
Task scheduling for dual-arm
industrial robots through Constraint
Programming

Tommy Kvant

MASTER’S THESIS | LUND UNIVERSITY 2015

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2015-10

Task scheduling for dual-arm industrial
robots through Constraint Programming

(MiniZinc modeling and solver comparison)

Tommy Kvant
ada09tkv@student.lu.se

March 15, 2015

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisor: Jacek Malec, jacek.malec@cs.lth.se
Supervisor: Maj Stenmark, maj.stenmark@cs.lth.se

Examiner: Klas Nilsson, klas.nilsson@cs.lth.se

mailto:ada09tkv@student.lu.se
mailto:jacek.malek@cs.lth.se
mailto:maj.stenmark@cs.lth.se
mailto:klas.nilsson@cs.lth.se

Abstract

In a society where more and more production becomes automated it demands
robots that are as flexible and versatile as humans. Such flexibility demands
automatic scheduling of tasks. In this thesis we approach the problem using
Constraint Programming and through a case study we present a model for a
dual-armed robot that is able to deal with a more flexible workload. We also
introduce filters to cut down the runtime of the solver. To evaluate the model
we tested it on 6 solvers; G12/FD, JaCoP, Gecode, or-tools, Opturion CPX
and Choco3. The results show that the model can produce a solution as good
as the one manually implemented for the case study. We introduce filters on
the domains of some of the variables and they made an improvement on the
runtime for many of the solvers. We also found that the runtime of the solvers
varied a lot and could range from several hours to just a fewmilliseconds using
the same data. Unfortunately, in many of the tests the solvers did not complete
their searches within the time limit of 4 hours. In some cases when using
MiniZinc version 2.0.1, the solvers were not able to read the FlatZinc files.
The fastest solver in our tests was Gecode using MiniZinc version 2.0.1.

Keywords: Constraint Programming, MiniZinc, JaCoP, G12, Gecode, or-tools, Op-
turion CPX, Choco3, scheduling, dual-arm robots

2

Acknowledgements

I would like to thank my supervisors, Jacek Malec and Maj Stenmark, for their support
and constructive feedback.
I would also like to thank Krzysztof Kuchcinski at the Institute of Computer Science, Lund
University, for his valuable input on the model.
Lastly I would like to thank Johan Wessén at ABB for giving us access to the data used in
[Ejenstam, 2014] and providing help interpreting the data.

3

4

Contents

1 Introduction 7
1.1 Project goal . 8
1.2 Related work . 8
1.3 Report structure . 9

2 Approach 11
2.1 Constraint Programming . 11

2.1.1 Constraints . 11
2.1.2 Global constraints . 12
2.1.3 Solver . 14
2.1.4 Reified Constraints . 14
2.1.5 Branching Heuristics . 14

2.2 Job-shop scheduling problem . 15
2.3 MiniZinc . 15
2.4 Solvers . 16

2.4.1 G12/FD . 16
2.4.2 JaCoP . 17
2.4.3 Gecode . 17
2.4.4 or-tools . 17
2.4.5 Opturion CPX . 17
2.4.6 Choco3 . 18

3 Case Study 19

4 Model 23
4.1 Variables . 24

4.1.1 Model Variables . 24
4.1.2 Static variables . 25
4.1.3 Decision variables . 32

4.2 Constraints . 33

5

CONTENTS

4.2.1 Precedences . 33
4.2.2 Predecessors . 36

4.3 Filter . 39
4.3.1 Temporal filter . 39
4.3.2 Predecessor filter . 42

4.4 Heuristics . 44

5 Evaluation 45
5.1 The Setup . 46
5.2 The results . 46

6 Discussion 55
6.1 Model . 55
6.2 Results . 59

7 Conclusions 61
7.1 Further work . 61

Bibliography 63

Appendix A Extended Model 69
A.1 Temporal filter . 69
A.2 Predecessor filter . 69

Appendix B File & Tool Manuals 73
B.1 File Formats . 73

B.1.1 Assembly XML . 73
B.1.2 Time Matrix . 74
B.1.3 MiniZinc data file . 76

B.2 AssemblyConv . 76
B.3 SchedPrinter . 76
B.4 FZNstat . 77

6

Chapter 1
Introduction

More and more of the production in today’s society is getting automated. Product series
have short lifespan and the focus of the production must change quickly. It is expensive to
have at hand robots for every possible occasion, thus such production is often outsourced
to low-wage countries. Often with worse working conditions than in the west. This puts
pressure on the robot manufacturers to develop robots that are versatile like humans and
thus eliminating the need to have multiple robots to do multiple tasks which will lower the
costs and close the gap of what a human and robots are able to do.

Current robot setups usually have one robot performing one task all the time, as op-
posed to flexible robots which will be changing between many different tasks and assem-
blies. One of these flexible robots is ABB’s robot YuMi®. YuMi®is a dual armed robot
made to work alongside humans and able to perform some of the most complex tasks,
such as mount a nut or thread a needle[ABB, 2014]. It accomplishes this by using a wide
variety of sensors, e.g., force sensor, visual sensors, etc. Usually a robot replaces humans
to perform dangerous or heavy tasks, while YuMi®is mainly designed for small parts co-
operation with humans, i.e. usually human roles in todays manufacturing environment.

In order to support rapid change-over between tasks, certain problems such as schedul-
ing of the assemblies need to be automated. The problem of scheduling is a classic con-
straint problem. Hence, in this thesis we will be using Constraint Programming (CP) to
automate the scheduling process in order to cut down on the scheduling time. Constraint
Programming provides a general interface to solve problems without needing to build a
complete framework from scratch and makes it easy to formulate the problem through a
model.

7

1. Introduction

1.1 Project goal
The goal of this thesis is to present a generic CP model suitable for a robot such as YuMi®,
able to handle the type of jobs YuMi®is able to perform. The scope of the thesis will cover
assemblies where the robot can change tools, but only being able to pick up one object at
a time. Also, the change between two tools will take the same amount of time regardless
whether it is from tool 1 to tool 2, or the other way around. The model will cover the use
of trays, fixtures and outputs.

The model will be constructed using the MiniZinc language and tested with 6 CP
solvers. We will compare the results from the solvers, both to see how well our model
can perform and how well the solvers perform relative to one another.

1.2 Related work
[Drobouchevitch et al., 2006] conclude that the increasing number ofmachines in a robotic
cell causes an explosive growth in combinatorial possibilites. They also provide evidence
that a dual-gripper cell is more productive than a single-gripper cell.

[Thörnblad et al., 2013] concludes that when a cell is part of an assembly flow, the
targeting of due dates instead of makespan, the total time for the assembly, is to prefer. The
reason is that the focusing on makespan runs the risk of exacerbating an already unreliable
flow. However, the assembly we want to construct is not a part of a flow, and thus we do
not concern ourselves with maintaining a stable flow through the cell, but only to optimize
the assembly in the cell.

[Yuan and Xu, 2013] states that Constraint Programming is only effective on small
problems of flexible job shop scheduling. In order to effectively solve problems of larger
size they suggest to use methods such as large neighbourhood search (LNS) or iterative
flattening search. They also show that LNS together with Hybrid Harmonic Search pro-
duces good results.

Unfortunately MiniZinc does not support the implementation of custom searches such
as LNS. Therefore we try to solve the problem of ineffectiveness by using filter such as
those presented by Vilím in [Vilím and Barták, 2002b] [Vilím, 2002] and
[Vilím and Barták, 2002a].

[Ejenstam, 2014] conducted a similar study also on the YuMi®robot. In the study
Google or-tools was used to write the model and also implemented Systematic Tree Search,
Random Restart and Local Search and compared the results of using different combina-
tions of them. The case study and goal of the study is different from this thesis and therefore
the resulting models differ, as is discussed in chapter 6. In the study it was conclude that
Systematic Tree Search combined with Random Restart produced schedules with better
results than the reference solution.

Unfortunately, not many comparisons between MiniZinc compatible solvers where found.
There is an annual competition held by NICTAwhere solvers can compete, this is the most
comprehensive documentation of the performance of the solvers we have found. Unfor-
tunately, they only present which solver wins a category and no statistics are presented.
Hence, no deeper comparison can be made from the result. In the latest competition held,

8

1.3 Report structure

2014, or-tools won three out of the four gold medals, Opturion CPX won all four silver
medals and Choco won three out of the four bronze medals[NICTA, 2014c].

When presenting MiniZinc for the first time, initial tests were also presented compar-
ing, amongst others, G12/FD, Gecode using FlatZinc code and native Gecode. The tests
show that MiniZinc was competitive with the native Gecode model and on average the
Gecode front-end for FlatZinc was about 200ms faster than the G12/FD
[Nethercote et al., 2007].

Another comparison found was [Becket et al., 2008] where they tested 10 solver on 12
problems. Unfortunately, the only solver tested there that we also used in this thesis is the
G12/FD solver. So comparison with our results is hard. Although they did not draw any
conclusions, G12/FD seem to fare relatively well compared to the other solvers tested.

1.3 Report structure
First we will present the approach we have taken in the thesis and present the relevant back-
ground information in chapter 2. In chapter 3 we will present the case study assembly used
in the thesis. Then we will present an in depth view of the model created in chapter 4. In
chapter 5 we will present the setup used to evaluate the model and the result of the evalua-
tion. In chapter 6 we will discuss the results and we will come to a conclusion in chapter 7.

Lastly we have two appendices. Appendix A contains constraints which is not crucial
for solving of the problem, but is still a part of the model. In appendix B we present all
the tools used, which are free to use, and where to acquire them.

9

1. Introduction

10

Chapter 2
Approach

2.1 Constraint Programming
Constraint programing is a declarative paradigm. This means that in contrast to impera-
tive paradigm languages, such as C or Java, the focus of solving problems using constraint
programming is on specifying the problem and not the algorithm to solve it. However,
imperative languages, such as Java and C, can be used as a framework Constraint Pro-
gramming, as in JaCoP, or-tools, and others. In Constraint Programming one specifies the
domain variables, or simply variables, and constraints. Domain variables have domains
of values, meaning they can take any value in their domain. Variables have a fixed value.
Values can often be, depending on language and solver, either integers, floating-points,
boolean or symbolic, symbolic being a text or label. For example a symbolic domain vari-
able representing a week would have the domain
{Monday,Tuesday,Wednesday,Thursday, Friday, Saturday, Sunday}, while an integer
one could have {0, 1, 2, 3, 4, 5, 6}.

2.1.1 Constraints
Constraints are set up as relationships between the variables, and thereby limiting the do-
mains of the variables. Integer domains are often used for variables, so for the rest of this
section we will assume variables have integer domains. For this domain the following
function symbols can be used: +, ×, − and ÷. The constraint relation symbols are =, <, ≤,
>, ≥, 6=. Together with the function symbols and the constraint relation symbols, one can
create simple constraint, called primitive constraint. An example of a primitive constraint
is X < Y , i.e. the values in X’s domain has to be lower than in Y ’s. Primitive constraints
can be used to create more complex constraints using the conjunctive connective ∧. An
example of this is X < Y ∧ Y < 10, i.e. Y has to be less than 10 and X has to be less
than Y . Since all constraints have to hold when the model is evaluated, all constraints are

11

2. Approach

...

Pick
X Pick

Y

Pick Z
X

=
1 X

=
3

X
=

6 Y
=

5 Y
=

9
Y

=
8 Z

=
6

Z
=

3 Z
=

5

Pi
ck

Y Pick
Z Pi

ck
Y Pick

Z Pi
ck

Y Pick
Z Pi

ck
X Pick

Z Pi
ck

X Pick
Z Pi

ck
X Pick

Z Pi
ck

X Pick
Y

Pi
ck

X Pick
Y

Pi
ck

X Pick
Y

Figure 2.1: The beginning of the search space for the variables X,
Y , Z , where X = {1, 3, 6} Y = {5, 9, 8} Z = {6, 3, 5}

implicitly joined by a conjunction. The disjunctive connective ∨ is also available and can
be used in the same way as ∧.

For example, lets assume we have a problem with two variables, X and Y , X = 4 and
Y = {1..10}. Here X has the value 4 and can thereby only take the value 4. Y on the other
hand can take the values 1 to 10. This means a solution to this problem can be X = 4 and
Y = 1 or likewise X = 4 and Y = 5 , they are equally correct.
On this problem we can impose a constraint, for example Y > X. Now we have set the
constraint that Y needs to be larger than X. And since X has a fixed known value we can
directly see that Y > 4, since x = 4. Now with this constraint, we can reduce the domain
of Y and now Y = {5..10} instead. And now a viable solution can be X = 4 and Y = 7, but
not X = 4 and Y = 3.

2.1.2 Global constraints
Global constraints are constraints that sets up a relation between an non-fixed number of
variables and the global constraints can be reduced to a set of simpler binary constraints
[van Hoeve and Katriel, 2006]. They are also context independent[Beldiceanu et al., 2015],
which makes them quite convenient to use when modeling and we are using a couple of
global constraints that are listed below.

The description of the global constraints in this section come from MiniZinc:s global
constraints listing [NICTA, 2014d] and MiniZinc:s tutorial, [Marriott and Stuckey, 2014].

All Different Constraint (allDifferent)
The allDifferent constraint is pretty straightforward. It takes a set or an array x as
argument and enforces all variables in x to take distinctly different values, i.e. all values
will be different.

12

2.1 Constraint Programming

1 2 3 4 5 6 7 8
5 8 7 2 4 1 6 3

1 5 4 2 8 3 7 6

Figure 2.2: Example of the circuit constraint enforced on an
array of length 8. The visualisation of the array on top. The vi-
sualisation of the nodes beneath with arrows from the node to its
successor

Circuit Constraint (circuit)
The circuit constraint takes an array of integers representing nodes, x. Each index
is representing a node and the index is the number of the node. The value at the index
represents the successor of the node at the index. circuit enforces the nodes to form a
Hamiltonian circuit. This means all nodes will be part of the circuit that is formed and no
node will have itself as successor. See Figure 2.2 for an example.

Cumulative Constraint (cumulative)
The cumulative constraint is used to schedule entities that takes a given amount of
resources in a system with a known amount of resources available. The constraint takes
5 arguments; an array of start times, an array of durations, an array of resources needed
and an integer for how many resources available. So if we have 5 resources available
and we have two tasks which requires 3 and 2 resources respectively, they can execute
simultaneously. But not if the number of available resources were 3. Each index in the
arrays corresponds to an entity.

Global Cardinality constraint (global_cardinality)
The global_cardinality constraint takes three arguments; an array of variables x,
an array of integer cover, and an array of variables counts. The constraint assures that
the occurrences of cover(i) in x is equal to counts(i).

13

2. Approach

2.1.3 Solver
A Constraint Programming program consists of many of these constraints and variables.
When the problem is specified in a model, a solver runs the model. The goal of the solver
is to satisfy all the constraints, i.e. set the domains of the variables so that they all follow
the relationships of the constraints. This is called the constraint satisfaction problem, and
can be defined as a triple 〈Z,D,C〉. Z = {x1 . . . xn} is a finite set of all the variables in
the solution, D(xi), xi ∈ Z is a set representing the domain of values the variable xi can
assume, C is the set of constraints imposed on the variables in Z . In order to satisfy all
constraints imposed, the solver performs a search on the space of possibilities, i.e. the
search space. The search space has the form of a tree, where each branch is a selection of
a variable where the variables domain is reduced into a smaller subset that conforms with
the constraints. The solver traverses the tree in search for a solution. When all variables
are set to conform with the constraints a solution is found. If the solver reaches a node
where a variable domain becomes empty, it has to backtrack to a previous node from
which it can choose a new variable to set, i.e. traversing a new branch of that node. To
make sure that all constraints holds true, called consistency, when a change occurs in a
variable during search or by propagation itself, the solver performs propagation. When a
change occurs to a variable, lets call it X, the solver looks at the variables related to this
variable through constraints, lets call them Y and Z , and may prune the domains of Y and
Z in order to uphold the consistency of the constraints. The solver then propagates onward
to the variables related to Y and Z and performs the same procedure. More about solvers
can be found in [Tsang, 1993], [Marriott and Stuckey, 1998] and [The G12 Team, 2014].

2.1.4 Reified Constraints
Reified constraints are constraints that couple a primitive constraint with a boolean variable
and provide a relationship between the both. An example could be the constraint c and a
boolean variable B, the relationship between the both could be c ⇔ B. This says that if c
holds, B = true and if ¬c holds, B = f alse. This form of expression can be very useful in
expressing complex relations and constraints [Marriott and Stuckey, 1998].

Although it is a convenient way of expressing complex relations, it has its disadvan-
tages. Reified constraints can be inefficient since every reified constraint needs to be prop-
agated all the time. Reified constraints can also propagate poorly, for example if a variable
occurs multiple times in an expression [Jefferson et al., 2010]. Due to this, we have tried to
avoid direct reified constraints in the MiniZinc code in hope of reducing the total amount
of reified constraints in the resulting code.

2.1.5 Branching Heuristics
Branching heuristics is what decides what value in a domain to branch on. It can be de-
clared by the one programming the model and can play a significant role in the effective-
ness of the model. An example of a common branching heuristic is indomain_min
which branches on the smallest value in the domain and if backtracked choses the next
smallest value the next time, i.e. working its way up from the smallest value. The oppo-
site of indomain_min is indomain_max, which starts in the other end of the domain.

14

2.2 Job-shop scheduling problem

Another common branching heuristic is indomain_medianwhich branches on the me-
dian value of the domain and if backtracked branches on the values on either side of the
median and works its way outwards. There are more branching heuristics available and
which branching heuristics are available depend on the solver.

2.2 Job-shop scheduling problem
The job shop problem can be described as n jobs of varying size containing a number
of operations to be executed in a certain order that needs to be scheduled on m identical
machines. Commonly the goal is to minimize the total time for the schedule, called the
makespan. The traveling salesman problem is a version of the job shop problem where
m = 1. [Garey et al., 1976] shows that the job shop problem is NP-complete for m ≥ 2 and
n ≥ 3, hence more complex versions of the job shop problem will be at least this hard.

As described above, the schedule is composed of jobs containing operations. This is
the usual way of describing it in the literature, but we will look at it in a slightly different
way. Instead of looking at many jobs, we will focus on one job and the operations within
that job. In this thesis we will refer to these operations as tasks.

An extension of the job shop problem is the flexible job shop problem. In it, tasks are
not locked to be scheduled on a particular machine, but can be scheduled for any of the
machines [Thörnblad et al., 2013]. This increases the complexity of the problem.

Yet another extension of the job shop problem is the job shop problem with sequence-
dependent setups. This means the time for a task is not just the time it takes to execute the
task itself, but also the time it takes to set up the machine, depending on the previous task,
in order to execute the task at hand. This is also something that increases the complexity
compared to the basic job shop problem.

Our case will be a combination of the flexible job shop problem and the job shop problem
with sequence-dependent setup times since, as will be described later, we can change the
tools of the machines. The ability to change tools means that all machines can execute all
tasks, and the change of tool takes time which means we get a sequence-dependence.

2.3 MiniZinc
There are many solvers for CP problems, but they all use different languages and as a
modeler it might be of interest to test how well your model performs on different solvers.
To eliminate the need to rewrite models to fit the language of the different solver in order
to perform a comparison, MiniZinc was introduced. MiniZinc is a modeling language
similar toOptimized Programming Language (OPL), but is scaled down and lacks some of
OPL’s features. MiniZinc’s strength lies in that it is coupled with another language called
FLatZinc. The difference between MiniZinc and FlatZinc is that MiniZinc is a medium-
level language where it is easy for modelers to express themselves and FlatZinc is a low-
level language that is easy for interpreters to parse. There is a translator from MiniZinc to

15

2. Approach

MiniZinc Translator FlatZinc Solver Result

Figure 2.3: The toolchain in MiniZinc

FlatZinc provided, the translation is called flattening. MiniZinc provides a set of already
defined constraints that solvers can use, however, the translator takes in consideration the
solver that is going to be used and can apply custom versions of the constraints specified
for that particular solver. [Nethercote et al., 2007]

Although MiniZinc aims at being a standard language in CP, it does not have support
for defining custom search algorithms, as many other languages do. This means we cannot
utilize algorithms for random restart, local search, etc. To be clear, the solver is the one
performing the search, but in some Constraint Programming languages we can define how
that search is to be performed. [Nethercote et al., 2007]

To summarise, the process of solving a problemwithMiniZincwill follow the toolchain
in Figure 2.3. The MiniZinc file is first passed through the translator which produces a
FlatZinc file. The FlatZinc file is fed to the solver which performs the search and produces
a result.

2.4 Solvers
This thesis will test the model using 6 different solvers; G12, JaCoP, Gecode, OR-tools,
Opturion CPX and Choco3. There where three requirements considered when we chose
the solvers:

• The solver has to have a FlatZinc parser

• The item has to be free to acquire, either via open source, free license or free aca-
demic license.

The model was initially tested during the implementation phase using G12/FD, but
after a while G12/FD was unable to produce results and a switch was made to JaCoP. In
other words, the model was developed and tested using JaCoP.

Which solvers implement which global constraints, or more precisely which global con-
straints are used in the produced FlatZinc file, are presented in section 5.2.

2.4.1 G12/FD
G12/FD is a finite domain solver provided by the G12 team, the creators of MiniZinc.
It is implemented in Mercury and is the default solver for the G12 FlatZinc interpreter
[Becket et al., 2008] [NICTA, 2014c].

16

2.4 Solvers

2.4.2 JaCoP
JaCoP stands for Java Constraint Programming solver, and is an open source Java library
for Constraint Programming that is available under the GNU Affero GPL license. It has
been developed since 2001, mainly by Krzysztof Kuchcinski and Radoslaw Szymanek.
The library provides many global constraints in order to make modeling more efficient. It
is used by researchers all around the world and has proven its efficiency by winning silver
medal in the MiniZinc Challenge [Szymanek, 2010b] [Szymanek, 2010a].

2.4.3 Gecode
Gecode is a free constraint solver under the MIT License implemented in C++. It offi-
cially provide a MiniZinc interface, but many external projects provides additional inter-
faces. One of its strengths is that it can perform parallel searches using multiple cores and
this gives the solver great efficiency. The parallel search performs its search by having a
"worker" on one core start the search. Then other "workers" on other cores can come in
an "steal" a part of the search tree to work on and thereby parllelising the search. This has
lead to Gecode winning all the gold medals of the MiniZinc challenge in all 5 consecutive
years between 2008 and 2012. [Schulte et al., 2014]

2.4.4 or-tools
or-tools is an open source constraint solver under the Apache License 2.0 implemented in
C++. or-tools is developed by Google and is part of their Operational Research. As with
Gecode, or-tools also has support for parallel search. However, if this functions the same
way as in Gecode is unclear. In addition to C++ and MiniZinc, or-tools also has interfaces
for Python, Java and C#
[van Omme et al., 2014].

2.4.5 Opturion CPX
Opturion CPX is a constraint solver developed byOpturion Pty Ltd, a commercial outcome
of the G12 project. The same ones that created G12/FD, MiniZinc and FlatZinc. Opturion
CPX is a commercial product and therefore not free. Although, they provide academic
licenses which was used for the thesis. Since it originated from G12, the language for
implementing models is MiniZinc.

Unlike the other solvers used, Opturion CPX is not a pure finite domain solver, but
rather a combination of solving techniques from CP and propositional logic (SAT). This
makes CPX extremely efficient in solving large models. It is said that because Opturion
CPX only generates propositional variables needed for the search, the search is not nec-
essarily slowed down due to large domains. Proof of this can be shown by the number of
awards claimed in the MiniZinc challange [Opturion Pty Ltd, 2013]
[Opturion Pty Ltd, 2014a] [Opturion Pty Ltd, 2014b].

17

2. Approach

2.4.6 Choco3
Choco3 is a finite domain [Fages et al., 2014] constraint solver implemented in Java and
it is free under the BSD license. The development of Choco has been going on since the
early 2000s and Choco3 is the latest version. Although sharing the name, Choco3 is not
the same system as its predecessor Choco2, but a complete new implementation of the
previous system [Charles Prud’homme, 2014].

18

Chapter 3
Case Study

In order to develop and test the model, we have chosen to focus on one representative case
study. In this case study the robot is assembling an enclosed emergency stop button used in
industrial environments, see Figure 3.1. The assembly is presented in [Stolt et al., 2013]
and has an associated video of the assembly1. Please note that this is not the video used to
extract the times for the tasks, so the times may differ from the ones used. Also, only the
assembly of one stop button is performed in this thesis, not several as in this video.

This assembly is composed of 5 components; a top, a button, a nut, a switch and a
bottom. A combination of components that is not the complete assembly we will call a
sub-assembly. The button needs to be inserted in the top and then the nut needs to be
screwed onto the underside of the button in order to secure it to the top. The switch needs
to be mounted in the bottom and, lastly, the top part, with button and nut, needs to be
mounted on the bottom with the switch. In Figure 3.2 we see the top-button-nut assembly
to the right and the bottom-switch assembly to the left. Note that the screws in the figure
are not part of the case study assembly.

The assembly includes objects such as trays and fixtures. A tray is a holder where
components reside until they are needed in the assembly. A fixture is a holder in which
components can be put so that another components can be mounted on it.

21 steps have been identified as needed for the assembly and they are taken from a video
of an existing assembly created by hand. For an illustration of the order of the assembly
steps, see Figure 3.2 The steps are as follows:

Take top Takes the top component from its tray

Put top in fixture Puts the taken top component in a fixture

Take button Takes the button component from its tray

1http://www.youtube.com/watch?v=7JgdbFW5mEg

19

http://www.youtube.com/watch?v=7JgdbFW5mEg

3. Case Study

Figure 3.1: Picture of the button used in the case study. The
screws are not part of the case study assembly

Mount button on top Mounts the taken button component onto the top component in a
fixture

Angle top-button Angles the sub-assembly that is the top and button component, from
here on called top-button, so it can be supported by the other machine. Although
this task is called "angle", this task is a take task. So it first takes the the top-button
and the angles it.

Lift top-button, hold top button Lifts the top-button by holding the button

Lift top-button, support Lifts the top-button by supporting the top from underneath

Turn top-button Turns the top-button by holding the button

Take nut Takes the nut from its tray

Mount nut on top-button, hold Mounts the nut on top-button while holding the button

Mount nut on top-button, mount Mounts the nut on the top-button holding and screw-
ing the nut. The sub-assembly created by the top-button and the nut is here on after
called top-button-nut

Fixate top-button-nut Fixates the top-button-nut using the side of a fixture in order to
get it straight.

Put top-button-nut in top tray The top-button-nut is put in the top tray in order to put it
away for a while to be picked up later.

Take top-button-nut from top tray Takes the top-button-nut from the top tray where it
was previously put.

Take bottom Takes the bottom component from its tray.

Put bottom in fixture Puts the bottom component in a fixture.

20

Take switch Takes the switch component from its tray.

Mount switch in bottom Mounts the switch on the bottom in the fixture the bottom was
put in. The sub-assembly created here will be called bottom-switch.

Take bottom-switch Takes the created bottom-switch from the fixture.

Put bottom-switch on table Puts the bottom-switch on the table.

Mount top-button-nut on bottom-switch Mounts the top-button-nut on the button-switch
on the table.

Most of the steps are self explanatory, but there are a few steps which are quite special
that might need some more explanation. In steps Mount nut on top-button, hold and
Mount nut on top-button, mount the button component has been put in the hole of the
top and needs to secured using the nut component. To do we utilize somthing that is special
for YuMi®, using both arms in order to mount the nut. This is done mid air with one arm
holding the top-button by gripping the button part, having it upside-down compared to how
it was in the fixture, and with the other arm screwing the nut in place. The preparation for
this starts at the end of stepMount button on top, where the sub-assembly top-button was
just created, but the button is only loosely sitting in the hole of the top. The sub-assembly is
angled in task Angle top-button about 45◦ in order to create a gap under the sub-assembly
so the other arm can reach under the sub-assembly and help lift it from the fixture in tasks
Lift top-button, support and Lift top-button, hold top button. Finally the top-button is
rotated by only holding it with one arm in the button part of the sub-assembly and are now
ready for the nut to be mounted. It should be noted that since the operations of lifting the
top-button and mounting the nut takes two arms and we have here split the operations into
two tasks each, one for each arm, the tasks Mount nut on top-button, hold and Mount
nut on top-button, mount needs to be performed at the same time. The same goes for
Lift top-button, support and Lift top-button, hold top button.

As mentioned before, the steps listed are taken from a video of an assembly. This
makes the times used in the case study approximated. First the times where approximated
using seconds as the unit of time. But it showed to be hard to approximate some of the tasks
as they sometimes where under 1 second. Because of this and to get better print outs of
the assembly using SchedPrinter (see appendix B) we multiplied the times we could
estimate well from the video by 5 and approximated the other tasks as well as we could.
This means that the real times for the tasks in the case study, and in the files mentioned in
appendix B, are 1/5 of the time presented. Because of this, comparing the time from the
solvers with the time of the manual assembly is harder. We had to approximate the time of
the manual assembly using the times we have approximated. By analysing the video and
using the approximated times we got a time of 516 time units for the manual assembly.

21

3.Case
Study

Take top Put top in fixture

Take button Mount button on top Angle top-button

Lift top-button, hold

Lift top-button, support

Turn top-button

Mount nut, hold

Mount nut, mount

Take nut

Fixate top-button-nutPut top-button-nut in top tray

Take top-button-nut from top tray

Take switchMount switch

Take bottomPut bottom in fixture

Take bottom-switchPut bottom-switch on table

Mount top-button-nut on bottom-switch

Figure 3.2: The case study assembly

22

Chapter 4
Model

This model is inspired by the work in [Ejenstam, 2014]. That model is centered around
work performed in fixtures. So tasks can easily be labeled tray if it uses a tray, fixture if it
uses a fixture, etc. These are common robot in cell assembly procedures; take a compo-
nent from a tray, put it in a fixture, get another component, mount the component on the
the component in the fixture. But YuMi can perform much more complex tasks than that.
We want to be able to schedule mounting tasks that do not incorporate a fixture. We have
used a similar way of generalizing tasks by labeling them with tray, fixture, etc.

Before going into details, we will give a brief overview of how the scheduling works.
The model presented is centered around tasks. A task is an action that manipulates a com-
ponent in some way and is performed at a certain spacial coordinate in the room. However,
the model does not care about the exact coordinates, but rather the duration it takes to travel
between the coordinates. This time is used to establish how long the move from one task
to the next will take. These moves are present for all tasks. If two tasks are performed at
the same location, the move time will be 0. The times needs to be calculated beforehand
and put in a matrix which is used to generate the input file for the model. The procedure
is described in appendix B.

In the model each robot arm/manipulator is called a machine. Hence, a two-armed
robot is modeled in the same way as two one-armed robots. To compensate for the place-
ment of the machines there are variables that can be set as shown below. The arms can
be equipped with certain tools, different tasks can require different tools and the arms can
during execution change tools. The change of a tool is incorporated in the move from one
task to another. This is part of what the model will try to decide, when in the assembly
should we put the changes between the tools. If a change occurs between two tasks, it will
be shown by the move time being extended with the duration of a tool change. To both
know how long the move between two tasks will be and if there needs to be a tool change,
we need to know which task comes before another task, i.e. the predecessor.

23

4. Model

The goal of the assembly is to assemble components into sub-assemblies and further
into a final assembly. All the intermediate assemblies before the final assembly are called
sub-assemblies. For reasons explained further down, we will in this thesis call components
fed from the outside into the assembly, such as buttons, for primitve components instead
of just components.

The tools used to generate the data used in this thesis are free to use and are described
in appendix B. The complete model file used can be found at https://github.com/
Arclights/Thesis-Tools under Data.

4.1 Variables
The solver takes a description of the robot cell in the form of a MiniZinc data file. The file
describes the number of available arms, tools, trays, fixtures etc. The variables provided by
the data file are called model variables and they will be explained further down among the
static variables together with some additional variables created using themodel variables.

4.1.1 Model Variables
• nbrTasks
• nbrMachines
• nbrTools
• toolNeeded(t)
• nbrComponents
• componentsUsed(t)
• componentsCreated(t)
• taskSubComponents(t)
• taskCompleteSubComponents(t)
• subComponents(c)
• nbrTrays
• tray(t)
• nbrFixtures
• f ixture(t)
• nbrOutputs
• output(t)
• nbrConcurrentGroups
• concurrentTasks(k)
• nbrOrderedGroups
• orderedGroup(k)
• ordered(k, i)
• mounting
• taking
• moving
• putting
• duration(t)

24

https://github.com/Arclights/Thesis-Tools
https://github.com/Arclights/Thesis-Tools

4.1 Variables

task task task task sTask1 sTask2 gTask1 gTask2

Figure 4.1: An example of the tasks and start and goal tasks seen
as an array for an assembly with 4 tasks and 2 machines

• timeMatrixDepth
• timeMatrix3D(t1, t2, k)
• tasksOutO f Range(t)

4.1.2 Static variables
Static variables are variables that have a fixed value, or is a set or list containing fixed
values.

First we define the number of tasks to be scheduled. Each task is identified by a num-
ber from 1 to nbrTasks.

nbrTasks ∈ {1, . . . , 232 − 1} (4.1)

tasks = {1, . . . , nbrTasks} (4.2)

Here we define the machines available for the assembly. A machine in this model is an
arm.

nbrMachines ∈ {1, . . . , 232 − 1} (4.3)

machines = {1, . . . , nbrMachines} (4.4)

As mentioned, this model is based on the technique of using predecessors to determine
which task comes directly before another. This creates the need to have source and a sink
node for each machine. We call them start tasks and goal tasks. As they are not provided
as parameters, the model creates them and give them identifiers with numbers greater than
the tasks to be scheduled. Each machine has to have a start task and a goal task. This
means that there are as many start and goal tasks as there are machines. They are arranged
so that all the start tasks come first and then all the goal tasks. One can easily find the start
task for a machine by nbrTasks + m, where m is the machine in question. It is also easy
to find the matching goal task by nbrTask + m + nbrMachines. If one thinks of the tasks,
start and goal tasks as an array where the index is the number of the task, then it would
look like in Figure 4.1.

startTasks = {nbrTasks + 1, . . . , nbrTasks + nbrMachines} (4.5)

goalTasks = {nbrTasks + nbrMachines + 1, . . . , nbrTasks + nbrMachines × 2} (4.6)

We group together all tasks in one set in order for a more readable notation further down.

allTasks = tasks ∪ startTasks ∪ goalTasks (4.7)

These are the tools that can be fitted on an arm. The model assumes that there is a set of
nbrTools for each machine. I.e. if nbrTools = 2 and nbrMachines = 2, there is a set
of tool 1 and tool 2 for machine 1, and another set of tools 1 and 2 for machine 2. There

25

4. Model

cannot be a combination of tools such as, for example, only tool 1 for machine 1 and a set
of tools 1 and 2 for machine 2.

toolNeeded(t) defines the tool that task t needs.

nbrTools ∈ {1, . . . , 232 − 1} (4.8)

tools = {1, . . . , nbrTools} (4.9)

toolNeeded(t) ∈ tools, t ∈ tasks (4.10)

nbrComponents defines the number of components used. All components need to be
uniquely identified in the assembly, so even if we use 4 identical screws in an assembly,
we need to define all 4 screws. As mentioned before, we distinguish between components
and primitve components. The reason for this is that in the model we do not distinguish
between a primitve component and a sub-assembly, they are the same. And in the model
we call them components. The reason for this is because we found it easier to only have
one sort of object to deal with when it comes to what will be assembled, instead of two.
This means that the final assembly is also a component, i.e. the product produced by the
assembly is a component. In other words, in this thesis primitve components and sub-
assemblies are sub sets of components.

componentsUsed(t) defines the set of components task t uses. A task usually only
uses one component at a time, but uses two in the case of mounting tasks, the mounted
component and the component mounted on.

To know when a sub-assembly is created we set it as compoentCreated for the task
where it is created. This cannot happen anywhere else than in a mount task, although there
is no check in the model for it. If no component is created in a task, componentCreated =
0.

nbrComponents ∈ {1, . . . , 232 − 1} (4.11)

components = {1, . . . , nbrComponents} (4.12)

componentsUsed(t) ⊂ components, t ∈ tasks (4.13)

componentCreated(t) ∈ components ∪ {0}, t ∈ tasks (4.14)

Since components also can be sub-assemblies, it means a component can have subcompo-
nents. These have been grouped in different groups to assist the constraints.

taskSubComponents(t) is the set of components that make up the subcomponents for
the components used in task t. One can think of the subcomponents as layers with the
component on top, call it origin component, and the layer below are the components
that make up that component, and so on. taskSubComponents(t) contains the compo-
nents one layer down, if the component itself is not a primitve component. In that case,
taskSubComponents(t) contains that component instead. See Figure 4.2 for an example.

taskSubComponents(t) ⊂ components, t ∈ tasks (4.15)

To use the layer metaphor again, taskCompleteSubComponents(t) contains all the layers
below the origin component, for all the components in task t, not including the origin
component itself. If the origin component is a primitve component, the set is empty. See
Figure 4.3 for an example.

taskCompleteSubComponents(t) ⊂ components, t ∈ tasks (4.16)

26

4.1 Variables

Task t1

Top-Button-Ring

Top-Button Ring

Task t2

Switch

Switch

Figure 4.2: taskSubComponents for two tasks, t1 and t2. t1 con-
tains a sub-assembly, Top-Button-Nut, and t2 contains a primi-
tive component, Switch. The taskSubComponents for each task
is shown in the dashed box beneath them.

Task t1

Top-Button-Ring

Top-Button

Top Button

Ring

Task t2

Switch

Figure 4.3: taskCompleteSubComponents for two tasks, t1
and t2. One contains a sub-assembly, Top-Button-Nut, and
the other contains a primitive component, Switch. The
taskCompleteSubComponents for each task is shown in the
dashed box beneath them.

27

4. Model

subComponents(c) contains only the the primitve subcomponents for component c, one
layer down. If c is a primitve component or is only made of sub-assemblies, the set is
empty.

subComponents(c) ⊂ components, c ∈ components (4.17)

Trays are used to hold components until we need them in the assembly. It can be that the
tray holds the components from the beginning, as with primitve components fed to the
assembly, or it can be a sub-assembly put there during the assembly to be picked up again
later. Each primitve component has its own tray, so we can have a button tray, a cover tray,
etc.

tray(t) is the tray task t uses. If no tray is used by the task, tray(t) = 0.

nbrTrays ∈ {1, . . . , 232 − 1} (4.18)

trays = {1, . . . , nbrTrays} (4.19)

tray(t) ∈ trays ∪ {0}, t ∈ tasks (4.20)

f ixtures defines the fixtures available in the assembly. A fixture is primarily used to hold
a component in order for another component to be mounted on that component. Although,
as was shown in the case study in chapter 3, the fixture can be used for purposes other than
just holding components.

f ixture(t) is the fixture task t uses. If no fixture is used by the task, f ixture(t) = 0

nbrFixtures ∈ {1, . . . , 232 − 1} (4.21)

f ixtures = {1, . . . , nbrFixtures} (4.22)

f ixture(t) ∈ f ixtures ∪ {0}, t ∈ tasks (4.23)

outputs defines the outputs available. An output is the final stage for a component in an
assembly. After it is put here, it will not be removed. Although, there can still be other
components mounted on the component put on the output. In that respect an output can
be viewed as a fixture, only that the components put there can not be removed.

output(t) is the output used by task t. If no output is used by the task, output(t) = 0.

nbrOutputs ∈ {1, . . . , 232 − 1} (4.24)

outputs = {1, . . . , nbrOutputs} (4.25)

output(t) ∈ outputs ∪ {0}, t ∈ tasks (4.26)

concurrentTasks(k) is the k:th concurrent group among the concurrent groups defined. A
concurrent group is a group of tasks that has to be performed at the same time. Hence, a
concurrent group can not be larger than the amount of machines available, although, there
is no check for it in the model.

nbrConcurrentGroups ∈ {1, . . . , 232 − 1} (4.27)

concurrentGroups = {1, . . . , nbrConcurrentGroups} (4.28)

concurrentTasks(k) ⊂ tasks, k ∈ concurrentGroups (4.29)

28

4.1 Variables

orderedGroup(k) is the k:th ordered group specified, there are nbrOrderedGroups or-
dered groups. An ordered group is an array of tasks that have to come in a very specific
order. An example of this could be if an assembly has many move tasks that need to be
performed one after another in order to make some intricate movement. As seen in section
4.2, we can reason about the relation between tasks if they use a certain component and
are a certain kind of action. But we cannot reason about two move tasks, there is no way
to tell which should come before the other based on the component they use.

orderedGroup(k) is an array and the tasks in it will be scheduled in the order they
come in the array. All the tasks in the group will be performed on the same machine.

If one wants to access a certain task in a group, one can use ordered(k, i) to access the
i:th element of the k:th group.

orderedSet is the set of all tasks included in some ordered group.

nbrOrderedGroups ∈ {1, . . . , 232 − 1} (4.30)

orderedGroups = {1, . . . , nbrOrderedGroups} (4.31)

orderedGroup(k) ⊂ tasks, k ∈ orderedGroups (4.32)

ordered(k, i) ∈ tasks, i ∈ {1, . . . , |orderedGroup(k)|}, k ∈ orderedGroups (4.33)

orderedSet =
⋃

∀k∈orderedGroups

orderedGroup(k), orderedSet ⊂ tasks (4.34)

tray(t), output(t) and f ixture(t) cannot be set at the same time for a task, since that would
mean that the task is performed at two locations at the same time, although this is not
checked by the model. The only restriction for what kind of tasks can be performed using
these containers is that outputs cannot be used by take tasks and trays cannot be used by
a mount tasks. If an assembly contains these combinations, the output or tray should be
changed to a fixture.

Each task performed can be classified as either a mount task, a take task, a move task
or a put task, but only as one of them.

Taking A task that picks up a component is a taking task. The location of the component
is specified by either a tray or a fixture, but not an output since there is no reason to
pick up something that has been placed on an output.

Mounting A task that mounts a component on another component is a mounting task.
This assumes that the component tomount is picked up and in the hand. The location
of the component to mount on is defined by either a fixture or an output.

Putting A task that puts a component somewhere is a putting task. Where a component
is put is defined by either a fixture, a tray or an output.

Moving A task that moves a component from one place to another is a moving task. The
model already puts in moves between tasks and if, for example, the first task is a
take task and the second task is a put task, the move in between them is essentially a
move that moves a component from one place to the another. Although, sometimes
it can be handy to define a task that explicitly moves a component. An example of
that can be if one wants to spin a component around. Then one can specify a take
task in order to pick up the component, a move task to turn it, and a put task to put

29

4. Model

9
7

12
4

85
3

6

1
8

9

8
1

5

6
2

4

9
7

1

5
6

8

2
3

9

Move to tasks

M
ov
e
fro

m
ta
sk
s

Tran
sitio

ns

Figure 4.4: The timeMatrix3D

the component back. In this case there will be three moves of the component; one
to move from the take task to the move task, the move task itself, and a move from
the move task to the put task.

mounting ⊂ tasks (4.35)

taking ⊂ tasks (4.36)

moving ⊂ tasks (4.37)

putting ⊂ tasks (4.38)

putting(c),mounting(c), taking(c) andmoving(c) are subsets of respective set above based
on the component involved.

putting(c) = {t : t ∈ putting, c ∈ componentsUsed(t)}, c ∈ components (4.39)

mounting(c) = {t : t ∈ mounting, c ∈ componentsUsed(t)}, c ∈ components (4.40)

taking(c = {t : t ∈ taking, c ∈ componentsUsed(t)}, c ∈ components (4.41)

moving(c) = {t : t ∈ moving, c ∈ componentsUsed(t)}, c ∈ components (4.42)

duration(t) is simply the duration of task t.

duration(t) ∈ {0, . . . , 232 − 1}, t ∈ tasks (4.43)

For the model to decide how long a move between two tasks should take and whether there
should be a change of tool in between, a matrix is used, timeMatrix3D, see Figure 4.4.
This is a 3-dimensional matrix and contains the times for moving between all the tasks
depending on what tool change occurs. On its y-axis it has the tasks to move from, on the
x-axis the tasks to move to, and on the z-axis the different transitions between tools that
can occur. There are nbrMachines more rows on the y-axis than there are columns on
the x-axis. This is because we also account for the starting position of the machines, so
each start task has move times associated with them for moving to the other tasks. As the
matrix is constructed the way it is, there is no move times between start tasks.

30

4.1 Variables

1

2

3

1

2

3

1

2

3

1

2

3

Figure 4.5: All the transitions between the tool states to the left.
The reduced number of transitions between the tool states to the
right

timeMatrixDepth is the length of the z-axis, i.e. the depth of the matrix. It should
be said that the reason for using the method described below is to reduce the size of the
matrix and avoid redundancy.

What we mean with ”different transitions” is easiest shown through an example. Let
us say we have 3 tools available for each machine. We consider each tool state as a node
in a graph, see Figure 4.5, with the old tool state to the left and the new tool state to the
right. Between them we can draw the different ways we can change state. The we start to
consider which ones we actually need. We can change from tool 1 to tool 1, which is not
changing tool at all. The same can be done for tool 2, but not changing tool here costs just
as much time as with tool 1. So the change from tool 1 to itself covers not changing tool
for this tool, as well as for all the other tools, thereby we only need to keep track of one of
these changes. We can also change from tool 1 to tool 2. And we can change back from 2
to 1, although here in the model we assume the change from one tool to another takes the
same time the other way around as well. Therefore, we consider the change from tool 1 to
tool 2 the same as from tool 2 to tool 1, and only keep track of one of them. If we keep
considering the rest of the transitions this way, we will end up with a reduced number of
transitions, in our case 4, see Figure 4.5

It is clear that, timeMatrixDepth obeys the equation (4.44).

timeMatrixDepth =
n2 − n + 2

2
, n = nbrTools (4.44)

timeMatrix3D(t(f rom), t(to), k) ∈ {0, . . . , 232 − 1},
t(f rom) ∈ tasks ∪ startTasks,

t(to) ∈ tasks, k ∈ {0, . . . , timeMatrixDepth}
(4.45)

Depending on the physical layout of the assembly, sometimes not all the tasks can be done
by all machines. It could be that the machines would collide or simply that the spatial
location is out of reach for the machine. In those cases we can specify that tasks are out
of hand for a specific machine. This is the only time when we distinguish between the
two machines and connect the machine in the model model with the machine in the real
world. In all other aspects the machines in the model are identical and have the potential
to perform the same work.

taskOutO f Range(m) ⊂ tasks, m ∈ machines (4.46)

31

4. Model

4.1.3 Decision variables
Decision variables are variables that can take many values. It is these values that the solver
sets out to determine in order to solve the problem.
The model has to decide which task uses which machine.

usingMachine(t) ∈ machines, t ∈ tasks (4.47)

Each task has a predecessor that tells the model what other task comes right before the
task in question on the same machine.

pred(t) ∈ allTasks, t ∈ allTasks (4.48)

In order to create an upper limit for variables dealing with time, we create a rough upper
limit of the complete assembly. It simply takes the longest duration for a task and the
longest duration for a move between tasks and assert it for all the tasks.

maxE = (max({duration(t) : t ∈ tasks}) +
max({timeMatrix3D(t1, t2, k) :

∀t1 ∈ tasks ∪ startTasks,
∀t2 ∈ tasks,
∀k ∈ {0, . . . , timeMatrixDepth}}) × nbrTasks

(4.49)

Each task has to have a start time. We set it to be anywhere between time 0 and the
maximum possible end calculated before.

To simplify notation we also introduce one more variable called end(t). It is the time
when task t ends and is simply the sum of the start and the duration of the task.

start(t) ∈ {0, . . . ,maxE}, t ∈ allTasks (4.50)

end(t) = start(t) + duration(t), t ∈ allTasks (4.51)
As mentioned before, each task has a move time connected to it since it takes a certain
amount of time to move from one task to another. Since this time depends on both what
task comes before it and what tools are needed for both of the tasks, the duration for the
move is a decision variable as opposed to the duration for the task itself.

moveDuration(t) ∈ {0, . . . ,maxE}, t ∈ allTasks (4.52)

moveStart(t) ∈ {0, . . . ,maxE}, t ∈ allTasks (4.53)
moveEnd(t) = moveStart(t) + moveDuration(t), t ∈ allTasks (4.54)

Since the goal of the assembly is to complete the assembly in as little time as possible, we
set up a variable for it, makespan. It is this variable the solver will try to minimize.

makespan ∈ {0, . . . ,maxE} (4.55)

The last variable is for determine what tool should be used for a task. With toolNeeded
we specify what tool is needed for the specific task. But we do not need to specify a tool
if the task does not need any specific tool. That is why we need to determine what tool
should be used for those tasks. Leaving the option open by not specifying any particular
tool opens up for optimisations since it could mean we can avoid costly tool changes.

toolUsed(t) ∈ tools, t ∈ allTasks (4.56)

32

4.2 Constraints

4.2 Constraints
In this section some of the most important constraints for the model will be described. For
a full list of used constraints see Appendix A, while for the MiniZinc code see Appendix B.

makespan should represent the total time of the whole assembly. That means it should
be equal to the largest end time among all the tasks. We can enforce that by limiting the
end time for each task to be less or equal to the makespan.

(∀t ∈ tasks) end(t) ≤ makespan (4.57)

Start and goal tasks are special tasks since they act as source and sink nodes. This means
they never get scheduled in time as ordinary tasks, we set them to all start at time 0 and
they do not have a duration variable, since they do not take up any time. We also assign
them to machines so each start and goal task pair have their own machine from the start.

(∀t ∈ startTasks ∪ goalTasks) start(t) = 0 (4.58)

(∀m ∈ machines) usingMachine(nbrTasks + m) = m
∧ usingMachine(nbrTasks + nbrMachines + m) = m

(4.59)

We enforce the tasksOutO f Range(m) variables by simply saying that the tasks in the vari-
able can not be assigned the machine m.

(∀m ∈ machines) (∀t ∈ tasksOutO f Range(m)) usingMachine(t) 6= m (4.60)

As said before, the toolNeeded contains what tool is needed for a task. We need to translate
it into what tool is used. It is done by simply taking the value from toolNeeded and
assigning it to toolUsed for the tasks where a tool is specified, i.e. toolNeeded is not 0.

(∀t ∈ tasks, toolNeeded(t) 6= 0) toolUsed(t) = toolNeeded(t) (4.61)

4.2.1 Precedences
These constraints deals with the order in time in which the tasks have to come.
A very fundamental part of the relation between a task and the move to it is that we cannot
start a task before we have moved to it.

(∀t ∈ tasks) Start(t) ≥ moveEnd(t) (4.62)

If we want to mount two components together, we first have to put the first component in
a fixture before we can mount the other component on it. Hence, the put task has to end
before we can start with the mount task.

(∀comp ∈ components)
(∀mountTask ∈ mounting(comp))

(∀putTask ∈ putting(comp))
end(putTask) ≤ moveStart(mountTask)

(4.63)

33

4. Model

In the case mentioned above we also have take tasks for both components and they must
both be performed before we can start mounting anything.

(∀comp ∈ components)
(∀mountTask ∈ mounting(comp)),

(∀takeTask ∈ taking(comp)),
end(takeTask) ≤ moveStart(mountTask)

(4.64)

Say we want to put a component away for a while and pick it up again later. Then we need
to do that in a tray. This is the only time we put anything in a tray, usually we just take
components from them. So we can apply the (4.65) constraint which says that if there is a
take and a put on the same tray, then the take has to happen after the put.

(∀comp ∈ components)
(∀putTask ∈ putting(comp), tray(putTask) > 0)

(∀takeTask ∈ taking(comp), tray(putTask) = tray(takeTask))
end(putTask) ≤ moveStart(takeTask)

(4.65)

When there is a put task and a take task on a fixture where a sub-component of the com-
ponent being taken is the component being put, the put task has to happen before the take
task.

(∀ f ∈ f ixtures)
(∀putTask ∈ putting, f ixture(putTask) = f)

(∀takeTask ∈ taking, f ixture(takeTask) = f ∧
componentsUsed(putTask) ⊂ taskSubComponents(takeTask))

end(putTask) ≤ moveStart(takeTask),

(4.66)

Since we can do many sub-assemblies on the same fixture, we need to ensure that if a
component is put in the fixture, there cannot be a component from another sub-assembly
put or mounted there before the sub-assembly is done.

We can observe that the task of doing a sub-assembly begins with a put of a component
in a fixture and a take of a component from the same fixture. The taken component will
have the put component as a sub-component. With this knowledgewe start by extracting all
put tasks for a fixture. Then we extract all the corresponding take tasks, i.e. the take tasks
for that fixture where the component used in the put task is among the sub-components
for the component in the take task. Although, there is the case where we construct a
component by first doing some mounting, then we take it up to maybe turn it or fixate it,
and then put it back in the fixture for further mounting. In this case we will get two takes
matching with the first put. So we need to identify which take task is the first one. We do
this by choosing the take task with the least amount of subcomponents.

Now we have a 1:1 matching of take tasks and put tasks. To ensure the time between
when a put task occurs and when the take task occurs, we apply a cumulative constraint
over that time and the limit of the fixture is always 1.

When [and] are used together with : as below, it means they are array generators.
What is left of the : is what is put in the array and what is right of it is the condition. A

34

4.2 Constraints

case here which might be confusing is the last argument to the cumulative constraint. It
simply states that it is an array of ones with the same length as puts.

(∀ f ∈ f ixtures)
puts = [put : put ∈ putting, f ixture(put) = f],
takes = [min({take : take ∈ taking, f ixture(take) = f ,

componentsUsed(put) ⊂ taskCompleteSubComponent(take)}) :
put ∈ puts],

cumulative([moveStart(task) : task ∈ puts],
[abs(end(takes(i)) − moveStart(puts(i))) : i ∈ {1, . . . , |puts|}],
[1 : i ∈ {1, . . . , |puts|}],
1)

(4.67)
The fundamental property of the tasks in a concurrent group is that they need to execute
at the same time on different machines. We ensure this with (4.68).

(∀group ∈ {1, . . . , nbrConcurrentGroups})
(∀t1 ∈ concurrentTasks(group))
(∀t2 ∈ concurrentTasks(group) \ {t1})

start(t1) = start(t2) ∧
usingMachine(t1) 6= usingMachine(t2),

(4.68)

A very logical observation we can do is that components cannot be used before they are
created. This is enforced in (4.69).

(∀t1 ∈ tasks, componentCreated(t1) > 0)
(∀t2 ∈ tasks, componentCreated(t1) ∈ componentUsed(t2))

moveStart(t2) ≥ end(t1)
(4.69)

A similar observation as for (4.69) is that we have to perform all tasks with a component
before it is part of a sub-assembly. Therefore we can say that all tasks need to have an end
time smaller than the start time of the tasks having the tasks component as sub-component.

(∀precTask ∈ tasks)
(∀t ∈ tasks, precTask 6= t,

componentUsed(precTask) ∪ taskCompleteSubComponents(t)
⊂ taskCompleteSubComponents(t),
componentsUsed(precTask) ∪ taskCompleteSubComponents(t) 6= ∅)

end(precTask) ≤ moveStart(t),
(4.70)

Trays, fixtures and outputs can only be used one at a time. We can rephrase this into saying
that tasks using trays cannot overlap, tasks using fixtures cannot overlap, etc. We ensure

35

4. Model

this by applying the cumulative constraint through (4.71), (4.72) and (4.73).

(∀ f ∈ f ixtures)
f ixtureTasks = [t : t ∈ tasks, f ixture(t) = f],
cumulative([start(t) : t ∈ f ixtureTasks],

[duration(t) : t ∈ f ixtureTasks],
[1 : t ∈ f ixtureTasks],
1)

(4.71)

(∀tr ∈ trays)
trayTasks = [t : t ∈ tasks, tray(t) = tr],
cumulative([start(t) : t ∈ trayTasks],

[duration(t) : t ∈ trayTasks],
[1 : t ∈ trayTasks],
1)

(4.72)

(∀o ∈ outputs)
outputTasks = [t : t ∈ tasks, output(t) = o],
cumulative([start(t) : t ∈ outputTasks],

[duration(t) : t ∈ outputTasks],
[1 : t ∈ outputTasks],
1)

(4.73)

4.2.2 Predecessors
All tasks need to have a predecessor that tells the model what task comes directly before it
on the same machine. This means that a task can only have one predecessor. It can be seen
as the way a machine needs to travel through its tasks in order to complete the assembly,
where we have a start task at the start and a goal task at the end. If we were to connect
the start and the goal task we wold have a circuit, hence we could view each machine
as a circuit. And we could model each machine as a circuit, but then we would need to
synchronise all the sub-circuits and ensure that tasks only appeared in one sub-circuit.
This would make for quite a few constraints and would make the model more complex.
Instead we model all the machines as one circuit and we tie together the goal task of one
sub-circuit with the start task of the next for each sub-circuit, to form a large circuit. Then
we tie together the goal task of the last sub-circuit with the start task of the first, see (4.75).
Lastly we can apply the circuit constraint over all pred variables.

The attentive reader might have observed that the nodes in the circuit constraint
have successors and not predecessors. Even if it is the wrong way around, it does not
matter if the constraint sees the predecessor variable as a successor or a predecessor, it
will form a circuit anyway.

(∀startTask ∈ startTasks \ {nbrTasks + 1})
pred(startTask) = startTask + nbrMachines − 1

(4.74)

36

4.2 Constraints

pred(nbrTasks + 1) = nbrTasks + nbrMachines × 2 (4.75)

circuit({pred(t) : ∀t ∈ tasks}) (4.76)

A fundamental part of a predecessor is that it is the task directly before the task in question,
therefore the predecessor has to end before the task starts, or more specific, even before
the move to the task.

(∀t ∈ tasks) moveStart(t) ≥ end(pred(t)) (4.77)

Another fundamental part is that a predecessor is a task performed on the same machine
as the task in question. This is enforced by (4.78).

(∀t ∈ tasks ∪ goalTasks)
usingMachine(t) = usingMachine(pred(t))

(4.78)

In a sense, the ordered groups are forced predecessors and hence we enforce that by simply
by making a task predecessor to the next task in the array.

(∀k ∈ orderedGroups)
(∀i ∈ {1, . . . , |orderedGroup(k)|−1})
pred(ordered(k, i + 1)) = ordered(k, i)

(4.79)

The following two constraints can seem very specific, but are essential to the scheduling
in our model.

In order to properly connect the taking of a component and the mounting of one, we need
to ensure that if there is no put task, the take task has to be the predecessor of the mount
task.

But we must also ensure the following: The put cannot be on the same fixture or output
as the mount. This is because a component that will be mounted in a fixture or output
will always first be picked up, then put in either a fixture or output, then mounted with
with another component. The component mounted on will also be part of the mounting
task. Therefore, if the component is the one being mounted, there will be two tasks; one
where the component is taken, and one where the component is mounted. And that is
no problem, the constraint applies. But if the component is the one being mounted on,
there will be three tasks; one where the component is taken, one where the component
is put in a fixture or output, and one where it is mounted on. In this case the take task
cannot be the predecessor of the mount task, since the component first must be put in the
fixture or output, and then the other take task, where the component being mounted on this
component is taken, should be the predecessor of the mount task. Hence we ensure there
are no put tasks working on the same fixture or output as the mount task.

The final case we must consider is when there are move tasks involved. There can be
a case of a take task of a component, then a couple of move tasks, and lastly a mount task.
In this case, the take task cannot be the predecessor of the mount task, and this constraint
does not apply. If we applied it, it would contradict the (4.79) constraint. So we need to

37

4. Model

ensure that the take task is not in an ordered group either.

(∀c ∈ components)
(∀mountTask ∈ mounting(c))

puts = {p : p ∈ putting(c),
(f ixture(p) > 0 ∧ f ixture(p) = f ixture(mountTask))
∨ (output(p) > 0 ∧ output(p) = output(mountTask))},

(∀takeTask ∈ taking(c), takeTask /∈ orderedSet, puts = ∅)
pred(mountTask) = takeTask

(4.80)

As with (4.80), in order to ensure the relation between when a component is picked up and
when it is put that the take task is the predecessor of the put task, i.e. we must first pick up
the components before we put it down, and there cannot be anyu other task in between.

Also as with (4.80), there are a few cases to consider. If we want to put a component
away for a while in order to pick it up later, there will be a put task and a take task on that
component. But in this case the take task cannot come before the put task, since we need
to put it down before we can pick it up. So we put in the clause that this constraint does
not apply if the put task is on a tray.

We also need to consider the occurrence of move tasks. If there is a move task involved
between the take and put, the take task cannot be the predecessor of the put task.

(∀c ∈ components, moving(c) = ∅)
(∀putTask ∈ putting(c), tray(putTask) = 0)

(∀takeTask ∈ taking(c))
pred(putTask) = takeTask

(4.81)

(4.82) is the constraint that decides if there should be a tool change or not between two
tasks. It first calculates what tool state transition will occur between the two tasks, k, by
taking the difference between what tool is used in the task and its predecessor. If they use
the same tool, no transition needs to occur, i.e. no tool change needed and the difference
would be 0. We add 1 to k since the indexes start at 1 inMiniZinc and a result of 0 should
take constraint to the first index dept-wise in the timeMatrix3D.

(∀t ∈ tasks)
k = abs(toolUsed(t) − toolUsed(pred(t))) + 1,

moveDuration(t) = timeMatrix3D(pred(t), t, k)
(4.82)

38

4.3 Filter

4.3 Filter
In [Vilím and Barták, 2002b] [Vilím, 2002] [Vilím and Barták, 2002a] Vilím shows that
filtering the domains of variables when, as in our case, using sequence dependent setup
times can have a great effect on the runtime. Here we present a set of filters by using
constraints in order to prune the domains of the variables.

4.3.1 Temporal filter
The largest domains in the model are the domains for the variables dealing with time, i.e.
the temporal variables. Reducing those has the potential to cut much of the processing
time.

We start with defining two variables, maxMoveDurs(t) and minMoveDurs(t). These con-
tain the maximum duration and the minimum duration, respectively, for each task taken
from the time matrix.

(∀t ∈ tasks)
maxMoveDurs(t) = max({timeMatrix3D(t, j, k) :

∀ j ∈ tasks,
∀k ∈ {1, . . . , timeMatrixDepth},
j 6= t})

(4.83)

(∀t ∈ tasks)
minMoveDurs(t) = min({timeMatrix3D(t, j, k) :

∀ j ∈ tasks,
∀k ∈ {1, . . . , timeMatrixDepth},
j 6= t})

(4.84)

By using the newly created variables we can -*define yet another two. These define a new
maximum for the total time of the assembly, maxEnd. It is similar to maxE in equation
(4.49), although much more thorough in the filtering. These variables also define a new
minimum for the total time of the assembly, it was earlier ju set to 0.

To calculate the maximum end we look at the worst case scenario for the assembly. The
worst case would be if all the tasks had to be done one after the other, one at a time, on the
same machine and they would take the longest time, according to the time matrix, to move
between them. See Figure 4.6. This can simply be defined by summing the durations and
maximum move durations for all the tasks.

To calculate the minimum end we look at the best case scenario. The best case scenario
is if all the tasks can be evenly scheduled over all machines, taking the shortest, according
to the time matrix, time to move between them. See Figure 4.7. We can define this by
summing up the durations and minimum move durations for all the task end divide the
sum with the number of machines available. If the tasks can be perfectly evenly scheduled
across all the machines, the total assembly time will be equal to minEnd, if they cannot

39

4. Model

m1 t1 m2 t2 m3 t3

Figure 4.6: The worst case assembly

m1 t1

m2 t2

m3 t3

Figure 4.7: The best case assembly

minEnd will always be smaller than the total assembly time.

maxEnd =
∑
∀t∈tasks

duration(t) + maxMoveDurs(t) (4.85)

minEnd =
∑
∀t∈tasks duration(t) + minMoveDurs(t)

nbrMachines
(4.86)

We can now start using maxEnd and minEnd to filter variables

We set and upper bound for the start of a task by setting it to happen at latest the du-
ration of the task time units before the maxEnd, since the task has to have time to execute
before the end.

To set a lower bound for the start of a task, we simply reason that the move to the task
can start at its earliest at time 0. Therefore, we limit the task to start earliest direct after
the minimum move duration to it.

The difference between (4.87) and (4.88) is that the upper limit can be set for all sorts
of tasks, even the start and goal tasks, but the lower limit cannot be set for start and goal
tasks. This is simply because the start and goal tasks do not have any move times to them
since they are source and sink nodes.

(∀t ∈ allTasks)
start(t) ≤ maxEnd − duration(t)

(4.87)

(∀t ∈ Tasks)
start(t) ≥ minMoveDurs(t)

(4.88)

40

4.3 Filter

In order to limit the move start to a task we use the same reasoning as with start. But
now we have to account for that there comes a task after the move and a duration of the
move itself. So we have to subtract the duration of the task and the duration of the move.
Since we do not know the exact length of the move, we have to use the value we know the
duration can not be lower than, which is minMoveDuration.

(∀t ∈ tasks) moveStart(t) ≤ maxEnd − (duration(t) + minMoveDurs(t)) (4.89)

We have already calculated the limits for the whole assembly, maxEnd and minEnd. Now
we just enforce them on the makespan.

makeSpan ≤ maxEnd∧
makespan ≥ minEnd

(4.90)

The first thing that has to happen to a component in the assembly is that is has to be picked
up. So since the assembly starts out with empty machines the first thing that has to happen,
with the exception of a tool change, is a take task. Therefore, we can limit that start of the
tasks not being take tasks to happen at earliest after the task with the smallest sum of
duration and minimum move duration.

(∀t ∈ tasks \ taking)
moveStart(t) ≥ min({duration(tt) + minMoveDurs(tt) : ∀tt ∈ taking})

(4.91)

The start of a task can be even further limited by analysing the components used by the
task and how that relates to what components are created by other tasks.

Lets take task t as an example. We start by getting all tasks that create the components
that are used in task t, prevTasks. These tasks have to come before task t since the com-
ponent that they create cannot be used before they are created. If the number of machines
is greater than or equal to the number of task preceding task t, then the best scheduling
that can be done is to do all tasks in parallel. That means that task t can start at earliest
after the one of the preceding tasks taking the longest to complete.

(∀t ∈ tasks)
prevTasks = {task : task ∈ tasks,

componentCreated(task) ∈ componentsUsed(t)},
nbrMachines ≥ |prevTasks|,

0 < |prevTasks|,
start(t) ≥ max({duration(pt) + minMoveDurs(pt) : ∀pt ∈ prevTasks})

(4.92)

But if the number of machines is fewer than the number of preceding tasks, the best we
can do is divide them as equally as possible over the machines. This is the same reasoning
as when we calculated minEnd in equation (4.86).

(∀t ∈ tasks)
prevTasks(t) = {task : task ∈ tasks,

componentCreated(task) ∈ componentsUsed(t)},
nbrMachines < |prevTasks(t)|,

start(t) ≥

(∑
∀pt∈prevTasks(t) duration(pt) + minMoveDurs(pt)

)
nbrMachines

(4.93)

41

4. Model

To set the upper limit for the start of tasks we use a little bit different strategy.
We know that if a component c has been mounted on another component, c cannot be

used again on its own. Therefore, a task that uses component c has to come before the
tasks that uses a component in which c is a part of.

We use the same strategy as in (4.92) and look at the best case scenario where the tasks
are performed concurrently on all machines. The difference here from (4.92) is that here
we have to look at the maximum end of the assembly and subtract the successor task which
takes the longest to perform and the duration of the task in question.

(∀t ∈ tasks)
succTasks(t) = {task : task ∈ tasks,
componentsUsed(t) ⊂ taskCompleteSubComponent(task)},
nbrMachines ≥ |succTasks(t)|,

0 < |succTasks(t)|,
start(t) ≤ maxEnd − max({duration(st) + minMoveDurs(st) :

∀st ∈ succTasks(t)}) − duration(t)

(4.94)

As with (4.93) we look at the worst case scenario.

(∀t ∈ tasks)
succTasks = {task : task ∈ tasks,
componentsUsed(t) ⊂ taskCompleteSubComponent(task)},
nbrMachines ≤ |succTasks|,

start(t) ≤ maxEnd −
(∑
∀st∈succTasks duration(st) + minMoveDurs(st)

)
nbrMachines

− duration(t)

(4.95)

4.3.2 Predecessor filter
Since the predecessors are searched by the solver before searching the start variables, re-
ducing their domains has the potential to help reduce the total runtime considerably.

In our model the tools can only pick up one component at a time. This also means that if
a task puts down a component or mounts one, there cannot be a mount or put task directly
afterwards.

(∀t1,∀t2 ∈ taking) pred(t1) 6= t2 (4.96)

(∀t1,∀t2 ∈ putting∪ mounting) pred(t1) 6= t2 (4.97)

42

4.3 Filter

Using a similar reasoning as in (4.94) and (4.95), we can find the tasks that cannot be the
predecessor of task t. We look at what tasks uses the components that has the components
used in t as sub-components. This means that those components cannot come before task
t, and therefore cannot be predecessors of t.

(∀t ∈ tasks)
nonPredecessors(t) = {t2 : t2 ∈ tasks,
componentsUsed(t) ⊂ taskCompleteSubComponents(t2) ∨
componentsUsed(t) ⊂ subComponents(componentCreated(t2))}
(∀nonPred ∈ nonPredecessors(t))
pred(t) 6= nonPred

(4.98)

As mentioned before, a component has to be picked up first before it can be manipulate
in any way and the assembly has to start with a take task. Therefore, we can say that an
assembly cannot start with neither a put task nor a mount task.

The same could be said for move tasks, but since they need to be in an ordered group,
a constraint like these would make no difference.

(∀startTask ∈ startTasks)
(∀putTask ∈ putting)
pred(putTask) 6= startTask

(4.99)

(∀startTask ∈ startTasks)
(∀mountTask ∈ mounting)
pred(mountTask) 6= startTask

(4.100)

The same way we can observe that an assemble needs to start with a take task, we can ob-
serve that an assembly cannot end with a take task. There is no component in the assembly
that does not end up in the finished assembly, therefore the assembly cannot end with a
machine holding a component, since it needs to be on the output in some way.

(∀goalTask ∈ goalTasks)
(∀takeTask ∈ taking)
pred(goalTask) 6= takeTask

(4.101)

Continuing the reasoning around what tasks can come first and not we can expand with
which tasks have to come last. We cannot limit the last task on each arm to be on an
output, because it does not necessarily need to be that. Although, among the last tasks in
the assembly there needs to be a task on an output. We can easily check that by placing a
constraint over the pred variables for the goal tasks. This is what (4.102) says.

We can do the same reasoning with what needs to come first in the assembly. As we
stated before, a take task has to be the first task in the assembly. And as with the last tasks
in the assembly, the first task of a machine does not have to be a take task, but there needs
to be at least one take task among the first tasks. We ensure this in (4.103) by placing a

43

4. Model

constraint over the pred variables for the take tasks.

counts = [i : task ∈ outputTasks, i ∈ {0, 1}],
outputTasks = [task : task ∈ tasks, output(task) > 0],

goalPreds = [pred(task) : task ∈ goalTasks],
global_cardinality(goalPreds, outputTasks, counts)

∧
∑

counts > 0

(4.102)

counts = [i : ∀task ∈ startTasks, i ∈ {0, 1}],
takePreds = [pred(task) : ∀task ∈ taking],

startTasksArray = [task : task ∈ startTasks],
global_cardinality(takePreds, startTasks, counts)

∧
∑

counts > 0

(4.103)

4.4 Heuristics
The search was declared to go over the variables through a sequential search
[Marriott and Stuckey, 2014] in the following order:

1. The usingMachine variables

2. The predecessor variables for take tasks that are not on an output

3. The predecessor variables for put tasks that are not on an output

4. The predecessor variables for mount tasks that are not on an output

5. The predecessor variables for tasks that are on an output

6. The predecessor variables in general

7. The start times of the tasks

The branching heuristics chosen in the searches 1-6 above was indomain_median.
This means the median value of the domain will be chosen to branch on. This is because
there is no numerical relationship between the value the variables can take and the order in
which they should come. If constructing the MiniZinc data file using AssemblyConv,
see appendix B, the values of the variables depends on the order in which entities are
declared. For search 7 above, the heuristic is indomain_min, which means the smallest
value of the domain will be chosen to branch on. This heuristic is chosen since the values
of the start variables are the ones we want to minimize, so we search from the bottom up.

44

Chapter 5
Evaluation

Here we will present the evaluation of the model. The focus of the test will be on retrieving
the optimal solution from the solvers. This is when the solver has reached a solution and
ended the search, thereby concluding that the last reached conclusion was the optimal.
Each solver was given a time limit of 4 hours to complete the search as it seemed long
enough to have a high probability of retrieving a result from all the solver, but short enough
to be manageable to test. But as can be seen in section 5.2, this was not always the case.
In the case where the solvers could produce a result in the given time frame the solvers
where run 10 times and the average time was used. But the optimal solution is maybe not
always the goal of the assembly or not feasible in any reasonable time. The case could be
such that one has a certain amount of time at hand and want to get a good assembly in that
amount of time. Therefore we will also present information for the solvers that did not end
the search within the given time but produced solutions, some even the optimal.

Originally, the 1.6 version of MiniZinc was used. But during the making of the model
version 2.0 was released. According to NICTA, the 2.0 version is a complete rewrite of
the MiniZinc-to-FlatZinc comipiler but that the resulting FlatZinc file is compatile with
1.6 solvers, and therefore no changes should be required for the solvers [NICTA, 2014a].
We therefore thought it could be of interest to compare how the 2.0 version performed
compare to the 1.6 version. During the test phase of the thesis version 2.0.1 was released
that should fix some bugs in 2.0 [NICTA, 2014b]. Therefore, version 2.0.1 is used.

Apart frommeasuring the time, we also analysed the resulting FlatZinc file to see if we
could see any correlation between the running time and the data run. The data extracted
was the number of integer and boolean variables, the number of arrays, the number of
constraints and the percentage of constraints that were reified. We measure the reifieds
since even if we try to avoid direct reifieds in the MiniZinc code, the FlatZinc could still
contain reified constraints depending on how it translates the MiniZinc code.

In order to see if the filtering we introduced made any difference, we also measure the
different combinations of the filters and the absence of filters. Because of all the combi-
nations of parameters we want to test, there will be 8 test cases for each solver.

45

5. Evaluation

What we want to achieve is to get the solver to reach the optimal solution and conclude
that it is the optimal solution, that is what we mean when we say result. And it should be
noted that the result is only analysed in comparison to the handmade assembly, so it will
not be tested on an actual physical robot.

5.1 The Setup
The computer used to run the solvers was equipped with an Intel i7 2.8GHz quad core
CPU, 8GB DDR3 1333MHz memory and running Mageia 4.

The versions of each of the solvers are presented in the table below.

Solver Version
G12/FD 1.6.0
JaCoP 4.2
Gecode 4.3.2
or-tools Rev. 3782
Opturion CPX 1.0.2

Chcoco 3 Solver: 3.2.2
Parser: 3.2.0

Note that for Choco3, the solver and parser has different version numbers. This is because
they are not distributed together and therefore have slightly different version numbers. It
is possible to specify the number of cores used by the solver for Gecode, or-tools and
Choco3. Hence, these three were given access to all 4 cores when running.

The versions of the solvers used are the latest as of December 2014.

5.2 The results
The time for the assembly reached by the solvers as the optimal was 512 time units. This is
the time we will use as the optimal when we henceforth talk about which solvers reached
the optimal but did not finish the search.

The results presented in the tables 5.1 to 5.6 are the runtimes of the solvers and the
analysis of the FlatZinc files. The tests are grouped into 4 categories of runs; with prede-
cessor filter and temporal filter, with only predecessor filter, with only temporal filter and
with no filter at all. In each of these groups there are two groups, one for each version we
tests, i.e. MiniZinc 1.6 and 2.0.1.

For the solvers that did not end their search in the 4 hour time limit but still produced
results we present the number of solutions reached in the 4 hours, # solutions. When a
value is marked with a asterisk(*) it means the solver also reached the optimal solution in
that time.

In the tables presented the filter names has been shortened to Pred and Temp. Pred
means the predecessor filter and Temp means the temporal filter. We will also use two
additional notations in the rime rows; "-" and "!". "-" means that the run did not complete

46

5.2 The results

within the given time frame. "!" means that the solver raised an error when reading the
FlatZinc file.

The runtimewill be presented in two formats, milliseconds and hours:minutes:seconds,
in the latter the remaining milliseconds are omitted.

G12/FD
Filter Pred & Temp Pred Temp None
Version 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1
Time (ms) - - - - - - - -
Time - - - - - - - -
solutions 1 1 1 1 0 0 0 0
of integer variables 174 293 174 314 154 270 154 291
of boolean variables 162 97 162 97 142 106 142 106
Total # of variables 336 390 336 411 269 376 369 397
of arrays 31 53 31 53 29 51 29 51
of constraints 2437 588 983 588 2153 562 699 562
% reified 7.50% 15.81% 18.61% 15.81% 7.57% 16.90% 23.31% 16.90%

Table 5.1: Results for G12/FD

JaCoP
Filter Pred & Temp Pred Temp None
Version 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1
Time (ms) 658 - 1011156 - - - - -
Time 0:00:00 - 0:16:51 - - - - -
solutions 3* 3* 0 0 0 0
of integer variables 129 225 129 246 129 230 129 251
of boolean variables 42 27 42 27 42 27 42 27
Total # of variables 171 252 171 273 171 257 171 278
of arrays 30 53 30 53 28 50 28 50
of constraints 2195 429 741 429 1951 420 497 420
% reified 2.87% 6.29% 8.50% 6.29% 3.22% 6.42% 12.67% 6.42%

Table 5.2: Results for JaCoP

Opturion CPX - no warm start
Filter Pred & Dom Pred Dom None
Version 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1
Time (ms) - ! - ! - ! - !
Time - ! - ! - ! - !
solutions 0 0 0 0
of integer variables 28736 9531 28736 28876 28716 9508 28716 28853
of boolean variables 57284 18654 57284 57322 57264 18702 57264 57370
Total # of variables 86020 28185 86020 86198 85980 28210 85980 86223
of arrays 31 4698 31 14370 29 4714 29 14386
of constraints 102402 33025 100947 100679 102117 33028 100663 100682
% reified 55.98% 56.25% 56.78% 56.85% 56.11% 56.24% 56.92% 56.85%

Table 5.3: Results for Opturion CPX

47

5. Evaluation

Gecode
Filter Pred & Temp Pred Temp None
Version 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1
Time (ms) - 60 - 71761 - 99 - 71186
Time - 0:00:00 - 0:01:11 - 0:00:00 - 0:01:11
solutions 0 0 0 0
of integer variables 129 225 129 246 129 230 129 251
of boolean variables 42 27 42 27 42 27 42 27
Total # of variables 171 252 171 273 171 257 171 278
of arrays 30 57 30 57 28 50 28 50
of constraints 2193 425 739 425 1951 420 497 420
% reified 2.87% 6.35% 8.52% 6.35% 3.22% 6.42% 12.67% 6.42%

Table 5.4: Results for Gecode

or-tools
Filter Pred & Temp Pred Temp None
Version 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1
Time (ms) 271 ! 380 ! 302 ! 457 !
Time 0:00:00 ! 0:00:00 ! 0:00:00 ! 0:00:00 !
solutions
of integer variables 129 225 129 246 129 230 129 251
of boolean variables 42 27 42 27 42 27 42 27
Total # of variables 171 252 171 273 171 257 171 278
of arrays 30 57 30 57 28 50 28 50
of constraints 2193 425 739 425 1951 420 497 420
% reified 2.87% 6.35% 8.52% 6.35% 3.22% 6.42% 12.67% 6.42%

Table 5.5: Results for or-tools

Choco3
Filter Pred & Temp Pred Temp None
Version 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1 1.6 2.0.1
Time (ms) - - - - - - - -
Time - - - - - - - -
solutions 2 2 2 2 0 0 0 0
of integer variables 129 246 129 246 129 230 129 251
of boolean variables 42 27 42 27 42 27 42 27
Total # of variables 171 273 171 273 171 257 171 278
of arrays 30 57 30 57 28 50 28 50
of constraints 2193 425 739 425 1951 420 497 420
% reified 2.87% 6.35% 8.52% 6.35% 3.22% 6.42% 12.67% 6.42%

Table 5.6: Results for Choco3

If one just does a quick comparison of the numbers in the tables without doing any
deeper analysis, one can see that the results from Gecode, or-tools and Choco3, shown in
tables 5.4, 5.5 and 5.6, respectively, are identical. This hints that the FlatZinc files for these
solvers should be very similar. And indeed, if one compares the FlatZinc files for these
three solvers for one of the cases, they are as good as identical. The difference between
them is the naming of some constraints and sometimes the placement in the file.

48

5.2 The results

As can be seen in the times or the runs, not many of the runs completed in time. Only
9 runs completed by 3 solvers. Interesting to note is the very varying runtimes. It ranges
from 60 milliseconds to 16 minutes. Almost no solver could solve the problem using
MiniZinc 2.0.1, two of them threw errors reading the FlatZinc file, despite its claimed
backwards compatibility, and most others took too long time solving it. But, interestingly
Gecode manages to solve the problem using 2.0.1, even faster than using 1.6, and even
being the fastest to solve the problem of all the runs in just 60 milliseconds.

By our definition of a result, these are the runs that found the optimal solution and ended
the search by concluding that the optimal solution was found. This means that there are
other runs that still produced results, sometimes even the optimal one, but did not end the
search in time and therefore not qualify as a result.

The G12/FD runs using predecessor and temporal filter with version 2.0.1, using pre-
decessor filter with version 1.6 and using predecessor filter with version 2.0.1 all find
solutions, although none of them are the optimal.

The JaCoP runs using predecessor and temporal filter with version 2.0.1 and using
predecessor filter with version 2.0.1 both finds all the solutions, including the optimal
solution, immediately. This is also the case for JaCoP using predecessor filter with version
1.6.

The Gecode run using predecessor filter with version 2.0.1 finds three solution imme-
diately of which one is the optimal. Interestingly, the run using no filter also with version
2.0.1 finds only one solution and that one is the optimal in roughly the same time.

The Choco3 runs using the predecessor and temporal filters and the ones using prede-
cessor filter, independent of version, all finds two solutions immediately.

We should mention that some of the tests ran for much longer than the time limit set
at 4 hours. And although not all produced results even when left for more than 4 hours,
some managed to produce results. One that could be mentioned is Opturion CPX that in
some cases took around 6 hours to complete.

We should also mention that Opturion CPX has the option to use the search strategy
"warm start". This was tested but, as with regular complete search, did not produce a result
within the time frame and thus we have not specifically included the results here.

We will present some more tables that show the change in the values. The first 4 columns
are grouped by the version of MiniZinc and in each of those groups we show the change
in the values if each of the filters are added. The last column shows the change in values
if going from using the 1.6 version to using the 2.0.1 version. The values presented are
averages. For example, the change for when adding the temporal filter for version 1.6 is
the average of the changes from not using any filters to using the temporal filter and from
using the predecessor filter to using the temporal and predecessor filters. The average for
the last column is just the average of the changes for all cases when switching from 1.6 to
2.0.1.

As mentioned before, the results for Gecode, or-tools and Choco3 are identical, and
thus we grouped them together into one table below.

49

5. Evaluation

G12/FD - Change
1.6 2.0.1

+Pred +Temp +Pred +Temp 1.6 - 2.0.1
of integer variables 12.99% 0.00% 8.21% -6.95% 78.28%
of boolean variables 14.08% 0.00% -8.49% 0.00% -32.74%
Total # of variables 24.91% 0.00% 3.62% -5.20% 31.44%
of arrays 6.90% 0.00% 3.92% 0.00% 73.41%
of constraints 26.91% 177.96% 4.63% 0.00% -52.39%
% reified -10.54% -63.61% -6.45% 0.00% 48.88%

Table 5.7: Change in values for G12/FD

JaCoP - Change
1.6 2.0.1

+Pred +Temp +Pred +Temp 1.6 - 2.0.1
of integer variables 0.00% 0.00% -2.08% -8.45% 84.50%
of boolean variables 0.00% 0.00% 0.00% 0.00% -35.71%
Total # of variables 0.00% 0.00% -1.87% -7.62% 54.97%
of arrays 7.14% 0.00% 6.00% 0.00% 77.62%
of constraints 30.80% 244.39% 2.14% 0.00% -54.13%
% reified -21.89% -70.41% -2.02% 0.00% 35.80%

Table 5.8: Change in values for JaCoP

Opturion CPX - Change
1.6 2.0.1

+Pred +Temp +Pred +Temp 1.6 - 2.0.1
of integer variables 0.07% 0.00% 0.16% -67.02% -33.19%
of boolean variables 0.03% 0.00% -0.17% -67.43% -33.63%
Total # of variables 0.05% 0.00% -0.06% -67.29% -33.48%
of arrays 6.90% 0.00% -0.23% -67.27% 31742.94%
of constraints 0.28% 1.44% -0.01% -67.20% -33.91%
% reified -0.24% -1.42% 0.01% -1.06% 0.18%

Table 5.9: Change in values for Opturion CPX

Gecode or-tools Choco - Change
1.6 2.0.1

+Pred +Temp +Pred +Temp 1.6 - 2.0.1
of integer variables 0.00% 0.00% -2.08% -8.45% 84.50%
of boolean variables 0.00% 0.00% 0.00% 0.00% -35.71%
Total # of variables 0.00% 0.00% -1.87% -7.62% 54.97%
of arrays 7.14% 0.00% 14.00% 0.00% 84.29%
of constraints 30.55% 244.65% 1.19% 0.00% -54.27%
% reified -21.81% -70.45% -1.09% 0.00% 36.46%

Table 5.10: Change in values for Gecode, or-tools and Choco3

50

5.2 The results

When we look at the change in values for the filters we see that the predecessor filter for
G12/FD using version 1.6 increases the number of variables, both integer and boolean, as
opposed to the other solvers which does not change the number of variables at all. Except
for Opturion CPX, which adds a very small amount of variables. When using G12/FDwith
2.0.1 the predecessor filter increases the number of integer variables as well, as opposed to
the other solvers decreasing the number of integer variables. Again except Optuion CPX
who increases the number a very small amount.

Both the predecessor filter and temporal filter increases the number of constraints sig-
nificantly, except for Opturion CPX where the change is not that great. And the largest
increase is for the temporal constraint, which lies around 200% for all the solvers. This
can be compared to using 2.0.1, where the change is 0%. The same can be observed for
the predecessor filter, but here we still have a small change in the number of constraints,
but not as large as with 1.6. The temporal filter also decreases the number of variables
in 2.0.1, as opposed to 1.6 where it did not change that number at all. When using the
temporal filter with Opturion CPX with 2.0.1, the filter helps to reduce all the values, and
quite dramatically so, all except reified lies around 67%.

Compared to 1.6, 2.0.1 seems to increase the number of integer variables by a lot, around
50%. And once again except for Opturion CPX where it decreases by around 30%. The
same goes for boolean variables, but in the other direction. For all solvers, including Op-
turion CPX, the number of boolean variables decreases by around 33%. The number of
arrays also increases for all the solvers, especially for Opturion CPX, where the increase
is a staggering almost 32000%. 2.0.1 also decreases the number of constraints by about
48% on average for all the solvers. But despite removing constraints, the amount of reified
constraints increases by about 40%, except for Opturion CPX where the change is only
0.2%.

Unfortunately no solver was able to run both the 1.6 version and the 2.0.1 version. There-
fore we cannot make a good comparison and make a definitive statement about which ver-
sion is the most effective. Although, the 2.0.1 version shows promising results for Gecode.

In Figures 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 we plot the values taken from tables 5.1, 5.2, 5.3,
5.4, 5.5 and 5.6 versus time. The time is on the y-axis and is logarithmic.

As can be seen in Figures 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6, we cannot conclude any rela-
tion between the time for the solution and the number of either integer, booleans, arrays,
constraints or the percentage of reified constraints. This can also be seen if we study the
results for Gecode, or-tools and Choco3. Since they get the same values for the FlatZinc
files but completely different times, we can conclude that our data does not show any re-
lation between time and those values.

We should also mention that we tried to run all the solvers using a very small assem-
bly, basically one with a pick up and a put down of a component. All solvers solved it in
essentially no time, except Opturion CPX, which could not solve it at all, even after 50
minutes.

51

5. Evaluation

120 140 160 180 200 220 240 260

102

103

104

105

106

Integer variables

Ti
m
e
(m

s)

JaCoP 1.6 Pred Temp
JaCoP 1.6 Pred
OR 1.6 Pred Temp
OR 1.6 Pred
OR 1.6 Temp
OR 1.6
Gecode 2.0 Pred Temp
Gecode 2.0 Pred
Gecode 2.0 Temp
Gecode 2.0

Figure 5.1: # integer variables vs time

30 35 40

102

103

104

105

106

Boolean variables

Ti
m
e
(m

s)

JaCoP 1.6 Pred Temp
JaCoP 1.6 Pred
OR 1.6 Pred Temp
OR 1.6 Pred
OR 1.6 Temp
OR 1.6
Gecode 2.0 Pred Temp
Gecode 2.0 Pred
Gecode 2.0 Temp
Gecode 2.0

Figure 5.2: # boolean variables vs time

52

5.2 The results

180 200 220 240 260 280

102

103

104

105

106

Total # of variables

Ti
m
e
(m

s)
JaCoP 1.6 Pred Temp
JaCoP 1.6 Pred
OR 1.6 Pred Temp
OR 1.6 Pred
OR 1.6 Temp
OR 1.6
Gecode 2.0 Pred Temp
Gecode 2.0 Pred
Gecode 2.0 Temp
Gecode 2.0

Figure 5.3: Total # of variables vs time

30 35 40 45 50 55

102

103

104

105

106

Arrays

Ti
m
e
(m

s)

JaCoP 1.6 Pred Temp
JaCoP 1.6 Pred
OR 1.6 Pred Temp
OR 1.6 Pred
OR 1.6 Temp
OR 1.6
Gecode 2.0 Pred Temp
Gecode 2.0 Pred
Gecode 2.0 Temp
Gecode 2.0

Figure 5.4: # arrays vs time

53

5. Evaluation

500 1,000 1,500 2,000

102

103

104

105

106

Constraints

Ti
m
e
(m

s)

JaCoP 1.6 Pred Temp
JaCoP 1.6 Pred
OR 1.6 Pred Temp
OR 1.6 Pred
OR 1.6 Temp
OR 1.6
Gecode 2.0 Pred Temp
Gecode 2.0 Pred
Gecode 2.0 Temp
Gecode 2.0

Figure 5.5: # constraints vs time

2% 4% 6% 8% 10% 12%

102

103

104

105

106

% Reified constraints

Ti
m
e
(m

s)

JaCoP 1.6 Pred Temp
JaCoP 1.6 Pred
OR 1.6 Pred Temp
OR 1.6 Pred
OR 1.6 Temp
OR 1.6
Gecode 2.0 Pred Temp
Gecode 2.0 Pred
Gecode 2.0 Temp
Gecode 2.0

Figure 5.6: % reified vs time

54

Chapter 6
Discussion

6.1 Model
As we mentioned earlier, the design of this model has taken inspiration from the model in
[Ejenstam, 2014]. The development started out with the goal to solve a similar problem but
in a different way. Ejenstam solves it as a Vehicle Routing Problem (VRP), but we wanted
to try and solve it as a Job Shop Problem. We read through his thesis and took some
inspiration from the way of tagging or categorising tasks, such as using tray, using fixture,
etc., while trying to not be too much influenced by his solution. But as the development
moved on we found our solution tending more and more towards Ejenstam’s. For example,
we wanted our model to be as pure of a job shop problem as possible, but then we needed
to know what task came before a certain task and that warranted for predecessors and
creating circuits. Although, there are some differences in our case studies that affect our
models in different ways.

In Ejenstam’s model each sub-assembly has its own dedicated fixture. Or rather, each
sub-assembly that does not require any lifting from the fixture. Where the limit goes is
not clear. Take for example the case of putting component1 in a fixture, mounting com-
ponent2 on component1, pick upp sub-assembly component1-component2, do some oper-
ation, maybe turning it over, putting it back in a fixture, and mount component3 on sub-
assembly component1-component2. Do we need two fixtures or does one suffice? In our
model we can cope with only one fixture even if we have more than one sub-assembly, as
in our case study. But this also means we need to ensure that no part is put in each fixture
before the fixture has been emptied. We do this with constraint (4.67) where we identify
which put and take is associated with each sub-assembly on the fixtures. One does not
need to do that in Ejenstams model since there are as many fixtures as sub-assemblies and
therefore automatically only one put and one take task for a single fixture. It makes Ejen-
stams model simpler in this aspect, since the problem of assigning which sub-assembly
gets which fixture and when it gets it is solved before the solver tries to solve the problem.

55

6. Discussion

In our model it is part of the problem for the solver to solve.
In both Ejenstam’s model and our model we try to perform collision avoidance. By that

we mean that we avoid collisions in, for example, fixture, it does not mean that we avoid
collisions altogether. We do not assure that arms do not collide in mid air. Although, it
is somewhat accounted for when we say that arms cannot reach certain tasks. Since the
robot has two arms positioned in such a way that we could divide the work area in two
parts where one arm is responsible for one part and the other arm for the other part. In
this way we could avoid them colliding when moving about. Although, this might not
be the best strategy when aiming for the smallest makespan. The feature of being able
to assign tasks that certain arms cannot reach was developed last in our model and right
before implementing that feature we got the makespan of 504 time units. Compared to the
result we got afterwards, 512, we would get a better makespan if the feature was not used.
This is hinting that it could be beneficial to not constrain the tasks the arms cannot reach
too much.

Another thing that needs to be considered to avoid the machines from colliding is
where they go when a task is completed. Because there can be a wait between when a
task ends and the next task starts the machines can be stationary at some point in space.
This is nothing our model takes into consideration, instead our model assumes that the
machine performing the task does not remain at the point where the task was performed
after the task ends, as can be seen in constraints such as (4.71). Instead it is something
the one who creates the data to be scheduled needs to think about. The one creating the
data might create tasks in such a way that they actually represent the task and a move away
from the task to a spot where the machine will be able to wait for the next task. This will
not eliminate the problem of the other machine colliding with the machine when it waits
in the new spot. But it will eliminate the problem of machines colliding at, for example, a
fixture when one arm has put a component in the fixture and the other machine wants to
mount another component.

Instead of being able to change tool as in our model, Ejenstam’s model gives the pos-
sibility to have many tools on the same arm at the same time. Our ambition was to be
able to solve the data for Ejenstam’s case study using our model. And thanks to Johan
Wessen at ABB we were allowed access to the data used. Unfortunately, this part of the
functionality of Ejenstam’s problem is what put a spanner in the works for that ambition.
Because if we wanted to solve Ejenstam’s data we would need to be able to have hands
with many tools. As it is now, we can have one tool mounted on a machine at a time with
the possibility to switch to another tool. If we have a case were we have tool1 mounted
on the machine but we need tool2 there is only one thing we can do, and that is to change
the tool. If we incorporated the possibility to have many tools on one hand and have the
case of having three hands were hand1 having one tool1, hand2 and two tool2 and hand3
having one tool2 and one tool3, having hand1mounted on the machine and needing tool2.
This gives the possibility to either switch to hand2 or hand3 and thereby increasing the
complexity of the problem because a decision on what hand to mount on the machine at
this time will affect the need to change hands in the future in a greater way compared to
changing single tools as we do in our model.

56

6.1 Model

By only allowing one tool mounted at a time in our model we can filter the precedences
of certain types of tasks. For example in our model, because of only having one tool at a
time, we can only pick up one component at a time and we have to put it down or mount
it before picking up another tool. It is in contrast to Ejenstam’s model where we can pick
up several components after one another, the amount depending on the hand mounted on
the machine. Because of this, we can in our model filter taking tasks so they cannot be
predecessors to one another and thereby reducing the search space. We do this filtering
with constraints (4.96) and (4.97).

In a way our model is more complex than Ejenstam’s because we have the options
to customise mountings and movements, such as mounting in mid air using only the two
machines and no fixture. Or use fixtures to store components or sub-assemblies. But
Ejenstam’s search space is much larger, mainly because of two reasons. One, they want
to not only find an optimal solution using one fixed setup of trays, but rather how can
we place the trays to get the most optimal makespan. Which is like our case study, but
with another layer on top that needs to be solved. And two, because they can pick up
several components after one another before mounting or putting them down. These two
factors makes Ejenstam’s search space much larger than ours and thus it does warrant for
using customised search strategies as the ones tested in his thesis. Since our case study is
relatively small it might not necessarily need some customised searches. But as our results
show, this seem to vary depending on what solver is used. And also, if the assembly would
be larger, i.e. more tasks to perform, such as if we would like to schedule several cycles
of the assembly, there might come a need for using customised searches such as the ones
in Ejenstam’s thesis.

As opposed to our case study, Ejenstammade a time studywhere hemeasured the times
both for the time of the moves between tasks and for the time of the tasks themselves. The
move times where measured using RobotStudio [ABB, 2015]. Whether RobotStudio was
used for measuring the task times is unclear. While we on the other hand estimated our
times using a video. Ejenstam used the exact measured times from the time study and
by looking at the data from the study one can see that the times vary somewhat on the
same task depending on what machine performed the task. This might seem a bit odd,
but it could be due to an unknown factor that might have to be considered when a task is
performed. It could also be a coincidence when the measurements were made. If this is
the case, measurements that is prone to errors that will make the times between arms on
the same task different from one another have the potential to introduce unfair advantages
to one of the machines. In an ideal environment a task should take the same amount of
time to perform independently of the machine performing it. This is how we look at it,
we use the same times for both arms. Although, as said before, we use estimated times,
so our times are even more error prone than Ejenstam’s. But our times does not have the
potential to give unfair advantages to one machine or another. But it is a big source of
error when it comes to comparing the time from the solver and the real assembly in the
video. Since we first estimated the times and then modified them a bit, we could not simply
compare the results from the solvers with the time in the video. Rather, we had to analyse
the video again and try to append the estimated times on the tasks in the video and when
they occurred and get a total time of the assembly that way. In future works it would be
beneficial if a time study was performed for the use case.

57

6. Discussion

In our model we represent tasks that needsmultiple machines by creating as many tasks
as machines needed and adding the demand that the tasks needs to execute simultaneously.
Another possible way to model it would be to have one task with many machines. But
that would mean that tasks could have many predecessors since there are as many tasks
previous to this tasks as there are machines performing this task that need to be linked with
this task. And it would also require all the precedence constraints to be remodeled and the
circuit constraint would not work for this model anymore since tasks would now be
able to appear in multiple places on the circuit. So the approach of using multiple tasks to
model a task using multiple machines might need additional information from the input,
but in all is easier to model with constraints.

In our input to the model we provide the time in a matrix form with all the possible
needed times already calculated. This seems to give the solver a good performance since it
does not need to calculate it on the fly over and over again. We do a similar thing with the
time matrix file we use to generate the input file to the solvers, see B.1.2. Since there are
many tasks performed in the same physical location, as in our case study where all fixture
related tasks are performed in the same fixture, a change in the location of the fixture would
make it a hassle to change all the affected times. We could solve it in the XML file, see
B.1.1, by associating all the locations used with keys and then each task would be related
to one of those keys. Then the translation tool, see B.2, could look up the position for the
tasks and calculate the time the time for the movement between them.

There is a filter applied to the moveDuration for each task that limits its domains, the
(A.1) constraint. This filter might not be necessary since the values for moveDuration are
assigned using the 3DTimeMatrix and therefore not searched like a regular domain. So
limiting the domain to just the values it can be assigned from the matrix probably does not
make any difference.

When running a smaller test with an assembly that did not have neither concurrent
tasks nor ordered tasks it was discovered that assemblies such as that one could not be run
using version 2.0.1. The error occurs when translating the MiniZinc code into FlatZinc,
so it seems that 2.0.1 handles empty arrays in a different way and does accept them.
In both our study and Ejenstam’s only one case is considered and that makes it difficult to
develop a general model. During the development of the model some aspects that did not
occur in the case study was considered and a solution was in many cases incorporated. But
firstly, it is hard to consider problems before they arise. So trying to think of problems that
has not occurred in the case study at hand, but could in other cases, is hard. And secondly,
even if such a problem is identified it is hard to provide a solution to it since one does not
have a case to test it on yet. One could implement smaller test cases to try out the solution
on. But to really establish how general the models are they should be tested on more case
studies.

58

6.2 Results

6.2 Results
The time from the handmade assembly was 516 time units and the one done by the solvers
was 512 time units. The ordering of the tasks is identical in the two solutions. By studying
the handmade assembly and the one from the solvers, one can see that the difference lies
in that in the handmade schedule the tasks sometimes wait for the another task to finish
before starting, or even starting to move to the task. In the assembly created by the solvers,
tasks sometimes had to do the same and wait for another task to finish. But that depended
on what relationship there was between the tasks, and sometimes the task could proceed
earlier than in the handmade assembly and thereby shorten the makespan.

The intention when we started testing was to generate the FlatZinc files and the let the
solvers run on them in order to remove the time it takes to translate the MiniZinc file from
the measurements. However, one of the solvers took longer time to solve the problem if it
just ran the FlatZinc file directly instead of running the default command that translates and
runs the solver directly. It seems odd, but was something we just had to deal with. Because
of this, all the tests were ran with the default commands that first translate the MiniZinc
file and then run the solver. This affects the times, although differently depending on if the
solve time relates to the parse and translate time of the MiniZinc file. Although, when one
runs the solvers to solve a problem, one will probably use the command to first translate
the MiniZinc file and the run the solver, so doing the measurement for that case comes
closer to the real use case than to not incorporate the compilation.

As mentioned before, Opturion CPX can in some instances be a faster solver than a
regular FD solver. However, as can be seen in the table 5.3 this does not seem to be the
case for this set of data and model.

As can be seen in table 5.3 Opturion CPX produces files with much more variables and
constraints than the other solvers. This is probably because it is a solver that combines SAT
and FD to solve the problem and thus it would probably need to translate many relations
into pure boolean relationships, making the files larger.

The two fastest solvers, Gecode and or-tools, were amongst the solvers were the number
of cores could be specified. And as said, they were given access to all 4 cores when
running, giving them a slight upper hand compared to the other solvers. But, as we can
see from the results, one of the solvers which could not solve the model at all was also
among the solvers that got access to all the cores, namely Choco3. Therefore, there seems
to be a small connection between the number of cores and the time it takes to solve the
problem, but it is not necessarily true for all solvers.

Because of the way Gecode implements its parallel search, the search depends on how
the threads are scheduled in the processor. This means that two runs on the same model
with the same data can have significant variations in the runtime depending on when they
are run. This is one of the motivations to run the solvers a number of times and take the
average.

There are a lot of documentation on most of the different solvers on which search
methods are implemented and how they work. Unfortunately though, almost all solvers
have multiple search strategies implemented that one can choose from when constructing
the model and there are virtually no documentation on which search is used when parsing
the model from a MiniZinc/FlatZinc file. Hence, a deeper analysis of the different solvers
based on the underlying search methods is difficult and is omitted from this report.

59

6. Discussion

Even if many of the solvers did not produce a result in the form of concluding that they
had reached the optimal solution, many did reach solutions and sometimes the optimal
solution as well. As mentioned before, the Job Shop Problem is NP-complete, which
means that even if a solver reached the optimal solution and ended the search within time
for the assembly in this case study, it does not mean it will for another assembly. So even
the solvers that did not end the search within time could still be used to generate solutions
to this problem if we set a time for when we want a solution and take the best solution the
solver has generated in that time.

By looking at the results of JaCoP, Gecode and or-tools we can see that the filters do
make a difference in the runtime. Comparing using both groups of filters versus using
no filter it shows that the filters can have quite a large impact on the runtime. However,
concluding which of the filter groups works the best is hard. If we look at Gecode and
or-tools, they seem to show that the temporal filter makes a little more improvement than
the predecessor filter. Looking at only the result from Gecode, the temporal filter makes
a much greater improvement than the predecessor filter. The predecessor filter is even a
little bit slower here. However, if we look at the result for JaCoP, it is the other way around.
Here the predecessor filter makes a much greater improvement, it cuts down the time from
4+ hours to just 16 minutes.

As mentioned, when using the 1.6 version the filters increase the number of constraints
quite a bit, but the number of reified constraints are decreased at the same time by quite a
lot as well. This seems to indicate that the filters do not introduce more reified constraints,
or at least not a significant amount, which is good.

The goal of a filter is to decrease the domains of the variables, so the optimal solution
would be for the solver to just remove the unnecessary values from the domain without
adding new constraints. And we can see when using version 1.6 that both the temporal
filter and the predecessor filter introduce new constraints. We briefly analysed how JaCoP
handled these constraints and we saw that it used those constraints to prune the domains
and removed the constraints. This means that in 1.6 MiniZinc hands over the pruning to
the solvers, but there is no guarantee that the solvers will prune the domains. Looking at
the results for when applying the filters using the 2.0.1 version we can see that the number
of constraints is not affected, or in the predecessor case affected very little. This seems to
indicate that the translator does the pruning itself instead of handing it over to the solvers.

60

Chapter 7
Conclusions

Through this thesis we can conclude that the presented model representing the problem as
a Job Shop Problem works well and can produce a result that is as good as the handmade
solution.

We can also conclude that when it comes to choosing solvers there can be a very large
difference in the performance. It can range from not being able to solve a problem in 4
hours to solve it in under 100 milliseconds. The best performance was achieved by Gecode
in 60 milliseconds using the 2.0.1 version of MiniZinc. This is promising result for the
new version. Interestingly the 1.6 version of the same solver could not solve the problem in
4 hours. But although the 2.0.1 version performed remarkably well for Gecode, two of the
solvers were not able to read the FlatZinc file produced by that version, more specifically
Opturion CPX and or-tools.

We tested applying filters that reduced the domains of temporal variables and prede-
cessor variables. Our tests showed that these filters can have an positive impact on the
runtime result, and thereby confirming the results of Vilím in [Vilím and Barták, 2002b]
[Vilím, 2002] and [Vilím and Barták, 2002a].

The analysis of the resulting FlatZinc files showed that there was no relation between
the resulting FlatZinc file and the runtime of the solver. Moreover, we found no relation
between the percentage of reified constraints and the runtime of the solver.

61

7. Conclusions

7.1 Further work
Since the result from the solver was not evaluated on physical robot it could be a suitable
continuation to try out the result on an actual robot. It could show problems not seen in
the result itself, such as collisions etc.

In this thesis we present a set of filter constraints to reduce the domains of the variables.
The tests performed compared the result of using the filters versus not using the filters. It
is not necessarily the case that all filters are needed, and all filters do probably not perform
equally well. Therefore it might be of interest to test the each individual filter for it self
and compare the filters against each other to see which performs the best and take that
experience to come up with further filters.

Since MiniZinc does not have support for customized searches, customized searches are
not doable in regular MiniZinc. But in [Björdal, 2014] they present a constraint-based
local search solver that performs local search in order to improve the runtime. Although
Ejenstam concludes that local search performs poorly on the data in that thesis, it might
be worth looking into. In [Yuan and Xu, 2013] they conclude that Large neighborhood
Search in combination with Hybrid Harmony Search performed very well for instances of
Flexible Job Shop Problem. To incorporate such a search in the solver of [Björdal, 2014]
might be beneficial to models such as this.

As mentioned, our ambition for this thesis was originally to be able to run Ejenstam’s
data on our model, but the extended search space prevented us from that. The testing
when developing the model, and thereby the tests for the extension to be able to run Ejen-
stam’s data, was performed only on JaCoP. But as we can see from the results, there are
solvers that could perform better. Hence, there might be a possibility to solve Ejenstam’s
data using those solvers. If an incorporation of local search, as mentioned above, can be
done, it would probably further the possibility to adapt the model to the data.

As mentioned before, our model assumes that there are as many sets of all the tools de-
fined as there are machines, so that each machine has its own set of tools. This simulates
an ideal world where we have all the resources we want, when in fact we might be limited
to a few sets of tools. To be able to do more realistic schedulings that considers the amount
of tools available, there would need to be a considerable number of constraints added to
the model and it might be worth looking into in future work.

As mentioned in section 6.1, the model is only tested on one case study. Therefore it
would be interesting to see how well it fared on other use cases. New problem would oc-
cur and a clearer picture would be presented on how well the model handles the problems
the model is set out to solve.

Our tests showed how well the different solvers did on this case study. But the results
might be specific to this case study, in another case study the solvers might perform dif-
ferently. Therefore, to get a better understanding on how the different solvers perform on
this model more tests should be conducted on more case studies.

62

Bibliography

[ABB, 2014] ABB (2014). YuMi. http://new.abb.com/products/
robotics/yumi. Accessed 2014-10-29.

[ABB, 2015] ABB (2015). RobotStudio. http://new.abb.com/products/
robotics/robotstudio. Accessed 2015-02-06.

[Becket et al., 2008] Becket, R., Brand, S., Brown, M., Duck, G., Feydy, T., Fischer, J.,
Huang, J., Marriott, K., Nethercote, N., Puchinger, J., Rafeh, R., Stuckey, P., and Wal-
lace, M. (2008). The many roads leading to rome: Solving zinc models by various
solvers. Technical report, ModRef’08: 7th International Workshop on Constraint Mod-
elling and Reformulation, Sydney Australia.

[Beldiceanu et al., 2015] Beldiceanu, N., Carlsson,M., andRampon, J.-X. (2015). Global
constraint catalog, 2nd edition (revision a).

[Björdal, 2014] Björdal, G. (2014). The first constraint-based local search backend for
minizinc.

[Charles Prud’homme, 2014] Charles Prud’homme, Jean-Guillaume Fages, X. L. (2014).
Choco3 Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING
S.A.S.

[Drobouchevitch et al., 2006] Drobouchevitch, I. G., Sethi, S. P., and Sriskandarajah, C.
(2006). Scheduling dual gripper robotic cell: One-unit cycles. European Journal of
Operational Research, 171(2):598–631.

[Ejenstam, 2014] Ejenstam, J. (2014). Implementing a time optimal task sequence for
robot assembly using constraint programming. Master thesis, Uppsala University.

[Fages et al., 2014] Fages, J.-G., Chabert, G., and Prud’homme, C. (2014). Combining
finite and continuous solvers. ArXiv e-prints.

[Garey et al., 1976] Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The complexity of
flowshop and jobshop scheduling. Mathematics of Operations Research, 1(2):117–129.

63

http://new.abb.com/products/robotics/yumi
http://new.abb.com/products/robotics/yumi
http://new.abb.com/products/robotics/robotstudio
http://new.abb.com/products/robotics/robotstudio

BIBLIOGRAPHY

[Jefferson et al., 2010] Jefferson, C., Moore, N. C. A., Nightingale, P., and Petrie, K. E.
(2010). Implementing logical connectives in constraint programming. Artif. Intell.,
174(16-17):1407–1429.

[Marriott and Stuckey, 1998] Marriott, K. and Stuckey, P. J. (1998). Programming with
constraints : an introduction. Cambridge, Mass. : MIT Press, cop.

[Marriott and Stuckey, 2014] Marriott, K. and Stuckey, P. J. (2014). A MiniZ-
inc Tutorial. http://www.minizinc.org/downloads/doc-latest/
minizinc-tute.pdf. Accessed: 2015-02-12.

[Nethercote et al., 2007] Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J.,
and Tack, G. (2007). Minizinc: Towards a standard cp modelling language. In In:
Proc. of 13th International Conference on Principles and Practice of Constraint Pro-
gramming, pages 529–543. Springer.

[NICTA, 2014a] NICTA (2014a). MiniZinc 2. http://www.minizinc.org/2.
0/index.html. Accessed: 2015-01-28.

[NICTA, 2014b] NICTA (2014b). MiniZinc 2 Change Log. http://www.
minizinc.org/2.0/changes.html. Accessed: 2015-01-28.

[NICTA, 2014c] NICTA (2014c). MiniZinc Challenge 2014 Results. http://www.
minizinc.org/challenge2014/results2014.html. Accessed: 2015-01-
25.

[NICTA, 2014d] NICTA (2014d). MiniZinc Global Constraints. http://www.
minizinc.org/2.0/doc-lib/doc-globals.html. Accessed: 2015-01-19.

[Opturion Pty Ltd, 2013] Opturion Pty Ltd (2013). Opturion CPX User’s Guide: Version
1.0.2. Opturion Pty Ltd.

[Opturion Pty Ltd, 2014a] Opturion Pty Ltd (2014a). About us. http://www.
opturion.com/about_us.html. Accessed: 2015-01-26.

[Opturion Pty Ltd, 2014b] Opturion Pty Ltd (2014b). CPX Discrete Optimiser. http:
//www.opturion.com/cpx.html. Accessed: 2015-01-26.

[Schulte et al., 2014] Schulte, C., Tack, G., and Lagerkvist, M. Z. (2014). Modeling and
Programming with Gecode. Corresponds to Gecode 4.3.2.

[Stolt et al., 2013] Stolt, A., Linderoth, M., Robertsson, A., and Johansson, R. (2013).
Robotic assembly of emergency stop buttons. In 2013 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Tokyo, Japan.

[Szymanek, 2010a] Szymanek, R. (2010a). About JaCoP. http://jacop.
osolpro.com/index.php?option=com_content&view=article&id=
46:about-jacop-article&catid=34:general&Itemid=28. Accessed:
2015-01-26.

64

http://www.minizinc.org/downloads/doc-latest/minizinc-tute.pdf
http://www.minizinc.org/downloads/doc-latest/minizinc-tute.pdf
http://www.minizinc.org/2.0/index.html
http://www.minizinc.org/2.0/index.html
http://www.minizinc.org/2.0/changes.html
http://www.minizinc.org/2.0/changes.html
http://www.minizinc.org/challenge2014/results2014.html
http://www.minizinc.org/challenge2014/results2014.html
http://www.minizinc.org/2.0/doc-lib/doc-globals.html
http://www.minizinc.org/2.0/doc-lib/doc-globals.html
http://www.opturion.com/about_us.html
http://www.opturion.com/about_us.html
http://www.opturion.com/cpx.html
http://www.opturion.com/cpx.html
http://jacop.osolpro.com/index.php?option=com_content&view=article&id=46:about-jacop-article&catid=34:general&Itemid=28
http://jacop.osolpro.com/index.php?option=com_content&view=article&id=46:about-jacop-article&catid=34:general&Itemid=28
http://jacop.osolpro.com/index.php?option=com_content&view=article&id=46:about-jacop-article&catid=34:general&Itemid=28

BIBLIOGRAPHY

[Szymanek, 2010b] Szymanek, R. (2010b). JaCoP Overview. http://jacop.
osolpro.com/index.php?option=com_content&view=article&id=
19&Itemid=27. Accessed: 2015-01-26.

[The G12 Team, 2014] The G12 Team (2014). Specification of Zinc and MiniZinc v.1.0.
NICTA, Victoria Research Lab, Melbourne, Australia.

[Thörnblad et al., 2013] Thörnblad, K., Strömberg, A.-B., Patriksson, M., and Almgren,
T. (2013). An efficient algorithm for solving the flexible job shop scheduling problem.
In 25th NOFOMA conference proceedings, June 3-5 2013, Göteborg, Sweden, page 15.

[Tsang, 1993] Tsang, E. (1993). Foundations of constraint satisfaction. Academic Press.

[van Hoeve and Katriel, 2006] van Hoeve, W.-J. and Katriel, I. (2006). Chapter 6 - global
constraints. In Francesca Rossi, P. v. B. and Walsh, T., editors, Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence, pages 169 – 208.
Elsevier.

[van Omme et al., 2014] van Omme, N., Perron, L., and Furnon, V. (2014). or-tools user’s
manual. Technical report, Google.

[Vilím, 2002] Vilím, P. (2002). Batch processing with sequence dependent setup times:
New results. In Proceedings of the 4th Workshop of Constraint Programming for De-
cision and Control, CPDC’02, Gliwice, Poland.

[Vilím and Barták, 2002a] Vilím, P. and Barták, R. (2002a). A filtering algorithm se-
quence composition for batch processing with sequence dependent setup times. Tech-
nical Report KTIML 2002/1, Charles University, Faculty of Mathematics and Physics,
KTIML MFF UK, Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic.

[Vilím and Barták, 2002b] Vilím, P. and Barták, R. (2002b). Filtering algorithms for
batch processing with sequence dependent setup times. In Ghallab, M., Hertzberg,
J., and Traverso, P., editors, Proceedings of the 6th International Conference on AI
Planning and Scheduling, AIPS’02, pages 312–321. The AAAI Press.

[Yuan and Xu, 2013] Yuan, Y. and Xu, H. (2013). An integrated search heuristic for
large-scale flexible job shop scheduling problems. Computers & Operations Research,
40(12):2864–2877.

65

http://jacop.osolpro.com/index.php?option=com_content&view=article&id=19&Itemid=27
http://jacop.osolpro.com/index.php?option=com_content&view=article&id=19&Itemid=27
http://jacop.osolpro.com/index.php?option=com_content&view=article&id=19&Itemid=27

BIBLIOGRAPHY

66

Appendices

67

Appendix A
Extended Model

This appendix contains constraints that are included in the model, but are not as essential
for the assembly as the ones in chapter 4.

A.1 Temporal filter

(∀t ∈ tasks)
(∀i ∈ {0, . . . ,maxMoveDurs(t)} \ {timeMatrix3D(task, j, k) :

∀ j ∈ tasks, ∀k ∈ {1, . . . , timeMatrixDepth}, t 6= j})
moveDuration(t) 6= i

(A.1)

We know that the value for move duration will be one of the values in the time matrix,
hence we can restrict the duration to only those values. We do that by coming up with the
values that the duration cannot assume, and limits the duration to not have those values in
its domain.

A.2 Predecessor filter
alldi f f erent({pred(t) : ∀t ∈ tasks}) (A.2)

The circuit constraint already sees to it that the predecessors of the tasks forms a cir-
cuit. This means that all the predecessors will take on different values. However, we apply
this alldifferent constraint in order to help the circuit make the predecessor
variables take on different values.

69

A. Extended Model

(∀comp ∈ components)
(∀mountTask ∈ mounting(comp))

(∀takeTask ∈ taking(comp))
pred(takeTask) 6= mountTask

(A.3)

For all the tasks that operate on the same component we can restrict so the mount task of
the component cannot be the predecessor of the take task.

(∀comp ∈ components)
(∀putTask ∈ puttingcomp, tray(putTask) > 0)

(∀takeTask ∈ taking(comp), tray(putTask) = tray(takeTask))
pred(putTask) 6= takeTask

(A.4)

We can also restrict the predecessor of a put task for a component to not be the take task
for that component, if the two tasks are performed on the same tray. This can help in
a situation when we want the assembly to put down a part for a moment and pick it up
later, because if the part does not come in the tray from the beginning, i.e. it is not the
component tray, we first need to put it in the tray before we are able to take it.

(∀ f ∈ f ixtures)
(∀putTask ∈ puttingcomp, f ixture(putTask) = f)

(∀takeTask ∈ taking(comp), f ixture(takeTask) = f ,
componentsUsed(putTask) ⊂ taskSubComponents(takeTask))

pred(putTask) 6= takeTask

(A.5)

As with constraint 4.66, but we limit the predecessors instead.

(∀group ∈ {1, . . . , nbrConcurrentGroups})
(∀t1 ∈ concurrentTasks(group))
(∀t2 ∈ concurrentTasks(group)/{t1})

pred(t1) 6= t2 ∧ pred(t2) 6= t1

(A.6)

Since concurrent tasks need to happen simultaneously on different machines, they cannot
be the predecessor to each other.

(∀t1 ∈ tasks, componentCreated(t1) > 0)
(∀t2 ∈ tasks, componentCreated(t1) ∈ componentUsed(t2))

pred(t1) 6= t2
(A.7)

Sub-assembly components can only be used after they are created. Therefore, we can say
that a task that uses a component created at task t cannot be the predecessor of task t.

70

A.2 Predecessor filter

(∀precTask ∈ tasks)
(∀t ∈ tasks, precTask 6= t,
componentUsed(precTask) ∪ taskCompleteSubComponents(t)

⊂ taskCompleteSubComponents(t),
componentsUsed(precTask) ∪ taskCompleteSubComponents(t) 6= ∅)
pred(precTask) 6= t

(A.8)

As in 4.70, tasks has to be performed before the tasks having the component in the task as
sub-component. This means the task cannot have any of these tasks as predecessor.

(∀concGroup ∈ concurrentTasks, |concGroup|= nbrMachines)

concComps =
⋃

∀i∈concGroup

componentsUsed(i),

concSubComps =
⋃

∀i∈concGroup

taskCompleteSubComponents(i),

postTasks = {postTask : postTask ∈ tasks,
concComps ∩ taskCompleteSubComponents(postTask) 6= ∅}

preTasks = {preTask : preTask ∈ tasks,
componentsUsed(preTask) ∩ concSubComps 6= ∅},

(∀postTask ∈ postTasks)
(∀predTask ∈ preTasks)

pred(postTask) 6= preTask

(A.9)

If there is a group of concurrently executing tasks that take up all machines available they
will act as a wall between the tasks before and after the group. It is guaranteed that the
tasks after the group cannot have the tasks before the group as predecessors. We can
extract the tasks before and after the concurrent tasks by analysing the components used,
since the components used in the concurrent tasks will have the components used before
as sub-components.

71

A. Extended Model

72

Appendix B
File & Tool Manuals

The data and tools used in this thesis are available for free to download and use at https:
//github.com/Arclights/Thesis-Tools. In this section we will describe the
tools and data. All the tools are written in Java and are run using the java -jar com-
mand.

B.1 File Formats
There are two files used to produce the data for the solvers; it is the XML file that describes
the assembly, and the time matrix file that describes the time it takes an arm to move
between two tasks. For complete versions of the files used in the thesis see the link above.

B.1.1 Assembly XML
In order to more easily create the data needed by the solvers, we created an XML format
that that is more easy to deal with, that later is translated into MiniZinc code. For an
outline of the XML format see listing B.1. Note that although it contain the basic parts, it
is not a legit assembly XML file as it is not complete.

All ids must be unique within the area they are used. So for example there can only be
one tray called "tray1", but there could be a fixture called "tray1" as well, but that would
be bad practice since it would be confusing. Ids used must also be declared before they are
used again. For example a component must be declared through a Component tag before
being referenced to in a task. The number of declarations can theoretically be infinite, but
since everything will be represented by integers in the model we are practically limited to
the limit of integers.

The Output tag, Tray tag and Fixture tag defines an output, a tray and a fixture
respectively. The Component tag defines a component. All components used in the
assembly needs to be defined, including the sub assemblies, since we treat sub assemblies

73

https://github.com/Arclights/Thesis-Tools
https://github.com/Arclights/Thesis-Tools

B. File & Tool Manuals

as components in our model. We also describe what components make up a subcomponent
using the SubComponent tag, it can both be regular components or sub assemblies.

To define tools we use the tool tag and to define machines we use the Machine
tag

To define a task we use the Task tag. Together with the id we specify the length of
the task in some time unit. Inside the tag we declare the properties of the task. If the task
is performed in a tray, we specify the tray used. The same goes for fixture. Only one of
them can be declared at a time, since we cannot be at a tray and a fixture at the same time.
We specify which components are used in the task. There can be multiple components
associated with a task, but it is limited by the number of machines available. Although
the translation program does not check whether or not this limit is exceeded. If there is
a component created at the task we specify if by the ComponentCreated tag. There
can only be a most one component created per task and can only occur in tasks where the
action is mounting, but this is not checked by the translator either. If there is a particular
tool needed for the task we specify it with the ToolNeeded tag. We specify what kind
of action a task is using the Action tag.

To define a set of tasks that comes in an ordered group we use the OrderedGroup
tag. The order of them listed in the XML file is the order in which they will be scheduled.
There can be multiple ordered groups specified.

To define a set of task that needs to be performed concurrently we use the Concur-
rentGroup tag. The order in the XML does not matter.

To define a set of tasks out of range of a machine we use the TasksOutOfRange
tag. The id is the id of the machine that the tasks are out of range for. This is not declaring
the machine, so it needs to be defined previously.

To define the tool change durations we use the ToolChangeDurations tag and for
each tool change we want to define we use the Change tag. And we supply the tool we
are changing from, the tool we are changing to and the duration it takes to perform.

B.1.2 Time Matrix
To supply the time it takes to move between the tasks we provide a time matrix using a
time matrix. A row represents the task we are going from and the column represents the
task we are going to. There are as many columns as there are tasks in the XML file, but
there are one more rows than there are columns. This is to account for the starting position
of the machines.

The file format is a comma separated values file (CSV). To identify which row and
column belongs to the correct task, each row and column starts with the corresponding
id from the XML file. The row for the start task must be named Start. The times from
every task to the place where the tools are changed and vice versa needs to be included as a
column and a row with the name Change tool. The order in which the ids comes in the row
and columns has to be the same. The file needs to be separated with semicolons in order
to allow for commas in the ids. This means that the ids used in the assembly cannot have
semicolons in them. The values for the times can be decimal values, they will be rounded
of after the calculations by the translator. Figure B.1 shows an example of the structure of
the time matrix.

74

B.1 File Formats

<Assembly >
< Output id =" Output "/ >

<Tray id =" top - tray "/ >

< Fixture id =" Front fixture "/ >

< Component id =" Top "/ >
< Component id =" Button "/ >
< Component id =" Top - Button "/ >

< Subcomponents id =" Top - Button ">
< Component id =" Top "/ >
< Component id =" Button "/ >

</ Subcomponents >

<Tool id =" tool1 "/ >
<Tool id =" tool2 "/ >

< Machine id =" m1 "/ >

<Task id =" Mount button on top " Duration ="25" >
<Tray id =" top - tray "/ >
< Fixture id =" Front fixture "/ >
< Component id =" Top "/ >
< Component id =" Button "/ >
< ComponentCreated id =" Top - Button "/ >
< ToolNeeded id =" tool1 "/ >
< Action id =" Mounting "/ >

</Task >

< OrderedGroup >
<Task id =" Angle top - button "/ >
<Task id =" Lift top - button , hold top - button "/ >
<Task id =" Turn top - button "/ >

</ OrderedGroup >

< ConcurrentGroup >
<Task id =" Lift top - button , hold top - button "/ >
<Task id =" Lift top - button , support "/ >

</ ConcurrentGroup >

< TasksOutOfRange id =" m1">
<Task id =" Take ring "/ >
<Task id =" Take bottom "/ >
<Task id =" Take switch "/ >

</ TasksOutOfRange >

< ToolChangeDurations >
< Change FromToolId =" tool1 " ToToolId =" tool2 " Duration ="60"/ >
< Change FromToolId =" tool2 " ToToolId =" tool1 " Duration ="60"/ >

</ ToolChangeDurations >
</ Assembly >

Listing B.1: The basic parts of the assembly XML. This is not a
legitimate assembly file.

75

B. File & Tool Manuals

Take top Put top in fixture . . . Mount button on top
Start 3 7 . . . 7

Take top 0 8 . . . 8
Put top in fixture 8 0 . . . 0

...
Mount button on top 8 0 . . . 0

Figure B.1: Example of time matrix structure

B.1.3 MiniZinc data file

This file is not included in the link above, but it is generated by AssemblyConv, see
below. In the evaluation we test the model with combinations of the two different filters.
To toggle the filters there are two parameters that can be set at the start of the file, temp-
Filter and predFilter. These are boolean variables that indicate if the temporal
filter or the predecessor filter should be turned on respectively.

B.2 AssemblyConv
AssemblyConv is the program used to convert the XML file and the time matrix file
into data for the solver. It takes the matrix file and the XML as arguments and produces a
MiniZinc file. For a detailed description of the syntax run the programwithout parameters.

B.3 SchedPrinter
SchedPrinter is used for visualising the outputted assembly from the solvers. It cre-
ates a Gant diagram in ASCII and outputs it to the screen. To get it to a file one can simply
pipe it to one and it can then be shown in a regular text editor. But make sure that text
wrapping is turned of as it will interfere with the visualisation. It takes a text file contain-
ing the output from the solver. This can easily be obtained by piping the output from a
solver into a file. The program also takes an argument whether the text file provided is in
the format that the JaCoP solver provides or the format G12 provides. The solvers using
the G12 format is G12/FD, Gecode and or-tools, and the solvers using the JaCoP format
is JaCoP and Choco3. The output format for Opturion CPX is nknown since we have not
been able to run the model on it. When printing from the JaCoP format, the user has to
supply the .dzn file so the printer can know the name of the tasks. For a detailed de-
scription of the syntax run the program without parameters or with -h as parameter. The
output of the tasks with duration 0 will look weird, but that is because we cannot fit any
characters in a box with a width of 0.

76

B.4 FZNstat

B.4 FZNstat
To obtain the statistics used in chapter 5 we use FZNstat. The program does not take
any parameters but will go over all the .fzn files in the directory it is run in and produce
a result file for each of the .fzn files. The names of the result files are the same as the
.fzn files but with _stat at the end. So for example jacop.fzn will get the result file
jacop_stat. The result files will contain a little bit more information about individual
constraints than what was presented in chapter 5.

77

Att behöva konfigurera om industrirobotar vid varje ny produkt kan vara kostsamt.
Vi försöker råda bot på det genom att använda oss av begränsningsprogramme-
ring.

Introduktion
I dagens samhälle automatiseras mycket av produktio-
nen genom att överlåta den åt robotar. Robotarna har
blivit så pass avancerade att de kan utföra det mesta av
vad en människa kan göra. Men många produktseriers
liv är korta och robotarna måste då konfigureras om ofta.
Man vill ha en så pass effektiv produktion som möjligt,
så man måste pussla med uppgifterna som en robot har
när en produkt ska tillverkas för att göra en bra schema-
läggning. Detta tar tid och i kombination med att man
byter produktserier ofta så kan det kosta mycket pengar.
I detta arbetet har vi automatiserat steget med pusslan-
det genom en teknik som kallas begränsningsprogram-
mering (eng:Constraint Programmering).

Vad är begränsningsprogrammering (eng: Constraint
Programmering)?
Till skillnad från vanlig programmering där man talar
om för en dator hur den ska lösa något, så talar man i
begränsningsprogrammering endast om för datorn vad
den ska lösa, eller rättare sagt vilka begränsningar som
finns på problemet. Säg till exempel att jag vill sortera
böckerna i min bokhylla. Med vanlig programmering
måste jag till exempel säga till datorn att för varje bok
ska du titta på första bokstaven i titeln, hitta en annan
bok med samma första bokstav eller med en första bok-
stav som kommer före och sätta in den aktuella boken

efter denna bok. I begränsningsprogrammering behöver
man endast ange begränsningen att den första bokstaven
i titeln på varje bok måste komma före eller vara samma
som den första bokstaven i titeln på nästa bok i bokhyl-
lan. Sedan använder man sig av ett speciellt program, en
så kallad lösare, som går igenom alla tänkbara lösningar
som uppfyller begränsningarna och presenterar de bästa
lösningarna den kommer fram till.

Resultat
Vi fann att med hjälp av begränsningsprogrammering så
kunde vi konstruera en minst lika bra schemaläggning
som en gjord för hand av en människa. Vi tittade också
på olika lösare för att se hur de skiljde sig åt i hur snabba
de var att lösa problemet. Överraskande fann vi också
att det kunde skilja väldigt mycket lösare emellan. Varje
lösare fick 4 timmar på sig att försöka lösa problemet,
men det visade sig att endast ett fåtal av lösarna över
huvud taget kunde lösa problemet på denna tiden. Av
de som kunde lösa problemet var tiden det tog väldigt
varierande, från sexton minuter ner till endast ett tiotal
millisekunder. Detta visar att det är viktigt av att välja
rätt lösare för sin situation då det kan ha ett stort avgö-
rande på om problemet kommer kunna lösas inom en
rimlig tid. Men det visar också att det är fullt möjligt
att automatisera produktion med hjälp av begränsnings-
programmering på ett effektivt sätt.

EXAMENSARBETE Task scheduling for dual-arm industrial robots through Constraint Programming

STUDENT Tommy Kvant

HANDLEDARE Jacek Malec, Maj Stenmark (LTH)

EXAMINATOR Klas Nilsson (LTH)

Schemaläggning av tvåarmade industrirobotar genom
begränsningsprogrammering
POPULÄRVETENSKAPLIG SAMMANFATTNING Tommy Kvant

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2015-02-24

	2015-10 Framsida
	Tom sida
	2015-10 Rapport
	2015-10 Rapport
	Introduction
	Project goal
	Related work
	Report structure

	Approach
	Constraint Programming
	Constraints
	Global constraints
	Solver
	Reified Constraints
	Branching Heuristics

	Job-shop scheduling problem
	MiniZinc
	Solvers
	G12/FD
	JaCoP
	Gecode
	or-tools
	Opturion CPX
	Choco3

	Case Study
	Model
	Variables
	Model Variables
	Static variables
	Decision variables

	Constraints
	Precedences
	Predecessors

	Filter
	Temporal filter
	Predecessor filter

	Heuristics

	Evaluation
	The Setup
	The results

	Discussion
	Model
	Results

	Conclusions
	Further work

	Bibliography
	Appendix Extended Model
	Temporal filter
	Predecessor filter

	Appendix File & Tool Manuals
	File Formats
	Assembly XML
	Time Matrix
	MiniZinc data file

	AssemblyConv
	SchedPrinter
	FZNstat

	Tom sida
	2015-10 Popvet

