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Abstract: Lower through Middle Ordovician strata are described with respect to sedimentology and carbon isotope 

stratigraphy from two areas, viz. two outcrops at Slemmestad in the Oslo-Asker district of southern Norway and a 

core section from the Brunflo area in Jämtland, central Sweden. The strata at these locations are compared and fur-

ther correlation is done with the Tingskullen core section from Öland, south-eastern Sweden. Regionally important 

hardground complexes and beds such as ‘Blommiga bladet’ and ‘Blodläget’ and the ‘Volkhov-Kunda boundary 

bed’ are recognised in Jämtland and Slemmestad for the first time. The presented δ13Ccarb-values from Slemmestad 

indicate subsequent diagenetic alterations, which hampers regional correlation of the Huk Formation. δ13Corg from 

the Tøyen Shale Formation at this locality gives a more reliable signal and the BFICE has been tentatively recog-

nised as 3.5 ‰ positive excursion in the uppermost part of the Hagastrand Member, although a higher data resolu-

tion would be needed to confirm it. The δ13Ccarb datasets from Brunflo and Tingskullen are both reliable and of high 

resolution. Several of the minor excursions and trends that characterise the generally stable carbon isotope record of 

the Lower and Middle Ordovician have been recognised, starting with the LTNICE, the BFICE, the Floian-

Darriwilian rise and the BDNICE. A fast shift in the carbon isotope data is correlated to the ‘Täljsten’ interval 

which resents a regional biotic crisis. A negative excursion precedes the rising limb of the MDICE, which is clearly 

expressed (1.4 ‰) in the upper member of the Holen and Segerstad limestones in Brunflo. The correlation shows 

that the sedimentation rate was considerably higher in Slemmestad than in coeval strata in Jämtland and Öland dur-

ing the Tremadocian and Floian; the Tremadocian is e.g. represented by almost 13 m of strata in Oslo as compared 

to the 2.5 m of coeval strata in Jämtland. The difference in sedimentation rate levelled out during the Dapingian and 

Darriwilian stages as a response to higher sea level at the time of deposition. 
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Sammanfattning: Under- till  mellanordoviciska avlagringar beskrivs med avseende på sedimentologi och koliso-

topstratigrafi från två blottningar vid Slemmestad i Oslo-Askerdistriktet i södra Norge samt en borrkärnesektion 

från Brunfloområdet i Jämtland i Mittsverigeregionen. Avlagringarna från dessa platser jämfördes och korreleras  

med en borrkärnesektion från Tingskullen på Öland i sydöstra Sverige. Regionalt viktiga hårdbottenkomplex och 

bäddar, såsom Blommiga bladet, Blodläget och Volkhov-Kunda gränsbädden har påvisats i Jämtland och Slemme-

stad för första gången. De erhållna δ13Ccarb-värdena från Slemmestad indikerar sentida påverkan av diagenetiska 

processer, något som inverkar negativt på Hukformationens regionala korrelationsmöjligheter. δ13Corg-data från 

Tøyenskifferformationen från den här lokalen ger en mer pålitlig signal och BFICE kan möjligtvis påvisas från lo-

kalen som en 3,5 ‰ positiv exkursion i den övre delen av Hagastandledet,  även om en högre datatäthet skulle be-

hövas för att säkerställa att så verkligen är fallet. δ13Ccarb-värdena från Brunflo och Tingskullen är både pålitliga och 

har hög uppläsning. Åtskilliga av de mindre exkursionerna och trenderna som kännetecknar den generellt sett sta-

bila kolisotoputvecklingen i under– och mellanordovicium  har påvisats, däribland LTNICE, BFICE, Floian-

Darriwilianstigningen och BDNICE. En snabb skiftning i kolisotopdatan korreleras med Täljstensintervallet som 

representerar en regional biotisk kris. En negativ exkursion föregår den stigande delen av MDICE, som är tydligt 

utvecklad (1,4 ‰) i det övre ledet av Holenkalkstenen samt Segerstadkalkstenen i Brunflo. Korrelationen visar att 

sedimentationstakten var avsevärt mycket högre i Slemmestad än i motsvarande avlagringar från Jämtland och 

Öland under Tremadocian- och Floianfaserna; Tremadocianfasen representeras t.ex. av uppemot 13 m mäktiga av-

lagringar i Oslo, att jämföra med de 2,5 m mäktiga likåldriga avlagringarna i Jämtland. Skillnaden i sedimentations-

hastighet avtog emellertid under Dapingian- och Darriwilianfaserna som ett svar på högre havsnivå vid bildnings-

tillfället.  
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1  Introduction 
The Ordovician was in many respects a unique period 

in Earth history (Jaanusson 1984). With continents 

widely separated (Cocks 2001) and extensive ocean 

floor spreading, the ocean waters were pushed up on 

the continents. The unprecedentedly high sea levels 

allowed vast continental areas to be flooded by shal-

low seas (Barnes 2004; Munnecke et al. 2010). Biodi-

versity boomed (Sepkoski 1981; Webby et al. 2004). 

This interval in the history of life is critical to under-

stand but interpreting the depositional history, sea lev-

el changes and depths of ancient epeiric seas can be 

challenging. Modern analogues are lacking and intel-

lectual problems arise from, for instance, condensation 

and reworking of sediments (e.g. Burchette & Wright 

1992; Wright & Burchette 1998). To untangle these 

issues a broad set of tools must be employed, includ-

ing traditional facies analysis but also geochemical 

data (Munnecke et al. 2010). Reliable correlations are 

vital to differentiate local from regional to global 

events. Over the last years, carbon isotope chemostra-

tigraphy has become a useful tool for correlational 

purposes (e.g. Bergström et al. 2009; Saltzman & 

Thomas 2012). 

 The present study focuses on Lower and Middle 

Ordovician sedimentary successions on the western 

margin of Baltica, more precisely, on the outcrops near 

Slemmestad in the Oslo-Asker district, Norway and on 

a core from Brunflo, Jämtland (Fig. 1). Carbon isotope 

stratigraphy on whole rock analysis will be presented 

from both successions, as well as isotope data from 

organic carbon in the Tøyen Shale Formation at Slem-

mestad, the first organic carbon study from the Lower 

Ordovician of this part of Baltoscandia.  

While the global record of the Upper Ordovician 

features several well-studied high amplitude carbon 

isotope excursions, the Lower and Middle Ordovician 

is characterised by gentle isotopic shifts and a more 

subdued generalised curve (Bergström et al. 2009). 

The most prominent excursion in the Lower and Mid-

dle Ordovician is the mid-Darriwilian isotopic carbon 

excursion (MIDICE; e.g. Meidla et al. 2004; Ainsaar 

et al. 2010, Schmitz et al. 2010), but lately, several 

smaller scale excursions have been described from 

Baltoscandia (Lehnert et al. 2014). Four of these are of 

interest of the present study, namely the LTNICE 

(Late Tremadocian Negative Isotopic Carbon Excur-

sion), BFICE (Basal Floian Isotopic Carbon Excur-

sion, which marks the onset of the Floian-Darriwilian 

rise), BDNICE (Basal Dapingian Negative Isotopic 

Carbon Excursion) as well as the LDNICE (Lower 

Darriwilian Negative Isotopic Carbon Excursion). All 

of these have been recognised in the data presented 

from the Brunflo #2 core. 

While sea level changes in the shallow, central 

parts of the basin may give rise to sharp facies shifts, 

large parts of the successions may also be cut out by 

erosion. The marginal marine strata provide a more 

complete stratigraphic record, even though any facies 

shifts related to sea level changes may be subtle. The 

aim of the present study is therefore to correlate these 

marginal deposits to the more central parts of the 

Baltoscandian basin in order to unravel the history of 

sea level changes at the time of deposition. A core 

recovered from Tingskullen on the island of Öland, 

Sweden, with a high resolution carbon isotope stratig-

raphy (Calner et al. 2014) linked to a detailed cono-

dont biozonation by Wu et al. (submitted) will be used 

for comparison. 

 

2 Geological setting  
Three main physical aspects influenced environment 

and sedimentation in Baltica in the early Ordovician. 

The first of these was tectonically induced, as the con-

tinent was moving northwards across the southern 

hemisphere to higher latitudes with a warmer climate 

(Cocks & Torsvik 2005). This allowed the deposition 

of cold water carbonates in the Baltoscandian basin 

which hitherto in the Cambrian and lowermost Ordovi-

cian had been dominated by siliciclastic sedimentation 

(Calner et al. 2013). Secondly, the continent had been 

subject to a prolonged period of erosion and tectonic 

quiescence in the Precambrian, a process which had 

left the continent essentially flat and peneplanised 

(Lidmar-Bergstöm 1993, 1995). This had major conse-

quences in combination with the third factor, namely 

the extraordinary high sea level.  

Although the eustatic sea level fell somewhat in the 

Middle Ordovician, sea levels had risen since the Late 

Precambrian, and the Early Ordovician recorded the 

second highest sea level of the entire Palaeozoic 

(Nielsen 2004; Haq & Shutter 2008). In combination 

with the low relief, this allowed large parts of the con-

tinental surface to become inundated by a shallow 

epeiric sea. The low relief in itself, in combination 

with the drowning of source areas, led to extreme sedi-

ment starvation. Average net accumulation rates were 

merely 1–9 mm/1000 years in Sweden and the East 

Baltic area at the time, whereas the Oslo area had 

slightly higher values of 3–12 mm/1000 years, as it 

was located in the distal foreland of the Caledonides 

(Nielsen 2004). As a consequence, the Baltoscandian 

Cambrian to Middle Ordovician successions are rela-

tively thin (Calner et al. 2013) and the entire Ordovi-

cian in Norway is represented by merely 400 m of 

strata (Bockelie 1982). Fluctuations in the relative sea 

level gave rise to the cyclic pattern displayed in the 

strata, with shale representing deeper conditions and 

limestone more shallow environments (Egenhoff et al. 

2010).  

The depositional and ecological environment in the 

basin varied with e.g. depth and distance from the 

coast line. Based on similarities in lithology and corre-

sponding ecologic and faunal zonation, Jaanusson 

(1972, 1982, 1995) distinguished four ‘Confacies 

Belts’ in the Baltoscandian basin (Fig. 1A). The Scani-

an and Oslo belts are the most offshore of these, 

whereas the North Estonian with its southern counter-
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part, the Lithuanian Confacies Belt represent the most 

nearshore conditions. The Central Baltoscandian Belt 

and its projection, the Livonian tongue, represent an 

intermediate position. The Oslo Confacies Belt distin-

guishes itself in having a broad variation in lithofacies 

and faunal composition, likely reflecting a pronounced 

bottom topography (Pärnaste et al. 2013), with the 

Oslo-Asker area situated in the deepest parts of the 

Oslo Confacies Belt (Fig. 2).    

The 40-70 km wide and 115 km long Oslo Region 

(Oslofältet) preserves Lower Palaeozoic strata extend-

ing over an area of 10000 km2 (Nakrem & Rasmussen 

2013). The stratigraphic outline is presented in Figure 

3. The Ordovician sedimentary successions of the Oslo 

Region have been studied by palaeontologists and sed-

imentologists for more than 150 years, with early con-

tributions from e.g. Kjerulf (1857) and Brøgger 

(1882). Størmer (1953) outlined the regional lithostra-

tigraphy and divided the region into different districts. 

The lithostratigraphy was subsequently thouroughly 

revised by Owen et al. (1990). The first general survey 

of the geochemistry of the strata was carried out by 

Bjørlykke (1974). Modern palaeontological studies 

include contributions by Ebbestad (1999; trilobites of 

the Bjørkåsholmen Formation), Nielsen (1995, trilo-

bites of the Huk Formation), Hansen (2009, trilobites 

of the Elnes Formation), Rasmussen (1991, 2001; co-

nodonts of the Huk Formation and coeval Stein For-

mation respectively) and Hoel (1999a,b; trilobites of 

the Tøyen Shale Formation).  

The Oslo Region constituted a passive continental 

margin in the Cambrian and Early Ordovician, but 

with the incipient stages of the Caledonian Orogeny in 

the west during mid Darriwilian times (Elnes For-

mation) and onward, more siliciclastics were intro-

duced into the basin (Bruton et al. 2010). At the peak 

of the orogeny in the Silurian, the successions were 

thrusted south-eastwards and folded; as a result, the 

studied successions in the Oslo Region dip steeply. 

Commonly, the Cambrian-Ordovician Alum Shale 

acted as a decollément plane (Bruton et al. 2010). Ex-

tension in the Permian further disturbed the succes-

sions both by the intrusion of dolerite dykes, as well as 

block faulting (Bockelie 1982); but if the succession 

had not been faulted down, they would have been 

eroded away and not be preserved today (Hansen et al. 

2011). In other words, even when the boundaries of 

the preserved basin are those of a Permian aulacogen, 

the Early Palaeozoic sediments were originally depos-

ited in an epicratonic basin (Owen et al. 1990). 

Much like the Norwegian Early Ordovician succes-

sions, the Jämtland counterparts were also formed in a 

shallow epicontinental sea at the western, passive mar-

Fig. 1. A: Map of Baltoscandia with Lower Palaeozoic strata 

indicated. Confacies belts after Januusson (1995). B: Local 

map of the vicinity of Slemmestad. Field work was carried 

out at VEAS and Bjerkåsholmen C: Local map of Brunflo 

where the Brunflo #2 core was recovered.  
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gin of Baltica that subsequently were subjected to de-

formation due to the Caledonian Orogeny (e.g. Karis 

1998). Even though the Brunflo area is considered to 

be part of the autochthonous sequences of Jämtland, a 

minor degree of thrusting and faulting of the strata took 

place (Löfgren 1978). The Jämtland successions have 

been divided into a platform and ramp facies, where 

the Brunflo area constitutes the former because of the 

predominance of carbonate-dominated successions 

(Karis 1998). Accordingly, the palaeosetting is slightly 

shallower than the Slemmestad counterparts, and corre-

sponds to the Central Confacies Belt (Fig. 1A, Fig. 2; 

Jaanusson 1995, Karis 1998). 

The biostratigraphy of the Lower and Middle Ordo-

vician of Jämtland is not particularily well known, but 

it has partly been studied with respect to conodonts 

(Löfgren 1978, Sturkell 1991), trilobites (Tjernvik 

1956, Larsson 1973) and agnostids (Ahlberg 1988). 

Several reviews and excursion guides of the area have 

been published, including Bruton & Williams (1982), 

Karis (1998) and Wickström (2007). The stratigraphy 

is outlined in Figure 4. 

 

3 Material and methods 
Studies were undertaken in two successions which 

formed at the western margin of Baltica, the first repre-

sented by two outcrops in the vincinity of Slemmestad 

in Oslo-Asker and the other one recorded in a core 

recovered from the Brunflo area of Jämtland. More 

emphasis was put on the two outcrops in the former 

area (Fig. 1B). At the first outcrop, the beach at the 

Bjerkåsholmen peninsula, strata ranging from the Tre-

madocian part of the Alum Shale to the Darriwilian 

Svartodden Member of the Huk Formation are ex-

posed. The Tøyen Shale Formation is only partly ex-

posed. The succession is partly repeated at the second 

locality, a road cut at the Djuptrekkodden peninsula 

just 200 m to the north, also known as the VEAS sec-

tion (Fig. 1B). The outcrop there includes the upper-

most and tectonically deformed Tøyen Shale For-

mation, the entire Huk Formation as well as the basal 

part of the Elnes Formation. 

The contemporaneous succession deposited at 

Brunflo, Jämtland (Fig.1C) was studied in the Brunflo 

#2 core which was drilled by the Geological Survey of 

Sweden (SGU) in 1970. The core section records au-

tochtonous strata ranging from the Cambrian part of 

the Alum Shale Formation through a major part of the 

Lower-Middle Ordovician ‘orthoceratite limestone’, up 

to the Segerstad Limestone. The core, which is stored 

at the SGU office in Malå was sampled for carbon iso-

tope chemostratigraphy by Rongchang Wu in early 

2014 and further documented by the present author 

with respect to sedimentology in September 2014. 

These data was published in Wu et al. (in press) and 

are referred to below.  

Field work was carried out at Slemmestad in May 

and October of 2014. At the later date the entire VEAS 

section had been thoroughly excavated, likely to reduce 

risk of slumping over the road. This has given new and 

relatively unweathered surfaces of the Huk Formation, 

but the Elnes Formation is now almost completely ob-

scured at the locality. The sections were measured, 

logged and studied with respect to their macroscopical 

properties. The logs presented here are composite logs 

mainly based on the Bjerkåsholmen exposure, with the 

exception of the Svartodden Member and the Elnes 

Formation, which were logged at the VEAS section. 

The former unit is substantially better exposed at this 

locality after the excavation and the latter was logged 

prior to the excavation.  

The lithology and faunal composition were studied 

using a polarised light microscope from about twenty 

thin sections that were prepared from rock samples 

collected at Bjerkåsholmen and the VEAS section. 

Furthermore, several rock samples were polished and 

examined using a standard optical microscope and a 

hand lens. Due to time constraints, no thin sections 

were prepared from the Brunflo #2 core, as a result 

only the latter method was employed. The sedimento-

logical findings were then compared to the carbon iso-

tope data of Wu et al. (in press) sampled in the same 

core. 

A total of 106 samples for studies of bulk δ13Ccarb 

were collected from the limestone dominated for-

mations at Slemmestad, i.e. the 10.6 m of strata that 

make up the Bjørkåsholmen and Huk formations as 

well as the exposed part of the Elnes Formation, yield-

Fig. 2. Depositional environment of the Oslo Region during mid Darriwilian times (Pterograptus elegans graptolite Zone), i.e. 

after deposition of the Helskjer Member. Note that Jämtland was situated in slightly shallower environments than the Oslo area. 

From Hansen et al. (2011).  
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Fig. 3. Litho- and biostratigraphy of the central Oslo Region. From Nakrem & Rasmussen (2013), modified from Bruton et al. 

(2010). The interval studied in this thesis is marked by the blue box. 
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Fig. 4. Litho- and biostratigraphy of the Lower and Middle Ordovician strata in the Brunflo area. From Wu et al. (in press). 

ing an average sampling density of one sample per 0.1 

m. The first two formations were sampled at the 

Bjerkåsholmen peninsula and the latter at the 

Djuptrekkodden road cut. Samples were obtained us-

ing a micro-drill on fresh rock surfaces. Cement and 

calcite veins were avoided, and only micritic litholo-

gies were targeted. Carbonate powders were subse-

quently reacted with 100% phosphoric acid (H3PO4) 

at 70 °C with a Gasbench II connected to a Ther-

moFinnigan Five Plus mass spectrometer. All reported 

values are in per mil relative to Vienna Pee Dee Bel-

emnite (V-PDB) by assigning δ13C and δ18O values of 

+1.95‰ and −2.20‰ to the international standard 

NBS19 and −46.6‰ and −26.7‰ to the international 

standard LSVEC, respectively. Reproducibility and 

accuracy of carbon isotope analyses were monitored 

by replicate analysis of laboratory standards which 

were calibrated to NBS19 and LSVEC and were 

±0.05‰ (±1 std. dev.). 

Thirty-three samples for organic δ13C studies were 

recovered from the 16.3 m of marine shales compris-

ing the Tøyen Shale Formation, giving an average 

sampling density of about one sample per 0.5 m. Each 

sample was washed and then ground to a fine powder. 

10 % hydrochloric acid was added after which the 

samples were allowed to react for several hours, a pro-

cedure which was repeated for the carbonate-rich sam-

ples several times. The acid was then decanted after 

which the samples were thoroughly washed with dis-

tilled water. Carbon isotope analysis of organic carbon 

was performed with an elemental analyser (CE 1110) 

connected online to a ThermoFinnigan Delta V Plus 

masspectrometer. All carbon isotope values are report-

ed in the conventional δ-notation in permil relative to 

V-PDB. Accuracy and reproducibility of the analyses 

was checked by replicate analyses of international or 

laboratory standards (USGS 40 and Erl 5). Reproduci-

bility was better than ±0,05 ‰ (1σ).  

Analysis of elemental compositions was performed 

using scanning electron microscopy and EDX on glau-

conitic levels and levels with suspected pseudomorphs. 

Fresh rock samples were mounted in epoxy for easy 

handling and subsequently polished smooth using 1 

micron diamond micropolish. The samples were car-

bon coated before analysis in a variable pressure Hita-

chi 3400N scanning electron microscope.  

 

4 Stratigraphy 
 

4.1 Slemmestad outcrops 
The Bjerkåsholmen pensinsula and the VEAS section 

on Djuptrekkodden near Slemmestad, Oslo-Asker, 

exposes strata ranging from the upper Cambrian Alum 

Shale Formation to the middle Darriwilian Elnes for-

mations. The strata dip steeply to the north-west and 

the formational boundaries are indicated in a detailed 

geological map (Fig. 5). 

 

4.1.1 Alum Shale Formation  

The Alum Shale Formation can be recognised over a 

vast area across the Baltoscandic platform, from Po-

land in the south to the East Baltic area in the east and 

even beneath the Caledonian nappes on the west coast 

of Norway (Gee 1980). It ranges stratigraphically from 

the middle Cambrian through the Tremadocian, its 

base being diachronous (Nielsen & Schovsbo 2007; 

Bruton et al. 2010 and references therein). The upper 

part of the shale unit in the Oslo Region is poorly fos-

siliferous, but has yielded specimens of the trilobite 

Ceratopyge forficula as well as the graptolites Kiaer-

ograptus kiaeri and Bryograptus ramosus (Owen et al. 

1990). Ebbestad (1999) assigns the top of the for-

mation to the Kiaerograptus supremus graptolite Zone 
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of the Varangu Regional substage. The topmost part of 

the formation was previously known as the Ceratopyge 

Shale (Owen et al. 1990). 

The Alum Shale Formation is severely deformed, 

displays prominent folds and is furthermore largely 

eroded away at Bjerkåsholmen. A detailed study of the 

formation is beyond the scope of this thesis. The black 

and highly kerogenous shales are poor in carbonate 

beds and carbonate concretions (or ‘stinkstones’) at 

Slemmestad and in the Oslo area (Owen et al. 1990). 

The lithology is fairly uniform, but the frequency of 

grey silt beds increases in the upper 0.6 m. A horizon 

with 2–3 cm long, black and ellipsoidal fine grained 

limestone concretions 0.06 m below the contact to the 

overlying Bjørkåsholmen Formation. 

 

4.1.2 Bjørkåsholmen Formation  

The 1.2 m thick Bjørkåsholmen Formation is widely 

distributed in the Oslo Region (e.g. Fjelldal 1966; Eb-

bestad 1999) and comprises microsparitic and micritic 

limestones with two thick shale interbeds (Figs. 6–7). 

Original depositional structures are hard to discern due 

to pervasive recrystallisation and diagenetic alterations 

(Fig. 8). The formation was formerly known as the 

Ceratopyge Limestone, but was redefined as the 

Bjørkåsholmen Formation by Owen et al. (1990).  

Analysis of the trilobite faunas performed by Eb-

bestad (1999) shows that the thin unit spans the Apato-

kephalus serratus Zone. The basal nodular bed con-

tains the Ceratopyge fauna, i.e. the fauna associated 

with Ceratopyge forficula and Ceratopyge acicularis. 

The top of the formation coincides with the top of the 

Paltodus deltifer conodont Biozone (Erdtmann & 

Paalits 1994). 

The base of the formation is undulating and sharp, 

with a basal bed that constitutes wackestone nodules 

within a sparitic, recrystallised matrix (Fig. 1A,D). 

These pale grey nodules are well rounded but irregu-

larly shaped, up to 0.2 m long, and some show signs of 

brittle deformation (Fig. 7A,B). Trilobite bioclasts 

dominate, but brachiopods and echinoderms also make 

up a substantial part of the fauna. Fine grained pyrite 

crystals (0.1 mm) are dispersed throughout the bed, 

but are more highly concentrated in the nodules.  

The basal limestone bed is overlain by a 0.14 m 

thick dark grey shale bed that includes a layer of iso-

lated black mudstone nodules. These nodules are dom-

inated by the Bienvillia angelini olenid fauna and, as 

they can be traced throughout the Oslo region, the 

nodule layer acts as an important marker bed in the 

region (Ebbestad 1999). 

The shale bed is succeeded by a 0.4 m massive set 

of six thin to medium thick limestone beds. This unit 

was named ‘the main limestone bed’ by Fjelldal 

(1966). The contact with the underlying shale is ab-

rupt, and at the base black, well rounded limestone 

clasts occur again. These are macroscopically similar 

to those of the Bienvillia angelini bed but are here sep-

arated laterally by a 2–7 cm thick layer of fibrous crys-

talline calcite or orsten, resembling cone-in-cone struc-

tures (cf. Tucker 2001; Cobbold et al.  2013). The cal-

cite fibres are conically arranged and crystal axes are 

oriented oblique to bedding. Calcite cone-in-cone 

Fig. 5. Detailed map of the Bjerkåsholmen pensinsula where 

the almost vertically north-west dipping strata allow for good 

exposure of the sedimentary succession. The relative weath-

ering resistance of the various lithologies is expressed by 

large scale geomorphology; the black shales represented by 

the Alum Shale and the Galgeberg Member coincide with 

bays, and the limestone-marl alternations of the Lysaker 

member also show a small indentation on the map. The 

Svartodden Member is bounded upwards by a fault contact 

at this locality.  

Fig. 6. Log of the Bjørkåsholmen Formation at 

Bjerkåsholmen in Slemmestad. 
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Fig. 7. Photographs of Bjørkåsholmen and Tøyen formations at Djuptrekkodden. A: The 1.2 m thick Björkåsholmen Formation 

in its entirety. B: Nodules (pale)  set in a recrystallized matrix (orange) in the basal limestone bed of Bjørkåsholmen Fm. The 

upper nodule appears brittely deformed (at pen-tip). C: Two beds with white calcium carbonate crystal aggregates possibly rep-

resenting pseudomorphs after gypsum, set in a recrystallized matrix. The grey middle bed is a wacke-packstone that has not 

undergone substantial recrystallisation D: Possible gypsum pseudomorph in the upper part of Hagastrand Member with conspic-

uous swallow-tail morphology. E: Multicoloured horizon at the base of the informal Slemmestad Member (Erdtmann 1965), 

possibly correlating with the ‘Blommiga bladet’ hardground. It is approximated as the base of the Dapingian in the section F: 

Contact between Tøyen and Huk formations. 
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Fig. 8. Photomicrographs from the Björkåsholmen Formation. A:  The basal bed shows trilobite wackestone nodules set in an 

almost thoroughly  recrystallized matrix. A few trilobite grains have avoided recrystallisation. B: A bedding parallel laminated 

fabric is seen in the lower part. A sharp boundary divides this bed from the upper one which shows 1-2 cm long calcite aggre-

gates which may represent gypsum pseudomorphs, set in a recrystallized matrix. Trilobite wackestone clast in the top. C: The 

uppermost bed of the Björkåsholmen Formation consists of crystal aggregates of uncertain affinity. Large opaque minerals are 

pyrite. Note cross-shaped pyrite crystal in the lower part, a shape indicative of replacement of gypsum. D: Close-up of (A), con-

tact between recrystallized matrix and better-preserved nodule. E: Laminated lower part of (B). F: Close-up of upper part of (B). 

G: Close-up of (C ). Note cross-shaped pyrite in upper right. 
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structures are commonly found in marine shales and 

are indicative of fluid overpressure during diagenesis 

(Cobbold et al. 2013). 

Two beds (Fig. 6) feature conspicuous calcite crys-

tals in ovoid or spherical shapes (Figs. 7C, 8B,E–F). 

Both of these beds are underlain by laminated wack-

estones. The calcite crystals seem to have grown in an 

unlithified, plastically deformed mud (Fig. 8B) and 

they have previously been interpreted as possible 

pseudomorphs of gypsum (Fjelldal 1966). The matrix 

itself show a gradation, with micrite in the upper part, 

transitioning to microspar in the middle part of the bed 

and down into pseudospar surrounding the ovoid crys-

tals (Scholle & Ulmer-Scholle 2003, p. 270). Only few 

bioclasts occur in the sparitic matrix. 

The ‘main limestone bed’ is capped by a thin bed 

of micritic packstone that does not show signs of re-

crystallisation. A ~0.2 m thick grey shale bed sepa-

rates this unit from the topmost, ~0.4 m thick bedset of 

the formation. These beds are thoroughly recrystal-

lised. The basal bed is a pale grey microsparitic mud-

stone with a few skeletal grains of mainly trilobites in 

its lower part. This horizon shows wavy bedding and 

varies in thickness from 0.1 to 0.3 metres.  

The wavy bed is overlain by three thin and dark 

grey limestone bands, totalling 0.18 m in thickness. 

These beds are composed of sand sized, green aggre-

gates set in a dark grey, cryptocrystalline quartz ma-

trix. While the beds are entirely devoid of bioclasts, 

pyrite concretions are common and these occur both 

with framboidal morphology as well as twinned cross-

es (Fig. 8C,G). The twinned crystal habit is very simi-

lar to gypsum crystals documented in Scholle & 

Ulmer-Scholle (2003, p. 395), so the pyrite may well 

represent gypsum pseudomorphs. The green grains in 

these beds are irregular but rounded in shape, with 

radial cracks and have been interpreted as glauconite 

(e.g. Egenhoff et al. 2010). These grains are, however, 

not green in thin section (Fig. B10) and X-ray diffrac-

tion studies on glauconitic grains from Vestfossen and 

Bjerkåsholmen revealed only the presence of illite 

(Fjelldal 1966, Bjørlykke 1974). As a consequence 

Bjørlykke (1974) hypothesised that the grains were 

presumably glauconitic originally, but that they were 

diagenetically altered to illite. The chemical composi-

tion of these grains were analysed using EDX and the 

results are presented in Table 1. They have an average 

potassium content of 7.34%. 

4.1.3 Tøyen Shale Formation 

The Tøyen Shale Formation and its lithostratigraphic 

subdivision into three members was defined by 

Erdtmann (1965). The lowermost Hagastrand Member 

is characterised by grey shales and silty interbeds 

whereas the middle Galgeberg Member comprises 

dark, graptolitic shales. A third member, the Slem-

mestad Member, was also defined by Erdtmann (1965) 

for the uppermost part of the formation where the 

shales are paler and have a higher carbonate content. 

This member was subsequently discarded by Owen et 

al. (1990) however, as they considered this division 

was based on faunal rather than lithological differ-

ences.  

The Tøyen Shale Formation is poorly exposed in 

the Oslo Region; the original stratotype section at 

Tøyen, Oslo where it was defined by Erdtmann (1965) 

was only briefly exposed during the construction of a 

railway tunnel. Therefore, Owen et al. (1990) desig-

nated a neostratotype at Engervik. These two publica-

tions, however, define the base of the Galgeberg Mem-

ber differently. A level where graptolites appear de-

fines the base of the Galgeberg Member according to 

Erdtmann (1965) whereas Owen et al. (1990) define 

the base of the Galgeberg Member where mudstone 

and gray shale interbeds cease. As Erdtmann based his 

division more on faunal rather than lithological basis, 

the definition by Owen et al. (1990) is preferred here. 

The Tøyen Shale Formation is absent in the south-

ern part of the Oslo Region, but can otherwise be rec-

ognised throughout the area (Owen et al. 1990). It also 

extends into Västergötland, Jämtland and Skåne in 

Sweden (e.g. volume by Bruton & Williams 1982). 

The unit is dominated by shales in the Oslo Region, 

but in Eiker-Sandsvaer, the Hagastrand Member is 

instead developed as a condensed, glauconitic lime-

stone. Hoel (1999a) documented a diverse fauna of 

trilobites belonging to the Megistaspis 

(Paramegistaspis) planilimbata Zone in this facies. 

The biostratigraphy of the shaly facies is less well 

known; no recent biostratigraphical data from the 

Tøyen Shale Formation in Norway is known to the 

author. Furthermore, the Hagastrand Member is only 

sparsely graptolitic and Erdtmann (1965) found no 

graptolites at all in the lowermost 3 m. In contrast, the 

black shales of the overlying Galgeberg Member are  

rich in graptolites. Coinciding with the base of the 

member are the first appearances of Tetragraptus ap-

proximatus and Tetragraptus phyllograptoides, thus 

marking the base of the Floian stage (Cooper & Sadler 

2012). 

A total of 16.3 m of the Tøyen Shale Formation is 

exposed at the Bjerkåsholmen peninsula; the lower 

middle and middle part of the Galgeberg Member is 

obscured by Quaternary deposits (Fig. 5). Judging 

from the near-vertical dip of the strata and the distance 

between outcrops, the total thickness is estimated at 28 

m, i.e. 8 m thicker than was described from the type 

locality at Tøyen, Oslo, by Erdtmann (1965). Tectoni-

cal thickening of the succession cannot be excluded.  

Grain 

no.  Mg Al Si K O Total 

1 3.48 14.21 29.41 7.79 50.02 104.91 

2 2.88 12.57 26.19 6.97 44.34 92.96 

3 3.04 12.68 25.9 7.02 44.23 92.87 

4 3.39 13.29 28.48 7.56 48.05 100.78 

Mean 3.20 13.19 27.50 7.34 46.66 97.88 

Table 1. Elemental composition of glauconite in the 

Bjørkåsholmen Formation.  
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Fig. 9. Log of Töyen Shale formation at Djuptrekkodden in Slemmestad. Most of the Galgeberg Member is obscured by 

quaternary deposits at the locality due to the weathering prone black shale lithology.  
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The greenish ‘glauconite’ beds of the 

Bjørkåsholmen Formation end abruptly and is succeed-

ed by the shales of the Hagastrand Member. Both the 

base and the top of the member are dominated by grey 

shales with calcareous mudstone interbeds whereas 

dark grey shales with black interbeds constitute the 

middle part (Fig. 9). 

Rhytmically distributed, ~0.1 m thick beds, charac-

terise the lowermost 4 metres of the formation. These 

are impure dolomitized mudstones, often containing 

large, up to 0.05 m long pyrite concretions arranged in 

bands.  

About 1 m above the base, 5 mm large and often 

diamond shaped crystals and holes (from where the 

crystals have been weathered out) are common. They 

have been considered to represent pseudomorphs of 

gypsum, thus indicating evaporitic conditions (e.g. 

Erdtmann 1965). However, based on their shape and 

the high concentrations of barium in these beds, Antun 

(1967) and Bjørlykke (1974) suggested that they  are 

pseudomorphs of barite (BaSO4). None of the pre-

sumed barite remains though, as it has been replaced 

by calcium carbonates, granular quartz and pyrite 

(Antun 1967). Therefore, the conclusion that these 

crystals originally represented barite (and not any other 

sulphate mineral) is by no means unambiguous.   

Between ca 4 and 7 m above the base, the shales  

become more fissile than below, and black shales are 

interbedded in the grey shales. Silty interbeds are ab-

sent in this interval. Nonetheless, at 7 m pyrite aggre-

gates (1-2 cm in diameter) can be observed, as well as 

holes that may either represent casts where the pyrite 

has been weathered out or possibly moulds of dis-

solved authigenic minerals.  

An interval with grey shales with presumed pseudo-

morphs (Fig. 8D) and silty interbeds reappears at 8.45 

m from the base of the formation, capped by a promi-

nent 0.2 m thick mudstone bed. Above this bed, black 

and grey shale beds intercalations are observed and the 

lithology becomes progressively more black and fis-

sile. Above a level of mudstone lenses at 12.3 m the 

strata are poorly exposed and covered by Quaternary 

deposits. 

When comparing the observations of the present 

study with the log from Engervik by Owen et al. 

(1990), the base of the Galgeberg Member (including 

the informal, 1.3 m thick Slemmestad Member) at 

Bjerkåsholmen is inferred to be just above the level 

where the strata start to be obscured. In other words, 

the Galgeberg Member is not exposed in its entirety at 

Djuptrekkodden. The unexposed part of the member is 

estimated to be more than 12 m thick at the locality 

and 3.5 m of Galgeberg strata can be observed above 

the weathered out portion, just below the Huk For-

mation. Provided that the obscured strata are not fold-

ed or otherwise deformed, the thickness of the 

Galgeberg Member is up to 16 m thick.   

The shales of Galgeberg Member above the ob-

scured part are dark and fissile, but at 1.3 m below the 

base of the Huk Formation they culminate in a promi-

nent pyrite impregnated horizon that shifts in bright 

colours ranging from blue-green to yellow to orange 

(Fig. 7E; see discussion for possible correlation). 

Above this level, the shales become progressively 

greyer and more carbonate rich (cf. Slemmestad Mem-

ber as defined by Erdtmann, 1965).  

 
4.1.4 Huk Formation  

A sharp lithological change marks the transition from 

the Tøyen Shale Formation to the limestones of the 

Huk Formation, which is ca 8.5 m thick in the study 

area. The formation is part of the so called 

‘orthoceratite limestone’, which has a wide distribu-

tion in Baltoscandia. The lithology shows a tripartite 

development in the Oslo Region and was divided  into 

the Hukodden, Lysaker and Svartodden members by 

Owen et al. (1990). The basal and topmost members 

feature dark grey, compact limestones whereas the 

middle member is characterised by less weathering 

resistant limestone-marl alternations (Fig. 10). The 

formation’s hypostratotype is located in Huk, Oslo-

Asker.  

 

4.1.4.1 Hukodden Member  
The 1.7 m thick Hukodden Member comprises com-

pact, greenish grey wacke- to packstones. The contact 

to the underlying Tøyen Shale Formation is distinct, a 

feature that is enhanced by weathering of the less re-

sistant shales (Fig. 7F). 

The basal beds show a wide lithological variation 

and call for a more detailed description. The basal 10 

cm are made up of a thoroughly recrystallised mud-

stone with few remaining skeletal clasts. The lower-

most centimetre displays a slight fissility, reflecting a 

certain amount of terrigenous material in the basal 

lime mudstone. Above this interval the shale content 

decreases rapidly, but the rock becomes progressively 

darker, culminating in a dark band 5 cm from the base. 

This layer likely reflects a higher content of organic 

material. Dark structures that may represent burrows 

extend upwards and downwards from this band, and in 

places the burrows can also be traced laterally. These 

traces have a flattened appearance, suggesting post-

compressional lithification. Above this horizon the 

limestone shows the same recrystallisation as below, 

but is substantially paler.  

A boundary, which appears at 0.1–0.13 cm from 

the base of the formation, separates the recrystallised 

rock from a dense trilobite and brachiopod packstone. 

The dark grey mineralised zone is 5 mm thick and has 

a sharp, well defined top but a gradual base. Laterally, 

the contact is undulating but smooth, and shows no 

signs of boring. The packstone bed above this zone is 

only 4 cm thick and is capped by a prominent 

hardground, 0.17 m above the base (Fig. 11A–B). The 

irregular surface is impregnated by millimetre-sized 

pyrite cubes and narrow cylindrical borings extending 

up to 3 cm below the surface. According to Rasmussen 

(1991, p. 267) and Rasmussen et al. (2013), this sur-
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Fig. 10. Composite log of Huk Formation at Djuptrekkodden and the VEAS section with carbon isotope data from the li-

mestones, displaying a diagenetic overprint of the strata. The Huk Formation shows a clear lithological differentiation between 

the three members; the Hukodden and Svartodden members are dominated by compact wacke-packstones whereas the Lysaker 

Member is characterized by rhythmic limestone-marl interbeds.  
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face represents a hiatus spanning from the middle Bal-

toniodus navis to the basal Paroistodus originalis co-

nodont biozones).  Furthermore, it marks the boundary 

between the Megistaspis polyphemus and Megistaspis 

simon trilobite zones (Nielsen 1995; Fig. 10). This 

makes it coeval with ‘Blodläget’, a hardground com-

plex developed as a bed of three hematite impregnated 

surfaces on Öland, where it also marks the base of the 

Parastoidus originalis Biozone (Lindström 1979; see 

discussion).   

Above this hardground, the lithology is dominanted 

by bioturbated wackestone-packstone. Dark blue grey 

patches of packstone with grains oriented parallel to 

the bedding are separated by centimetre-thick greenish 

wackestone areas. These have a more chaotic fabric 

and likely represent burrows, with a bioturbation index 

of 4 (sensu Droser & Bottjer 1986). Bioclasts (mainly 

trilobites, but also brachiopods and echinoderms) are 

bored and fragmented (Fig. 12A–B).  

A well-defined pyrite impregnated lamina is pre-

sent at 0.24 m above the formational base, and less 

distinct ones occur at regular intervals up to 1.0 m 

above the base of the formation, where three conspicu-

ous anastomosing pyrite laminae are developed (Fig. 

11B–C). These coincide with the M. si-

mon/Megistaspis limbata zonal boundary (Nielsen 

1995). Bedding planes in the middle part of the mem-

ber are marked by thin, undulating clay seams. In the 

uppermost 0.2 m of the unit are these are instead de-

veloped as up to centimetre thick marls (Fig. 11D). 

The lithology alternates between wackestone and 

packstone, comprising a mixed facies as defined by 

Harris et al. (2004), indicating a depositional setting in 

the middle shelf. This is concordant with the ichnofab-

ric where the bioturbation index, as well as the ubiqui-

tous bored skeletal clasts, suggests a low sedimenta-

tion rate and a high degree of reworking. Conodont 

studies by Rasmussen (1991) shows considerably 

higher conodont element densities (up to 700 speci-

mens/0.7 kg) in the lower half than in the upper part of 

the member (approx. 50 specimens/0.7 kg), suggesting 

a higher degree of condensation in the lower part.   

Marl beds are introduced in the upper part of the 

unit, showing a gradual transition to the overlying 

Lysaker Member. Therefore, the transition between 

the lithologically distinct units is not interpreted to be 

associated with any significant hiatus, but indicates 

that the sedimentological conditions gradually 

changed. Nonetheless, it must be stressed that the faci-

es shift between the two units is substantial (Fig. 11D).  

The greenish tint indicates reducing conditions 

during early diagenesis (Jaanusson 1972). The grey 

colour also reflects high contents of organic carbon. 

When little oxygen is available, the organic material is 

not fully decomposed and is thus retained in the sedi-

ments. 

 

4.1.4.2 Lysaker Member 
The 4.4 m thick Lysaker Member comprises 

rhytmically stacked limestone beds intercalated with 

thin marl beds. The strata belong to the Megistaspis 

limbata and Asaphus expansus biozones (Nielsen 

1995). Wavy, parallel beds of mainly wackestone 

dominate generally but lenticular, subparallel beds 

make up the upper lower half of the member (Figs. 

10,12C–D). Individual beds range in thickness from 

0.01 to 0.2 m. The thickest bed is found at 2.0 m above 

the base of the formation, a packstone bed which is 

also characterised by having a coarser grain size than 

the rest of the formation. It coincides with the transi-

tion between M. limbata and A. expansus trilobite 

zones (Nielsen 1995), a level which has been suggest-

ed to represent a sea level fall in Baltoscandia at the 

Volkhov-Kunda transition (Lindskog et al. 2014; see 

discussion).  

As noted by Rasmussen (1991), carbonate beds 

dominate the lithology in the lowermost, middle and 

uppermost part of the unit, whereas the strata in be-

tween these levels are more nodular and dominated by 

shale. The beds are stacked in a cyclic pattern and 

thicknesses of individual carbonate beds range in be-

tween 1 and 20 cm, but the thicker ones are cut by 

dissolution seams. 

Trilobites and brachiopods represent important 

constituents of the fauna, but echinoderms and bryozo-

ans are more important in the Lysaker Member than in 

the underlying Hukodden Member. 

 

4.1.4.3 Svartodden Member  
The rhythmic beds of the Lysaker Member are con-

trasted by the compact dark grey limestones of the 

overlying Svartodden Member (Fig. 13A). Bio-

stratigrapically, the base of the Svartodden Member 

belongs to the Lenodus variabilis zone while the top 

yields conodonts of the Lenodus crassus zone 

(Rasmussen et al. 2013). The unit is homogenous at 

first glance, but shows a variation in faunal and litho-

logical composition upon closer inspection; the unit is 

relatively fine grained in the lowermost 0.5 m, being 

dominated by wackestones. Above this interval, pack-

stone makes up the lithology and endoceratiid conches 

are common, especially in the mid-upper part. 

The basal 0.2 m thick bed constitutes a wackestone 

with Thalassinoides burrows. Brögger (1882) noted 

characteristic, millimetre sized lenticular phosphorite 

grains and dubbed this the ‘Porambonites bed’ due to 

its high content of this brachiopod.  

Endoceratids appear for the first time at 0.6 m 

above the base of the member and are frequent up to 

2.15 m from the base (Figs. 10,13B. These conches 

frequently show signs of dissolution in their upper 

half, and these omission surfaces indicate that the wa-

ter was not saturated with respect to calcium car-

bonate. Siphuncles are often, but not always oriented 

way down (Fig. 13C).  

Whereas Hansen (2011) interpreted the Svartodden 

Member as shallow water deposits, well in the reach of 

storm waves but not quite above fair weather wave 

base, Nielsen (2004) considered these pure limestones 

to be the product of a drowning event that shut off 
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Fig. 11. Hukodden and Lysaker members. A: Twin hardgrounds near the base of the Hukodden Member. B: Overview of the 

massive limestones of the Hukodden Member. C: Conspicuous pyrite impregnated laminae in the middle of the Hukodden 

Member, marking the base of M. limbata Zone (Nielsen 1995). D: The Lysaker Member is characterized by lime-marl alterat-

ions, with the more nodular facies to the right being more prone to erosion. Stratigraphic up is to the right. The Volkhov-Kunda 

boundary bed is visible in the top right corner. 



21 

 

Fig. 12. Photomicrographs from the Huk and Elnes formations. A: Trilobite wackestone with pockets of packstone, Hukodden 

Member. Packstone shells are unbroken, in contrast to those of the wackestone B: Wacke- and packstone, Hukodden Member. 

Ubiquitous fine grained pyrite. C: A lime-band of the Lysaker member of trilobite and echinoderm wackestone. D: Close-up of 

(C). Note shell fragments also in marly, lower left part. E: Well sorted and bioturbated trilobite wacke-packstone, Svartodden 

Member. F: Trilobite and echinoderm packstone, Svartodden Member. G: Trilobite wackestone, Helskjer Member (Elnes Form-

ation). Note abundance of bored bioclasts. 
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Fig. 13. The recently re-excavated VEAS section at Djuptrekkodden peninsula, note hammer for scale. The tripartite develop-

ment of the Huk Formation is very well expressed. B: The compact packstones of the Svartodden Member feature abundant 

endoceratids with omission surfaces. C: The omission surface of this endoceratid is arranged obliquely to bedding, indicating 

post-depositional disturbance. D:Hardground with amphora-like borings near the top of the Svartodden Member. 
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clastic supply. The often well sorted sediments, the 

coarse grain size and the low degree of lime mud in 

the middle and upper parts (Fig. 12E) support the 

former opinion. Indicative of a depositional setting 

below fair weather wave base is the fact that most, 

but not all, nautoidal siphuncles are arranged close 

to bottom position. This suggests that the conches 

were undisturbed by wave action at least until they 

had time to become securely fastened by surround-

ing sediment (Reyment 1968). 

A facies shift is seen 0.3 m below the top of the 

formation. This part does contain a few endoceratids 

but is characterised by frequent stylolites. These 

occur at regular, approximately 3 cm, intervals and 

show amplitudes of 1–3 cm. In this interval, more 

precisely at 2.35 m above the base of the member, a 

possible hardground is developed (Fig. 13D). It is 

not heavily mineralised, but feature frequent am-

phora-like borings with narrow necks (cf. Trypani-

tes), extending typically 4 cm below the surface.  

 

4.1.5 Helskjer Member (Elnes Formation)  

The basal metre of the Helskjer Member was ex-

posed at the VEAS road cut, but only very poorly so 

after the re-excavation during the summer 2014. 

The lithology makes the unit susceptible to erosion: 

wavy bands and nodules of limestone interbedded 

with marls. The bioclast content is dominated by 

bored trilobite shells, but echinoderms and brachio-

pods also contribute. The basal part of the formation  

is composed of wackestones, but bioturbation is 

visible as channels filled with packstone (Fig. 12F–

G). Higher up, they grade into a more fine grained 

facies, characterised by mud to wackestones with 

only small and highly fragmented bioclasts.  

The strata display a general fining upward trend, 

with a mixed wacke-packstone facies at the base of 

the unit and a mud supported facies seen in the up-

per part. The Helskjer Member is also overlain by 

the black shales of the Sjøstrand Member (Owen et 

al. 1990, Hansen 2009). Overall, this facies associa-

tion indicates a transgressive development during  

the time of deposition.  

 

4.2 Brunflo #2 core  
The Brunflo #2 core was recovered by the Swedish 

Geological Survey in 1970 and preserves strata 

ranging from the Furongian Alum Shale to the 

Darriwilian Segerstad Limestone (Fig. 14). 

 

4.2.1 Ceratopyge Limestone  

The Ordovician strata of the Brunflo core start with 

the Ceratopyge Limestone, a thin glauconite-

enriched unit which is separated from the underly-

ing Cambrian limestones by a sharp discontinuity 

surface at -41.20 cm. The topmost Cambrian lime-

stone in the core yields abundant olenid trilobite 

fragments that can be assigned to the Jiangshanian 

Stage (Wu et al. in press). Conodont studies per-

formed in the Brunflo area by Sturkell (1991) indi-

cated that Ceratopyge Limestone belong to the up-

per Paltodus deltifer zone, corresponding to the Tr2 

stage slice (Pärnaste et al. 2013). In other words, a 

substantial hiatus is inferred between the Cambrian 

and Ordovician strata. 

The Ceratopyge Limestone is only 0.05 m thick 

and was first recognised as a separate formation in 

the area by Sturkell (1991). The formation compris-

es two thin glauconitic beds (Fig. 15A), represent-

ing wackestone to packstone dominated by vermicu-

lar and fractured glauconite grains. The lowermost 

bed is also rich in trilobite and brachiopod skeletal 

clasts as well as a few pyrite grains. In contrast, the 

upper bed is completely devoid of bioclasts and the 

glaucony takes on a significantly darker green col-

our. The beds are separated by a distinct but irregu-

lar surface. A darker green colour indicates higher 

maturity of the glauconite in the upper bed (Odin & 

Matter 1981); this conclusion is supported by the 

performed SEM-studies (Table 2). Potassium con-

tent is high in the glaucony of both beds; the lower 

bed has an average content of 9.03% K, while the 

upper bed has a slightly higher average content; 

9.40%.  

The glauconitic minerals in the Caratopyge 

Limestone are fractured. This feature indicate 

(although not unequivocally) an autochtonous origin 

of the grains, as these otherwise would break along 

these weakness zones (Amorosi 1997). Nonetheless, 

a certain degree of reworking is inferred by the find-

ings of  abraded conodont elements (Sturkell 1991).  

 

4.2.2 Latorp Limestone  

The 2.5 m thick Latorp Formation encompasses 

dark grey limestones with subordinate grey shales. 

Biostratigrapically, the formation spans the 

Paroistodus proteus zone and ranges up into the 

basal Prioniodus elegans zone (Sturkell 1991).  

The carbonate facies comprises extensively re-

crystallised fine grained nodules, surrounded by an 

often better preserved wackestone matrix (Fig. 

15B). The basal decimetre contains glauconite 

grains which make up below 5% of the rock, but 

glauconite is otherwise absent in the formation. Up 

to six hardgrounds occur at regular intervals be-

tween -40.36 and -39.91.  These are corrosional in 

character and have amplitudes of up to 4 cm (Fig. 

15C).  

 

4.2.3 Tøyen Shale Formation 

The Tøyen Shale Formation is 6.3 m thick in the 

Brunflo #2 core and consists of dark grey shales 

with interbeds of trilobite wackestones (Fig. 15D). 

The base of the Tøyen Shale Formation is diachro-

nous in the Jämtland area, beginning in the Tetra-

graptus phyllograptoides Zone in the Flåsjön area 

whereas the section in Kloxåsen starts in the Phyllo-

graptus densus Zone (Jaanusson et al. 1982). 
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Fig. 14. Log of the Brunflo #2 core with carbon isotope curve, partly based on Wu et al. (in press).  
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The limestone beds of the formation are commonly 

less than 0.05m thick, but at -35.5m a 0.25 m thick bed 

can be observed. Above -34 m, the content of bioclasts 

increases both in the shale and in the limestone facies. 

This makes the shales turn a lighter shade of grey. 

Gradually, the shale content also decreases up to the 

base of the overlying Lanna Limestone. 

 

4.2.4 Lanna Limestone  

The 7.2 m thick Lanna Limestone comprises compact 

trilobite wackestones. It contains a diverse shelly fauna 

and may biostratigraphically be divided into the three 

biozones of Megistaspis lata (equivalent to Megistaspis 

polyphemus), Megistaspis simon and Megistaspis lim-

bata, in ascending order (Karis 1998; Jaanusson et al. 

1982).  

The Lanna Limestone takes on a red colour but 

ubiquitous greenish Thalassinoides burrows contrasts 

strongly against the host rock. The formation is partly 

nodular owing to the presence of clay seams and marl 

beds.  

Hardgrounds occur at two levels in the formation. 

The first level is a 7 cm thick interval with repeated 

hardgrounds (Fig. 15E) which can be found at ~30.6 m. 

This interval may possibly be an expression of the wide

-spread hardground complex ’Blommiga 

bladet’ (Lindström 1979). Another hardground is pre-

sent at -28.58 cm. It is manifested as a sharp facies shift 

from limestone to shale, with up to 5 cm deep burrows 

or borings protruding down from the upper surface 

(Fig. 15F). This hardground may correlate with 

‘Blodläget’ (Lindström 1979). 

 

4.2.5 Holen Limestone  

The Holen Limestone can be divided into two informal 

members on the basis of its expression in the Brunflo # 

2 core; the lower one of these is characterised by rhyth-

mic lime-marl alternations whereas the upper one is a 

compact, thick bedded limestone. Löfgren (1978) de-

fined the lower one as the Flåsjö Limestone and the 

upper one as Järvsand Limestone. The lower part of the 

formation preserves a rich fauna belonging to the Asa-

phus expansus Biozone (Jaanusson et al. 1982). 

The base of the Holen Limestone is marked by a 

limestone clast conglomerate over a weakly defined 

erosional surface in many parts of Jämtland (Karis 

1998). Such an interval is not evident in the Brunflo 

core, but at ~-23.7 m, a 0.05 m thick glauconitic grain-

stone bed with a sharp, scoured base can be observed 

(Fig. 15G); a level which likely correlates with the con-

glomerate, and which would thus mark the base of the 

Holen Limestone. The glaucony in this bed is repre-

sented by light green, elongate grains. The base of the 

Holen limestone is also marked by the transition from 

M. limbata to A. expansus biozones, i. e. the Volkhov-

Kunda transition in the Baltoscandian regional stages. 

This interval marks a pronounced sea level fall  

throughout Baltoscandia (Lindskog et al. 2014). This is 

concordant with the scoured base of the glauconitic bed 

discussed above, which indicates a significant sea level 

change. 

The lower informal member, the rhythmites of the 

Flåsjö Limestone, can be subdivided into a lower part 

with medium thick limestone beds and an upper part 

with lenticular limestone nodules.  The lower part com-

prises medium bedded, dark grey, wavy continuous 

bands of brachiopod and trilobite wackestone (Fig. 

15H), interbedded with marly shales. This facies is 

overlain by discontinuous nodular limestones at -16.5 

m, which show thicker marl interbeds. The marl beds 

gain a progressively darker colour higher up, peaking at 

-11.80 m. After this they become more shell rich and 

less dark. 

The upper informal member, the Järvsand Lime-

stone, is instead characterised by compact and thick 

dark grey limestone beds. Shale content is low. Just as 

in the Flåsjö limestone, the fauna is dominated by trilo-

bites and brachiopods, but an interval at -7.80 to -6.40 

m yield abundant endoceratid conches. 

 

4.2.6 Segerstad Limestone  

The Segerstad Limestone is not defined on lithological 

grounds; it is a topostratigraphical unit in which the 

base is defined by the appearance of the trilobite Asa-

phus platyurus (Jaanusson 1960). As such, it is hard to 

pinpoint the base of the Segerstad Limestone since no 

trilobite biostratigraphical work has been performed on 

the Brunflo core. Nonetheless, Larsson (1973) men-

tions several hardgrounds just above the base of the 

Segerstad Limestone. Three haematite impregnated 

hardgrounds of corrosional type occur at -4.90 m in the 

Brunflo core (Fig. 15I), and these may well correlate to 

Grain 

no. Mg Al Si K O Total 

1 3.27 10.19 30.33 9.09 47.63 100.52 

2 3.23 9.79 28.64 8.91 45.28 95.85 

3 3.56 9.32 29.55 9.13 46.17 97.74 

4 3.07 11.28 29.37 8.98 47.35 100.04 

Mean 3.28 10.15 29.47 9.03 46.61 98.54 

Grain 

no. Mg Al Si K O Total 

1 3.34 9.74 29.98 9.5 46.97 99.54 

2 3.4 9.37 30.16 9.27 46.82 99.01 

3 3.24 9.94 29.87 9.27 46.9 99.21 

4 3.36 9.88 30.29 9.54 47.46 100.52 

Mean 3.34 9.73 30.08 9.40 47.04 99.57 

Table 2A. Elemental composition of glauconite in the basal 

bed of the Ceratopyge Limestone.  

Table 2B. Elemental composition of glauconite in the upper 

bed of the Ceratopyge Limestone.  
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Fig. 15. Polished and scanned slabs from Brunflo #2 core, from Wu et al. (in press). Field of view is 3 cm wide. (A) The two 

beds of the glauconitic Ceratopyge Limestone. The glaucony of the upper bed is darker and have higher potassium content. Two 

pseudosparitic nodules in the upper part represent the lowermost Latorp Formation. (B) Recrystallized limestone clasts set in a 

dark grey wackestone matrix. (C) The middle part of the Latorp Limestone is characterized by corrosional hardgrounds, note the 

marked and irregular morphology of these two. (D) Typical lithology of the limestone beds of the Tøyen Formation. Possible 

escape trace can be seen in the upper left corner. (E) Hardground complex tentatively correlated with ‘Blommiga bladet’ (sensu 

Lindström 1979) in the lower part if the image. (F) Well defined hardground possibly corresponding to ‘Blodläget’ (Lindström 

1979). (G) Glauconitic bed with sharp scoured base, interpreted as the Volkhov-Kunda boundary. (H) The lowermost part of the 

Holen Formation comprised thick bedded wackestone interbedded with marls. (I) Three haematite impregnated hardgrounds 

approximate the base of the topostratigraphical Segerstad Limestone in the core.  
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those described by Larsson (1973). They can thus 

serve to approximate the base of this unit. Lithologi-

cally, the Segerstad Limestone is, just as the upper part 

of the Holen Limestone, dominated by thick bedded 

trilobite wackestones. The rock is generally red, except 

where bioturbation has altered the rock green or grey. 

Minute pyrite crystals can be found dispersed through-

out the unit. 

 

5 δ13C-record  
While the global record of the Upper Ordovician fea-

ture several well-studied high amplitude carbon iso-

tope excursions, the Lower and Middle Ordovician is 

characterised by having smaller isotope shifts and a 

more subdued generalised curve (Bergström et al. 

2009). The most prominent excursion in the Lower 

and Middle Ordovician is the mid-Darriwilian carbon 

isotope excursion (MIDICE; e.g. Meidla et al. 2004; 

Ainsaar et al. 2010; Schmitz et al. 2010), but lately, 

several smaller scale excursions have been described 

from Baltoscandia (Lehnert et al. 2014). Four of these 

are of interest of the present study, namely LTNICE 

(Late Tremadocian Negative Isotopic Carbon Excur-

sion), BFICE (Basal Floian Isotopic Carbon Excur-

sion, which marks the onset of the Floian-Darriwilian 

rise), BDNICE (Basal Dapingian Negative Isotopic 

Carbon Excursion) as well as the LDNICE (Lower 

Darriwilian Negative Isotopic Carbon Excursion). In 

Lehnert et al. (2014) , the LDNICE is present in the 

lower Darriwilian (lower Kunda) and precedes the 

MDICE, which shows peak values in upper Dw2 and 

basal Dw3 (Ainsaar et al. 2010). 

 

5.1 Slemmestad 
The δ13Ccarb data from Slemmestad (Fig. 10, Tables 3–

4) show strongly fluctuating and surprisingly low 

δ13Ccarb-values, and should thus be treated with cau-

tion. No clear trend can be seen in the dataset. When 

compared to the global δ13Ccarb curve by Bergström et 

al. (2009; which for this interval is based on data from 

Baltica by Kaljo et al. (2007)) the results presented 

here are about 2 ‰ lower, i.e. significantly shifted to 

the negative side. Similarly low and fluctuating results 

have been presented fot the Svartodden Member from 

another locality in the Oslo area (Guttormsen 2012). 

The poor data likely reflects diagenetic disturbances of 

carbon isotopes in the region. The Bjørkåsholmen For-

mation shows the most fluctuating values, which rang-

es between -0.8 and -12.3 ‰. Samples from recrystal-

lised horizons and domains show the lowest values, so 

the fluctuations can at least be partly attributed to re-

crystallisation processes during early diagenesis. 

Exposure with associated weathering and percola-

tion of organic-rich humic fluids may shift isotopic 

signatures to more negative values (Saltzman & 

Thomas 2012). This is likely the case in the two upper-

most samples in the Helskjer Member that show val-

ues around -6 ‰ and which were recovered from 

weathered rock just below the soil horizon. The other 

samples from Slemmestad were extracted from pris-

tine rock that likely has not been altered by humic flu-

ids. Alteration of the isotopic signature may in this 

case be derived from tectonic overburden during the 

subsequent Caledonian Orogeny. Conodont colour 

alteration palaeotermometry shows that temperatures 

reached 300 °C during the orogeny (Bergström 1980).  

The δ13Corg-curve from the Tøyen Shale Formation 

is more stable and is thus inferred to be more reliable. 

The data shows a generally decreasing trend through-

out the Hagastrand Member, with some deviations 

(Fig. 9, Table 5). The first appearance of Tetragraptus 

phyllograptoides marks the base of the Floian, and this 

interval is slightly below the base of the Galgeberg 

member (sensu Owen et al. 1990). This coincides with 

a 3.5 ‰ positive excursion, after which a shift to in-

creasing values is seen. An excursion peak followed 

by a rising trend fits with BFICE and the onset of the 

Floian-Darriwilian rise of Lehnert et al. (2014).  Cau-

tion should be exercised however, as this would-be-

excursion is represented by a single sample. A higher 

resolution would be preferable to confirm this excur-

sion. Furthermore, δ13Ccarb-values do not always corre-

spond to similar trends in δ13Corg as they are controlled 

by different factors (cf. Young et al. 2008).  

The upper exposure shows a slightly increasing 

trend but no clear excursions. The uppermost sample 

show very high values but this sample was very rich in 

carbonate, and it is plausible that carbonate leaching 

was not sufficient during treatment in the lab of this 

particular marl sample.  

 

Sample 

Height 

(m) 

d13Ccarb  

(V-PDB) Lithology 

B1 0.01 -10.37 Recrystallized 

B1b 0.02 -0.80 Wackestone nodule 

B1c 0.05 -10.15 Recrystallized 

B1d 0.06 -0.77 Wackestone nodule 

B1e 0.15 -1.75 Black nodule 

B2 0.25 -7.31 Recrystallized 

B2b 0.30 -7.32 Recrystallized 

B3 0.34 -1.42 Wackestone 

B3b 0.38 -12.13 Recrystallized 

B4 0.41 -12.28 Recrystallized 

B5 0.46 -0.68 Wackestone 

B6 0.52 -11.82 Recrystallized 

B7 0.58 -0.45 Wackestone 

B8 0.90 -0.89 Mudstone 

B9 1.00 -8.09 Glauconite bed' 

B10 1.15 -5.01 Glauconite bed' 

Table 3. δ13Ccarb data from the Bjørkåsholmen Formation. 
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Table 4. δ13Ccarb data from the Huk Formation  Table 5A. δ13Corg data from the lower 

exposure, Tøyen Shale Formation  

Member Sample 

Height 

above 

base of 

member 

δ13Ccarb 

(V-PDB) 

Hukodden B44 0.02 -2.32 

Hukodden B45 0.10 -5.70 

Hukodden B46 0.18 -0.91 

Hukodden B47 0.27 -0.93 

Hukodden B48 0.34 -0.93 

Hukodden B49 0.40 -1.21 

Hukodden B50 0.51 -1.22 

Hukodden B51 0.66 -2.02 

Hukodden B52 0.75 -1.53 

Hukodden B53 0.85 -1.89 

Hukodden B54 0.95 -1.20 

Hukodden B55 1.09 -1.73 

Hukodden B56 1.23 -1.50 

Hukodden B57 1.34 -0.86 

Hukodden B58 1.47 -4.29 

Hukodden B59 1.58 -1.17 

Hukodden B60 1.67 -1.24 

Lysaker B61 0.05 -1.78 

Lysaker B62 0.12 -2.05 

Lysaker B63 0.26 -1.85 

Lysaker B64 0.36 -2.41 

Lysaker B65 0.52 -1.93 

Lysaker B66 0.63 -1.36 

Lysaker B67 0.78 -1.49 

Lysaker B68 0.90 -1.53 

Lysaker B69 1.00 -2.72 

Lysaker B70 1.07 -1.65 

Lysaker B71 1.15 -2.14 

Lysaker B72 1.25 -1.91 

Lysaker B73 1.37 -2.10 

Lysaker B74 1.51 -1.94 

Lysaker B75 1.68 -1.60 

Lysaker B76 1.83 -1.84 

Lysaker B77 1.94 -1.31 

Lysaker B78 2.03 -5.35 

Lysaker B79 2.16 -3.07 

Lysaker B80 2.23 -1.79 

Lysaker B81 2.41 -1.38 

Lysaker B82 2.59 -1.86 

Lysaker B83 2.68 -2.35 

Lysaker B84 2.79 -1.49 

Lysaker B85 2.95 -2.11 

Lysaker B86 3.04 -2.99 

Lysaker B87 3.16 -1.99 

Cont.    

Lysaker B88 3.25 -1.96 

Lysaker B89 3.37 -1.45 

Lysaker B90 3.45 -1.74 

Lysaker B91 3.56 -1.61 

Lysaker B92 3.70 -1.32 

Lysaker B93 3.84 -1.18 

Lysaker B94 3.98 -1.89 

Lysaker B95 4.03 -1.26 

Lysaker B96 4.14 -0.90 

Lysaker B97 4.23 -2.10 

Lysaker B98 4.28 -2.49 

Lysaker B99 4.35 -1.37 

Lysaker B100 4.41 -3.67 

Svartodden B100b 0.02 -1.19 

Svartodden B101 0.11 -1.86 

Svartodden B102 0.24 -1.08 

Svartodden B103 0.36 -0.72 

Svartodden B104 0.54 -3.56 

Svartodden B105 0.60 -2.69 

Svartodden B106 0.72 -4.23 

Svartodden B107 0.79 -0.85 

Svartodden B108 0.89 -4.11 

Svartodden B109 1.05 -0.52 

Svartodden B110 1.19 -0.85 

Svartodden B111 1.24 -1.12 

Svartodden B112 1.28 -3.03 

Svartodden B113 1.39 -4.80 

Svartodden B114 1.48 -1.82 

Svartodden B115 1.61 -0.89 

Svartodden B116 1.68 -0.71 

Svartodden B117 1.81 -1.97 

Svartodden B118 1.89 -1.78 

Svartodden B119 1.97 -1.16 

Svartodden B120 2.09 -1.41 

Svartodden B121 2.19 -1.41 

Svartodden B123 2.37 -1.64 

Svartodden B122 2.40 -2.26 

Helskjer B124 0.05 -2.97 

Helskjer B125 0.12 -2.41 

Helskjer B126 0.21 -2.03 

Helskjer B127 0.25 -2.01 

Helskjer B128 0.45 -2.88 

Helskjer B129 0.59 -1.97 

Helskjer B130 0.68 -1.70 

Helskjer B131 0.80 -6.33 

Helskjer B132 0.96 -5.74 

Member Sample 

Height 

above 

base of 

member 

δ13Corg 

(V-PDB) 

Hagastrand B11 0.13 -26.83 

Hagastrand B12 0.63 -26.84 

Hagastrand B13 1.14 -27.59 

Hagastrand B14 1.74 -27.69 

Hagastrand B15 2.17 -27.08 

Hagastrand B16 2.67 -27.13 

Hagastrand B17 3.30 -27.97 

Hagastrand B17(II) 3.30 -28.09 

Hagastrand B18 3.70 -27.45 

Hagastrand B19 4.20 -26.92 

Hagastrand B20 4.78 -28.29 

Hagastrand B20(II) 4.78 -28.30 

Hagastrand B21 5.21 -26.90 

Hagastrand B22 5.67 -26.77 

Hagastrand B23 6.13 -29.91 

Hagastrand B24 6.69 -27.83 

Hagastrand B25 7.22 -26.96 

Hagastrand B26 7.65 -28.95 

Hagastrand B27 8.32 -29.20 

Hagastrand B28 8.99 -29.14 

Hagastrand B29 9.65 -29.35 

Hagastrand B30 10.06 -28.00 

Hagastrand B31 10.56 -29.39 

Hagastrand B32 11.16 -25.75 

Hagastrand B33 11.50 -29.63 

Hagastrand B34 12.12 -29.05 

Hagastrand B35 12.84 -27.76 

Member Sample 

Height 

below 

base of 

Huk Fm. 

δ13Corg 

(V-PDB) 

Galgeberg B36 -3.44 -30.13 

Galgeberg B37 -2.87 -29.05 

Galgeberg B38 -2.48 -29.81 

Galgeberg B39 -1.9 -28.98 

Galgeberg B40 -1.35 -29.01 

Slemmestad B41 -0.86 -28.22 

Slemmestad B42 -0.34 -28.97 

Slemmestad B43 -0.02 -25.44 

Table 5B. δ13Corg data from the upper 

exposure, Tøyen Shale Formation  
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5.2 Brunflo 
As opposed to the carbon isotope studies from Slem-

mestad, the Brunflo data shows reliable values 

throughout the studied interval. The Brunflo core #2 

shows a general increasing trend in δ13Ccarb, starting 

with the values of approximately -0.5 ‰ of the Latorp 

Formation, and ending at over +1.3 ‰ in the Segerstad 

Limestone, with a number of smaller fluctuations and 

subtrends in between (Fig. 14). The Latorp Formation 

records a dip which likely corresponds to the LTNICE 

of Lehnert et al. (2014). The curve rises and shifts to 

positive values at the transition to the overlying Tøyen 

Shale Formation, continues to rise and culminates in a 

peak near the top of the formation, reflecting the lower 

part of the Floian-Darriwilian rise (Lehnert et al. 

2014). Values drop to below zero at the transition be-

tween the Tøyen and Lanna formations, possibly rep-

resenting the Basal Dapingian excursion of Lehnert et 

al. (2014), an interesting interval as it is just below the 

regionally important hardground complex ‘Blommiga 

bladet’. The isotope data from the Lanna Limestone 

show a bulge, starting at low values, with higher val-

ues in the middle that drop again near in the transition 

to the Holen Formation. This interval marks the transi-

tion between the Volkhov and Kunda regional stages. 

Meidla et al. (2004) also documented a negative excur-

sion at this interval in the Gullhögen quarry in Väs-

tergötland, just a metre below the conspicuous 

‘Täljsten’ interval. 

Values in the lower member of the Holen For-

mation vary between 0 and 0.5 ‰, showing a series of 

fast shifts beween -19 and -17 m that may have corre-

lational importance, as the ‘Täljsten’ interval in Meid-

la et al. (2004) is also marked by a series of fast shifts. 

A fast shift exceeding 0.6 ‰ can also be seen in the 

data from Tingskullen of Wu et al. (submitted) at the 

transition from Lenodus variabilis and the  Yang-

tzeplacognathus crassus zones, which is time equiva-

lent to the ‘Täljsten’ (Mellgren & Eriksson 2009). 

A distinct negative excursion with a magnitude of 

0.5 ‰ is present at the transition to the upper member 

of the Holen Limestone where it marks the onset of the 

MDICE. The excursion has previously been interpret-

ed as the LDNICE (Wu et al. in press) but the level is 

likely too high up in the stratigraphy as the LDNICE 

was originally defined by Lehnert et al. (2014) to be in 

the basal Kunda and the ‘Täljsten’ interval. The 

LDNICE as originally defined by Lehnert et al. (2014) 

is likely best represented by the ’Täljsten’ shift me-

tioned above.  

The upper member of the Holen and the Segerstad 

limestones show a strong and steady increase in δ13C-

carb-values, going from 0 to 1.3 ‰. The stratigraphic 

position as well as the magnitude of the excursion cor-

responds to the rinsing limb of MDICE (Meidla et al. 

2004; Ainsaar et al. 2010). This excursion is character-

ised by three subpeaks, and the first of these is repre-

sented in the uppermost part of the Holen Formation. 

The second and highest peak of MDICE is not pre-

served in the core interval. 

6 Comments to lithology  
 

6.1 Pseudomorphs, recrystallisation 
and possible implications 

Major recrystallisation characterises the 

Bjørkåsholmen Formation and the Latorp Limestone 

in the Brunflo core section and presumed pseudo-

morphs of evaporitic minerals are also found in the 

Bjørkåsholmen Formation and the Hagastrand Mem-

ber in Oslo. The most conspicuous of the presumed 

evaporite pseudomorphs are those found in ‘the main 

limestone bed’ of the Bjørkåsholmen Formation in 

Oslo. Here, the spatial relationship between the pre-

sumed evaporite pseudomorphs and limestone nodules 

indicates that the evaporite crystals grew within the 

sediments, thereby displacing the nodules (esp. in Fig. 

8B). Demicco & Hardie (1994) writes that sediment 

displacive growth of evaporites unequivocally means 

that evaporitic conditions has occurred, but it is uncer-

tain whether these were met closely after deposition or 

later during diagenesis by saturated deep brines. Ac-

cording to Kendall & Harwood (1996) supersaturated 

brines are only likely to be formed at the brine-air in-

terface. This would mean that the crystals formed pen-

econtemporaneously to deposition and that deposition-

al depth cannot be more than a few metres deep. This 

is because deep bodies of brine almost always are 

stratified, and concentrated surface brines do not de-

scend to the basin floor. Furthermore, in modern envi-

ronments, sulphates form in marginal marine settings 

and become more dominated by halite shorewards 

(Kendall & Harwood 1996). We do not see signs of 

halite – no cubic crystals – indicating that the 

Bjørkåsholmen Formation was likely deposited in a 

shallow environment. 

The crystal mushes indicate that gypsum was abun-

dant. This type of displacive crystal growth normally 

forms in association with algal mats or fine grained 

sediment (Kendall & Harwood 1996). The latter is 

more likely as neither filaments, fenestrae nor other 

indications (Tucker 2001) of algal mats are found. 

These crystals are set in a matrix which shows a transi-

tion of pseudospar to microspar and micrite. This phe-

nomenon is briefly discussed in Scholle & Ulmer-

Scholle (2003). They write that the mecahanism be-

hind is not fully understood, but that such recrystallisa-

tion is often associated with early meteoric exposure 

and tectonic stresses or large scale, syndepositional, 

glacioeustatic sea level fluctuations. 

While Egenhoff et al. (2010) mentioned heavy re-

crystallisation of the Norwegian successions, they did 

not discuss why this is the case. According to them, 

crystal sizes reflect original grain size, i.e. the fine 

grained recrystallised rock derive from mud- or wack-

estones whereas the coarse grained ones reflect pack-

stones. By this way of reasoning, they recognise four-

teen deepening upwards cycles in the strata, based on 

the perceived fining upwards trend in the carbonates. 

In my opinion however, recrystallisation of the for-
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mation is so severe that such conclusions cannot be 

drawn. This is evident from both texture and low δ18O-

values (cf. Wu & Wu 1996). Crystal sizes of recrystal-

lised material depend not only on primary clast size but 

also on mineralogy; abundant unstable primary arago-

nite allows for a high degree of secondary precipitates 

(cf. Lasemi & Sandberg 1984; Munnecke 1997). 

The Latorp Limestone also shows recrystallisation 

structures similar to the ones seen in the 

Bjørkåsholmen Formation, and may indicate that evap-

oritic and restricted conditions were more widespread 

in the Early Ordovician of Baltoscandia than previous-

ly thought. If so, why is this only at this level and not 

higher up? After all, climate must have been warmer as 

the continent was approaching the equator (Cocks & 

Torsvik 2005). According to Nielsen & Schovsbo 

(2013) the basin was silled, and a sea level drop could 

potentially produce lagoonal evaporitic conditions. 

Furthermore, the Early Ordovician represents a very 

warm period and is characterised by greenhouse condi-

tions. However, sea surface temperature gradually 

cooled and reached modern equatorial sea surface tem-

peratures during the Middle Ordovician, reflected by a 

drop of ~10°C from the middle Tremadocian to the 

Darriwilian (Trotter et al. 2008). Global climate change 

with major cooling of the Earth’s oceans may thus be 

the driving factor behind the absence of evaporitic faci-

es higher up in the Baltoscandian Ordovician succes-

sions. 

 

6.2 Glaucony  
Glauconite is, in the strict sense, a green, potassium 

and iron rich ferric micaceous mineral. It forms in ma-

rine sediments at intervals of slow deposition and often 

occurs in a granular habit (e.g. Hugget 2005). As Odin 

& Matter (1981) noted however, the term ‘glauconite’ 

is commonly both used for green grains in general as 

well as the facies in which it occurs. To avoid confu-

sion, they proposed that the term ‘glauconitic minerals’ 

be used for the clay minerals that characterise the glau-

cony facies, i.e. a clay mineral family with a pro-

nounced variation in potassium content, the end-

members of which being a K-poor glauconitic smectite 

and a K-rich glauconitic mica. They also proposed the 

term ‘glaucony’ be used for the blue-green marine faci-

es characterised by these green glauconitic minerals 

(see also Odin 1988).  

Small pores of various substrates, ranging from 

skeletal debris to lithic grains to faecal pellets, provide 

favourable microenvironments for glauconitisation. 

These semi-confined conditions provide a chemistry 

that differs from both that of the sea water and the sedi-

ment pore-water as ion interchange with the surround-

ings does occur, but at a restricted rate (Odin & Matter 

1981; Odin & Fullagar 1988). As iron is not mobile 

during oxidising conditions, and as iron tends to form 

pyrite in truly reducing milieus, glaucony is inferred to 

form in sub-oxic, slightly reducing environments dur-

ing shallow burial (Kelly & Webb 1999). Sea water 

contains only traces of Al, Si and Fe and the chemical 

constituents of the glauconitic minerals may be sup-

plied from the substrate grain as it dissolves (Clauer et 

al. 1992). 

According to Odin & Matter (1981), the first miner-

al to form is a K-poor glauconitic smectite and as time 

progresses more and more smectite is formed. At the 

same time, the crystals that have already formed under-

go a maturation process in which they gradually incor-

porate more K and become less expandable. In this 

maturation process the glauconitic smectite recrystal-

lises into glauconitic mica and the original substrate 

grain tends to dissolve completely. K2O-content of 

glaucony in the nascent stage is between 2–4 wt % but 

rises and exceeds 8 wt % in the highly evolved stage 

(Odin & Fullagar 1988). 

The mineralogy of glauconitic minerals is prefera-

bly studied using X-ray diffraction (XRD), as this kind 

of study allows for distinction between mica and smec-

tite (Odin & Matter 1981). On the other hand, most of 

the physical properties, including e.g. XRD-patterns, 

density and paramagnetism of glaucony, can be corre-

lated with the potassium-content (Odin & Fullagar 

1988). An XRD-device has not been available to the 

present study, but energy-dispersive X-ray spectrosco-

py (EDX) was employed instead. While this method 

cannot differentiate between clay mineral lattices, it 

allows measurement of potassium content.  

The potassium content of the glauconitic minerals 

of Bjørkåsholmen formation is on average 7.43% and 

can thus be considered to be of evolved type, a product 

of a maturisation process which may take over 105 

years (Odin & Fullagar 1988). On the other hand, these 

minerals have likely been diagenetically altered 

(Bjørlykke 1974) and the results should thus be treated 

with caution. The data from the Ceratopyge Limestone 

are more reliable and show that the upper bed is more 

evolved than the lower bed, indicating a longer time of 

slow-deposition when this bed formed. Both beds can 

be considered as highly evolved, indicating a period of 

slow-deposition approaching 106 years for each of 

these beds (Odin & Fullagar 1988). 

 

6.3 Limestone-marl alternations  
The Lysaker Formation is best described as a limestone

-marl alternation sensu Munnecke & Samtleben 

(1996). Here, the term ‘marl’ is not used in a strict 

sense, i.e. as a specific lime/clay ratio, but as a designa-

tion for the part of the rock that weathers out more eas-

ily. Limestone-marl alternations are thought to form in 

the shallow, early diagenetic realm due to dissolution 

of aragonite and subsequent precipitation as calcite. At 

a certain depth (‘Aragonite Solution Zone’ or ASZ), 

the pore water chemistry renders aragonite unstable 

and it is dissolved. This zone where dissolution occurs 

will come to form the marly horizons. The calcium 

carbonate migrates upwards where it reprecipitates as 

calcite, leading to what will become limestone layers 

(Munnecke & Samtleben 1996). On the other hand, 

aragonite dissolution may also occur at the sediment-

water interface (Palmer & Wilson 2004). In this case, 
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aragonite is dissolved but does not reprecipitate as 

cement; instead the ions go into solution in the sea 

water. Nonetheless, in the model of Munnecke & 

Samtleben (1996), the lime-marl alternations are not 

formed due to inhomogenities in the precursor sedi-

ment but because to the presence of unstable aragonite. 

These alternations can thus not be used to infer climat-

ic changes due to for instance Milankovitch fluctua-

tions (Westphal 2006).  

Preliminary palynological studies of various 

rhythmites of the Oslo Region, including the Lysaker 

Member, have been presented by Amberg et al. 

(2013). These show that the palynomorph assemblages 

of limestones and mudstones do not differ significant-

ly. Furthermore, findings by Egger et al. (2013), who 

studied the Skogerholmen Formation of the Upper 

Ordovician in the Oslo Region, show that ratios of 

diagenetically insoluble elements (in this case Ti and 

Al) are essentially the same in both lithologies. This 

would not have been the case if the rhytmites were a 

primary feature and with significant differences in clay 

mineralogy composition at the time of deposition of 

lime and marl layers. Together, these two studies lend 

strong support to the hypothesis that the limestone-

marl alternations derive from diagenetical processes 

and that these sediments were originally more or less 

homogenous. 

The ratio of the marl and limestone thicknesses of 

marls and limestones depends on which calcium car-

bonate polymorph dominated the precursor sediment; 

a high content of aragonite would give rise to thicker 

limestone beds (Munnecke et al. 2001). The Lysaker 

Member does not only show rhythmic beds, it also 

shows cyclicity at a larger scale, with limestone beds 

being thicker and more prominent at certain levels. If 

the model of Munnecke & Samtleben (1996) is cor-

rect, this suggests that more aragonite as compared to 

calcite was precipitated at the time these levels became 

deposited. Which polymorph to be precipitated de-

pends both on the marine Mg:Ca ratio as well as the 

temperature of ambient waters, with aragonite for-

mation being favoured at high Mg:Ca ratios and high 

temperatures (Balthasar & Cusack 2015). The larger 

scale cyclicity that can be observed in the Lysaker 

Member may thus be a function of climate fluctua-

tions.  

 

7 Chemostratigraphy and envi-
ronmental implications  

Variations in δ13C of the world’s oceans through time 

have foremost been used for correlation. However, the 

δ13C is mainly dependent on the distribution between 

organic carbon and carbonate rocks, and is thus direct-

ly linked to the global carbon cycle and the geobio-

sphere development (Saltzman & Thomas 2012).  

Numerous factors influence the δ13C-development 

however, and the connections are not always clear-cut. 

Volcanism, the proportion of carbonate relative to sili-

cate weathering and the composition of terrestrial veg-

etation are a few of the factors that influence the car-

bon isotope development (Kump & Arthur 1999). Nu-

merous episodes of extinctions or biotic turnover have 

also been linked to carbon isotope excursions 

(Salzman & Thomas 2012). 

The Ordovician Period records an unparalleled 

diversification among marine invertebrates. This evo-

lutionary event has been coined ‘The Great Ordovician 

Biodiversification’ or GOBE (Webby et al. 2004), and 

its importance is on a par with the ‘Cambrian explo-

sion’. Whereas the latter generated a wide disparity 

and larger number of taxonomically higher ranking 

taxa, it was the former that provides the sheer biomass 

and any substantial biodiversity at genus and species 

level (Harper 2006). Tiering complexity increased and 

a number of new niches were also occupied, which for 

instance can be seen in the coeval increase of intensity 

and diversity of carbonate substrate bioerosion 

(‘Ordovician Bioerosion Revolution’ of Wilson & 

Palmer 2001, 2006). 

Increased tiering and the occupation of new niches 

associated with the onset of GOBE likely led to a 

sheer increase in total biomass and, with that, in-

creased burial of organic material. Organic material is 

enriched in light 12C as compared to 13C. Large scale 

burial of organic matter thus leads to that the oceans 

become depleted in the lighter isotope, giving a long 

term increasing trend in the δ13C-record (Knauth & 

Kennedy 2009). It has also been suggested that the 

increase in carbon burial rate lead to climatic cooling, 

which further stimulated the development of the GO-

BE (Trotter et al. 2008, Zhang et al. 2010). The Floian 

marks the start of a long-term rise in the carbon iso-

tope record, the Floian-Darriwilian rise (Lehnert et al. 

2014), a development which eventually culminates in 

the MDICE. Does this timing fit with the timing of the 

GOBE? 

To begin with, the biodiversification event was by 

no means a continuous steady increase in species and 

genera, but followed a stepwise pattern, varying for 

different taxonomical groups (Webby et al. 2004; Har-

per 2006). To some extent, these biodiversity peaks 

reflect sea level; graptolites peak at high sea levels 

whereas the opposite is seen with ostracodes and bra-

chiopods. This gives a general trend where high sea 

levels correspond with low biodiversity and vice versa 

(Hammer 2003; but this may well just be a taphonomi-

cal effect, as the shallow water sediments deposited 

during highstand are preferentially eroded away, and 

thus also the fossils). On Baltica, the GOBE is ex-

pressed as four distinct peaks in diversity: one at the 

beginning of the Floian Stage, one in the upper Dap-

ingian/lower Darriwilian (Langevoja regional sub-

stage), one in the late Sandbian and finally one in the 

Katian. Conversely, the Dw2 and Dw3 record a promi-

nent dip in diversity (Hammer 2003). 

The onset of the Floian-Darriwilian rise thus 

matches with the onset of the GOBE, whereas the 

MDICE corresponds to a diversity dip. Interpreting 

environmental signals from the δ13C-record is by no 



32 

 

Fig. 16. Correlation of Lower–Middle Ordovician strata across western Baltoscandia, based on carbon isotope stratigraphy, wi-

despread hardground complexes and biostratigraphy. See text for detailed discussion.  
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means straightforward, and a simple correlation be-

tween diversity and carbon isotope trends does not 

exist. 

 

 

8 Correlation and depositional 
history  

To correlate the sections in Oslo and Jämtland, an 

integrated approach is adopted here by combining 

biostratigraphic data with carbon isotope trends and 

microfacies analysis, with the main results presented 

in Figure 16. The sections in Slemmestad and Brunflo 

both represent relatively deep marine facies on the 

western margin of Baltica, although Slemmestad had a 

generally deeper setting with a higher siliciclastic in-

flux. The Norwegian successions are considerably 

more expanded, especially during Tremadocian and 

Floian times. 

As no analogues of the vast, epicratonic seas that 

characterised the Early Palaeozoic exist today, sea 

level interpretation and application of sequence stra-

tigraphy for these successions is problematical. None-

theless, various techniques may be used to deduce 

palaeo-sea levels, including sedimentological evi-

dence, physical proxies (such as regional relief), ecol-

ogy and biological assemblages as well as geochemi-

cal data of oxygen isotopes (Munnecke et al. 2010). 

Studying the Upper Ordovician successions of western 

Estonia, Harris et al. (2004) used the depositional tex-

ture in the classification scheme of Dunham (1962) as 

a basis for a model to interpret epicratonic seas. In 

their model, facies belts shift laterally from shelf to 

basin with grain supported facies being deposited in 

the shallow shelf, mixed facies in the middle shelf, 

mud-supported facies in the deep shelf and slope and 

finally black shale facies in the basin (Fig. 17). While 

this makes sense intuitionally, one must bear in mind 

that it is a simplified model and that carbonate sedi-

ments are biologically formed sediments – i.e. they are 

affected not only by sea level but also for instance by 

climatic factors. Nonetheless, the simplicity of the 

model makes it useful for interpretations. 

Ordovician sea level curves have been reconstruct-

ed for several continents, e.g. Laurentia (Ross & Ross 

1992, 1995), Sibiria (Kanygin et al. 2010) and the 

Yangtze Platform (Su 2007). Long ranging sea level 

curves for the Ordovician of Baltoscandia include 

those by Nielsen (2004) and Dronov et al. (2011). 

Nielsen (2004) focussed on the Scandinavian, distal 

parts of the basin whereas Dronov et al. (2011) based 

their curve on the proximal parts in the shallow-water 

settings of Estonia. 

These roughly correspond to one another in the 

Tremadocian and Floian but differ considerably in the 

Dapingian and Darriwilian; Nielsen (2004) inferred a 

lowstand at the same time as Dronov (2011) perceived 

a highstand. This contradiction is partly based on the 

fact that their curves are based on the distal and proxi-

mal parts of the platform respectively but also because 

they used different approaches to reconstruct sea level. 

Dronov et al. (2011) base their assessments on two 

assumptions that major regional unconformities repre-

sent forced regressions and that the expansion over a 

wider area of deep water facies, such as marine red 

beds, reflect transgressions. However, it may be ar-

gued that, as regional unconformities expressed as 

hardgrounds represent highly condensed strata (Flügel 

2010), sea level falls cannot be deduced from these. 

 

8.1 Tremadocian 2  
The interval of interest for the present study starts in 

the Tremadocian 2 time slice with the deposition of 

the Bjørkåsholmen Formation and Ceratopyge Lime-

stone. Both belong to the P. deltifer Zone (Sturkell 

1991; Erdtmann & Paalits 1994). This zone has not 

been documented from Tingskullen, and the time in-

terval represented by the Bjørkåsholmen Formation 

and the Ceratopyge Limestone may simply be gone 

due to erosion in association with the karstic level at-

46 m in the Tingskullen core. 

The sudden transition from the black, anoxic Alum 

Shale to the possibly evaporitic limestones of the 

Bjørkåsholmen Formation suggests a significant sea 

level drop (Fjelldal 1966, Erdtmann & Paalits 1994, 

Nielsen 2004). The formation has been interpreted as 

representing a lowstand systems tract (Dronov & 

Holmer 1999) or as a falling stage systems tract with a 

Fig. 17. Facies model originally constructed for the Upper Ordovician of Western Estonia (Harris et al. 2004), but a similar large 

scale morphology and sedimentation pattern likely prevailed in western Baltoscandia during the Lower and Middle Ordovician 

times. Key to abbreviations: SL = sea level, FWWB = fair-weather wave-base and SWB = storm wave-base.  
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superimposed lowstand systems tract (Egenhoff et al. 

2010). The Bjørkåsholmen Formation is 1.2 m thick 

whereas the Ceratopyge Limestone is only 0.05 m in 

thickness. While the Bjørkåsholmen rests conformably 

atop the Alum Shale, a hiatus that spans part of the 

Cambrian Jiangshanian stage to the basal Tremadocian 

underlies the Ceratopyge Limestone in Brunflo. This 

suggests a sea level fall that exposed the Cambrian 

sediments to erosion in Brunflo but that the magnitude 

of the fall was not sufficient to expose the Slemmestad 

strata.  

Egenhoff et al. (2010) proposed that the regression 

was an isostatic event due to uplift in association with 

an early stage of the Caledonian Orogeny. Erdtmann & 

Paalits (1994) on the other hand regarded it as eustatic, 

the Ceratopyge Regressive Event (CRE). It coincides 

with the transition between the Sauk III and Tippe-

canoe I megacycles in North America, and Nicoll et al. 

(1992) considered it identical with the Kelly Creek 

Eustatic Event recognised in the Georgina and 

Amadeus basins of Australia.  Erdtmann & Paalits 

(1994) discussed a possible glacial influence, but only 

controversially discussed tillites have been found from 

this time. Furthermore, this period was characterised 

by greenhouse conditions (Trotter et al. 2008) render-

ing glacial episodes unlikely. What is clear is that the 

regression coincides with a major faunal turnovers and 

extinctions in for instance conodonts, graptolites and 

trilobites in many parts of the world (Erdtmann & 

Paalits 1994, Albanesi & Bergström 2004).   

The CRE was followed by a long term transgres-

sion (Nielsen 2004). The glaucony of the Ceratopyge 

Limestone and Bjørkåsholmen Formation may thus 

have formed during the transgression following the sea 

level fall. A model outlined by Amorosi (1995) pre-

dicts that the abundance as well as the maturity of 

glaucony increases through the upper transgressive 

systems tract, reaching a peak at the condensed sec-

tion, and is followed by a gradual decrease in the high-

stand systems tract. This model fits with the observa-

tion of increasing maturity of glaucony in the Cerato-

pyge Limestone as well as the findings of a few scat-

tered glauconite grains in the basal parts of the overly-

ing Latorp Limestone. The initial precipitation of glau-

conitic smectite is estimated to occur in a time-span of 

1– 10 kyr whereas highly evolved glauconitic mica 

takes 100–1000 kyr to form (Odin & Matter 1981). 

During this interval, the evolving glaucony must be 

kept at slightly reducing conditions and not be buried 

too deep. The presence of highly evolved glaucony 

thus speaks for a significant break in marine sedimen-

tation (Odin & Matter 1981; Amorosi 1995, 1997; 

Kelly & Webb 1999). These conditions are more likely 

to occur during transgressions, when the sedimentation 

zone moves landwards (Odin & Matter 1981). 

 

8.2 Tremadocian 3 and Floian  
The biostratigraphic control on the Hagastrand Mem-

ber (basal Tøyen Shale Formation in the Oslo Region) 

is poor, but it is deemed to be coeval with strata be-

longing to the Megistaspis (Paramegistaspis) planilim-

bata Zone (Hoel 1999a). This correlates with the upper 

part of the Latorp Limestone where this Biozone had 

been documented (Karis & Larsson 1982). 

Sequence stratigraphic models are admittedly diffi-

cult to apply to deep water facies. Nonetheless, 

Egenhoff & Maletz (2007) introduced a way to work 

with sequence stratigraphy also in monotonous shale 

successions based on taxonomic varations among the 

graptolites. They found that endemic forms dominate 

most of the sedimentary interval, but that pandemic 

deep water taxa form mass-occurences at certain inter-

vals. They hypothesised that these intervals represent-

ed maximum flooding surfaces. And indeed, Erdtmann 

(1965) also mentions mass occurrences of for instance 

Clonograptus and multiramous dichograptids at sever-

al levels in the Tøyen outcrop in Oslo, but only one of 

these were specified. This level is dominated by 

Clonograptus galgebergi and Clonograptus norvegi-

cus and occurs at 3.55-3.68 in the Tøyen outcrop. It is 

equal to ‘the ‘good bed’ of the H. copiosus fau-

na’ (Lindholm 1991) and may correlate to a black 

shale bed at 7.1 m above the base at Slemmestad, thus 

likely representing a maximum flooding surface. 

The base of the Tøyen Shale Formation in Jämt-

land is diachronous, and ranges between Tetragraptus 

phyllograptoides and Phyllograptus densus biozones 

(Jaanusson et al. 1982), the first of which is found in 

the uppermost part of the Hagastrand Member in Oslo 

and the latter which is found in the middle part of the 

Galgeberg Member (Erdtmann 1965). The 2.5 m thick 

Latorp Limestone thus correlates with at least the basal 

11 m of the Hagastrand Member, making the Latorp 

Limestone extremely condensed. Recrystallisation and 

pseudomorphs are evident both in Slemmestad and in 

Brunflo in this interval.  

The base of the Floian is marked by carbon isotope 

excursions in the Slemmestad and Brunflo sections; 

these are inferred to correspond to the BFICE of 

Lehnert et al. (2014). The facies transitions from grey 

shale with silt interbeds to black, anoxic shales in Oslo 

and the corresponding transition from compact lime-

stone to lime-marl interbeds suggest a continued trans-

gression at this time. 

The Floian strata in Oslo is more expanded in Oslo 

than in Jämtland; the Tøyen Shale Formation is ap-

proximately 10 m thick in Jämtland, while the coeval 

Galgeberg and Slemmestad members is estimated to 

comprise more than 15 m of strata.  

 

8.3 Dapingian 
‘Blommiga bladet’ (‘Flowery sheet’) and 

‘Blodläget’ (‘Bloody layer’) are extensive hardground 

complexes that can be followed over large parts of 

Scandinavia, from Öland in the SE to Dalarna in the 

NW, to the Baltic area in the east, serving as important 

marker horizons across the continent (Lindström 

1979). The lowermost of these, ‘Blommiga bladet’, is 
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characterised partly by abundant amphora-like borings 

but foremost by its strong colours, ranging from yel-

low and red to green (Lindström 1979; Ekdale & 

Bromley 2001). Biostratigraphically, ‘Blommiga 

bladet’ formed at the base of Baltoniodus triangularis 

zone, which is the index fossil that marks the base of 

the Dapingian Stage (Bergström & Löfgren 2008). The 

exact location of this base has not been pinpointed in 

the Oslo region as the deep water facies of the Tøyen 

Shale Formation yield no conodonts (Bergström & 

Löfgren 2008), and the hardground complex is not 

developed in the same way in these shaly facies. 

Nonetheless, the location can be approximated using 

other biostratigraphic data. The transition from Iso-

graptus lunatus to Isograptus victoriae biozones is at, 

or close to, the base of the B. triangularis zone 

(Bergström et al. 2009; Pärnaste et al. 2013). While I. 

victoriae has not been documented from the Tøyen 

Shale Formation, I. lunatus has been reported from a 

level approximately 3 m below the top of the for-

mation (Erdtmann 1965). The base of the succeeding 

Huk Formation is within the Baltoniodus navis zone, 

i.e. its deposition took place well within the Dapingian 

Stage. The base of the Dapingian and the level of 

‘Blommiga bladet’ must thus be within the uppermost 

3 m of the Tøyen Shale Formation. This interval con-

tains a multicoloured horizon at 1.3 m below the base 

of the Huk Formation interpreted as a maximum flood-

ing surface. This level probably corresponds to 

‘Blommiga bladet’, but developed in a deeper facies. It 

is overlain by the grey shales of the informal Slem-

mestad Member.  

‘Blommiga bladet’ is not unequivocally expressed 

in the Brunflo core either, but it is tentatively recog-

nised as the hardground complex found at -30.6 m, not 

even a metre above the base of the Lanna Limestone. 

The basis for correlation of these two beds is thus not 

very strong. The shift in facies from black shales to 

grey in Oslo and the reappearance of compact lime-

stone (Lanna Limestone) in Brunflo suggest that the 

transgression that started in the late Tremadocian had 

culminated and turned into a regression. ‘Blommiga 

bladet’ is clearly expressed at -41.95 m in the Ting-

skullen core of Öland. 

The other hardground level of interest is 

‘Blodläget’. This has been identified with a high de-

gree of confidence at 0.17 m above the base of the 

Huk Formation in Slemmestad, coinciding with the 

base of Megistaspis simon Zone (Nielsen 1995). A 

pronounced hardground at -28.58 m in the middle Lan-

na Limestone may correspond to this level, as M. si-

mon is found in the middle part of this formation 

(Karis 1998). While the Lower Ordovician strata are 

considerably more condensed in the Brunflo area than 

in Slemmestad, the difference is much less pronounced 

in the Middle Ordovician. The interval between 

‘Blommiga bladet’ and the presumed position of 

‘Blodläget’ is even more expanded in Brunflo than in 

Slemmestad. This possibly indicates that the identifi-

cation of ‘Blodläget’ in Brunflo is incorrect. The con-

fidence in the identification of ‘Blodläget’ in the Ting-

skullen core is much stronger. It is expressed as a 

heamatite impregnated surface and the biostratigraph-

ical control, placing it at the base of B. navis is very 

strong (Wu et al. submitted).  

 

8.4 Darriwilian  
The Holen Limestone starts with a glauconitic grain-

stone bed with an erosional base. This level correlates 

with the thick packstone bed developed in the middle 

part of the rhythmites of the Lysaker Formation that 

marks the Volkhov-Kunda transition (Nielsen 1995), a 

level that has been associated with a brief sea level fall 

in Västergötland (Lindskog et al. 2014). This regres-

sion should be expressed also in the Tingskullen core, 

but detailed sedimentological data of this interval is 

lacking. At the outcrop at Byrum, northern Öland 

however, the Volkhov-Kunda boundary is likely repre-

sented by goethitic/limonitic ooids in middle of For-

mation A+B (cf. Stouge 2004). The Volkhov-Kunda 

boundary marks the start of a ~1.75 Myr long period 

of increased influx of meteorites which has been 

linked to a major breakup of a L-chondrite asteroid 

parent body at ~470 Ma (Schmitz et al. 2001). Strata 

of the Lenodus variabilis, Yangtzeplacognathus cras-

sus and Microzarkodina hagetiana conodont zones are 

all enriched in chondrite grains (Schmitz et al. 2008). 

The ‘Täljsten’ is a faunally and lithologically 

anomalous facies developed in the Kunda strata  

(approximately Dw1-2 boundary) of Västergötland, 

Sweden, where it is recognisable as an approximately 

1.5 m thick grey interval in the otherwise red lime-

stones (e.g. Mellgren & Eriksson 2009; Eriksson et al. 

2012). The ‘Täljsten’ likely formed during a rapid re-

gression-transgression cycle and marks a biotic turno-

ver (Eriksson et al. 2012). The interval spans the tran-

sition between Asaphus expansus and Asaphus rani-

ceps as well as L. variabilis and Y. crassus, in ascend-

ing order (Eriksson et al. 2012). The biostratigraphy 

and the anomalous facies suggest that the uppermost 

0.3 m of the Svartodden Member correlates to the up-

per part of the ‘Täljsten interval’. 

The ‘Täljsten’ is marked by a rapid carbon isotope 

shift in the Gullhögen quarry of Västergötland (Meidla 

et al. 2004), a shift which can potentially be traced 

globally; the base of Y. crassus zone in Maocaopu and 

Puxi River, China documented by Schmitz et al. 

(2010), also coincides with a rapid isotope shift. A 

similar development can be seen in the interval be-

tween approx. -17 and -19 m in the Brunflo core, 

where the thicknesses of the limestone beds are thicker 

than both below and above and which is marked by a 

rapid shift in the carbon isotope curve. This shift is 

rapid and of minor magnitude, but both the decreasing 

and increasing trends are recorded by several samples 

and is therefore not an artefact. For these reasons the 

interval is interpreted as coeval with the ‘Täljsten’. A 

similar development is seen between -28 and -30 m in 

the Tingskullen core, at the top of Formation A+B 
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(Wu et al. submitted). 

As the inorganic carbon isotope data for the Slem-

mestad outcrops have been proven unreliable such a 

shift cannot be employed to recognise the ‘Täljsten’ in 

the Norwegian successions. The entire Svartodden 

Member in itself does correspond to the regression-

transgression facies development however, and is thus 

correlated to the Täljsten in its entirety (cf. Kröger & 

Rasmussen  2014). Biostatigraphically, both the base 

of A. raniceps (Nielsen 1995) and the Y. crassus 

(Rasmussen et al. 2013; Kröger & Rasmussen 2014) 

zones begins in this member, though the exact posi-

tions are not pinpointed in any of the studies. The 

Svartodden Member is overlain by the Helskjer Mem-

ber of the Elnes Formation, which would then repre-

sent the post-‘Täljsten’ transgression. 

The interval that in the Brunflo core is represented 

by the upper member of the Holen Limestone as well 

as the Segerstad Limestone overlies the strata studied 

in Slemmestad. These sediments are likely coeval with 

the upper part of the Elnes Formation which has not 

been included in the present study. 

 

9 Conclusions 
The Tremadocian-Darriwilian outcrops of 

Bjerkåsholmen and Djuptrekkodden peninsulas near 

Slemmestad, Oslo and the Swedish Geological Sur-

vey’s Brunflo #2 core were studied with respect to 

sedimentology and carbon isotope stratigraphy. These 

were compared to the core from Tingskullen, Öland 

described by Calner et al. (2014) and Wu et al. 

(submitted).  

The correlation implies a similar sedimentation 

pattern throughout the western Baltoscandian basin 

during the studied interval, but the strata are more con-

siderably more expanded in Tremadocian and Floian 

times in the Oslo area as compared to Jämtland and 

Öland. The palaeodepth was greatest in the Slem-

mestad area and most shallow in the Tingskullen core 

area. Brunflo represent an intermediate position. 

The strata are, as a whole, extremely condensed, 

with average sedimentation rates of only a few milli-

metres per thousand years. Glauconite is an authigenic 

mineral forming at low sedimentation rates. The two 

beds of the Ceratopyge Limestone in Brunflo yield 

abundant glauconite, and the study shows that glauco-

ny of the upper bed is more evolved, indicating a long-

er interval of non-deposition than for the lower bed. 

Combining microfacies analysis and carbon iso-

tope stratigraphy, several surfaces and intervals im-

portant for regional correlation have tentatively been 

identified for the first time in the Oslo-Asker area and 

at Brunflo. These include ‘Blommiga bladet’, 

‘Blodläget’ as well as the regressive facies associated 

with the Volkhov-Kunda boundary and the subsequent 

‘Täljsten’ interval. As the biostratigraphic control is 

stronger in the Oslo outcrop, the degree of confidence 

in the identifications is stronger here than within the 

Brunflo core. 

Carbon isotope signatures have a great potential for 

both intrabasinal and global correlations. Several im-

portant carbon isotope excursions and trends of the 

Lower and Middle Ordovician can be recognised in 

the high resolution carbon isotope data from the Brun-

flo core. These include the LTNICE in the Latorp 

Limestone, the Floian-Darriwilian rise in the Latorp 

and Tøyen formations and the BDNICE in the basal 

part of the Lanna Limestone. A negative excursion is 

represented in the upper part of the lower member of 

the Holen Limestone. It immediately precedes the ris-

ing limb of the MDICE, which is clearly expressed in 

the upper member of the Holen and Segerstad lime-

stones. 

Caution should be exercised in the study of inor-

ganic carbon isotope signatures for the Ordovician 

outcrops of the Oslo-Asker area as an significant over-

print from the Caledonian Orogeny has disturbed the 

signal. The organic carbon signature is more stable and 

provides better data. 

An extensive degree of recrystallisation and/or 

pseudomorphism recorded in the Bjørkåsholmen For-

mation, Latorp Limestone and Hagastrand Member 

indicate that evaporite conditions may have prevailed 

in Baltoscandia during the Lower Ordovician despite 

being positioned on relatively high latitudes. That sign 

of evaporitic conditions are not being found in the 

studied Middle Ordovician strata may be linked to 

climatic cooling (cf. Trotter et al. 2008). The onset of 

climatic cooling from the earlier prevailing greenhouse 

conditions may have caused increased biodiversity and 

the Great Ordovician Biodiversity Event and with that, 

increased burial of light organic carbon. This is reflect-

ed by the Floian-Darriwilian rise and the Middle-

Darriwilian carbon isotope excursion, which have both 

been documented in the present study.  
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