
ISRN LUTMDN/TMHP-15/5333-SE

ISSN 0282-1990

Development and implementation of algorithms

for the future large-scale computing in CFD

Robin Qvarfordt

Thesis for the degree of Master of Science in

Engineering

Division of Mechanics

Department of Energy Sciences

Faculty of Engineering | Lund University

Development and implementation of

algorithms for the future large-scale

computing in CFD

Robin Qvarfordt

05 2015, Lund

This degree project for the degree of Master of Science in Engineering has been conducted at

the Division of Mechanics, Department of Energy Sciences, Faculty of Engineering, Lund

University.

Supervisor at the Division of Mechanics was Robert-Zoltán Szász.

Examiner at Lund University was Professor Johan Revstedt.

Thesis for the Degree of Master of Science in Engineering

ISRN LUTMDN/TMHP-15/5333-SE

ISSN 0282-1990

© 2015 Robin Qvarfordt samt Energy Sciences

Efficient Energy Systems

Department of Energy Sciences

Faculty of Engineering, Lund University

Box 118, 221 00 Lund

Sweden

www.energy.lth.se

LTH

Abstract

Faculty of engineering

M-house, LTH

Master’s degree

Development and implementation of algorithms for the future large-scale

computing in CFD

by Robin Qvarfordt

The aim of this thesis is to study how the BCM (Building Cube Method) can improve

performance of simulations in CFD with the steady increasing performance of mod-

ern parallel computers. A parallel program is developed and tested on different grid

configurations and problems, among them the Navier-Stokes equations.

The first part of the thesis includes theory of numerical methods and software to be

used when writing the program. Here is discussed how staggered grid is used to avoid

the checkerboard effect, the basics of finite difference method, the PISO algorithm and

software like openMPI (open Message Passing Interface) which is used to parallelize.

This is followed by a description of the implementation and testing.

Results are found continuously in chapter 4 and chapter 5. Chapter 4 is about stabil-

ity and convergence and covers some explicit and implicit implementation of the wave

equation. The results in chapter 5 are focused on accuracy and efficiency. Here, a dis-

cretization of Poisson’s equation is done and solved on different grid spacings in order to

verify the second order implementation. Further, a comparison between Multigrid and

Gauss-Seidel is done while solving Stokes flow. Results on speed-up tests are found in

the last section if this chapter, as well as a somewhat more superficial comparison with

the OpenFOAM’s solver.

The results show the implementation works as intended except for the PISO algorithm

due to some inconsistency. Otherwise the scaling of the speed-up test turned out good.

http://www.lth.se
http://www.lth.se
http://www.fm.energy.lth.se

Acknowledgements

I would like to thank my supervisor Robert-Zoltán Szász for taking the time to guide

me through this project and supplying me with data.

I would also like to thank for the resources provided by the Center of Scientific and

Technical Computing at Lund University (LUNARC) where part of the computations

have been carried out.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

Abbreviations viii

Symbols ix

1 Introduction 1

1.1 Background . 1

1.2 Goal . 2

2 Theory 3

2.1 Navier-Stokes Equations . 3

2.2 Building Cube Method . 4

2.3 Discretisation . 5

2.3.1 Finite Difference Method . 5

2.3.2 Staggered Grid . 5

2.4 Parallel Processing . 7

2.4.1 Hilbert Curve . 7

2.4.2 Distribution Of Work . 7

2.5 Multigrid . 8

2.6 PISO Algorithm . 8

3 Implementation 12

3.1 Overview . 12

3.2 The Cubes . 12

3.2.1 Refinement levels . 12

3.2.2 Communication Between Cubes . 15

3.3 Read and Write . 16

3.3.1 Writing . 16

3.3.2 Reading . 17

3.4 Overview Of Main Solver . 18

iii

Contents iv

3.4.1 The stencils . 19

4 Stability and Convergence 22

4.1 Solving the Wave Equation . 22

4.1.1 Explicit solution . 22

4.1.2 Implicit solution . 23

5 Accuracy And Efficiency 26

5.1 Solving Poisson’s Equation . 26

5.2 Solving Navier-Stokes Equations . 29

5.2.1 Stokes flow . 29

5.2.2 Discretize Navier-Stokes Equations 31

5.3 Comparison With OpenFOAM . 32

5.4 Speed-up . 32

6 Conclusions and Future Work 34

List of Figures

2.1 Levels . 4

2.2 Example of a pressure field as a function of the spatial indices. Capital
letter I indicates cell center, while lower case i indicates cell face. The
vertical lines are border between cells (cell faces). The dots are example
of how pressure values can behave. 6

2.3 A two dimensional Hilbert curve . 7

2.4 Schematic flow chart of the PISO algorithm for the incompressible Navier-
Stokes equations. After each box the variables to the right of the arrow
indicates that they have been updated and are used as input parameters
to the operation in the next box. 11

3.1 Schematic overview of the program. 13

3.2 Example of a two dimensional cube with N=3 cells along each direction.
Boundary cells are being marked with dashed lines. 13

3.3 Example of how the cells of two dimensional cubes are marked inactive
(red cells) when their cells centers are inside the object. In this case, N=3
for all cubes where the green lines mark the cells, while the black lines
mark the cubes. 14

3.4 A two dimensional example of communication between two cubes on dif-
ferent levels of refinement. The boundary cells of the larger cube are
marked with red. Interpolation of every boundary cell in the larger cube
is done with an average value of 4 cells in the smaller cube, see the ar-
rows. The corresponding case in three dimensions would have been an
interpolation of 8 cells. 15

3.5 The cubes C1-C7 are inserted in a map corresponding to their level of
refinement. The table shows how the bordercubes are written to the
parallel files in the case of 2 processors of this simple two dimensional case. 17

3.6 The red cube is a bordercube and the white cubes belong to the same
processor. The figure illustrates how the direction bits are updated in the
bordercube each time it is visited from one of the white cubes. These bits
are written together with the bordercube to the corresponding processor
file and can later be used to send boundary values to whatever processor
red corresponds to. 18

3.7 The mapping technique used to connect cubes with their children and
parents that are read and inserted in a map. The function of the discrete
coordinates i and j can be as simple as index=i*jmax+i where jmax is
size of the domain in the j-direction. The same principle applies for three
dimensions. 19

3.8 An overview sketch of the main solver. 20

v

List of Figures vi

3.9 The input parameters to the left and the implemented structure in the
middle yields a three dimensional stencil that can be used to solve the
given equation. 21

4.1 Explicit wave-equation solved on one cube block with size 1m, N=30 and
∆t=1e-5. Boundary condition is zero and initial velocity and amplitude
are both zero. A pulse is generated at time-step 1 at (x − xc)

2 + (y −
yc)

2 + (z − zc)
2 < 0.005 with amplitude 1e5. Upper row (left to right):

time-step 10, 30 and 50. Lower row (left to right): time-step 140, 200 and
250. 23

4.2 Implicit wave-equation solved on one cube block with size 1m, N=30 and
∆t=1e-5. Boundary condition is zero and initial velocity and amplitude
are both zero. A pulse is generated at time-step 1 at (x − xc)

2 + (y −
yc)

2 + (z − zc)
2 < 0.005 with amplitude 1e5. Upper row (left to right):

time-step 10, 30 and 50. Lower row (left to right): time-step 140, 200 and
250. 24

4.3 Comparison of solutions from explicit solver and implicit solver according
to figure 4.1 and 4.2. 24

4.4 Comparison of solutions from explicit solver and implicit solver according
to figure 4.1 and 4.2 in loglog-scale. 25

5.1 Solutions (upper row) and errors (lower row) of the Poisson’s equation 5.1
on one single cube at the root level with N=30 cells along each direction.
Iterations were done until residual < 1e-7. Results are shown for different
values of p. Left to right: p = 2π, 3

2π and π. The cubes are cut at z=0.5
and thus shows the interface of a x-y plane. 27

5.2 Solutions (upper row) and errors (lower row) of the Poisson’s equation 5.1
with 3x3x3 cubes at root level and the middle cube refined to level 2. All
cubes have N=10 cells along each direction. Iterations were done until
residual < 1e-7. Results are shown for different values of p. Left to
right: p = 2π, 3

2π and π. The cubes are cut at z=0.5 and thus shows the
interface of a x-y plane. 27

5.3 The problem of communication from large to smaller cells. Interpolation
of the first order like in this figure, can only use values that lie further
from the point in interest in one direction. This means that the functional
value changes an amount df depending on the gradient of the source term
function. In this case three functions are plotted to mimic the situation
in figure 5.2. 28

5.4 Shows how the error reduces as the size of the cells narrows down. Cube
1 represents the single cube configuration, while Cube 2 represents the
3x3x3 cubes with the middle cube refined to level 2. 28

5.5 The comparison between Multigrid and Gauss-Siedel on a domain con-
sisting of a varying number of cubes, but fixed number of cells over the
whole domain, hence a fixed ∆x. The whole domain is 60x60x60 cells.
The x-axis is just the N-value (number of cells along each cube), while
the y-axis is the time it takes to converge to an error of 1e-3. Multigrid
is set to do 5 sweeps at base level N=5, why it takes longer for that cube
size. 30

List of Figures vii

5.6 Result of Stokes flow on 3x3x3 cube domain, N=20. Domain size: 10m
x 10m x 10m. Radius of sphere: 2m. Inlet velocity is 1 m/s and with
viscosity set to 1. The pressure far away is set to 0. 31

5.7 Left: openFOAM solved streamlines for the cavity case. Right: Imple-
mented PISO algorithm solved cavity case with similar settings as in
openFOAM. 32

5.8 Speed-up test. P1-P64 indicates the number of processors and the first
letter A,B or C correspond to different configurations. The time is nor-
malized to the total number of cells. There are 3 configurations in the
graph. The first configuration (A) is just a single cube. The second con-
figuration (B) is a cube refined to level 2, thus 2x2x2 cubes. The last
configuration (C) is a cube refined to level 3, thus 4x4x4 cubes. Nv is
the number of cells along the total size of the domain in one direction.
Gauss-Seidel was used in the calculations. 33

Abbreviations

CFD Computional Fluid Dynamics

MPI Message Passing Interface

BCM Building Cube Method

PISO Pressure Implicit Splitting Operator

viii

Symbols

Symbol Name Unit

µ dynamic viscosity Pa·s

ρ density kg/m3

τ stress tensor Pa

p pressure Pa

u velocity m/s

N number of cells -

ix

Chapter 1

Introduction

1.1 Background

CFD (Computational Fluid Dynamics) is increasingly spread in both academia and

industry. Previously, simulations within CFD have been seen as a bit more exotic and

non concretely way to solve problems as compared to other scientific fields. Over the

years, however, computer performance has improved and simulations are seen more and

more as a tool to complement and in some cases completely take over the analysis of

reality-based problems.

Both [1] and [2] describe how today’s computers are more and more towards parallel

processors, as a result of the limitations of computations on an individual CPU. As a

consequence, algorithms must be adapted in order to fully exploit the capabilities of the

computer. Dividing the work of n processors can at best speed up the overall process

n times, (if not super-linear). Parallelization can only be used by those parts of the

solution that is not serially constructed, making the total speed up less than n times

faster. Further, accelerators such as GPU’s may be interesting to further speed up the

calculations. These are designed to carry heavier calculations than CPU’s.

Two important factors for simulations are accuracy and efficiency. Accuracy is affected

mainly by the solution method and choice of discretization algorithms. These in turn

affect properties such as stability and convergence. The grid that forms the calculation

domain also affects the accuracy. In [2] it is described in a comparison between the

Cartesian grid and unstructured grid, how the former can be generated up to three

1

Chapter 1. Introduction 2

times as fast as the unstructured grid. In conjunction with today’s faster computers and

transition to parallel processors, the Cartesian grid has many advantages. Compared

with the unstructured grid, the Cartesian grid has benefits in terms of easier and faster

discretization algorithms, with higher accuracy and can quickly solve higher order of

discretizations. However, its simplicity affects the ability to locally refine the grid.

Complex geometries with curved stripes and rapidly changing gradients are therefore

still not easy to solve using only the Cartesian grid.

Further, in [2] it is explained how BCM (Building Cube Method) combines the advan-

tages of structured and unstructured grid by generating Cartesian cubic sub domains,

arranged in a tree (called octree- structure). All such cubes may have eight equal sub-

cubes and hence all the cubes are treated equally. This favors parallel computing and

also local refinement as irregular cells are avoided. The simplicity of the Cartesian grid

is still there, but also the ability to deal with more complex geometries.

1.2 Goal

The goal of this work is to develop algorithms that allow efficient large-scale CFD calcu-

lations. A milestone can be to obtain a working implementation of a simplified canonical

flow situation. This can be followed by improvements in terms of optimizations, which

can then form the basis for solving more complex problems. Several solution algorithms

will be developed and then evaluated in terms of accuracy and efficiency. Comparisons

with open source software can be done to verify the implementation in various ways.

Chapter 2

Theory

2.1 Navier-Stokes Equations

The Navier-Stokes equations are widely used to describe viscous fluid flows. Together

with the continuity equation they can be written in tensor form as

∂ρ

∂t
+
∂ρui
∂xi

= 0 (2.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

=
∂τij
∂xj

− ∂p

∂xi
(2.2)

The stress tensor for linearly viscous gas or Newtonian fluid is τij = µ
(
∂ui
∂xj

+
∂uj
∂xi

)
.

There is also an energy equation used for compressible and more advance incompressible

models. But in this thesis, only simple incompressible cases are covered.

Many simplifications can be done in order to solve for some special cases. Maybe the

simplest form of equation 2.2 arises for a Newtonian incompressible flow where the

viscous forces are dominant, i.e the Reynolds number is very low. In this case, the

viscous term reduces to
∂τij
∂xj

= µ ∂2ui
∂xj∂xj

and the non-linear term can be regarded as

negligible small due to the low velocities. Thus, the equations for Stokes flow are

∂ρui
∂xi

= 0 (2.3)

µ
∂2ui
∂xj∂xj

=
∂p

∂xi
(2.4)

3

Chapter 2. Theory 4

2.2 Building Cube Method

There are mainly two ways to obtain a grid mesh from a given domain, the Cartesian way

and the irregular or unstructured way. A three dimensional domain with a Cartesian

mesh consists of equal sized cubes or some stretched variants of these. This type of mesh

were used in the early days of computing, but when complex geometries became more

important, so did the mesh describing them. Unstructured mesh became a faster way of

generating the mesh. Nowadays, when computer performance has increased considerable

since the early days and parallel processing starts to play a more significant role, better

adapted algorithms need to be developed. [2]

As described in [2], a new way of treating the mesh has been developed. This consists

of dividing the domain into so called, building cube blocks. Each of these blocks are

self similar, thus containing 8 smaller blocks. The whole structure becomes an octree

with one single or many root blocks. In this way, regions can be refined locally to a

predefined level and each block can be solved for using a Cartesian mesh, see figure 2.1.

Figure 2.1: An example of how the refinement levels are constructed in BCM for a
simple 2 dimensional case.

The BCM has advantages inherited from both the unstructured mesh and the simple

Cartesian mesh. Since all cubes are self similar, it’s easy to code in parallel. Also, higher

order boundary connections between blocks are simplified compared to the unstructured

Chapter 2. Theory 5

mesh. There is no need for calculating angles, so the mesh generation becomes much

faster as well. The Cartesian mesh is still there, but the flexibility is more like the

unstructured mesh.

2.3 Discretisation

2.3.1 Finite Difference Method

The simplest form of discretisation can be obtained by extracting derivatives from the

Taylor series expansion [3].

f (x0 + h) = f (x0) +
f ′ (x0)

1!
h+

f (2) (x0)

2!
h2 + ...+

f (n) (x0)

n!
hn +Rn (x0) (2.5)

In the above expansion around x0 it is easy to find a forward finite difference for the

first derivative by rearranging the terms and dividing by the step size h.

f ′ (x0) =
f (x0 + h) − f (x0)

h
− R2 (x0)

h
(2.6)

The last term is the truncation error which is the error when compared to the real

analytic derivative function. It is of first order since the lowest exponent of h is 1.

It is possible to combine equations like 2.5 with different signs on h in order to produce

central and backward finite differences as well. The order of the truncation error is then

an important measurement of how fast the error of a solution algorithm should decrease

as the step size decreases.

2.3.2 Staggered Grid

When the grid is meshed up, it is time to decide where to assign the different variables.

Maybe the most intuitive is to use the cell center or corner, but this may not always

be the best way. When dealing with the Navier-Stokes equations both velocities and

pressure are to be calculated. There is a strong coupling between the pressure and the

velocities, why a highly non-uniform pressure field can act like a uniform field in the

Chapter 2. Theory 6

momentum equations if all variables share the same points in space [4]. This is called

the checker-board effect and this is illustrated in figure 2.2.

Figure 2.2: Example of a pressure field as a function of the spatial indices. Capital
letter I indicates cell center, while lower case i indicates cell face. The vertical lines
are border between cells (cell faces). The dots are example of how pressure values can

behave.

Assume that the density is one and the convective and viscous terms in equation 2.2

are zero. Then, using a central difference scheme in space, the discretised momentum

equation in one dimension reads

un+1
I − unI

∆t
=
pnI+1 − pnI−1

2∆x
(2.7)

If both velocity and pressure were to be saved at the same points, the pressure field in

figure 2.2 would generate a zero velocity field. One way to deal with this situation is

to use a staggered grid, i.e save the non scalar variables at the cell faces, between the

scalar variables. This way, the velocities are calculated as

un+1
i − uni

∆t
=
pnI+1 − pnI

∆x
(2.8)

Now, the oscillations of the pressure are transferred to the velocity in a more physical

meaningful way than before. If the analytic oscillations have an even higher frequency

than this, the cells have to be smaller in order to capture it, but at least it is captured

whenever the frequency is 1/2 per cell length, so the checker-board effect is avoided.

Chapter 2. Theory 7

2.4 Parallel Processing

To speed up the implementation, cubes can be distributed between multiple processors

and dedicated libraries like OpenMPI [5] can be used to run the parallel parts. This

section describes how an efficient distribution can be achieved.

2.4.1 Hilbert Curve

Figure 2.3 shows a two dimensional Hilbert curve. If two points in space are close to

each other, then there is a great chance that they are also close each other on the Hilbert

curve. This locality property is useful when coding in parallel. Later, when the cells

are to be distributed between many processors, locality of cells that belong to the same

processor is advantageous and requires less communication between processors.

Figure 2.3: A two dimensional Hilbert curve

In [6] a way to implement this into an BCM-based structure is presented. It is described

how cubes can be distributed among the processors by going in depth first and follow a

schematic rule system to extract the cells from the octree to the processors.

2.4.2 Distribution Of Work

There exists a condition on certain partial differential equations (e.g. the hyperbolic

wave equation) that reads ∆t
(
ux
∆x +

uy
∆y + uz

∆z

)
≤ Cmax, where Cmax is the maximum

Chapter 2. Theory 8

Courant number depending on the decretisation scheme [7]. This means that smaller

cells need smaller steps in time in order to satisfy the CFL condition when explicit steps

in time are used. If the size of a cell is half of another cell, the time step of the smaller

one needs to be half of the bigger one in order to still satisfy the CFL condition. This

implies that twice as many time steps needs to be run for the smaller cell compared to

the bigger cell in order to traverse the same amount in time. This means that smaller

cells require more work from the processor handling it.

If all processors should have the same amount of work, a weight can be assigned to each

cube containing equal sized cells, corresponding to the size or level of the cube. For

example, if the work of level 1 cubes is 1, then the work of level 2 cubes is 22−1 = 2 and

the work of level k cubes is 2k−1. In this way, it is easy to keep track of the total work

for each processor.

2.5 Multigrid

Another great feature of the Cartesian grid is that it is easy to apply the powerful

Multigrid technique. As described in [8] Multigrid is based on calculating the residual

on a given grid and then restrict it to a coarser grid where the corresponding error is

computed and returned to the origin grid in a recursive fashion. The simplest way is to

use V-cycles where one or more recursive calls are used to coarser grids. Then, when

the coarsest grid is reached, the error is solved and refined to fit the finer grid.

Compared to other simpler iterative methods such as Jacobi and Gauss-Seidel, the Multi-

grid strategy can perform 10 to 100 times faster [8]. But since Multigrid is more of a

strategy than a well defined method, it can not replace the other methods. It is however,

a great accelerator i cases were convergence is slow.

2.6 PISO Algorithm

As stated in [9], the implicit discretisation of the Navier-Stokes momentum equations

2.2 may be written as

Chapter 2. Theory 9

AuiP u
n+1
i,P +

∑
l

Auil u
n+1
i,l = Qn+1

ui −
(
δpn+1

δxi

)
P

(2.9)

The index i represent the current spatial velocity component, while index P denotes

the current cell. Index l denotes the neighboring cells that are dependent. AuiP and

Auil are the coefficients depending on size of time step and size of the cells and type of

discretisation scheme. Further, Qn+1
ui contains the non-linear convective term and other

terms that cannot be explicitly expressed as a linear combination of un+1
i,P or un+1

i,l . The

last term is the pressure gradient, for which discretisation method is not specified.

When solving the implicit equation 2.9 for un+1
i,P , the idea is to fix the right hand side at

the current time step, so that only the velocity being solved for is updated. Using the

same notation as done in [9], the most current updated values are given index m∗ while

the fix values are given the index m − 1 to indicate values just before the momentum

equations are being solved. In this way equation 2.9 becomes

AuiP u
m∗
i,P +

∑
l

Auil u
m∗
i,l = Qm−1

ui −
(
δpm−1

δxi

)
P

(2.10)

To be able to solve these equations, another equation for the pressure is required. This

should come from the continuity equation since it is also involved. Since it is not sure

that um∗i satisfy continuity, it needs to be corrected to a new value umi which satisfies

continuity. Again, according to [9], this is done by inserting the expression for um∗i with

the pressure gradient updated to δpm

δxi
into the continuity equation 2.1. Then the Poisson

equation for the pressure appears as

δ

δxi

[
ρ

AuiP
(
δpm

δxi
)

]
P

=

[
ρũm∗i
δxi

]
P

(2.11)

Here, ũm∗i,P =
Qm−1

ui
−
∑
l A

ui
l um∗

i,l

A
ui
P

.

After solving 2.11 for new pressure, the velocities can be corrected so that continuity is

fulfilled. This is done by

umi,P = ũm∗i,P − 1

AuiP

(
δpm

δxi

)
(2.12)

Chapter 2. Theory 10

Now, in the PISO algorithm, equation 2.11 is solved one more time with the new veloc-

ities so that the velocities can be corrected one more time. After that, the momentum

equation is not satisfied and a new round of solving the momentum equation followed

by correction steps are necessary, until the changes are considered small. In each such

round or inner loop, the terms AuiP , Auil and Qn+1
ui are updated with the most current

values corresponding to time step n+1. Then a new time step can be computed in a

new outer loop.

A schematic flow chart of the PISO algorithm for the incompressible Navier-Stokes

equations is given in figure 2.4.

Chapter 2. Theory 11

Figure 2.4: Schematic flow chart of the PISO algorithm for the incompressible Navier-
Stokes equations. After each box the variables to the right of the arrow indicates that
they have been updated and are used as input parameters to the operation in the next

box.

Chapter 3

Implementation

3.1 Overview

This chapter explains the implemented program as a whole and tries to go into detail

where its necessary. No code is given, but rather figures are used as illustrations of how

a specific part of the program works.

As compared to other CFD-programs both a pre-processor and a part of a post-processor

are implemented and deals with the reading and writing as well as the mesh generation.

Further, there is a solver and a part that reads and writes the structure for multiple

processors. A schematic overview is given in figure 3.1.

3.2 The Cubes

3.2.1 Refinement levels

The building cubes used in this implementation have a Cartesian grid which is used to

solve a problem with some given stencil and boundary conditions.

These cubes are implemented in an octree structure as described in section 2.2. A cube

can either have no children or 8 children, but it is only the cubes with no children that

are used when solving equations.

12

Chapter 3. Implementation 13

Figure 3.1: Schematic overview of the program.

Figure 3.2: Example of a two dimensional cube with N=3 cells along each direction.
Boundary cells are being marked with dashed lines.

Chapter 3. Implementation 14

In the configure file, all information about the octree structure should be specified. This

includes the number of cubes on the root grid, which are the cubes that are on level 1.

Depending on which regions that are interesting, some of these cubes may be further

refined. The rule is that neighboring cubes cannot differ more than one level.

The regions where calculations are done are called fluid regions and are defined by

objects. The objects can be a geometrical shape, like a sphere or a cylinder. The dimen-

sions of those objects are read from the configuring file, whereby the regions covering

the objects are refined to a predefined level. All the cubes inside an object are inactive,

while the ones outside belong to the fluid region. In order to get good resolution at

the border of a object, the cells inside the cubes are also marked as active/inactive.

Figure 3.3 illustrates this.

Figure 3.3: Example of how the cells of two dimensional cubes are marked inactive
(red cells) when their cells centers are inside the object. In this case, N=3 for all cubes

where the green lines mark the cells, while the black lines mark the cubes.

Chapter 3. Implementation 15

3.2.2 Communication Between Cubes

Figure 3.2 shows a two dimensional cube with boundary cells of the first order. If there

were more layers of boundary cells, these would have been of second and higher orders.

The order of the boundary is important for accuracy since then it’s possible to use higher

order discretisation schemes. In this thesis though, only first order boundary cells are

implemented.

Communication between cubes are done after each of them has been solved. Then they

receive their boundary from the cube located in the corresponding direction. If the

communicating cubes are on different levels of refinement and/or they have a different

number of cells, then some interpolation is necessary in order to get as good estimation

of the boundary values as possible. The above part of figure 5.3 in chapter 5 gives an

example of communication between two cubes on different levels. Here, the smaller cube

tries to receive its boundary by picking the closest boundary point in the larger cube.

Figure 3.4 shows the opposite case where the larger cube needs to interpolate.

Figure 3.4: A two dimensional example of communication between two cubes on
different levels of refinement. The boundary cells of the larger cube are marked with
red. Interpolation of every boundary cell in the larger cube is done with an average
value of 4 cells in the smaller cube, see the arrows. The corresponding case in three

dimensions would have been an interpolation of 8 cells.

Apart from communication between cubes internally for a single processor, cubes have

to be able to send and receive boundaries to and from neighboring processor cubes. How

this is done, is discussed more in the next section.

Chapter 3. Implementation 16

3.3 Read and Write

3.3.1 Writing

The first place where reading occurs is in the pre-processor, where the configurations

are read from a simple txt-file. Here, all grid specific data are read, such as dimensions,

objects and parameters necessary to generate the cubes. The objects as described earlier,

define the maximum level of refinement.

After the cubes have been generated, they are distributed among different processors

according to their Hilbert index and then saved as an octree structure by writing to

parallel files, one for each processor. As described in chapter 2.4.2, the cubes can have

different weights according to which problem are to be solved. The way of writing them is

not straight forward since not only do the cubes communicate within the same processor,

they do also communicate with other processor cubes. In this implementation, this is

solved by also including the cubes that belong to another processors which communicates

with one or many cubes from this processor, (called bordercubes). In this way it is easy

to update the boundary of the bordercubes and send it to the other processor. One

cube may be written to multiple processor files, but only belongs to one of them. This is

similar to the communication between the cube’s cells as describes in section 3.2.2, only

now it is a communication between the processor’s cubes instead of the cube’s cells. The

hard part is to find all such bordercubes and write them only once to the right processor

file.

As stated in section 2.4.1, the Hilbert index is unique for a given level of refinement.

This index can be used as a hash value in a map with cube pointers, one map for every

level of refinement. This map has been implemented and can be used to uniquely find

a cube with a given index and level of refinement, as well as collecting a set of unique

cubes that should be written to a processor file. Figure 3.5 illustrates this.

The bordercubes also need to be marked with the directions in which they should send

their boundary values. This is done by setting logical bits, where the bit on place

k indicate whether the boundary in direction k should be sent from this bordercube.

So every time a bordercube is visited when trying to find all bordercube for a certain

processor, the logical bits representing the directions of that bordercube is updated.

Figure 3.6 shows a case for two dimensions. In the three dimensional implementation,

Chapter 3. Implementation 17

Figure 3.5: The cubes C1-C7 are inserted in a map corresponding to their level of
refinement. The table shows how the bordercubes are written to the parallel files in the

case of 2 processors of this simple two dimensional case.

there are 18 different directions, 6 sides and 12 edges. The corner are not used in any

calculation so these are skipped.

3.3.2 Reading

The written processor files contain all necessary information about the cubes to recreate

them. The most important information for the reconstruction is about the children and

parents of a cube. As described in the previous section, maps together with a index

were used to uniquely write cubes to the different processor files. It actually becomes

handy when reconstructing the cubes again. For example, if both a cube and its child

has been read and inserted in a map according to their indices and levels, that cube can

find its child by recalculating its child’s index and look in the map with the level one

more than the cube’s level. The same idea applies for the parent. The index doesn’t

need to be the hilbertindex, its enough that it is unique for a given level of refinement.

This can be a very easy calculation as a function of the the discrete coordinates of the

cube being searched for. This is illustrated in figure 3.7.

Chapter 3. Implementation 18

Figure 3.6: The red cube is a bordercube and the white cubes belong to the same
processor. The figure illustrates how the direction bits are updated in the bordercube
each time it is visited from one of the white cubes. These bits are written together
with the bordercube to the corresponding processor file and can later be used to send

boundary values to whatever processor red corresponds to.

3.4 Overview Of Main Solver

In this thesis, the solver is built on iterative methods since it should deal with very

large and complex problems, like the Navier-Stokes equations. Basic solvers such as

the Jacobi and Gauss-Seidel are implemented as well as Multigrid. Both explicit and

implicit equations should be solved and these are treated in much the same way, but

are still separated due to the unnecessary residual calculation in the explicit case. The

stencils are more extensive in a way that they describe the complete set of equations

that are being solved and also depends on parameters such as the grid spacing and time

step which may vary from one level to another. Multigrid also relies on this flexibility

of the stencil, thus a separate section for this is given below. An overview sketch of the

most important methods in the main solver is given in figure 3.8.

Chapter 3. Implementation 19

Figure 3.7: The mapping technique used to connect cubes with their children and
parents that are read and inserted in a map. The function of the discrete coordinates
i and j can be as simple as index=i*jmax+i where jmax is size of the domain in the

j-direction. The same principle applies for three dimensions.

3.4.1 The stencils

The basic idea of the stencils is to update every cell inside a cube using either Jacobi,

Gauss-Siedel or some other iterative method. If the underlying equation is explicit, there

is no need to use these since then it’s just a matter of overwriting every cell with values

that are already known from previous time steps and/or variables. On the other hand,

it might be a good idea to have a scheme for the different variables and time steps that

are to be combined to a new value for a given cell, so that this value can be obtained for

every time that equation is solved. For an implicit equation, the terms that don’t belong

to the new time-step could be collected by a similar scheme and saved in the source term.

This is demonstrated by introducing a general equation in a single variable, called u.

un+1
N =

∑
0<k<n

∑
lk

αlku
n+1−k
lk

(3.1)

The index N denotes the cell that is being solved for and lk denoted the current neigh-

bouring index to N at time-step n+ 1 − k. The αlk is the weighting factor that should

Chapter 3. Implementation 20

Figure 3.8: An overview sketch of the main solver.

be saved in the stencil. But αlk may depend both on the time-step and the grid-spacing,

thus αlk = αlk(∆t,∆x) where ∆x is same in every direction of a cell. Now, ∆t is not any

problem if it is the same for all cubes, but as mentioned in section 2.4.2, the time-step

may depend on the size of the cube. Also, the grid-spacing is different for different levels

of refinement. To solve this problem in this thesis, a global stencil structure is imple-

mented that keeps track of every weight for all possible combinations of parameters.

The idea sketch of this structure can be seen in figure 3.9.

Both level and grid-spacing needs to be sent to the structure in order to get an unique

stencil. This is because Multigrid uses stencils based on the same time-step ∆t as defined

for the coarsest grid. If solving a cube at a specified level with Multigrid, only the grid-

spacing parameter should be changed when refining and coarsening, not the level which

has ∆t constant for all grid-spacings.

Looking at equation 2.2, the incompressible density ρ appears in the non-linear term.

Since it may depend on the space coordinates, so will the weights w1-w6 in figure 3.9.

Chapter 3. Implementation 21

Figure 3.9: The input parameters to the left and the implemented structure in the
middle yields a three dimensional stencil that can be used to solve the given equation.

Temporarily, in this thesis, a function for every weight-node in the stencil was imple-

mented. Every node in the stencil structure gets a pointer to a function which returns

the right weight for every space coordinate.

Chapter 4

Stability and Convergence

4.1 Solving the Wave Equation

There are many ways to test the implementation described in chapter 3. Here is given a

description of how an explicit and an implicit form of the wave equation are implemented

and tested by the solver. The wave equation has the following form

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2y

∂x2
+
∂2u

∂z2

)
+ f (4.1)

Here, c is the velocity of the wave, u the solution amplitude and f an external force.

The equation is hyperbolic and has a condition for stability, namely the CFL-condition,

see section 2.4.2. In the next section, a simple explicit scheme is introduced to solve

equation 4.1 with a CFL-condition. After that, an implicit scheme is given that tries

to avoid the CFL-condtion by separating variables and solving for an elliptic equation

instead.

4.1.1 Explicit solution

A second order central difference scheme applied to equation 4.1 in both space and time,

yields

un+1
i,j,k = 2uni,j,k − un−1

i,j,k +
c2∆t2

∆x2
[Dxxu

n +Dyyu
n +Dzzu

n] + ∆t2fni,j,k (4.2)

22

Chapter 4. Stability and Convergence 23

Here, Dκκu
n = unκ+1 − 2unκ + unκ−1, where κ is either the x,y or z index that is being

differentiated. Figure 4.1 shows the result of this with a wave propagating from an initial

pulse.

Figure 4.1: Explicit wave-equation solved on one cube block with size 1m, N=30 and
∆t=1e-5. Boundary condition is zero and initial velocity and amplitude are both zero.
A pulse is generated at time-step 1 at (x − xc)

2 + (y − yc)
2 + (z − zc)

2 < 0.005 with
amplitude 1e5. Upper row (left to right): time-step 10, 30 and 50. Lower row (left to

right): time-step 140, 200 and 250.

4.1.2 Implicit solution

The implementation of an implicit solution is already done in [10] for the two dimensional

case. A simple generalization to three dimensions yields the following equations.

vn+1 − ∆t2

4∆x2
Dxx,yy,zzv

n+1 = ∆tDxx,yy,zzu
n + vn +

∆t2

4∆x2
Dxx,yy,zzv

n (4.3)

un+1 = un + ∆t
vn+1 + vn

2
(4.4)

Here, Dxx,yy,zz = Dxx + Dyy + Dzz , where Dκκ is defined as in the previous section.

The variable v is coupled with the solution amplitude u as Dtu = v which implies the

second equation Dtv = Dxx,yy,zzu from which equations 4.3 and 4.4 are found. This is

as in the explicit case a second order central difference scheme in both time and space.

The first one is actually Helmholtz equation which is always elliptic and does always

converge. Results can be seen in figure 4.2.

A comparison between figure 4.1 and 4.2 gives a confidence that both the explicit and

the implicit solver works.

Chapter 4. Stability and Convergence 24

Figure 4.2: Implicit wave-equation solved on one cube block with size 1m, N=30 and
∆t=1e-5. Boundary condition is zero and initial velocity and amplitude are both zero.
A pulse is generated at time-step 1 at (x − xc)

2 + (y − yc)
2 + (z − zc)

2 < 0.005 with
amplitude 1e5. Upper row (left to right): time-step 10, 30 and 50. Lower row (left to

right): time-step 140, 200 and 250.

Figure 4.3: Comparison of solutions from explicit solver and implicit solver according
to figure 4.1 and 4.2.

Chapter 4. Stability and Convergence 25

Figure 4.4: Comparison of solutions from explicit solver and implicit solver according
to figure 4.1 and 4.2 in loglog-scale.

Chapter 5

Accuracy And Efficiency

5.1 Solving Poisson’s Equation

One of the most common differential equation is the Poisson’s equation. Together with

some oscillating force, the equation is

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= −p2sin(px) (5.1)

The equation above is in only one dimension because of the right hand side force, but

it will be solved on a unit cube in three dimensions. The solution to equation 5.1 is

f(x, y, z) = sin(px) and this is used to set the boundary conditions.

The implementation of equation 5.1 is now tested on two different cube configurations.

The first configuration is a single cube with N=30 cells along each direction. The

second configuration consists of 3x3x3 cubes at the root level, while the middle cube has

8 children on level 2, N=10 for all of these cubes. The solution on these configurations

are interesting because its possible to see if and how well communication between cubes

work. Since the discretization of equation 5.1 is of second order, the error is supposed

to behave as such when the size of the cells narrows down. Figure 5.1 and 5.2 shows the

solutions with the corresponding errors for the given configurations.

As can be seen, both configurations seems to produce results that more or less equals

the analytic solution. The single cube performs best and has a smooth solution with

26

Chapter 5. Accuracy And Efficiency 27

Figure 5.1: Solutions (upper row) and errors (lower row) of the Poisson’s equation 5.1
on one single cube at the root level with N=30 cells along each direction. Iterations
were done until residual < 1e-7. Results are shown for different values of p. Left to
right: p = 2π, 3

2π and π. The cubes are cut at z=0.5 and thus shows the interface of a
x-y plane.

Figure 5.2: Solutions (upper row) and errors (lower row) of the Poisson’s equation 5.1
with 3x3x3 cubes at root level and the middle cube refined to level 2. All cubes have
N=10 cells along each direction. Iterations were done until residual < 1e-7. Results
are shown for different values of p. Left to right: p = 2π, 3

2π and π. The cubes are cut
at z=0.5 and thus shows the interface of a x-y plane.

no visible distortion of any kind. On the other hand, the configuration in figure 5.2

seems to get distorted around the communicating area between large and small cubes.

Looking at the magnitude of the error, it is about 10 times greater than the error of the

single cube. The problem must come from the interpolation done when updating the

boundary of the smaller cubes, from large to small cells. The error seems to be smallest

for p=2π and greatest for p=3
2π. Also, the error is moved to the right side of the inner

cube for p=3
2π. This is explained in figure 5.3.

From the plot of the single cube in figure 5.4 it’s clear that the distretisation is of second

order. The other plots shows how the interpolation (of first order) between large and

Chapter 5. Accuracy And Efficiency 28

Figure 5.3: The problem of communication from large to smaller cells. Interpolation
of the first order like in this figure, can only use values that lie further from the point
in interest in one direction. This means that the functional value changes an amount
df depending on the gradient of the source term function. In this case three functions

are plotted to mimic the situation in figure 5.2.

Figure 5.4: Shows how the error reduces as the size of the cells narrows down. Cube
1 represents the single cube configuration, while Cube 2 represents the 3x3x3 cubes

with the middle cube refined to level 2.

Chapter 5. Accuracy And Efficiency 29

small cells introduces an even greater error than this second order discretisation error.

These errors will decrease more or less in an linear rate, depending on the gradients of

the source term.

5.2 Solving Navier-Stokes Equations

5.2.1 Stokes flow

Here the solution of Stokes flow around a sphere is studied and compared with the

analytic solution.

The equations 2.3 and 2.4 are straight forward to discretize. The corresponding equation

for the pressure is just the Laplace equation, since the non-linear term is zero. According

to [11] the velocities and pressure around a sphere in polar coordinates are

ur = Wcos(θ)

(
1 +

a3

2r3
− 3a

2r

)
(5.2)

uθ = −Wsin(θ)

(
1 − a3

4r3
− 3a

4r

)
(5.3)

p = p0 −
3

2

µWa

r3
cos(θ) (5.4)

Here, a is the radius of the sphere, W the velocity in z-direction, p0 the pressure far

away from the sphere and µ the viscosity. Now, introduce the angle φ in the x-y plane

and let (xc, yc, zc) be the origin of the sphere. Then the corresponding velocity equations

in Cartesian coordinates becomes

ux = cos(φ) (ursin(θ) + uθcos(θ)) (5.5)

uy = sin(φ) (ursin(θ) + uθcos(θ)) (5.6)

uz = urcos(θ) − uθsin(θ) (5.7)

Here, cos(θ) = z−zc
r , sin(θ) = y−yc

r , cos(φ) = x−xc
rxy

and sin(φ) = y−yc
rxy

, where rxy =√
(x− xc)2 + (y − yc)2.

Chapter 5. Accuracy And Efficiency 30

The above has been implemented on a staggered grid and solved for a fix spacing ∆x on

a domain consisting of a sphere object of radius 2 m. The performance was thereafter

compared between Multigrid and Gauss-Siedel for different number of cubes covering

the domain.

Figure 5.5: The comparison between Multigrid and Gauss-Siedel on a domain con-
sisting of a varying number of cubes, but fixed number of cells over the whole domain,
hence a fixed ∆x. The whole domain is 60x60x60 cells. The x-axis is just the N-value
(number of cells along each cube), while the y-axis is the time it takes to converge to
an error of 1e-3. Multigrid is set to do 5 sweeps at base level N=5, why it takes longer

for that cube size.

As can be seen in figure 5.5, the Multigrid method performs better, at least for sufficiently

large values of N. Both Gauss-Siedel and Multigrid performs less when N decreases, due

to the number of communications between cubes then increases. But Multigrid has a

much higher gradient on that curve since it also depends directly on N. Having many

cubes along the domain doesn’t benefit Multigrid, because it simply cannot transfer

information faster than a cube length per iteration. So, to maximize the performance,

Multigrid should be used when N is sufficiently large and on a cube that is large compared

to the size of the domain.

Chapter 5. Accuracy And Efficiency 31

Figure 5.6: Result of Stokes flow on 3x3x3 cube domain, N=20. Domain size: 10m x
10m x 10m. Radius of sphere: 2m. Inlet velocity is 1 m/s and with viscosity set to 1.

The pressure far away is set to 0.

5.2.2 Discretize Navier-Stokes Equations

Looking back at the discretized momentum equation 2.9 and its corresponding continu-

ous equation 2.2, it is noticeable that there is a problem with the non-linear term
∂ρuiuj
∂xj

.

The momentum equation cannot directly be written in the linear form of equation 2.9

without doing something about this non-linear term. One possibility is to use some

non-linear solver like the Newton-Raphson method. But in this thesis, this is solved by

linearizing the non-linear term. This is done in the same way as described in [9]. The

linearized momentum equation becomes

ρ∆ui = ∆t

−δ (ρuiuj)
n

δxj
− δ (ρuni ∆uj)

δxj
−
δ
(
ρ∆uiu

n
j

)
δxj

−δp
n

δxi
+
δ∆p

δxi
+
τnij
δxj

+
∆τij
δxj

) (5.8)

Here, ∆ui = un+1
i − uni . From this, the Poisson’s equation can be found as

δ

δxi

(
δ∆p

δxi

)
=

1

∆t

δ(ρum∗i)

δxi
(5.9)

The asterisk sign over umi indicates that this is the current velocity field computed by

equation 5.8. The corrector equation, corresponding to equation 2.12 now becomes

Chapter 5. Accuracy And Efficiency 32

um+1
i = um∗i − ∆t

ρ

δ∆p

δxi
(5.10)

The implementation of this is tested in the next section.

5.3 Comparison With OpenFOAM

A very basic problem in CFD is the cavity problem, where fluid is flowing over a cubic

cavity such that a swirl occurs inside the cavity. This was implemented according to

the PISO algorithm, see section 2.6. But due to some inconsistency in the solution

algorithm, no numeric comparison with openFOAM could be done. Still, the current

solution is compared in figure 5.7, but just for qualitative comparison.

Figure 5.7: Left: openFOAM solved streamlines for the cavity case. Right: Imple-
mented PISO algorithm solved cavity case with similar settings as in openFOAM.

5.4 Speed-up

Instead of further comparisons, a speed-up test was performed on the stokes flow. The

results can be seen in figure 5.8

Chapter 5. Accuracy And Efficiency 33

Figure 5.8: Speed-up test. P1-P64 indicates the number of processors and the first
letter A,B or C correspond to different configurations. The time is normalized to the
total number of cells. There are 3 configurations in the graph. The first configuration
(A) is just a single cube. The second configuration (B) is a cube refined to level 2,
thus 2x2x2 cubes. The last configuration (C) is a cube refined to level 3, thus 4x4x4
cubes. Nv is the number of cells along the total size of the domain in one direction.

Gauss-Seidel was used in the calculations.

Chapter 6

Conclusions and Future Work

One of the main goals of this thesis was to get a working implementation of a parallel

CFD program using the BCM method. This was done and is described in chapter 3.

There are always alternative ways to implement different parts of a program, but this

was simplified by following the already implemented structure and the description of the

BCM method in [2], [1] and [6].

The decomposition of cubes as done in [1] is a little bit more complex then the way it

was done in this thesis. In this thesis, cubes on the border to other processors were

assigned a direction index which tells in which direction it should update its boundary

in the other processor, which it belongs to. Further, maps where used to keep track

of cube pointers with different Hilbert- or flat indices. There is a somewhat similar

thinking in [1], which mentions window cells and halo cells as communicating cells over

different processor domains. Still, an important thing when efficiency is required, is that

the boundaries can be sent from one processor to another as fast as possible. Here, the

implemented maps became very useful since they provided a way to directly connect to

the cube which should be updated, by using the cube’s index and level as an id.

The implementation of the parallel parts using OpenMPI seems to give good scaling as

can be seen in the speed-up test, figure 5.8. When N=40 on 64 processors, the scaling

gets worse, but this is just 1000 cells per processor. The larger number of cells per

processor, the more time is spent on solving and less on communication. This should

yield a curve that is linear for an even more processors, which also seems to be the case.

34

Bibliography 35

Even though some parts of the implementation works as intended, many things has to

be further developed. For example, a drawback from just having one layer of boundary

cells is that the accuracy gets worse than the accuracy expected from the discretization,

when large and small cubes communicate. This was illustrated in figure 5.3. Cubes that

are refined close to objects often have some interesting flows with high gradients. Here

it is especially important to have a good transition from large to small cubes. To get

satisfying results in a further developed program, higher order boundary cells need to

be implemented.

The implemented stencils did contribute with another weak point to the implementation

and are far away from ideal. The most time-consuming part when solving with a stencil

with space dependent weights, is the repeated calls to weight functions. A run under

gprof shows that one such function took about 5 percent of the total runtime, while

another only took about 0.1 percent. The preferable way would be to calculate every

weight before entering the solver.

A last objective of this thesis was to compare the implementation with some open source

software, like OpenFOAM. The implemented PISO algorithm was able to solve the cavity

case with some high tolerance on the residual. But due to some inconsistency causing

the convergence problem, it did not work good enough for any further comparison. This

is considered as something to be further developed and tested in the future.

Bibliography

[1] J.H. Grimmen C. Günther M. Meinke W. Schröder A. Lintermann, S. Schlimpert.

Massively parallel grid generation on hpc systems. Computer Methods in Applied

Mechanics and Engineering, pages 1–32, April 2014. URL http://dx.doi.org/

10.1016/j.cma.2014.04.009.

[2] Kazuhiro Nakahashi. Aeronautical cfd in the age of petaflops-scale computing:

From unstructured to cartesian meshes. European Journal of Mechanics B/Fluids,

pages 75–86, February 2013. URL http://www.elsevier.com/locate/ejmflu.

[3] Finite difference method. http://en.wikipedia.org/wiki/Finite_difference_

method, . Accessed: 2015-03-03.

[4] H. K. Versteeg and W. Malalasekera. An introduction to computional fluid dynamics

The finite volume method, pages 136–138. Longman Scientific and Technical, 1995.

[5] Open MPI open source high performance computing. http://www.open-mpi.org/.

Accessed: 2015-03-03.

[6] Daisuke Sasaki Kazuhiro Nakahashi and Noriyoshi Ishikawa. Large-scale distributed

computation using building-cube method. Technical Report AIAA 2011-754, Amer-

ican Institute of Aeronautics and Astronautics, 2011.

[7] Courant-friedrichs-lewy condition. http://en.wikipedia.org/wiki/

Courant-Friedrichs-Lewy_condition, . Accessed: 2015-03-03.

[8] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations,

pages 291–308. Cambridge University Press, second edition, 2009.

[9] Joel H. Ferziger and Milovan Perić. Computational Methods for Fluid Dynamics,

pages 170–178. Springer, third edition, 2002.

36

http://dx.doi.org/10.1016/j.cma.2014.04.009
http://dx.doi.org/10.1016/j.cma.2014.04.009
http://www.elsevier.com/locate/ejmflu
http://en.wikipedia.org/wiki/Finite_difference_method
http://en.wikipedia.org/wiki/Finite_difference_method
http://www.open-mpi.org/
http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition
http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition

Bibliography 37

[10] Indroduction to multigrid methods - final project. http://www.maths.lth.se/

na/courses/FMNN15/media/material/computerXPMG3.11.pdf. Accessed: 2015-

03-03.

[11] Chiang C.Mei. Stokes flow past a sphere. http://www.web.mit.edu/2.21/www/

Lec-notes/chap2_slow/2-5Stokes.pdf, 2007. Accessed: 2015-03-03.

http://www.maths.lth.se/na/courses/FMNN15/media/material/computerXPMG3.11.pdf
http://www.maths.lth.se/na/courses/FMNN15/media/material/computerXPMG3.11.pdf
http://www.web.mit.edu/2.21/www/Lec-notes/chap2_slow/2-5Stokes.pdf
http://www.web.mit.edu/2.21/www/Lec-notes/chap2_slow/2-5Stokes.pdf

	main.pdf
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Abbreviations
	Symbols
	1 Introduction
	1.1 Background
	1.2 Goal

	2 Theory
	2.1 Navier-Stokes Equations
	2.2 Building Cube Method
	2.3 Discretisation
	2.3.1 Finite Difference Method
	2.3.2 Staggered Grid

	2.4 Parallel Processing
	2.4.1 Hilbert Curve
	2.4.2 Distribution Of Work

	2.5 Multigrid
	2.6 PISO Algorithm

	3 Implementation
	3.1 Overview
	3.2 The Cubes
	3.2.1 Refinement levels
	3.2.2 Communication Between Cubes

	3.3 Read and Write
	3.3.1 Writing
	3.3.2 Reading

	3.4 Overview Of Main Solver
	3.4.1 The stencils

	4 Stability and Convergence
	4.1 Solving the Wave Equation
	4.1.1 Explicit solution
	4.1.2 Implicit solution

	5 Accuracy And Efficiency
	5.1 Solving Poisson's Equation
	5.2 Solving Navier-Stokes Equations
	5.2.1 Stokes flow
	5.2.2 Discretize Navier-Stokes Equations

	5.3 Comparison With OpenFOAM
	5.4 Speed-up

	6 Conclusions and Future Work

