl phosphate 10 10084.8192 8 9831.148364 17 1132.325665

81 26761400 Diisodecyl phthalate 11 3083.158494 16 2065.731166 8.5 3766.913872

82 26761400 (2) Diisodecyl phthalate 15 2023.569795 20 1560.110501 8.5 3766.913872

83 27554263 Diisooctyl phthalate 18 1179.157304 17 1918.892147 2 10911.11788

84 28553120 Diisononyl phthalate 14 2770.327291 12 2696.204191 7 5891.650307

88 3648202 Diundecyl phthalate 19 1118.372515 21 638.3397129 22 349.8429931

89 68515515 1,2-Benzenedicarboxylic acid, di-C6-10-alkyl esters 21 996.4809809 15 2139.888363 20 517.1081414

92 84742 Dibutyl phthalate 13 2827.494675 10 6357.753707 5 7248.869072

93 85687 Butyl benzyl phthalate 7 17117.86533 3 25694.52026 3 8911.621274

159 84753 DIHEXYL PHTHALATE 20 1019.036216 19 1720.967781 4 7727.830542
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Appendix E – Isomeric structures 
The table contains the isomeric structures of the isomers in the substance list represented by SMILES notations. 

 

# CAS Name SMILES

18 32536-52-0 OCTABROMODIPHENYL ETHER Brc1cc(Br)c(Br)cc1Oc1c(Br)c(Br)c(Br)c(Br)c1Br 

19 32536-52-0 OCTABROMODIPHENYL ETHER Brc1cc(Oc2cc(Br)c(Br)c(Br)c2Br)c(Br)c(Br)c1Br 

53 25973-55-1 2-(2H-Benzotriazol-2-yl)-4,6-ditertpentylphenol CCC(C)(C)c1cc(C(C)(C)CC)cc(N2Nc3ccccc3N2)c1O 

95 25973-55-1 (2) 2-(2H-Benzotriazol-2-yl)-4,6-ditertpentylphenol CCC(C)(C)c1cc(C(C)(C)CC)cc(N2N=C3C=CC=CC3=N2)c1O 

59 25637-99-4 Hexabromocyclododecane BrC1(Br)CCCCCCCCCC(Br)(Br)C1(Br)Br 

60 25637-99-4 (2) Hexabromocyclododecane BrC1CCC(Br)C(Br)CCC(Br)C(Br)CCC1Br 

68 1330-78-5 Tritolyl phosphate Cc1cccc(O)c1OP(=O)(Oc1ccc(O)cc1C)Oc1cc(O)ccc1C 

69 1330-78-5 (2) Tritolyl phosphate Cc1ccc(OP(=O)(Oc2ccc(C)cc2)Oc2ccc(C)cc2)cc1 

70 1330-78-5 (3) Tritolyl phosphate Cc1ccccc1OP(=O)(Oc1ccccc1C)Oc1ccccc1C 

72 25155-23-1 TRIXYLYL PHOSPHATE Cc1cccc(OP(=O)(Oc2ccc(C)cc2C)Oc2cc(C)cc(C)c2)c1C 

73 25155-23-1 (2) TRIXYLYL PHOSPHATE Cc1cc(C)cc(OP(=O)(Oc2cc(C)cc(C)c2)Oc2cc(C)cc(C)c2)c1 

74 26444-49-5 Cresyl diphenyl phosphate Cc1ccc(OP(=O)(Oc2ccccc2)Oc2ccccc2)cc1 

75 26444-49-5 (2) Cresyl diphenyl phosphate Cc1ccccc1OP(=O)(Oc1ccccc1)Oc1ccccc1 

81 26761-40-0 Diisodecyl phthalate CC(C)CCCCCCCOC(=O)c1ccccc1C(=O)OCCCCCCCC(C)C 

82 26761-40-0 (2) Diisodecyl phthalate CC(C)(C)CCCCCCOC(=O)c1ccccc1C(=O)OCCCCCCC(C)(C)C 

100 1118-46-3 Butyltin trichloride CCCC[Sn](Cl)(Cl)Cl 

101 1118-46-3 (2) Butyltin trichloride CCCC[Sn]{3+}(.Cl{-})(.Cl{-}).Cl{-} 

114 683-18-1 Dibutyltin dichloride CCCC[Sn](Cl)(Cl)CCCC 

115 683-18-1 (2) Dibutyltin dichloride CCCC[Sn]{2+}(.Cl{-})(.Cl{-})CCCC 

116 77-58-7 Dibutyltin dilaurate CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC 

117 77-58-7 (2) Dibutyltin dilaurate CCCCCCCCCCCC(=O)O{-}.[Sn]{2+}(CCCC)(CCCC).O{-}C(=O)CCCCCCCCCCC 

118 78-04-6' Dibutyltin maleate CCCC[Sn]1(CCCC)OC(=O)C=CC(=O)O1 

119 78-04-6' (2) Dibutyltin maleate CCCC[Sn]{2+}1(CCCC).O{-}C(=O)C=CC(=O)O{-}.1 


