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Abstract

Nanoparticles doped with lanthanide ions that are capable of upconverted radiation

promise great potential as exogenous luminescent biomarkers in biomedical imaging. In

this work, hexagonal structured core NaYF4:Yb3+,Tm3+ and core-shell NaYF4:Yb3+,Tm3+

@NaYF4 upconverting nanoparticles (UCNPs) with ranging from ∼43 nm to ∼66 nm

in size are successfully synthesized by a modified solvothermal synthesis method.

The work presented in this thesis aims at the crystal structure analysis of core

NaYF4:Yb3+,Tm3+ and core-shell NaYF4:Yb3+,Tm3+@NaYF4 UCNPs under varying

thermal conditions. X-ray diffraction (XRD) and transmission electron microscopy

(TEM) techniques were utilized to characterize size, phase and shape of UCNPs. More-

over, thermal stability of the crystal phase of UCNPs was investigated. Thus, UCNPs

were exposed to a post heating treatment where the temperature was gradually increased

from room temperature to 700◦C. The XRD patterns of UCNPs at varying tempera-

ture levels show that UCNPs are thermally stable up to ∼300◦C. Additionally, at the

temperature level of 590◦C core UCNPs began to undergo a phase transformation from

hexagonal phase (β) to cubic phase (α).

The low quantum yield (QY) of upconversion (UC) emissions in UCNPs is always

considered as a challenging problem that hinders UCNPs’ utilization in bioimaging.

Therefore, another aim of this work is pointed to figure out a successful way that im-

proves QY of core UCNPs. Indeed, a significant increase in QY of near infrared (NIR)

UC emission in core-shell UCNPs was accomplished under the excitation of 975 nm light.

Simulations promise that it is feasible to increase QY up to ∼2.4% by millisecond pulse

excitation with carefully selected pulse parameters. Furthermore, NIR UC signal gain,

∼8.7, is experimentally achieved by the pulsed excitation that had a 2 Hz repetition

rate, a 20 ms pulse width, a 4% duty cycle with ∼0.12 Wcm−2 average power density.
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Ar argon
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Chapter 1

Introduction

There have been many applications that exploit the advantages of upconverted radi-

ation since the discovery of the UC mechanism in 1966. Upconverted radiation is a

consequence of a process where less energetic radiation is converted to more energetic

radiation. Thus far, remarkable spectroscopic outcomes of radiation conversion pio-

neered the development of miscellaneous optical devices, such as infrared (IR) quantum

detectors, temperature sensors, solid-state lasers, solar cells. Since the synthesis of first

nanoparticles that show UC radiation capability, utilization of UCNPs has started to

become a hot topic in many different fields of medicine and biology, i.e., biosensing [1],

bioimaging [2, 3], and photodynamic therapy (PDT) [4, 5]. Particularly in bioimaging,

UCNPs, due to their attractive properties, are regarded as promising contrast agents

and luminescent biomarkers compared to conventional quantum dots (QD) and organic

fluorophores. UCNPs can be excited by near infrared (NIR) radiation. Since NIR radi-

ation is within the limits of the tissue optical window, Stokes-shifted autofluorescence

generated by the biomolecules in the tissue is weak. Due to low background light from

luminescent biological tissue components, the signal to background ratio is enhanced

yielding high sensitivity imaging of UCNPs. Additionally, as a direct consequence of

NIR, high light penetration depth is achieved. Furthermore, a low power density (∼1

Wcm−2) NIR CW laser is sufficient to initiate UC processes of the nanoparticles in

which no photo damages to tissues are expected in biological applications. Addition-

ally, UCNPs are able to generate multi-color UC emission bands simultaneously making

multi-labelling feasible inside a tissue.

Despite many promising characteristics of UCNPs, there are still challenging con-

straints that have to be surmounted wisely. First of all, small sized particles, less than

50 nm, are essential for intercellular applications. However, the production of small

sized particles with considerably high UC luminescence intensity is a formidable task.

Due to the trade-off between the size and UC luminescence intensity, every reduction

1



Chapter 1 Introduction 2

in the size of UCNPs yields weaker luminescence intensity. Moreover, the resulting UC-

NPs may have a hydrophobic nature due to the surfactant material used during the

synthesis. Due to indispersibility in water, the biocompatibility of UCNPs is problem-

atic. Furthermore, crystal properties of UCNPs, i.e., morphology, size and phase are

significantly associated with the optical properties of the nanocrystal such as UC lumi-

nescence intensity, QY, and emission profile. Thus, a rational synthesis method which

allows control over morphology, size and phase is required. Herein, an “ideal” UCNP

is expected to have the following characteristics: monodispersed, uniform in shape and

size, highly crystalline, phase pure, dispersible in water, and strong UC luminescence

with multi-emission bands. Thus far, among many other synthesized UCNPs, β-NaYF4

is mainly used as host material providing high QY and UC efficiency [6],[7]. In addition,

different chemical methods including thermal decomposition, hydro(solvo) thermal, and

coprecipitation have been utilized for the synthesis of UCNPs.

In this thesis work, a modified solvothermal synthesis method is utilized for the

synthesis of core NaYF4:Yb3+, Tm3+ UCNPs and core-shell NaYF4:Yb3+, Tm4+@

NaYF4 UCNPs and will be outlined in Chapter 4. Additionally, analysis results re-

garding shape, size and phase of the resulting UCNPs will be presented in Chapter

5. Furthermore, thermal stability of the crystal phase in UCNPs is examined and the

obtained results during a post heating treatment where temperature is increased up to

700◦C will be evaluated in Chapter 5. As a last study of this thesis work, the feasi-

bility of an enhancement on QY in core NaYF4:Yb3+,Tm3+ UCNPs is investigated by

utilizing a pulse excitation source and the results are presented in Chapter 5.



Chapter 2

Upconversion Mechanism

UC is a nonlinear optical process. Higher energy photon emission is achieved as a

consequence of a stepwise excitation of light by a single ion via either the successive

absorption of more than one lower energy photon or the energy transfers between ions.

In 1966, the formulation of UC mechanism was submitted separately by Ovsyankin and

Feofilov, and Auzel almost seven years after the inspired publication of Bloembergen

[8],[9],[10],[11].

2.1 Upconversion processes

UC of radiation is achieved by different processes including excited state absorption

(ESA), cooperative upconversion and energy transfer upconversion (ETU). The distinc-

tive characteristics of each UC process will be reviewed in the following subsections by

means of the formulations of Auzel [12].

2.1.1 Excited state absorption

A simplified three-level energy system is illustrated in Figure 2.1 to facilitate the un-

derstanding of an ESA process.

First, the ion jumps up to one of its low-lying long-lived excited state (E1) via

ground state absorption (GSA). The long-lived nature of this intermediate state reduces

the spontaneous emission decay rate of E1 and provides ample time to accommodate

at that state. Meanwhile, a second photon reaches and promotes that ion in E1 to the

high-lying excited state (E2). Next, the UC luminescence is generated as the ion decays

from E2 to ground state (GS).

It is worth mentioning that not only the energy difference between GS and E1 but

also between E2 and E1 is required to be nearly equal for an efficient stepwise excitation.

This is a significant criterion that should be taken into account for a dopant ion selection

that is mainly responsible for UC luminescence.

3
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E2

E1

GS

GSA

ESA

Figure 2.1: Schematic representation of a ESA process in a three-energy level system.

2.1.2 Energy transfer upconversion

Similar to ESA, there is a sequential excitation of an ion in ETU. In Figure 2.2, the

ETU process is demonstrated. Here two different types of ion are present. The ion that

is responsible for the absorption of the excitation photons, acting as the donor ion in

the subsequent non-radiative energy transfer, is called the sensitizer. The neighbouring

ion that accepts the transferred energy, undergoes a stepwise excitation resulting in UC

luminescence. This is called the activator.

ET 

ActivatorSensitizer

GS

E1

GS

E1

E2

S

S

ET ETU 

ETU 

1

2

1

2

A

A

A

Figure 2.2: The schematic representation of ETU mechanism. Energy transfer (ET)
is non-radiative and there is no intermediate photon generation. Herein, ET also occurs

in a resonant way by means of equidistant energy level separation.

There are various types of energy transfer between two neighbouring ions, as

demonstrated in Figure 2.3. In resonant radiative energy transfer, energy is transferred

to the activator by the assistance of a photon originating from the spontaneous decay

of the excited sensitizer. The probability of the radiative energy transfer between two

neighbouring ions is expressed as follows [13]

ρSA(R) =
σA

4πR2τS

∫
ρS(ν)ρA(ν) dx, (2.1)
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where R represents the distance between two neighbouring ions, τS defines lifetime of

the excited state of the sensitizer, ρA is the absorption cross section of activator, ρB

is the absorption cross section of sensitizer and the integral term defines the spectral

overlap between the absorption spectrum of the activator and the emission spectrum of

the sensitizer.

In a resonant non-radiative energy transfer, no photon is involved for the energy

transfer from one ion to another. The possibility of a non-radiative energy transfer

between two neighbouring ions is written as [14]

ρSA =
(R0/R)S

τS
, (2.2)

where R0 is the critical distance between two neighbouring ions and S is the parameter

that takes an integer number depending on the type of the electronic interaction between

the transition dipoles of the neighbouring ions.

ActivatorSensitizer Sensitizer

ET

Activator Sensitizer Activator

ET

(a)
Sensitizer Activator

ET

(b) (c) (d)

ET

Figure 2.3: A scheme that includes different energy transfer pathways between the
neighbouring ions: (a) Resonant radiative transfer. (b) Resonant non-radiative trans-

fer. (c) Non-radiative transfer by phonon assistance.

Unlike the resonant energy transfers in Figure 2.3 (a) and (b), transfer of the

energy may have non-resonance characteristic. Non-resonant energy transfer may occur

between the neighbouring ions that have dissimilar energy level structure. In Figure

2.3 (c), it is clearly seen that there is energy mismatch between the excited states of the

activator and the sensitizer. In such a case, phonons assist to overcome the mismatch

energy in which energy transfer is subsequently completed. The number of phonons that

involve in the energy transfer depends on the magnitude of the energy mismatch [15].

2.1.3 Cooperative upconversion

Cooperative upconversion comprises the two different energy transfer processes that are

known as cooperative sensitization and cooperative luminescence. In Figure 2.4 the
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schematic representations of these processes are shown.

In cooperative sensitization, required energy for the excitation of the activator

is provided by simultaneous energy transfers from two or more sensitizers. Thereby,

the activator generates UC luminescence as a result of the temporal overlap of energy

transfer. However, in the case of cooperative luminescence, two excited ions combine

their energy and emit one photon. Thus, it is not regarded as a transfer, rather is an

accumulation of energy at a time.

Activator Sensitizer 
GS

E1

GS

E2

Sensitizer 

E1

GS

ET

ET

GS

E1 E1

GS

Sensitizer Sensitizer 
(a) (b)

AS S

S S

A

S

S

S

S

ET ET

Figure 2.4: The schematic representation of (a) cooperative sensitization, (b) cooper-
ative luminescence.

To sum up, ETU has the highest UC efficiency among all UC processes described

above. The UC efficiency in ETU is two orders of magnitude higher than ESA and

4-5 orders of magnitude higher than cooperative UC processes [12]. ETU efficiency is

even much higher than common nonlinear optical processes such as second harmonic

generation and two-photon absorption [12].

2.2 Excitation Power Dependence of Upconversion Lumi-

nescence Intensity

The UC luminescence intensity is dependent on the excitation power density. The ex-

citation power dependence of UC luminescence intensity can be understood by means

of a model first presented by Pallnau et al [16]. The model is illustrated in Figure 2.5.

The analysis of power dependence is based on a set of rate equations at high and low

excitation power regimes. Rate equations describe here the optical processes for energy

states of the activator including UC process, spontaneous emission and multi-phonon

relaxation. By means of rate equations, the steady state population density of an en-

ergy state can be found. Since the population density of an energy state is associated

with luminescence intensity, the excitation power dependence of UC luminescence is

subsequently revealed.
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Prior to the rate equation analysis is introduced, I would like to outline the as-

sumptions made in this model:

� Cross-relaxations do not occur.

� No emission occurs due to the transitions from a high-lying excited to a low-lying

excited state, e.g. E2A-E1A transition.

� The ground state population is not varying; negligible bleaching.

� Successive excitation of the activator is carried by solely ETU processes.

� The energy separations between the adjacent energy states of the activator are

equal. Additionally, the same energy separation holds for the gap between the

excited state and ground state of the sensitizer.

� Only the sensitizer absorbs the excitation photons.

SGS

ActivatorSensitizer
A

E1S

GS

A

A

A

E1

E2

E3

ETU1

ETU2

3ETU

ET

ET

ET

Ns

Figure 2.5: The scheme of the model based on sensitizer-activator configuration is
shown. The energy transfer is carried out sequentially. Thus, successive ETU processes

take place in the activator.

The steady-state population density of the excited state of the sensitizer (NS) is given

by

NS = ρP , (2.3)

where P, and ρ denote the exitation power and the excitation cross-section of the sensi-

tizer ions, respectively. Equation 2.3 is the direct consequence of the assumption of a

constant ground state population density. Let’s assume an activator with i energy states.

The steady state population densities of these states are denoted by Ni. Moreover, the

ETU rate from energy state i to energy state i+1 of the activator is expressed by Wi.

In addition, Ri denotes the relaxation rate constant from energy state i to the ground

state of the activator (GSA). By means of these definitions, the following relation may

be written:

N1∝NS∝P (2.4)
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The rate equation for the steady state population density of energy state i of the activator

is written down as

WiNiNS +RiNi = Wi−1Ni−1NS (2.5)

Equation 2.5 yields the population density of energy state i in steady state as

Ni =
Wi−1Ni−1NS

Ri +WiNS
(2.6)

Herein, the rate equation analysis will be examined in two regimes of the excitation

power: Low excitation power, high excitation power.

2.2.1 Low power regime

As the excitation power is low, the depletion of ith energy state is dominated by the

relaxation process instead of the ETU. Since Ri � WiNS , the ETU term in Equation

2.5 becomes negligible. Thereby, Equations 2.5 and 2.6 become respectively:

Wi−1Ni−1NS = RiNi, (2.7)

Ni =
Wi−1Ni−1NS

Ri
. (2.8)

There is a linear dependence between the population density of the state i and the

population density of the state i-1 multiplied by NS . The same relation holds for the

population density of the state i-1 and the population density of the state i-2 multiplied

by NS . Since the same relation could be applied to all excited states, the result can be

written as follows

Ni ∝ (NS)i ∝ P i (2.9)

Equation 2.9 implies that if one plots a graph of the UC luminescence intensity in a

double-logarithmic representation versus the excitation power, the slope of that graph

would be i. It additionally gives the number of ETU processes needed for a certain

UC luminescence profile. The relation in 2.9 is also interpreted as an outcome of a

measurement for the number of photons involved for the stepwise excitation of the

activator in UC process (In this case, it is ETU).

2.2.2 High power regime

As the excitation power is sufficiently high, the ETU becomes dominant over the re-

laxation process. This means WiNS � Ri. Hence, Equations 2.5 and 2.6 are written

respectively as follow

Wi−1Ni−1NS = WiNiNS (2.10)

Ni =
Wi−1

Wi
Ni−1 (2.11)
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and when Ni ∝ Ni−1 is combined with Equation 2.4, the result is written as

Ni ∝ (NS)i ∝ P 1 (2.12)

In Equation 2.12, it is clearly seen that population densities of all energy states of

the activator have the same power dependence in the high power regime. The slope of

the UC luminescence intensity versus the excitation power graph will be equal to one

regardless of the number of ETU processes. It states that the nature of power dependence

on UC luminescence intensity is linear as excitation power density is high. It is worth

mentioning that similar rate equation analyses have been utilized in Paper I to figure

out suitable pulse laser parameters to be able to enhance QY in core NaYF4:Yb3+,Tm3+

UCNPs.

In general, sensitizer and activator have dissimilar energy level structure, in which

the model explained above would be no longer used. For such a case, another rate

equation model is presented [17].

2.3 Quantum Yield of Upconverting Nanoparticles

The ratio between the number of emitted photons (Nem) and the number of absorbed

photons (Nabs) is known as the internal QY (η). This is mostly defined in percent. The

parameter is characterized as

η =
Nem

Nabs
=
k0Iem
Iex

(2.13)

where k0 is a scaling factor, Iem (Wcm−2) is the intensity of emission and Iex(Wcm−2)

is the intensity of excitation.

As shown in the previous section, the intensity dependence of a two-photon UC

emission based on the ETU has a quadratic nature at low excitation power densities,

whereas it turns into a linear form at high excitation power densities. The saturation

characteristic of UC luminescence with increasing excitation power density has been

used to figure out QY of NIR UC emission of core NaYF4:Yb3+,Tm3+ UCNPs as part

of this thesis work and the results are presented in Paper I.

2.4 Building Blocks of Upconverting Nanoparticles

There are two main building blocks of a typical upconverting luminescent particle: In-

organic host crystal and dopant ions. Some inorganic host crystals, e.g. NaYF4 crystal,

may not display UC luminescence by itself in which may require doping to be lumines-

cent. Thus, by the presence of a dopant ion, e.g. Tm3+ in NaYF4:Tm3+, the entire

crystal may become luminescent. Although one type of dopant ion is generally sufficient

to generate UC luminescence, two different types of ions are favourable for higher UC
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luminescence. As previously mentioned ETU is the most efficient UC process where two

different types of dopant ions as being sensitizer and activator are required.

Recall that Yb3+(sensitizer)/Tm3+(activator) co-doped NaYF4 is UCNP that has

been under the study at this thesis work. Trivalent Yb-Tm pair is selected due to their

promising features as dopant ions which will be outlined in the following subsections.

2.4.1 Activator

The distinctive role of an activator in the UC process has been explained previously.

Simply, the activator is the ion that undergoes a series of sequential excitation and then

reaches a high-lying excited state where UC luminescence is generated. An activator

ion has to possess an energy level structure with multiple long-lived excited states.

Equidistant energy separations between excited states of the activator ion are favourable

in which ETU may take place efficiently.

Some of the elements in the lanthanide group are regarded as good activators due

to their exceptional energy level structure. [Xe]4fn6s2 represents electronic configuration

of most of lanthanide atoms including holmium (67Ho), erbium (68Er), and thulium

(69Tm). In addition, all lanthanide atoms have very stable +3 oxidation state in which

they may exist as trivalent ions [18]. As for emission profile, sharp and narrow emission

bands corresponding to NIR and the visible region are obtained due to f-f transitions

in lanthanides. The fact that f-f transitions have low probability to occur due to the

Laporte rule turns out to be an advantage for UC. Low probability of f-f transitions

imply that energy states have long lifetimes which favour UC.

Therefore, Tm3+, Er3+ and Ho3+ are among the most suitable activator ions owing

to their ladder-like energy level structure that enables an efficient ETU process.

As known, the multi-phonon relaxation is an undesired process which depopulates

the excited state, thereby weakens the UC luminescence. The multi-phonon relaxation

rate for 4f levels of RE ions can be described by an exponential relation with the energy

gap [19]

kNR = βe−α∆E , (2.14)

where α and β are constants. Equation 2.14 implies that the multi-phonon relaxation

rate decreases exponentially with increasing energy separation between an excited state

and either another low-lying excited state or ground state. Due to low ∆E values of

Ho3+ ion, trivalent Er and Tm ions are among the most utilized ions as an activator in

UCNPs.

2.4.2 Sensitizer

As mentioned previously, UC of radiation could be realized by exploiting even one type

of dopant ion. In a singly doped nanocrystal, dopant ions are responsible for all optical



Chapter 2 Upconversion Mechanism 11

processes including the absorption of pump photons, UC processes, and luminescence.

Thus, the dopant ion is expected to function as both sensitizer and activator at a time.

Nevertheless, promising activator ions, e.g. Tm3+ and Er3+, are infertile as being sen-

sitizers due to their low absorption cross-section, particularly in NIR range.

Low pump photon absorption disfavours weak UC luminescence in which high

photon absorption is a significant criterion to be fulfilled by a dopant ion. In a singly

doped nanocrystal, the low photon absorption problem would be surpassed by increasing

the concentration of the dopant ion [18]. However, when the number of the dopant ions

is increased, they get closer to each other which facilitates the non-radiative energy losses

such as the cross-relaxation.

Therefore, instead of a direct excitation of the activator ions via the pump pho-

tons, the sensitizer with relatively high absorption cross-section is utilized to excite the

activator ion via energy transfer. Furthermore, in the presence of a sensitizer ion along

the activator ion, the most efficient UC process, ETU, becomes feasible.

Trivalent ytterbium (Yb3+) ion is one of the most common sensitizer owing to

its distinctive energy level structure and relatively high absorption cross-section in NIR

region. As for energy level structure of Tm3+, there is only one excitable 4f state (2F5/2),

to which a transition from ground state (2F7/2) is accomplished by the absorption of

NIR photons. In addition, the energy structure of Yb3+ is well suited to the energy

structure of the prevalent activators, e.g. Tm3+ or Er3+.

Different trivalent lanthanide ions are capable of displaying specific emission bands

ranging from the NIR to UV due to their unique energy level arrangement. Therefore,

sensitizer-activator ion pair should be wisely selected with regard to the type of the

application where they are utilized.

2.4.3 Host crystal

As for UCNPs, the selection of a suitable host material has always been an important

issue. Basically, two characteristics are required from a crystal material to be said “ideal”

host crystal. Firstly, the lattice size of the host crystal should be in a close match with

that of dopant ions. Secondly, low phonon energy of a host crystal is favourable. Low

phonon energy nature decreases non-radiative losses during UC processes, which enables

a radiative emission rate. Many different materials are utilized as host crystal including

heavy halide based crystals, oxide based crystals, and fluoride based crystals [18, 20, 21].

On the other hand, hygroscopic nature of those heavy halides makes them impractical

although they have low phonon energies less than 300 cm−1. Furthermore, oxide based

crystals with high chemical stability mostly suffer from their high phonon energy that

is generally larger than 500 cm−1. Nonetheless, the fluoride based crystal material
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NaYF4 with hexagonal crystal structure is yet considered as one of the most efficient

host material owing to its chemical stability and its relatively low phonon energy [22].



Chapter 3

Synthesis Methods

Various chemical methods including coprecipitation, thermal decomposition [23], hy-

dro(solvo) thermal method [24], sol-gel processing [25], combustion synthesis [26] and

flame synthesis [27] have been developed over the years in order to synthesize more

efficient and high quality UCNPs. Among these methods, coprecipitation, thermal

decomposition and hydro(solvo)thermal methods find wider use due to their remark-

able advantages. In this thesis work, all UCNPs were synthesized by the solvothermal

method. The steps of this method will be outlined in details in Chapter 4.

In each synthesis method, experimental parameters, e.g. reaction time and tem-

perature, may affect the crystal properties of UCNPs such as size, phase and shape.

Moreover, different solvents, surfactants, and the fluorine sources are used during the

synthesis method to vary the crystal properties. Optical properties of UCNPs are af-

fected by the changes in the crystal structure properties [2, 6]. Thus, it is essential to

have a precise control over the synthesis method in which the experimental parameters

are required to be set wisely for high quality nanoparticles.

3.1 Thermal Decomposition Method

Thermal decomposition of organic precursor(s) such as metal trifluoroacetate(s) (TFA)

is one of the well-known approaches for the controlled synthesis of uniform, well-shaped

and high quality crystalline nanoparticles.

The basic idea behind this approach is based on the decomposition reaction of

metal TFAs in a non-coordinating solvent, e.g. octadecene (ODE), with the assistance

of a surfactant, e.g. oleic acid (OA), at certain elevated temperatures mostly between

250◦C and 330◦C. This approach was firstly applied to the synthesis of single crystalline

monodispersed LaF3 triangular nanoplates with solely the presence of one type of organic

precursor by Zhang et al [28]. Subsequently, a slightly modified method was proposed,

where different types of rare earth metal TFAs decomposed and yield cubic phase (α)

13
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NaYF4 nanoparticles co-doped with either Er3+-Yb3+ ion pair or Tm3+-Yb3+ ion pair

[29].

Due to the pyrolysis of air sensitive-metal TFAs, various fluorinated and oxyflu-

orinated carbon species come out as intermediate products; these are known to be ex-

tremely toxic. Thus, the thermal decomposition method suffers from toxic by-products.

Even though high quality, monodispersed nanoparticles are promised by this method,

the resulting nanoparticles still have cubic phase structure. Ln doped β-NaYF4 UC-

NPs have higher UC luminescence intensity compared to Ln doped α-NaYF4 UCNPs

[30]. Therefore, Ln doped NaYF4 UCNPs with cubic crystal phase are not favourable.

Additionally, the thermal decomposition method has a disadvantage of requiring sur-

face modification of the resulting nanoparticles. The usage of OA as a surfactant yields

hydrophobic nanoparticles in which the surface modification for the nanoparticles is

essential to make them hydrophilic, and so biocompatible.

3.2 Hydro(Solvo)thermal Method

The hydro(solvo)thermal method has been frequently used to produce both α-phase and

β-phase lanthanide doped NaYF4 nanoparticles. As opposed to the thermal decomposi-

tion method, the synthesis of nanoparticles with controlled crystal size, shape and good

dispersibility is performed at low reaction temperatures, e.g. below 230◦C.

The hydrothermal method is based on a set of chemical reactions where a mixture

of rare earth precursors with a surfactant that reacts with certain metal and fluorine ions

in an aqueous solution. Nevertheless, specialized reaction vessels, namely autoclaves,

are required to carry out all these chemical reactions under a certain pressure and

temperature that are above a critical point of the solvent over a long period of time.

In many cases, water is utilized solely as a solvent but strong solvents including acetic

acid and ethanol may replace the water in order to increase the reaction speed, and so

the solubility. In the cases where a strong solvent is present, the method is generally

renamed as solvothermal instead of hydrothermal.

β- NaYF4:Yb3+,Er3+ UCNPs with good dispersibility and high UC luminescence

were successfully synthesized in either hydrothermal conditions or solvothermal condi-

tions [31]. The crystal size is controlled by varying the molar ratio between surfactant

and Ln3+ ion. In the solvothermal method, a shape modulator, e.g. CTAB, can diversify

the shape of nanoparticles including rod, worm-like and spherical. On the other hand,

it has a negligible effect on the shape of nanoparticles at hydrothermal conditions. In

addition, a shape modulator is exploited alongside a strong solvent, e.g. ethanol, to gain

more control over the shape of the nanoparticles [31].

Since highly crystalline, uniform in size β- NaYF4:Yb3+,Er3+ nanoparticles are

produced either hydrothermally or solvothermally, no post-heating treatment for a phase
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transformation is required. On the other hand, the hydro(solvo)thermal method suffers

from drawbacks including autoclave necessity and long lasting chemical reactions which

may last for days.

3.3 Coprecipitation

Coprecipitation is one of the most common methods to synthesize crystals of uniform

small-sized Ln3+ doped UCNPs are synthesized. There is no need of complex chemical

procedures and costly experimental tools [18].

In general, shape and size of UCNPs are controlled by the assistance of ligands and

surfactants but the simultaneous control of both phase and size or shape is not feasible.

Thus, the coprecipitation method is required to be coupled with post-annealing process.

A size controlled synthesis of α-NaYF4:Yb3+,Er3+ nanoparticles regardless of

shape was performed via coprecipitation [32]. As an efficient chelator for rare earth

ions is used, a stable metal-surfactant complex is formed. Thus, for UCNPs a distinct

separation of nucleation and growth stages are provided, which is known as the very

first requirement of crystal uniformity postulated by the LaMer Model [33]. Although

the surfactant may play a size modulator role resulting in smaller sized UCNPs, weak

UC luminescence intensity is still a problem due to α-phase nature of UCNPs. There-

fore, a post-heating treatment at high temperature levels, e.g. between 400◦C-600◦C, is

necessary in order to initiate a phase transition from cubic to hexagonal. As a result of

that, the UC luminescence intensity gets ∼40 fold stronger [32]. However, at the end of

the post-heating treatment, an increase in size of UCNPs is obtained, which makes them

mostly impractical for intracellular applications. It is clearly seen that there is a trade-off

between small size and hexagonal phase formation, and so between the biocompatibility

and strong UC luminescence intensity.



Chapter 4

Synthesis Protocol

In this chapter, the synthesis protocol based on the solvothermal method will be outlined

in details. The synthesis of 1 mmol core NaYF4:Yb3+,Tm3+ UCNPs were performed as

the molar ratio of the reagents set to YCl3:YbCl3:TmCl3=74.7:25:0.3. In this synthesis

method, NaOH, OA-ODE and NH4F were used as sodium ion source, surfactant-solvent

pair and fluoride source, respectively. The core NaYF4:Yb3+,Tm3+ UCNPs were syn-

thesized by the following protocol that is a slightly modified version of the protocol

proposed by Li et al [34].

4.1 Synthesis of Core NaYF4:Yb3+,Tm3+ Upconverting

Nanoparticles

At room temperature, 0.747 mmol (146.4 mg) YCl3, 0.25 mmol (69.5 mg) YbCl3 and

0.003 mmol (0.83 mg) TmCl3 were added to a 50 mL round bottom three-necked flask

with 6 ml OA and 17 ml ODE. The entire mixture inside the flask was heated up to

145.5◦C during 60 minutes under vigorous stirring to form a homogeneous light yellow

mixture. As the mixture was being heated, vacuum condition was provided via a vacuum

pump. The mixture was maintained at 145.5◦C for another 60 minutes under vacuum

condition to make sure that all reagents were completely dissolved in the solvent. It is

worth mentioning here that vigorous stirring was being maintained throughout the entire

synthesis unless otherwise stated. At the end of 60 minutes, the initial turbid mixture

became transparent and light yellow in colour. Subsequently, the entire mixture was

allowed to cool down naturally to room temperature under atmospheric pressure after

the disconnection of the vacuum pump.

Meanwhile, a mixture of 2.5 mmol (100 mg) NaOH and 4 mmol (149.1 mg) NH4F

in 10 ml methanol was prepared at room temperature and subsequently 60 minutes ultra-

sonication was carried out for complete dispersion of NaOH and NH4F in methanol.

16
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The mixture of NaOH and NH4F in 10 ml methanol was added to the solution of

RE chlorides (RECl3, in our case RE=Y,Yb,Tm) in OA-ODE mixture inside the flask at

room temperature to form inorganic NaYF4 crystal nuclei. This mixture was maintained

at room temperature for 30 minutes. Subsequently, the mixture was heated up to 110◦C

by a rate shown in Table 4.1 in order to evaporate all methanol. A constant temperature

increase in a constant time interval favours the formation of high crystalline UCNPs. A

fast methanol evaporation is not favourable in this step. It affects the crystal growth of

UCNPs resulting in no nanocrystal formation. If methanol is not removed completely in

this step, the turbid solution will not become translucent. The unsuccessful removal of

methanol hinder the nucleation stage of UCNPs resulting in no crystal formation. The

complete evaporation of methanol was achieved as seen as the turbid solution turned

out to be completely translucent.

Temperature Interval [◦C] Time Elapsed [mins]

30=⇒40 16
40=⇒50 14
50=⇒60 8
60=⇒70 7
70=⇒80 12
80=⇒90 18
90=⇒100 13
100=⇒110 10

Total Reaction Time 98

Table 4.1: Methanol evaporation rate

For the solution, the temperature was stabilized at 110◦C for another 30 minutes

under argon (Ar) gas atmosphere. A condenser was connected to the flask for cooling

in the next step. Subsequently, the solution was heated up to 298◦C where nanocrystal

growth of NaYF4:Yb3+,Tm3+ began. The reaction was maintained at 298◦C for an

optimized reaction time of 65 minutes. Finally, the solution was allowed to cool down

to room temperature.

For high quality UCNPs, a precise control of temperature is required for both the

crystal nucleation stage and crystal growth stage. Throughout the synthesis, tempera-

ture fluctuations were controlled to remain within ±2◦C. More temperature fluctuations

affect both the crystal phase and the size of UCNPs.

In order to remove possible undesired impurities e.g. sodium chloride (NaCl)

crystals and OA residues inside the resulting mixture, a “washing” procedure was carried

out at room temperature. The resulting mixture was mixed with 21 ml ethanol. After

a few minutes under vigorous stirring, it was placed into the centrifuge for 10 minutes

to complete the precipitation of UCNPs. Subsequently, the supernatant was discarded

yielding solely the presence of UCNPs at the bottom of the test tube. Remaining UCNPs
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were mixed with 40 ml ethanol yet again and were precipitated via centrifugation in 10

minutes. Again, the supernatant was removed from the resulting solution and 1 ml

hexane as a non-polar solvent was added to the test tube where only UCNPs were

present.

Eventually, the dispersion of NaYF4:Yb3+,Tm3+ UCNPs began as a consequence

of hexane addition, thereby forming homogeneous light yellow colloidal solution.

4.2 Synthesis of Core-Shell NaYF4:Yb3+,Tm3+@NaYF4

Upconverting Nanoparticles

Core-shell NaYF4:Yb3+,Tm3+@ NaYF4 UCNPs having different shell thickness were

synthesized by a seeded growth approach where undoped NaYF4 crystals grow on the

surface of the seed crystals, NaYF4:Yb3+,Tm3+ at high temperature. Undoped NaYF4

shell thickness was controlled by changing the concentration of the YCl3 reagent whilst

keeping the molar ratio of reagent (YCl3), fluoride source (NH4F) and sodium ion sources

(NaOH) as 1:4:2.5. The same molar ratio had been used in the synthesis of core UCNPs

by Qian and Zhang, and Wang et al [30, 35]. In addition, the YCl3 concentration

was adjusted to be 0.20 mmol, 0.40 mmol, 0.60 mmol and 0.80 mmol in order to form

four core-shell UCNP samples that are sample A, B, C, and D with each different

shell thickness. Herein, only the synthesis of core-shell NaYF4:Yb3+,Tm3+@NaYF4

UCNPs of sample A with 0.20 mmol YCl3 consumption is explained. Even though the

same protocol holds for the synthesis of three other samples of core-shell UCNPs, a few

steps of the synthesis protocol was adjusted for samples B, C, D. Firstly, the methanol

evaporation rate was different in each synthesis. Secondly, the evaporation rate on the

nucleation phase was not constant for every core-shell UCNPs.

At room temperature 0.20 mmol (39.30 mg) YCl3 was added to 50 ml round bot-

tom three-necked flask with 6 ml OA and 17ml ODE at room temperature. The vacuum

pump was connected to the system, the entire mixture was heated up to 150◦C during 60

minutes under vigorous stirring. For another 60 minutes the mixture was maintained at

150◦C for the formation of the clear light yellow solution to be observed. Subsequently,

the mixture was left for cooling naturally after the vacuum pump was removed from

the system. Previously synthesized core NaYF4:Yb3+,Tm3+ UCNPs dispersed in 0.2

ml hexane was added to the mixture at room temperature. The mixture temperature

was increased to 115◦C at a rate shown in Table 4.2. The mixture was maintained at

115◦C for 30 minutes. Next, the mixture was yet again left for natural cooling to room

temperature level under atmospheric pressure.

Meanwhile, 0.80 mmol (29.9 mg) NH4F and 0.5 mmol (20.3 mg) NaOH mixture

was dissolved in 3 ml methanol via 60 minutes sonication at room temperature. This



Chapter 4 Synthesis Protocol 19

Temperature Interval [◦C] Time Elapsed [mins]

50=⇒60 10
60=⇒70 9
70=⇒80 12
80=⇒90 11
90=⇒100 12
100=⇒115 10

Total Reaction Time 64

Table 4.2: Heat rate at the beginning of the crystal nucleation stage

reactant mixture was subsequently added to the flask and was maintained at room

temperature for 30 minutes. After Ar gas flow was given to the system, the mixture

was heated up to 115◦C at a rate shown in Table 4.3. The mixture was maintained at

115◦C for 45 minutes.

Temperature Interval [◦C] Time Elapsed [mins]

50=⇒60 8
60=⇒70 8
70=⇒80 7
80=⇒90 7
90=⇒100 9
100=⇒115 11

Total Reaction Time 50

Table 4.3: Methanol evoparation rate for NaYF4:Yb3+,Tm3+@NaYF4 NCs.

For the crystal growth stage, the mixture at 115◦C temperature level was further

heated up to 298◦C, where the reaction time was set to 75 minutes. Subsequently,

the resulting mixture was cooled down to room temperature level where the washing

procedure was started.

Similar to the washing procedure of core UCNPs, the same amount of ethanol

was consumed. Although every single step of washing procedure of core UCNPs was

applied to the core-shell washing procedure, the amount of hexane for the dispersion of

NaYF4:Yb3+,Tm3+@NaYF4 UCNPs was slightly changed from 0.4 ml to 1 ml.

Finally, five different samples were obtained: One sample of core NaYF4:Yb3+,Tm3+

nanoparticles and four samples of core-shell NaYF4:Yb3+,Tm3+ @NaYF4 nanoparticles.

Note that, the UCNP shell thicknesses are supposed to be different. Similarly, an un-

avoidable fluctuation in the reaction temperature throughout the synthesis of core-shell

UCNPs was kept within a 2◦C temperature margin.



Chapter 5

Measurements and Results

Measurements and results regarding the analysis of crystal properties of UCNPs in the

samples of core, core-shell A, core-shell B, core-shell C, and core-shell D will be presented

in this section. In addition, the XRD patterns of UCNPs in samples A, B, C at elevated

temperature levels, which indicate a good thermal stability of the crystal phase of UCNPs

will be disclosed. Moreover, simulated QY and experimental UC emission signal gain of

the NIR emission in UCNPs will be revealed at the end of this chapter.

5.1 Crystal Structure Analysis of Core and Core-Shell

Upconverting Nanoparticles

The analysis of crystal properties covers size, shape, and phase characterization of UC-

NPs in every sample. The size, shape and phase of core NaYF4:Yb3+,Tm3+ UCNPs in

and core-shell NaYF4:Yb3+,Tm3+@NaYF4 UCNPs with different shell thicknesses are

characterized by XRD and TEM techniques. XRD measurements at room temperature

were performed on a Newport 4-circle diffractometer with kappa geometry, equipped

with Titan CCD detector (λ=0.98-1.4 Å) [36]. Additionally, high-resolution TEM im-

ages were recorded via TEM instrument (JOEL 3000F) to characterize the shape and

the size of UCNPs.

For XRD measurements, the core NaYF4:Yb3+,Tm3+ UCNPs and the core-shell

NaYF4:Yb3+,Tm3+@NaYF4 UCNPs were dispersed in hexane. Subsequently, the core

sample and core-shell samples A, B, C, D were prepared in 0.3 mm quartz-capillaries for

size and crystal phase analysis. The X-ray radiation wavelength of the I711 beamline

at the MAX II Laboratory was set to 0.992082 Å during XRD measurements of the

core and core-shell A,B,C samples. However, the radiation wavelength was shifted to

0.992185 Å for the core-shell sample D.

The data analysis of the resulting XRD patterns was carried out by the softwares,

PM2K and MATLAB [37]. The broadening of the diffraction peaks in the XRD patterns

20
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Sample Name Core Mean Size [nm] Shell Mean Size [nm]

Core 43.74±2.70
Core-Shell A 55.44±22.80 1.48±0.21
Core-Shell B 56.69±21.01 9.75±0.12
Core-Shell C 48.27±27.77 12.39±0.24
Core-Shell D 43.00±0.48 17.22±0.04

Table 5.1: Mean size of hexagonal structured core and core-shell UCNPs. Addition-
ally, mean shell thickness of core-shell UCNPs in each sample is explicitly written.

were analyzed to figure out the size of the corresponding UCNPs. Throughout the size

analysis, the crystal shape of the core and the core-shell UCNPs were presumed to be

hexagonal. In fact, this could be a good assumption since OA, the surfactant used in

the synthesis, is decisive parameter on the shape of UCNPs. Not only the type but also

the amount of the surfactant used in the synthesis can change the shape of the particles.

Subsequently, it will be seen in TEM images that most of UCNPs are indeed hexagon

in shape.

Table 5.1 shows the mean size of UCNPs in the core sample and core-shell UC-

NPs with different thickness in samples A, B, C and D. The relatively high standard

deviations in size of UCNPs in samples A, B and C indicate that the monodispersity

of core-shell UCNPs is not as high as expected. This is mainly due to the formation

of undesired nanocrystals (NCs) through the core-shell synthesis, shown in Figures 5.4

(a) and 5.4 (b). These NCs are are identified as non-coated NaYF4 that were expected

to be shell around the core but instead became separate NCs. The mean size of these

NCs are calculated as 1.72± 0.01 nm. However, the core sample has a more uniform

size distribution. Since the core NCs in core-shell samples were provided solely from the

very same core sample, it implies that the production quality of core NCs is better than

that of core-shell NCs. Although the relatively high synthesis quality is achieved on the

core NCs, small amount of NCs less than 1 nm in size are observed in the core sample

in Figure 5.2 (a). These are possibly NaF residues that were not successfully removed

during the synthesis washing process.

The crystal phase of the UCNPs at room temperature were characterized by the

XRD pattern. The XRD patterns of the core and the core-shell UCNPs are represented

in Figure 5.1. The position of the diffraction peaks in the corresponding XRD pat-

terns shown in Figure 5.1 indicates that UCNPs having hexagonal crystal phase are

present. The distinctive diffraction peaks with relatively high intensity at 2θ angle of

19◦, 20◦, 27.5◦, 33.7◦ and with relatively low intensity at 2θ angle of 22◦, 29◦, 34.7◦,

38◦, 39◦, 40◦, and 40.4◦ are indexed to hexagonal structured UCNPs. In addition,

the XRD pattern corresponding to sample B has one different diffraction peak at 2θ

angle of 18◦ indexed to the NCs having cubic crystal phase with the other common
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peaks at 2θ angle of 29◦ and 34.7◦. This diffraction peak is the characteristic peak that

distinguishes α-NaYF4 NCs from β-UCNPs. Thus, in sample B previously mentioned

non-coated NaYF4 NCs with the size of about 1.7 nm are identified to have cubic crystal

phase. However, the non-coated NaYF4 NCs in the other samples, i.e., A, C and D are

considered to have hexagonal crystal phase due to the overlapping diffraction peak posi-

tions in XRD patterns. The formation of the UCNPs having hexagonal crystal phase is

significantly important since it is previously stated that β-NaYF4:Yb3+,Tm3+ UCNPs

have higher UC luminescence intensity compared to that of α-NaYF4:Yb3+,Tm3+ UC-

NPs. Moreover, the intensity differences in the certain diffraction peaks of each XRD

pattern may be seen in Figure 5.1. This implies that the number of detected/formed

NCs are different in every sample. Since it is not feasible to use the exact same number

of core NCs throughout the shell growth of core-shell UCNPs for every sample, intensity

differences are expected.

Figure 5.1: The XRD pattern of the non-coated UCNPs in sample core and the shell-
coated UCNPs in samples A,B,C,D. The distinctive peak at 2θ angle of 18◦ implies that

there is more than one crystal phase in sample B.

The lattice parameters of UCNPs in each sample were calculated by the analysis

of diffraction peaks in the XRD patterns, and are given in Table 5.2 on account of the

phase characterization. Unintentionally formed, cubic structured, non-coated NaYF4

NCs in sample B have surely different lattice parameter which is not presented in Table

5.2 instead given here as a=0.550013± 0.000011 nm.

A series of TEM images shown in Figures 5.2, 5.3, 5.4, 5.5 and 5.6 is obtained to

characterize the shape and the size of UCNPs. According to the presented TEM images,

UCNPs in all samples are almost uniform in hexagonal shape. In addition, previously

discussed the non-coated undesired NCs with the size of about 1.7 nm are clearly seen in

the TEM images. Although the uniformity in shape of UCNPs is as high as expected, a
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Sample Name Core Lattice Parameters [nm] Shell Lattice Parameters [nm]

Core
a=0.597568± 0.000002
c=0.350413± 0.000002

Core-Shell A
a=0.597378± 0.000005 a=0.602± 0.002
c=0.350294± 0.000005 c=0.354± 0.002

Core-Shell B
a=0.597803± 0.000003 a=0.597898± 0.000001
c=0.350550± 0.000003 c=0.352685± 0.000001

Core-Shell C
a=0.597471± 0.000011 a=0.598404± 0.000019
c=0.350475± 0.000011 c=0.351552± 0.000016

Core-Shell D
a=0.597553± 0.000011 a=0.600195± 0.000015
c=0.350549± 0.000009 c=0.351873± 0.000011

Table 5.2: The lattice parameters of UCNPs.

small amount of NCs having spherical shape is present. A closed up figure of a spherical

NC is shown in Figure 5.3 (c). This could be due to either the unavoidable temperature

fluctuations during the synthesis or the lack of precision of the amount of OA consumed

in the synthesis. As for the size characterization of UCNPs, TEM images are utilized

as a complementary method and the measured mean size of UCNPs are indeed in close

agreement with the tabulated results based on PM2K data analysis.
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Figure 5.2: TEM images of NaYF4:Yb3+,Tm3+ nanoparticles in sample core.

0.2 µm 20 nm 10 nm

(a) (b) (c)

Figure 5.3: TEM images of NaYF4:Yb3+,Tm3+@NaYF4 nanoparticles in sample
core-shell A.
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(a) (b) (c)

0.2 μm 50 nm 20 nm

Figure 5.4: TEM images of NaYF4:Yb3+,Tm3+@NaYF4 nanoparticles in sample
core-shell B.

0.2 µm 20 nm 10 nm

(a) (b) (c)

Figure 5.5: TEM images of NaYF4:Yb3+,Tm3+@NaYF4 nanoparticles in sample
core-shell C.

(a) (b) (c)

100 nm 20 nm 10 nm

Figure 5.6: TEM images of NaYF4:Yb3+,Tm3+@NaYF4 nanoparticles in sample
core-shell D.
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5.2 Thermal Stability Analysis on The Crystal Phase of

Core and Core-Shell Upconverting Nanoparticles

Thermal stability investigation on the crystal phase of UCNPs at elevated temperature

levels is carried out by a post-heating treatment based on an annealing process. UCNPs

in core and core-shell A,B and C samples were heated gradually from room temperature

to 700◦C. As the annealing was carrying on, the XRD patterns of UCNPs at varying

temperatures were obtained, presented in Figures 5.7, 5.8, 5.9 and 5.10.

The lowest temperature level for which an XRD pattern presented is 40◦C for

core sample and 60◦C for samples A, B, C. With the exception of sample B, the very

first XRD patterns for every other sample, marked in blue, are similar regardless of the

intensity values. Similar to the previously presented XRD pattern of sample B at room

temperature, the distinctive diffraction peak at 2θ=18◦ in the XRD pattern of sample

B is yet observed at relatively low temperature, 60◦C, as expected. This implies that

there is indeed more than one different crystal phase in sample B, which are cubic and

hexagonal phases. For every sample, the XRD patterns are kept in blue colour in the

Figures 5.7, 5.8, 5.9 and 5.10 until the very first change appears on the crystal phase

due to the temperature.
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Figure 5.7: The XRD patterns of the core UCNPs in sample core at varying tempera-
tures. There is no change in the crystal phase of the nanoparticles till 310◦C. A phase
transformation represented by the XRD patterns coloured in green takes place between

the temperatures of 590◦C and 600◦C.

The corresponding XRD patterns of β-UCNPs in core sample shown in Figure 5.7

are thermally stable until the temperature reaches 310◦C. New diffraction peaks indexed

to the presence of relatively small sized α-NC residues, appear at 2θ angle of 18◦ and
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30◦ and remain until temperature reads 460◦C. At that level, the cubic crystal phase is

exchanged with a new unknown crystal phase having a distinctive peak at 2θ angle of

15◦ represented by the XRD patterns in red colour. Thus, there are two different crystal

phases, i.e., an unknown phase and an hexagonal phase at the temperatures between

460◦C and 590◦C. Remarkably, a phase transformation from the hexagonal phase to the

cubic phase begins at 590◦C and continues till 600◦C, presented by the XRD patterns in

green colour. The distinctive diffraction peaks indexed to the cubic crystal phase appear

at 2θ angle of 18◦, 29◦ and 34◦. Subsequently, above 660◦C the oxidation begins and

deforms the core UCNPs. Thus, the unresolvable diffraction peaks emerge. On the other
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Figure 5.8: The XRD patterns of the shell-coated UCNPs in sample A at varying
temperatures. An unknown crystal phase with the corresponding diffraction peak at 2θ

angle=15◦ appears at 480◦C.

hand, thermal stability of the shell-coated UCNPs in sample A shown in Figure 5.8 is

higher than that of the core UCNPs. The very first change in the XRD pattern coloured

in black is visible at 480◦C with a diffraction peak at 2θ angle of 15◦ implying the

presence of an unknown phase. Until 580◦C, the unknown and the hexagonal phases are

still observable. UCNPs do not undergo a phase transformation. The cubic crystal phase

formation is not observed through the annealing. Above 600◦C, the deformation of the

particles starts. According to the XRD patterns shown in Figure 5.9, there are already

two different crystal phases at room temperature. These are cubic and hexagonal phases.

The majority of the β-UCNPs are thermally stable up to 520◦C where an additional

unknown phase is observed with a distinctive peak at 2θ angle of 15◦. The temperatures

between 590◦C and 630◦C, the XRD patterns with the diffraction peaks at 2θ angle of

18◦, 29◦ and 34◦, marked in green colour, imply that there is a phase transformation

of UCNPs from the hexagonal crystal phase to the cubic crystal phase. Subsequently,
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Figure 5.9: The XRD patterns of the shell-coated UCNPs in sample B at varying
temperatures. The nanoparticles are thermally stable till 520◦C. UCNPs undergo a

phase transformation represented by the XRD patterns coloured in green.

above 630◦C the diffraction peaks in the XRD patterns coloured in magenta could not

be indexed to any known NC. For β-UCNPs in sample C, the thermal stability on the
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Figure 5.10: The XRD patterns of the shell-coated UCNPs in sample C at varying
temperatures. As from the temperature of 320◦C, the crystal phase of UCNPs is no

longer thermally stable.

crystal phase is diminished around the temperature 320◦C. The cubic crystal phase

emerges having a diffraction peak at 2θ angle of 18◦ shown in the XRD patterns marked

in black colour in Figure 5.10. The disappearance of the additional cubic phase at

510◦ is followed by the formation of an unknown phase having a distinctive diffraction

peak at 2θ=15◦. Subsequently, the inception point and the subsequent progress of the
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oxidation yielding a deformation over NCs are represented by the XRD pattern coloured

in magenta above 610◦C.

5.3 Quantum Yield Enhancement in Core-Shell Upcon-

verting Nanoparticles

The simulated and experimental results reveal a significant increase in the QY of NIR

UC emission in core-shell NaYF4:Yb3+,Tm3+@NaYF4 nanoparticles by exploiting mil-

lisecond pulsed excitation are presented in Paper I. The main results of that study will

be outlined in this section.

For the QY measurements, the excitation source is set to be a CW laser diode at

975 nm (Thorlabs L975P1W). It is driven by a benchtop laser diode current controller

(Thorlabs LDC220C) with the stabilized temperature at 25◦C. The very same laser was

employed to generate pulsed light output by modulating the current controller utilizing

a function generator (Philips PM5139).

Figure 5.11: (a) Simulated power density dependence of the QY in the NIR UC
emission under CW excitation. (b) The cumulative QYs under CW excitation and
under the pulsed excitation in the first pulse period. The average power density is 1
Wcm−2 for both excitation approaches. (c) The cumulative QYs under CW excitation
and under the pulsed excitation in multiple periods. The average power density is 0.1

Wcm−2 for all excitation approaches.

For the simulations, the rate equation technique presented in Chapter 2 is used.

This is described in detail in Paper I. Simulated cumulative QYpulsed at the average

power density of 1 Wcm−2 is ∼2.4 % in the end of the first pulse for the pulsed excitation

with 2 Hz repetition rate and a 4% duty cycle, represented in Figure 5.11 (b). The

corresponding QYCW is ∼1.1% measured under CW excitation with the same power

density, shown in Figure 5.11 (a). The pulsed excitation facilitates the late excitation

photons to be utilized with higher energy conversion efficiency compared to the counter-

parts of the CW excitation. Therefore, the higher simulated cumulative QY is achieved
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for the pulsed excitation with sufficient pulse widths. The simulated cumulative QY

varies with the pulse widths. Thus, the pulsed excitation repetition rate is studied for 2

Hz, 20 Hz, 50 Hz and 100 Hz. Clearly seen in Figure 5.11 (c), the simulated cumulative

QY decreases with pulsed excitation with descending pulse width, i.e., higher repetition

rate, which resulted in lower UC signal gain. In fact, at the point where the repetition

rate is set to 100 Hz, the generated UC emission signal by CW excitation is slightly

stronger than that generated by the pulsed excitation.

Herein, simulated results that disclose an increase in the QY in UCNPs are sup-

ported by the experimental results. The UC emission signal gain at 800 nm under

excitation of 975 nm light was measured. Note that the UC signal gain is defined as

QYpulsed/ QYCW in Paper I. The average power density of the pulsed excitation is

adjusted to be ∼0.12 Wcm−2, whilst it has a fixed duty cycle of 4 % alongside with

different pulse widths. It is seen in Figure 5.12 (a) that the signal gain is measured

to be ∼1.1 for 0.8 ms pulse width. The signal gain is ∼8.7 as the pulse width is tuned

to be 20 ms. Clearly, the signal gain is increasing with increasing pulse width. At the

point where signal gain is slightly higher than 1, the pulse width is remarkably shorter

than 10 ms that is the approximated lifetime of the intermediate state 3F4 of Tm3+ and

thus the time required to generate the NIR UC emission.

Figure 5.12: (a) The NIR UC signal gain by the pulsed excitation with different pulse
widths. (b) The average excitation power density dependence of the NIR UC signal gain
by the pulsed excitation. The pulsed excitation was set to have a 20 ms pulse width and
a 2 Hz repetition rate. Inset: The average excitation power density dependence of the

NIR UC emission intensity under CW excitation and under the pulsed excitation.

Moreover, the UC emission is dependent on applied excitation power density and

this dependence is shown in Figure 5.12 (b). A square-wave excitation with a 20 ms

pulse and 2 Hz repetition rate is applied at varying average excitation power densities.
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The UC signal gain of ∼8.7 is measured for lower power densities than ∼0.12 Wcm−2.

However, at the maximum excitation power density, ∼4.65 Wcm−2, the UC signal gain

declines to be less than 1. Although NIR UC emission gets more intense with higher

power density of CW and pulsed excitations, the signal gain for the pulsed excitation

would decrease. At the maximum level of excitation power density, the UC signal

generated by CW is stronger than that of generated by the pulsed excitation. As a result

of that, the UC signal gain is below 1 as the excitation power density is at maximum.

The underlying reason is that UC emission intensity under pulsed excitation is not

ascending in the same manner as that under CW excitation. The inset of Figure 5.12

(b) shows slopes of 1.3 and 1.9 for CW excitation and pulsed excitation, respectively.

This clearly shows that the dependence of the emission intensity on the excitation power

density differs for pulsed and CW excitations.



Chapter 6

Conclusion and Final Remarks

In this work, core NaYF4:Yb3+,Tm3+ UCNPs and core-shell NaYF4:Yb3+,Tm3+@NaYF4

UCNPs have been synthesized and characterized by different techniques, i.e. XRD, TEM

and optical technique. Most of the synthesized UCNPs are in hexagonal shape and phase,

ranging from 43 nm up to 66 nm in size at room temperature. Additionally, different

shell covering the core particles have been successfully formed throughout the synthesis.

In these synthesis steps, small amount of impurities with α- NCs in either rectangular

or spherical shape and ∼1 nm in size were formed as observed in TEM images. The

observed relatively high standard deviation in size is possibly due to temperature fluctua-

tions during the synthesis. The temperature is one of the most significant experimental

for UCNP synthesis. It controls the resulting crystal shape and size. Thus, a better

temperature control with better instrumentation during the synthesis could be done for

higher uniformity in particle size.

The very same UCNPs have been exposed to a post-heating treatment where the

temperature level has been increased to 700◦C. This was done to figure out the thermal

stability of UCNPs’ crystal phase. Core β-UCNPs show no change on the crystal phase

observed until 310◦C. Subsequently, the phase transformation from hexagonal to cubic is

achieved at 590◦C. In a similar manner, thermal stability of shell-coated UCNPs begins

to degrade above 300◦C. Additionally, above 600◦C, all UNCPs, whether core or shell-

coated, are being deformed due to the high oxidation. Since the intensity of the UC

emission signal is highly dependent on the crystal phase of UCNPs, it has a significant

importance to know at what level of temperature phase transformation occurs.

In addition, an enhancement of the NIR UC emission at around 800 nm in core-

shell as compared to core is obtained under the excitation of 975 nm light. Experimental

results therefore confirm a significant QY increase of the NIR UC emission using pulsed

excitation with wisely selected pulse parameters at room temperature. Through the

simulations, at ∼1 Wcm−2 of average excitation power density, the QY is increased to

∼ 2.4% from ∼ 1.1% as CW excitation is replaced by the pulsed excitation at a 2 Hz

31
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repetition rate and a 4% duty cycle. Experimentally, the influence of pulse width on

the UC signal gain at a constant power density is obtained. Longer pulse width results

in higher signal gain. Thus, the UC signal gain increased from ∼1.1 to ∼8.7 by tuning

the pulse width from 0.8 ms to 20 ms. It is worth mentioning that a 0.8 ms pulse

width could be sufficient to accomplish a UC signal gain, despite the fact that it is a

significantly shorter time than ∼10 ms, being the lifetime of the intermediate state 3F4

of Tm3+. Yet, it has been confirmed that the UC signal gain is excitation power density

dependent. The UC signal gain has a tendency to decline with increasing excitation

power density. The UC signal gain for the pulsed excitation is ∼8.7 at power density set

to ∼0.12 Wcm−2 and subsequently becomes less than 1 as the excitation power density

is increased to ∼4.65 Wcm−2. Therefore, at maximum power density, the UC emission

signal generated by pulsed excitation could become weaker than that generated by a

corresponding CW excitation.

UCNPs are considered as promising contrast agents in diffuse optical imaging with

their favorable characteristics. However, they suffer from a low QY of the UC emission

at low fluence rates. This limits the possibility to reach plausible imaging depths. An

increase in QY of the NIR UC emission could lead to a better image quality with higher

imaging depths, as shown in Paper I. In particular, the signal gain at low excitation

power densities is significant and would reduce the thermal side effects of the tissue due

to excitation light.



Bibliography

[1] Leyu Wang, Ruoxue Yan, Ziyang Huo, Lun Wang, Jinghui Zeng, Jie Bao, Xun

Wang, Qing Peng, and Yadong Li. Fluorescence resonant energy transfer biosen-

sor based on upconversion-luminescent nanoparticles. Angewandte Chemie Inter-

national Edition, 44(37):6054–6057, 2005. ISSN 1521-3773. doi: 10.1002/anie.

200501907.

[2] H. Xing, W. Bu, H. Qu, Z. Wang, J. Shi, Q. Ren, X. Zheng, M. Li, Y. Hua,

S. Zhang, K. Zhao, L. Zhou, and W. Peng. A naybf 4: Tm 3+ nanoprobe for ct

and nir-to-nir fluorescent bimodal imaging. Biomaterials, 33(21):5384–5393, 2012.

ISSN 01429612.

[3] Rufaihah A.J. Chatterjee, D.K. and Y. Zhang. Upconversion fluorescence imaging

of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 29:

937–943, 2008.

[4] Y. Chatterjee, D.K. & Zhang. Upconverting nanoparticles as nanotransducers for

photodynamic therapy in cancer cells. Nanomedicine, 3:73–82, 2008.

[5] Guo H. Ho P. Mahendran R.and Zhang Y. Qian, H.S. Mesoporous silica coated up

conversion fluorescent nanoparticles for photodynamic therapy. Small, 5:2285-2290,

2009.
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Deep tissue optical imaging of upconverting
nanoparticles enabled by exploiting higher intrinsic
quantum yield through use of millisecond single pulse
excitation with high peak power†

Haichun Liu,*a Can T. Xu,a Gökhan Dumlupinar,a Ole B. Jensen,b Peter E. Andersenb

and Stefan Andersson-Engelsa

We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using

millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the

pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic

quantum yield that is utilized by upconverting nanoparticles for generating this near infrared

upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging

depths and shorter data acquisition times compared with continuous wave excitation, while

simultaneously keeping the possible thermal side-effects of the excitation light moderate. These key

results facilitate means to break through the general shallow depth limit of upconverting-nanoparticle-

based fluorescence techniques, necessary for a range of biomedical applications, including diffuse

optical imaging, photodynamic therapy and remote activation of biomolecules in deep tissues.

1 Introduction

During the last decade, upconverting nanoparticles (UCNPs)
have developed rapidly,1–6 and show great promise as contrast
agents in biological applications.7–11 Despite tremendous
improvements of UCNPs, their limited quantum yield (QY),
especially at a low excitation light level, is still a major concern
for most potential biological applications.12 Two interesting and
powerful techniques under development are deep tissue optical
imaging13 and photodynamic therapy (PDT),14 both of which
require high QY. The present low QY thus hinders the potential
of these techniques to be unleashed due to prolonged data
acquisition and treatment times, and shallow applicable
depths.12,15 Although low QY to some extent can be overcome by
increasing the excitation light level, such improvements are
fundamentally restricted for continuous wave (CW) excitation
due to risks of tissue damage, regulated by the ANSI
standards.16

Instead, the opportunity to break through the low power
density limit of upconversion (UC) emission while limiting
thermal effects of the excitation light is proposed here by
employing pulsed excitation.12,17,18 In addition, we realize that

the applicability of UCNPs could be further boosted by utilizing
single-shot excitation schemes, i.e., short single pulse excitation
with high peak power. Similar to multiphoton microscopy,
pulsed excitation would provide high photon density during the
pulse, while keeping the average power (i.e., the deposited
energy responsible for the heating) moderate. Due to the non-
linear power density dependence of UC emission, pulsed exci-
tation would be highly benecial. However, two important
differences exist between the UC emission and direct two-
photon uorescence. Firstly, the QY is much higher for UCNPs
at low photon density rates, which constitutes one main reason
for the interest in them and removes the reliance of and
restriction to focal volume excitation, thus broadening their
eld of application.19,20 Secondly, the excitation for UC emission
relies on intermediate energy levels,21 complicating the process.
This has led to some less successful attempts to utilize pulsed
excitation for UCNPs in the past.22,23 It is thus necessary to
carefully consider the excitation dynamics of UC emissions
under pulsed excitation in order to utilize higher intrinsic QY of
UCNPs.

In this paper, through investigation of the excitation
dynamics of UC emission, we prove through simulations and
experiments that signicant QY increase can be achieved by
using pulsed excitation with wisely selected pulse characteris-
tics, i.e., with sufficiently long pulse width and non-saturated
energy transfer transitions. Our proposed scheme renders
pulsed excitation an ideal excitation approach for UCNPs,
especially for deeply located tissue volumes. In fact, the net QY
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increase enables us to implement single-shot imaging of
UCNPs, shortening data acquisition time by orders of magni-
tude while simultaneously improving imaging depth as
compared to CW excitation. These results have the potential to
fundamentally broaden the applicability of UCNPs in deep
tissue regions relying on diffuse light excitation, breaking the
shallow-depth limitation in UCNP-based imaging.

2 Experimental
2.1 Synthesis of UCNPs

Core–shell NaYF4:Yb
3+,Tm3+@NaYF4 nanoparticles, synthe-

sized through a recently reported protocol,24 are used as a
representative of UCNPs in this work.

All the chemicals were purchased from Sigma-Aldrich and
used without further purication. The core nanoparticles
NaYF4:Yb

3+,Tm3+ were rst synthesized using the protocol
reported in ref. 25. In a typical synthesis, anhydrous powders of
YCl3 (0.75 mmol), YbCl3 (0.25 mmol) and TmCl3 (0.003 mmol)
were dissolved in 6 mL oleic acid and 17 mL octadecene in a
250 mL ask at 160 �C for 30 min. Aer the clear solution cooled
down to room temperature, 10 mL of a methanol solution con-
taining 4 mmol NH4F and 2.5 mmol NaOH was added, and the
mixture was stirred for 30 min at 50 �C. The methanol was
removed from the system by slowly heating it, and the resulting
solution was heated to 300 �C for 1.5 h under argon atmosphere.
Aer the mixture cooled to room temperature, the nanoparticles
were precipitated with ethanol and washed with an ethanol–
water mixture several times, and then redispersed in hexane to
form a nanoparticle suspension. The core–shell nanoparticles
were subsequently produced by slightly modifying the above
procedure through incorporation of the prepared core nano-
particles as the seeds in the synthesis.24 1 mmol YCl3 was solely
used to provide rare-earth ions for the shielding layer. Other steps
were kept the same as the synthesis of core nanoparticles.

2.2 Characterization and photoluminescence
measurements on the UCNP suspension

The as-prepared core–shell UCNPs were dispersed in hexane
and used as the sample. Transmission electron microscopy
(TEM) images and the density of the UCNPs were measured on a
JEOL 3000F microscope equipped with an X-ray energy disper-
sive spectroscopy (XEDS) facility. The molar concentrations of
rare earth ions were measured on a PerkinElmer Optima 8300
inductively coupled plasma optical emission spectrometer (ICP-
OES). The photoluminescence measurements were performed
on a sensitive spectrometer setup. A CW laser diode at 975 nm
(Thorlabs L975P1WJ) was employed as the excitation source
driven by a benchtop laser diode current controller (Thorlabs
LDC220C), with the temperature stabilized at 25 �C. Pulsed laser
light output was achieved by modulating the current controller
using a function generator (Philips PM5139). The excitation
power was measured using an Ophir Nova II laser power meter
equipped with a photodiode sensor (Ophir PD300), while the
spot size of the excitation beam was measured using a laser
beam proler (DataRay Inc. WinCamD-UCD23). The emission

light was detected using a grating spectrometer (Ocean Optics
QE65000) with a slit width of 50 mm. The rise prole of the
800 nm emission was recorded by an oscilloscope (Tektronix
TDS520A) coupled to the output of a photomultiplier tube
(Hamamatsu R928), using excitation at 975 nm from a laser
diode operating in the pulsed mode. All measurements were
carried out at room temperature.

2.3 Diffuse optical imaging using UCNPs

Diffuse optical imaging of UCNPs in a liquid tissue phantom was
performed either in trans-illumination or in epi-illumination
mode. A capillary tube with an inner diameter of 2mm, lled with
a UCNP suspension, was immersed within the tissue phantom to
simulate the luminescent target. Excitation of the UCNPs was
accomplished either by a Thorlabs L975P1WJ laser diode running
in the CW mode, or by a broad area laser (Eagleyard Photonics,
EYP-BAL-0980-10000-4020-CDL02-0000) operating in the pulsed
mode driven by a laser diode driver (LIMO LDD50). The excitation
power was measured using an Ophir Nova II laser power meter
equipped with a medium power thermal laser sensor [Ophir
L40(150)A-SH-V2]. A charge-coupled device (CCD) camera (Andor
iXon) was used to acquire uorescence images.

3 Results and discussion
3.1 Numerical simulations on the QY increase by the pulsed
excitation

The feasibility of increasing the QY of UCNPs using pulsed
excitation is rst investigated through numerical simulations.
The Yb3+/Tm3+ codoped nanoparticles are used as a represen-
tative of UCNPs in this work. The UC dynamics of their major
UC emission band, i.e., the NIR UC emission band at around
800 nm, is modeled using the following time-resolved rate
equations based on its well veried UC pathway under excita-
tion of 975 nm light,21,29 as shown in Fig. 1,

Fig. 1 Schematic energy level diagrams of Yb3+ and Tm3+ ions and the proposed
UC mechanism following the excitation at 975 nm. The variables used in the text
for the population densities of different levels are indicated within the
parentheses.
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dNYb1

dt
¼ sr

hn
NYb0 � ðC0N0 þ C1N1 þ C2N2Þ NYb1 �NYb1

sYb1

; (1a)

dN 0
1

dt
¼ C0N0NYb1 � b0

1N
0
1; (1b)

dN1

dt
¼ b0

1N
0
1 � C1N1NYb1 �N1

s1
; (1c)

dN 0
2

dt
¼ C1N1NYb1 � b0

2N
0
2; (1d)

dN2

dt
¼ b0

2N
0
2 � C2N2NYb1 �N2

s2
; (1e)

where s is the absorption cross-section of Yb3+ ions; r is the
excitation power density; h is Planck's constant; n is the
frequency of the excitation light; C0, C1 and C2 are the energy
transfer upconversion (ETU) rates from excited Yb3+ ions to the
Tm3+ ions in states 0, 1 and 2, respectively; s1 and s2 are the
radiative lifetimes of Tm3+ ions in states 1 and 2 (non-radiative
de-excitation neglected for these levels), while sYb1 is the life-
time of Yb3+ ions in the 2F5/2 state; b

0
1 and b

0
2 represent the non-

radiative decay rates for 10 ⇝ 1 and 20 ⇝ 2, respectively. A power
density dependent and temporally cumulative QY for the NIR
UC emission in the time interval [0, t], h(r,t), is dened as

hðr; tÞh

ðt
0

N2ðtÞ=s2dt
ðt
0

sNYb0r=hndt

; (2)

which can be calculated by numerically solving eqn (1a–e). The
QY in the steady state following CW excitation is given by
h(r,N).

In the modeling, we used parameter values which were
measured or calculated for the UCNPs used in the experimental
work. The ion concentrations were calculated based on the
TEM, ICP-OES and XEDS measurements on the UCNPs (see the
ESI† for the calculation of ion concentrations), and the lifetimes
sYb1 and s2 were measured experimentally. s, s1, b

0
1 and b

0
2 were

taken from the literature. The power density dependent steady-
state QY of the used UCNPs has been measured and reported
recently in our previous work.30 The ETU rates were thus
selected based on the principle of giving the best tting of the
simulated power density dependency of steady-state QY with the
measured results (see the ESI† for the selection of the ETU
rates). Table 1 summarizes the parameter values used in the
simulations. Fig. 2a shows the simulated QY under steady-state
conditions following CW excitation of different power densities.
As seen, the QY increases with the excitation power density in a

complex manner with a constant steady-state level (saturation
level) at high power densities, which is consistent with experi-
mental observations reported in the literature.31,32

Fig. 2b presents the simulated time dependent QY under CW
excitation and under pulsed excitation in the rst pulse period.
The CW excitation has a constant power density of 1 W cm�2.
The pulsed excitation, having a 2 Hz repetition rate and a 4%
duty cycle, has power densities of 25 W cm�2 and 0 W cm�2 in
the “on” and “off” states, respectively, thus resulting in the
same average power density as that of CW excitation. As shown
in Fig. 2b, under CW excitation, the UC emission has a constant
QYCW except that at the very early stage when the energy levels
start to be populated due to the effect of the excitation. This
constant QYCW is associated with the steady state of the UC
system, and is given by the QY at the power density of 1 W cm�2

in Fig. 2a. Under pulsed excitation, the QYpulsed is very small at
the start of the laser pulse, and then increases with time. If the
length of the pulse duration allows, the QYpulsed will surpass the
QYCW, and asymptotically approach a maximum. This
maximum is restricted to the steady-state QY at the power
density of 25 W cm�2 in Fig. 2a. Clearly, the advantage of using
pulsed excitation to replace the equivalent CW excitation is that
the late excitation photons can be potentially used with higher
energy conversion efficiency, while the disadvantage is that the

Table 1 Summary of general parameter values used in the simulations

s (cm2) N0 (cm
�3) NYb0 (cm

�3) sYb1 (ms) s1 (ms) s2 (ms) C0 (cm
3 s�1) C1 (cm

3 s�1) C2 (cm
3 s�1) b 0

1 (s
�1) b 0

2 (s
�1)

1.69 � 10�20a 1.25 � 1019b 1.52 � 1021b 1.32c 7.43d 1.49c 1.6 � 10�18e 6.2 � 10�16e 1.6 � 10�18e 1.7 � 104d 1 � 105d

a From Jiang et al.26 b Calculated (see the ESI† for the calculation of ion concentrations). c Frommeasurement (see Fig. S2†). d From Ivanova et al.27
e Estimated from Braud et al.28 and Ivanova et al.27 (see the ESI† for the selection of the ETU rates).

Fig. 2 (a) Simulated power density dependence of the QY of the NIR UC emis-
sion in the steady state under CW excitation. (b) The temporally cumulative QYs
under CW excitation and under pulsed excitation in the first pulse period. The
pulsed excitation had a duty cycle of 4% and a repetition rate of 2 Hz. Both the
CW and pulsed excitation approaches provided an average power density of 1 W
cm�2. (c) The temporally cumulative QYs under CW excitation and under pulsed
excitation in multiple periods. The pulsed excitation had a fixed duty cycle of 4%
and various repetition rates. All the excitation approaches provided the same
average power density of 0.1 W cm�2.
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early excitation photons in each pulse period are used with
lower efficiency than those in the CW excitation. Through
balancing the increased power density and decreased excitation
duration under the same amount of energy, an overall UC signal
gain (dened as the ratio of the QYpulsed/QYCW) can be expected.

Cumulative QY in multiple periods under pulsed excitation
was investigated in order to estimate the inuence of the pulse
width on the signal gain, compared to the equivalent CW exci-
tation. The average power density was kept at 0.1 W cm�2 in the
simulations. The pulsed excitation used throughout this study
had the same duty cycle of 4% unless otherwise specied, and its
repetition rate was adjusted in order to achieve different pulse
widths. As illustrated in Fig. 2c, a signicant UC signal gain is
obtained by using pulsed excitation when the repetition rate is
well below 50 Hz. For example, the signal gain by the 2 Hz square
wave in the time interval of [0, 500] ms is approximately 8. The
signal gain decreases with the repetition rate, i.e., increases with
pulse width as expected. When the repetition rate is even higher,
e.g., up to 100 Hz, the signal generated by the pulsed excitation
becomes slightly smaller than that generated by equivalent CW
excitation. In addition, it should be noted that the signal gain
decreases with the applied power density. When the average
power density is increased to 1W cm�2, the signal gain decreases
to 2, as shown in Fig. S3.† This can be ascribed to the gradual
saturation property of UC emission, indicated in Fig. 2a.

Although the parameter values were carefully calculated or
modied in the simulations so that they gave the best tting
between the measured and simulated steady-state QY power
density dependency, the modeling is not an accurate description
of the real UC system. Due to the lack of accuracy and precision
data for such values, it is difficult to evaluate the uncertainty of
the simulated results. However, the inuence of the variation of
parameter values on the simulated signal gain was investigated,
with the results for the change of ETU rates shown in Fig. S4.† In
each comparison, one ETU rate among others was adjusted
across the two orders of magnitude around the value listed in
Table 1, while two other ETU rates remained unchanged. All
simulated results conrm that the UC emission enhancement
effect can be achieved by using pulsed excitation with a consid-
erably long pulse duration when the energy transfer transitions
are not saturated by the applied power density, as long as the
emission originates from a multi-stepwise photon upconversion
process. The only difference exists in the extent of the signal gain.
It is worthmentioning that the simulated signal gain has a strong
dependence on the change of the ETU rate C1 rather than C0 and
C2, as shown in Fig. S4.† This can be explained by the fact that the
balancing power density of UCNPs is highly dependent on C1.30

Above this power density, the UCNPs would behave more linearly
in emitting upconverted photons upon NIR excitation,30 leading
to decreased signal gain by using pulsed excitation.

3.2 Quantum yield increase by pulsed excitation in the
UCNP suspension

In order to experimentally validate the gain in the UC signal due
to the pulsed excitation predicted by the simulations in Section
3.1, experiments were carried out on colloidal stable UCNPs.

Core–shell NaYF4:Yb
3+,Tm3+@NaYF4 UCNPs were dispersed in

hexane and used as the sample. The prepared UCNPs emit the
major UC emission bands at around 800 nm under excitation of
975 nm light, as shown in Fig. 3, assigned to the transition 3H4

/ 3H6 of Tm3+ ions.29 Other weaker UC emission bands at
around 450 nm, 474 nm and 644 nm originate from the tran-
sitions of Tm3+ ions: 1D2 / 3F4,

1G4 / 3H6 and 1G4 / 3F4,
respectively.29 The inset of Fig. 3 shows the TEM image of the
prepared core–shell UCNPs. The nanoparticles were spherical
in shape with an average diameter of 42 nm. The core nano-
particles prior to coating had an average diameter of 32 nm (see
Fig. S1 in the ESI†).

The intensities of the NIR UC emission under CW excitation
and pulsed excitation (square wave) were measured. The pulsed
excitation had a xed duty cycle of 4% and different pulse
widths. The average power density of the excitation light was
kept at 0.12 W cm�2. As shown in Fig. 4a, a signal gain,
monotonically increasing with pulse width, was obtained by
using the pulsed excitation even with a pulse duration as short
as 0.8 ms. When the pulse width reaches 20 ms, the gain is as
high as 8.7. It is noteworthy to point out that the required pulse
width for the UC signal gain in the present case (�0.8 ms) is
much shorter than the rise time of the UC emission (i.e.,
approximately 10 ms, as shown in the inset of Fig. 4a), domi-
nated by the lifetime of the intermediate level 3F4 of Tm

3+ ions.
This is different from previous predictions reported in the
literature,12,18 and makes the pulsed excitation approach even
more exible to use due to a broader pulse width window for QY
increase.

The dependence of the gain in the UC signal on the applied
power density was also investigated using a square-wave exci-
tation with a 20 ms pulse width and 2 Hz repetition rate. Fig. 4b
shows the UC signal gain by the pulsed excitation at various
average excitation power densities, where a decreasing trend
with increasing excitation power densities is clearly seen. At the
minimum power density investigated (�0.12 W cm�2), the

Fig. 3 The upconversion spectrum of core–shell NaYF4:Yb
3+,Tm3+@NaYF4

nanoparticles under excitation of a CW 975 nm laser diode, measured at a power
density of 125W cm�2. The inset shows the TEM image of the prepared core–shell
UCNPs.
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signal gain is approximately 8.7, while at the maximum power
density (�4.65 W cm�2), the UC signal generated by the pulsed
excitation is slightly weaker than that generated by the CW
excitation. The UC emission intensity dependence on the exci-
tation power density under pulsed excitation exhibits a smaller
slope than that under the CW excitation, as shown in the inset
of Fig. 4b, which could explain the signal-gain trend above.

The amplication effect of increasing the excitation power
density here essentially originates from the non-linear power
density dependence of the UC emission. Thus, a higher-order
power density dependence would result in a larger UC signal
gain. This is conrmed by the measurements on the blue (at
474 nm) and red (at 644 nm) UC emissions, both generated
through a three-photon excitation process. They exhibit signif-
icantly larger signal gains than the NIR UC emission at any
given average power density, as shown in Fig. 5. In view of this,
we foresee that pulsed excitation can be employed to increase
the applicability of recently implemented migration-mediated
UC emissions from ions such as Eu3+ and Tb3+ in biological
applications, due to their high-order multi-stepwise excitation
nature via excited Tm3+ ions.33 At present, their applications in
such areas are challenged due to their low QYs.

It is worth mentioning that the usefulness of pulsed excita-
tion for increasing the QY of UC emissions is not merely limited
to Yb3+/Tm3+ codoped UCNPs. Instead, it is a general scheme for
enhancing UC emissions and would work in diverse UCNPs
with different dopants if the characteristic of the pulsed exci-
tation light is wisely tailored. In addition, as different UCNPs
exhibit different optical characteristics, proper characterization

will make it possible to accurately predict the performance of
UCNPs in general under pulsed excitation.

3.3 Single-shot imaging of UCNPs

When UCNPs are used as contrast agents in diffuse optical
imaging, the imaging depth is usually shallow due to the very
low QY of UC emissions at the low uence rates found in deep
tissues.12 The pulsed excitation constitutes an ideal approach
for exciting deeply located UCNPs, since the UC emissions can
be enhanced without consuming more excitation energy than
an equivalent CW source, thus not increasing the thermal side-
effects of the excitation light. This would in turn lead to higher
image quality and larger imaging depth.

The merit of using pulsed excitation light to image deeply
located UCNPs was subsequently tested in a liquid tissue
phantom. The phantom, made of water, intralipid and ink, was
characterized by photon time-of-ight spectroscopy (pTOFS)34

and determined to have reduced scattering coefficient m
0
s ¼

10.1 cm�1 and absorption coefficient ma ¼ 0.52 cm�1 at 975 nm,
hence mimicking skin tissue properties. Its thickness was
17 mm. A glass tube with an inner diameter of 2 mm, con-
taining the colloidal core–shell UCNPs (c¼ 1 wt%), was inserted
into the phantom as the luminescent inclusion to mimic a
UCNP-labeled target, e.g., a tumor inside real tissue. CW exci-
tation and pulsed excitation, having 20 ms pulse duration and
2 Hz repetition rate, at 975 nm were applied, respectively. The
average power density impinging on the surface of the tissue
phantom was 1.2 W cm�2 for both excitation approaches. The
excitation source and the detector were positioned in a trans-
illumination geometry. A more detailed description of the
experimental setup is found in ref. 32. When buried at a depth
of 10 mm from the source, the luminescent inclusion was barely
detectable under CW excitation even with an exposure time of
10 s, as shown in Fig. 6a. However, by using pulsed excitation,
the signal-to-background ratio was signicantly increased by a
factor of approximately 7 under the same detection conditions,
as illustrated in Fig. 6b. An obvious implication is that the data
acquisition time can be drastically reduced whilst maintaining
the signal quality equivalent to CW excitation. Moreover, it is

Fig. 4 (a) The NIR UC signal gain by the pulsed excitation with different pulse
widths. The data were measured with an average excitation power density of
0.12 W cm�2. Inset: the response of the NIR UC emission to a square-wave exci-
tation with IRF denoting the instrument response function. (b) The dependence
of the NIR UC signal gain by the pulsed excitation on the average power density.
The pulsed excitation was set to have a 20 ms pulse width and 2 Hz repetition
rate. Inset: the average power density dependence of the NIR UC emission
intensity under CW and pulsed excitations.

Fig. 5 The dependency of the blue (at 474 nm) and red (at 644 nm) UC signal
gains by the pulsed excitation on the average power density. The pulsed excita-
tion was set to have a pulse width of 20 ms and a repetition rate of 2 Hz.
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notable that the maximum imaging depth can be increased to
15 mm for pulsed excitation (data not shown).

The QY of UC emission can be further optimized by using
single pulse excitation, through which even higher power
density can be achieved. For instance, the maximum permis-
sible power density for exposure to human skin at 975 nm is
17.4 W cm�2 for a repetitive pulse excitation with a pulse width
of 20 ms and a repetition rate of 2 Hz, while the number for a
50 ms single pulse is as high as 36.9 W cm�2,16 referring to
Section 8 in the ESI.† Such a strong single pulse with a pulse
width longer than the rise time of the UC emission enables the
UCNPs to be used in a very efficient way in terms of energy
conversion. This excitation approach would improve the
imaging ability of using UCNPs without violating the ANSI
standard, which is a fundamental limit for bio-imaging.

The feasibility of single-shot imaging was experimentally
investigated. A 50 ms single pulse providing an excitation power
density of 36.9 W cm�2 was used. When the luminescent
inclusion was placed at a depth of 13 mm into the phantom, it
could be relatively well detected using the single pulse excita-
tion with a detector integration time of 1 s, even using an epi-
illumination imaging setup described in ref. 17, as shown in
Fig. 6d. Nevertheless, when the CW laser was used for excita-
tion, also outputting the maximum permissible power density
by the ANSI standard on the same illumination area, i.e.,
709.6 mW cm�2, referring to Section 8 in the ESI,† the inclusion
was not detectable at all even with amuch longer integration time
of 10 s, as shown in Fig. 6c. Obviously, the integration time for the
single pulse excitation can be shortened to 50ms still without loss
in the UC signal quality, as long as the excitation source and the
detector are synchronized. The results demonstrated here,
although preliminary, show great potential of single-shot excita-
tion in UCNP-guided deep tissue optical imaging.

4 Conclusions

In conclusion, signicant QY increase in UCNPs is achieved by
using pulsed excitation. This is supported theoretically by the
study of the UC dynamics based on time resolved rate equa-
tions. Such QY increase enables us to implement single-shot
imaging of UCNPs in deep tissues. Pulsed excitation thus
constitutes an ideal excitation approach for UCNPs, as the
shallow imaging limit can be overcome and data acquisition
time can be drastically shortened by applying this excitation
scheme. The pulsed excitation approach will greatly increase
the applicability of UCNPs not only in diffuse optical imaging
but also in many other biomedical applications, such as
photodynamic therapy and remote activation of biomolecules
in deep tissues.35,36 It is worth mentioning that metallic nano-
structures are reported to be effective in enhancing UC emis-
sions owing to their local eld enhancement effect by surface
plasmonic coupling.37 We envisage that the combination of the
pulsed excitation approach and metallic nanostructures could
become a major scheme of using UCNPs in the diffuse light
regime, due to the synergistic effect in increasing the excitation
power density. In addition, this study provides a general
method for promoting the applications of nonlinear uo-
rophores (including UCNPs and triplet–triplet annihilation
based upconverters38) under low light conditions by increasing
the excitation uence rate through a limited illumination area.
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