
To reflect and refract objects in a correct way ray tracing has to be used. This is very com-
putationally demanding in real-time applications. However, by combining three different
methods the performance can vastly improve.

What we see as reflections and refractions in games
and other real-time applications is in most cases just an
image being sampled to create an illusion of the effect.
When rendering a frame on the screen only objects in
front of the camera is computed, so it’s very hard to
reflect the rest of the scene. To do this we have to use
ray tracing instead. This technique works by tracing rays
through the camera into different parts of the scene.
These rays can be compared to photon rays, but ins-
tead of coming from the scene we trace them backwards
from the camera. We can then emulate real-world ef-
fects realistically by for example letting them bounce
to get reflections. Ray tracing is very computationally
demanding, as a single movie frame can take days to
render. In real-time applications we normally want at
least 24 frames per second to get smooth motions, so a
lot of optimizations have to be made.

The octree structure
To see what a ray hits we perform intersection tests with
objects in the scene. In the most basic form of ray tra-
cing we test a ray against every triangle in the scene and
see which one we hit first. This is unfeasible as a scene
normally have thousands to millions triangles. We ins-
tead use an octree, which is a tree structure consisting
of nodes containing voxels. A voxel is a cube that takes
up space in the scene. The first node
in the tree is the root node, which
contains the whole scene. This node
has 8 children, each taking up 1/8 of
its space. The children in turn have
their own 8 children, and so it con-
tinues until the tree has reached a
certain depth. The tree is also sparse,
meaning that if a voxel doesn’t con-

tain any triangles it will not be created, saving space.

The voxelization process
To find out which triangles belong to which voxels three
tests are performed. They vary in performance and ac-
curacy, where they can be faster but might include tri-
angles that are not in the voxel, or more expensive and
accurate. The cheap tests are useful for ruling out the
vast majority of triangles, leaving a smaller amount for
the expensive ones.
  On the lowest depth the triangles in a voxel are con-
densed into a polyhedron based on the average shapes,
colours and other attributes of the triangles. This is all
done once during the preparation part of the program.

The traversal algorithm
Once we start rendering frames we use an algorithm
made for this specific type of octree to quickly find what
voxel will be hit. This is done by first testing which of
the 8 children of the root node that are intersected by
the ray. In order of intersection their children are then
tested in a similar way until we reach a node on the max
depth of the tree that is intersected, and we render the
polyhedron of that voxel.
  This reduces the amount of intersection tests to a
fraction of the total number of triangles, increasing ray

tracing performance enough for
real-time. Using reflections and re-
fractions decrease the performan-
ce, but are visually correct. This
work shows the use of real-time
ray tracing to create more realistic
reflections and refractions than ty-
pical rasterization algorithms can
achieve.

EXAMENSARBETE Real-time screen space reflections and refractions using sparse voxel octrees

STUDENT Filip Nilsson

HANDLEDARE Michael Doggett (LTH)

EXAMINATOR Tomas Akenine-Möller (LTH)

Reflections and refractions using a real-time ray tracer
POPULÄRVETENSKAPLIG SAMMANFATTNING Filip Nilsson

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2015-04-29

The water both reflects and refracts the scene.

