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Abstract

A general method for modelling reflection in a multilayer structure is developed. This
is used to simulate how a Gaussian Ti:sapphire femtosecond pulse reflects off of a peri-
odic SiO2/TiO2 dielectric stack at normal incidence. The method is based on a transfer
matrix approach combined with the fast Fourier transform in MATLAB. Both a simple
Bragg reflector and a linearly chirped mirror is investigated for three different pulse
durations using mirrors with 5, 10, 20 and 40 layer pairs. It is demonstrated that a
Bragg reflector is not suitable for reflecting a pulse shorter than 10 femtoseconds due
to the limited reflectance bandwidth. The chirped mirror features a wider reflectance
bandwidth but a reflected pulse exhibits strong group delay oscillations with wave-
length, emanating from unwanted high-order dispersion in the mirror. Designs based
on refined versions of this mirror type can however be used for reflection and disper-
sion compensation of pulses as short as 5 femtoseconds.
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1 INTRODUCTION

1 Introduction

1.1 Historical background
Since the first light of the laser in 1960, physicists have endeavoured to produce increas-
ingly shorter pulses of laser light. The lasers of fundamental importance for today’s re-
search on ultrashort pulses operate with pulse durations on the order of femtoseconds
(a femtosecond, 1 fs, is a millionth of a billionth of a second, 10−15 seconds). Such lasers
have been around since the 1970s in the form of so called dye lasers, the laser type used in
the experiments where femtosecond pulses were first produced [1]. However, dye lasers
quickly proved to be far from ideal for short pulse generation: they deteriorate quickly,
are weak in terms of output power and the highly toxic dye laser medium makes them
complicated to handle.

Rapid progress was made when the much more versatile titanium-sapphire (commonly
written Ti:sapphire) laser was introduced in the mid 1980s. This laser can be tuned to
operate anywhere in a broad spectrum of wavelengths ranging from around 650 nm
(1 nm = 10−9 m) to around 1100 nm. Such a broad bandwidth makes it highly suitable
for short pulse generation. Most common to this day is operation at a wavelength of
800 nm (near infrared) where the Ti:sapphire lasing efficiency is at maximum. With tech-
niques such as Kerr-lens mode locking (KLM), pulses of duation 5 fs (shorter than two
optical cycles at 800 nm) have been achieved using Ti:sapphire lasers [2].

There are several areas of research where ultrashort pulses play an essential role. For
example: to probe chemical reactions occuring on very short time scales, high temporal
resolution is needed. One can make an analogy with photography: a high shutter speed
is required if a moving object is to appear sharp in an image. Apart from probing fast
chemical processes, a high-intensity femtosecond pulse can also stimulate certain reac-
tions to occur. A pulse used in this manner is commonly referred to as a pump pulse. An
experiment where the reaction is initiated by and then characterized with the same pulse
is known as a pump-probe experiment. That is a very common approach in the field of
femtochemistry, the study of very fast chemical processes.1.

It is also possible to produce even shorter pulses of attosecond duration (1 as = 10−18

seconds) using femtosecond pulses. This happens in a process known as high-order har-
monic generation (HHG), caused by the fact that the very high electric field of the laser
pulse becomes comparable to the intra-atomic electric fields. Electrons in an atom tar-
geted by the pulse can then escape the atomic potential and later recombine with the
atom, thereby emitting attosecond pulses with wavelengths in the extreme ultraviolet
range. Several pioneering experiments on HHG have been performed in Lund, both re-
garding pulse generation itself [4], [5] and characterization and applications of the gener-
ated pulses [6]. The pulses can be used to probe some of the fastest atomic and molecular
phenomena occurring in nature [7].

1For a comprehensive summary of this field of research, see Ref. [3]
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1.2 Purpose and motivation 1 INTRODUCTION

1.2 Purpose and motivation
A fundamental problem regarding ultrashort pulses is that they are inevitably distorted
by ordinary optical components. After propagation through such components, the pulse
will become severely broadened and might not even maintain its initial shape. Similar
dispersive effects occur when such a short pulse traverses air (but not vacuum). At the
end of an optical setup, it is thus likely that the pulse characteristics have become un-
suitable for the intended application. The same problem can occur inside a laser in its
resonating cavity.

The unwanted dispersion can be prevented or more or less effectively compensated for
using more sophisticated optics. Since it may sometimes also be desirable to manipulate
the initial pulse shape or duration, components can be tailored for such purposes as well.
These components can for example be lenses, prism pairs2, metallic filters or special mul-
tilayer mirrors known as dielectric mirrors. The latter have an additional advantage over
ordinary mirrors since they can provide a much higher reflectance.

The purpose of this thesis is first and foremost to devise a simple and intuitive model
which accurately describes the optical properties of a multilayer structure. More precisely,
the aim is to study how well multilayer dielectric mirrors of varying design reflect a fem-
tosecond pulse. How the shape of such a mirror shall be tailored to preserve the shape
of an initially non-dispersed pulse and at the same time provide a very high reflectance
is investigated. In this study, the materials of the constituting layers are chosen to be
silicon dioxide (SiO2, known as fused silica) and titanium dioxide (TiO2) since they are
commonly used in dielectric mirrors due to their suitable refractive indices. The mirror is
modelled in MATLAB using a matrix approach together with the fast Fourier transform
(FFT): the mirror acts as frequency domain filter. Each frequency component of the pulse
is filtered separately since the refractive indices of SiO2 and TiO2 are frequency depen-
dent. The spectral and temporal characteristics of the reflected pulse are then evaluated
together with the mirror reflectance over a relevant frequency range. This is done for
several different mirror designs and input pulse durations.

The thesis is organized as follows. In section 2 the theoretical background necessary to
understand the results is treated. This starts with the mathematics of wave and pulse
propagation followed by a discussion on the optical properties of dielectric media. The
basis for the numerical method which the thesis is based on is then developed. The sec-
tion concludes with a description of different dielectric mirror designs. In section 3 the
method and analysis framework used is detailed. Section 4 is devoted to treating the
results obtained in the simulations: the limits and prospects of each mirror design is dis-
cussed. The thesis is concluded in section 5 with an outlook reviewing current and future
research on reflection and dispersion compensation of ultrashort pulses.

2Has been used for a Ti:sapphire laser [8].
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2 Background

2.1 Mathematical description of ultrashort pulses
The material in this section is based on the treatment of the subject in sections 2.1, 2.2, 2.6,
5.6 and 22.1-3 in Ref. [9].

2.1.1 Fundamental properties of a wave

Light propagating in vacuum can be described as an electromagnetic (EM) wave with
both the electric field E and the magnetic field B transverse to the direction of propagation.
For propagation in the z-direction, the E-field amplitude E(z, t) satisfies the wave equation:

∂2E(z, t)
∂z2 =

1
c2

0

∂2E(z, t)
∂t2 , (1)

where c0 is the speed of light in vacuum and t is time. The B-field amplitude B(z, t) sat-
isfies an analogous equation. The behavior of the EM-wave can be completely described
using either the electric or the magnetic field, since there is at all times a relation between
E and B from Maxwell’s equations: E = B/c0. In this treatment, E(z, t) is used. The most
simple solution to the wave equation above is a sinusoidal wave of a single frequency ν:

E(z, t) = A cos(ωt + ϕ(z)), (2)

where A is the (real) amplitude of the wave, ω = 2πν is the angular frequency and ϕ is
a phase which translates the wave in the z-direction. The electric field amplitude is a real
parameter, but it is conveniently described using a complex amplitude U written in terms
of an exponential:

U(z, t) = Aei(ωt+ϕ(z)). (3)

U(z, t) also satisfies the wave equation, with the same boundary conditions as E(z, t). Us-
ing Euler’s formula we get the following relation between real and complex amplitudes.

E(z, t) = <[U(z, t)] =
1
2
[U(z, t) + U∗(z, t)]. (4)

It is now handy to separate U into its temporal and spatial parts, so that

U(z, t) = U(z)eiωt, (5)

where U(z) = Aeiϕ(z) is the complex amplitude. We therefore get the phase from the
argument of U(z) and the amplitude from |U(z)|. If U is inserted into the wave equation
it satisfies, we get the one-dimensional Helmholtz equation

∂2U(z, t)
∂z2 + k2

z U(z, t) = 0, (6)
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2.1 Mathematical description of ultrashort pulses 2 BACKGROUND

where kz = ω/c0 is the wave number: the spatial equivalent of the temporal angular
frequency. This parameter is proportional to how many wavelengths λ = c0/ν there is
per unit length, and will be important later.

In many situations, the intensity I(z, t) of a wave is a more important parameter than
the electric field itself. It is proportional to the square of the E-field and a convenient
definition is

I(z, t) ∝ 2〈E2(z, t)〉, (7)
where 〈· · ·〉 denotes time average. Inserting the expression for E in eq. (4) into the above
definition, writing the exponentials of U and U∗ in terms of sines and cosines and then
time-averaging the surviving cosine term, one obtains that

I(z, t) ∝ |U(z)|2 . (8)
Therefore, the complex amplitude is of key interest. For a monochromatic (plane) wave
its phase term looks like ϕ(z) = −k · z = −kzz. Using this, eq. (5) and Euler’s formula,
the full complex electric field can be written as

U(z, t) = A ei(ωt−kzz) = A eiω(t− z
c0
). (9)

From this, both the spatial and temporal periodicity is clearly seen. It is also evident that
for a given t, the overall phase of the wave depends on z/c0. The velocity c0 is therefore
known as the phase velocity, which in this special case is the same as the propagation speed
of the wave itself. If the wave propagates through a medium of refractive index n, its
phase velocity is lowered by this factor: it immediately follows that λ must decrease with
the same factor (so that k increases by n). The frequency thus stays the same regardless of
n. The physical meaning of the refractive index will be elaborated on in section 2.2.

2.1.2 Temporal and spectral description

Wave equations on the form of eq. (1) are said to be linear. This means that if U1 and
U2 are separate solutions, the sum of the solutions U = U1 + U2 is also a valid solution.
Hence, one may construct any wave as a superposition of a (possibly infinite) number
of individual plane waves. Since a plane wave is not localized in space it is not a very
good description of real waves which are always localized in some way. Superimposing
many plane waves of different wave numbers, it is possible to create a localized wave
packet. Such a construct may accurately describe a wave only occupying a certain space
at a given time, known as a pulse. It is very convenient to describe a pulse using the
powerful Fourier transform approach. As implied above, a certain wave E(t) at a certain
position z may be written as a sum of plane waves, each of a unique amplitude Ê(ω):

E(t) =
1

2π

∫ ∞

−∞
Ê(ω)e−iωtdω. (10)

Conversely, for a given E(t) one may obtain its frequency components Ê(ω):

Ê(ω) =
∫ ∞

−∞
E(t)eiωtdt, (11)
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2.1 Mathematical description of ultrashort pulses 2 BACKGROUND

known as the spectrum. Eq. (11) is the familiar Fourier transform. If E(t) is a real function
the negative frequency components are the complex conjugates of the positive ones. To
avoid having to work with negative frequencies, one may just as before use a complex
wave U. Then, Û(ω) = −Û(ω): for U(t) the Fourier components are symmetrically
distributed around zero. Thus the integral in eq. (10) can instead be written from zero to
infinity multiplied by a factor of two. Due to the linearity mentioned before, the real field
E(t) represented by the complex U(t) can be obtained by an equation analogous to eq.
(4).

The intensity is of a pulsed wave is given by the squared modulus of its complex ampli-
tude U(z, t). This can be motivated as follows. The intensity can be obtained as in eq. (7):
insertion into this equation and subsequent rewriting leads to

I(z, t) ∝ 2〈E2(z, t)〉 = 1
2
〈U2(z, t)〉+ 1

2
〈U∗2(z, t)〉+ 〈U(z, t)U∗(z, t)〉. (12)

It can easily be shown that the two first terms oscillate at much higher frequency than the
third term, which only contains differences of frequencies. Doing the time averaging over
a sufficiently long time will then make the two first terms average out to zero so that only
the last term remains, which is the desired result identical to that in eq. (8).

A sufficiently accurate model of the ultrashort pulses emitted by lasers like the Ti:sapphire
laser is the pulsed plane wave. In the time domain, it is simply described by a plane wave
of angular frequency ω0 (the central or carrier frequency) with its amplitude modulated
by some complex function C often called the envelope. At any given time and position in
a material of (constant) refractive index n and c = c0/n it may thus be written as

U(z, t) = C
(

t− z
c

)
eiω0(t− z

c ). (13)

The temporal width of the envelope function is often described using the full width at
half maximum (FWHM) of I(z, t), here denoted τ0. Spatially the pulse then occupies a
FWHM of cτ0. Using the well known frequency shift property of the Fourier transform,
Û(z, ω) at a given z becomes centered around ω0 so that

Û(z, ω) = Ĉ(ω−ω0)e−iω z
c . (14)

A general property is that a pulse of short duration (i.e. one whose C(z, t) has a small
τ0) has a very broad spectrum; the opposite is true as well. If, as in the case of a pulsed
plane wave, the phase is constant across all frequencies, the pulse is said to be transform
limited. For an ultrashort pulse generated by a Ti:sapphire laser, C is at z = 0 temporally
well described by a Gaussian envelope on the form in eq.(15) below. A Gaussian is very
convenient, since its Fourier transform is also a Gaussian.

C(t) = e−
π
2 (

t
τ )

2
. (15)

5



2.1 Mathematical description of ultrashort pulses 2 BACKGROUND

With this definition of a Gaussian envelope, τ is not the FWHM of I(t). Instead τ is
the width of a square (top-hat) pulse which carries the same total energy as the entire
Gaussian pulse. τ is somewhat smaller than τ0 for a given pulse: we have that τ ≈ 0.94τ0.
The product of this temporal duration and the spectral FWHM ∆ω of C is constant: it
is referred to as the time-bandwidth product. As a consequence, τ must increase if ∆ω
decreases and vice versa. This is sometimes called the uncertainty relationship between the
time and frequency domains.

2.1.3 Dispersive media

Until now only propagation through a material with frequency independent refractive
index has been considered. This is rarely the case for real materials: usually n = n(ω).
Such a medium is said to be dispersive. A plane wave travelling through such a mate-
rial is not affected by this since it is monochromatic. A pulse, which always has a spec-
tral width > 0 will however be strongly affected. This is because the phase velocity is
c = c0/n(ω) = c(ω), so the different frequency components in the pulse travel at dif-
ferent velocities. An initially transform limited pulse will thus, depending on whether n
increases or decreases with frequency, eventually have low or high frequency components
respectively in the leading part of the pulse. This is known as a chirped pulse.

For most materials n increases with ω in the visible and near-infrared parts of the spec-
trum. Such a medium exhibits normal dispersion, while in the other case the dispersion
is said to be anomalous. The resulting pulse broadening can be understood from that the
spectral phase is no longer constant: the pulse is then not transform limited and the time-
bandwidth product τ∆ω must increase. If one considers the temporal pulse shape at
a fixed position, the frequency increases with time (positive chirp) for normally disper-
sive media and decreases (negative chirp) for media with anomalous dispersion. Figure
1 below demonstrates the difference between a chirped and transform limited pulse of
duration τ = 10 fs and central wavelength of 800 nm.

t / fs
-20 -10 0 10 20

E
(t

) 
/ a

rb
. u

.

-1

-0.5

0

0.5

1
(a)

t / fs
-20 -10 0 10 20

E
(t

) 
/ a

rb
. u

.

-1

-0.5

0

0.5

1
(b)

Figure 1: A pulse with a Gaussian envelope of duration τ0 = 10 fs in the time domain.
(a) Transform limited pulse. (b) Positively chirped pulse with chirp of ≈ +120 nm/fs.
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2.1 Mathematical description of ultrashort pulses 2 BACKGROUND

2.1.4 Parameters to describe pulse dispersion

Each component in a pulse starting at z = 0 and propagating in the positive z-direction
will in a dispersive medium obtain a spectral phase

ϕ(ω) = n(ω)k(ω)d, (16)

after a distance z = d. Here k(ω) = ω/c0 is the wave number in vacuum. To observe how
ϕ(ω) has affected the pulse temporally at z = d, one may simply multiply each spectral
component by e−iϕ(ω) and transform back into the time domain. We get:

U(z = d, t) =
1
π

∫ ∞

0
Û(z = 0, ω)ei(ωt−ϕ(ω))dω. (17)

It is now instructive to consider the case of a phase shift which varies sufficiently slowly
with ω within the pulse. Then, ϕ(ω) can be Taylor expanded around the carrier frequency
ω0 keeping only the first term as below.

ϕ(ω) ≈ ϕ(ω0) +
∂ϕ

∂ω

∣∣∣
ω=ω0

(
ω−ω0

)
= ϕ0 + ϕ′(ω−ω0). (18)

Substituting this back into eq. (17), we obtain using δ = ω−ω0 that:

U(z = d, t) ≈ ei(ω0t−ϕ0)

π

∫ ∞

0
Û(z = 0, δ)eiδ(t−ϕ′)dω =

ei(ω0t−ϕ0)

π

∫ ∞

−ω0

Û(z = d, δ) dδ. (19)

The exponential outside the integral corresponds to the carrier frequency wave, moving
with its phase velocity k0 = ω0/c. The integral describes the pulse envelope, which at the
central frequency travels at the group velocity vg. It can be easily obtained by dimensional
analysis of the exponential inside the integral:

vg(ω0) =
dω

d(kn(ω))

∣∣∣
ω=ω0

. (20)

Differentiating eq. (20) again, one obtains zero. What this means is that the pulse envelope
is not distorted by the first term in the Taylor expansion in any way: it merely delays it
by an amount TG = d/vg known as group delay (GD). It can also be deduced that the
group velocity is the same as the phase velocity at ω0 if n is independent of ω, which
is equivalent to including only one term in the expansion. However, if the pulse has a
higher bandwidth (implying a shorter pulse), it will be necessary to include higher order
terms. Such terms express a frequency dependent group delay and group velocity. The
second term, for example, is called the group delay dispersion (GDD) and is written

GDD =
d2ϕ(ω)

dω2 . (21)

This term is responsible for the broadening and chirping effects that have been discussed
in section 2.1.3. A related parameter is the group velocity dispersion (GVD) which is the
GDD per unit length. One can continue and write the the third, fourth and higher order
dispersion terms with their corresponding derivatives. These terms will alter the pulse
shape in more complicated ways. For propagation in a material which has a given n(ω),
high order terms become increasingly important with decreasing pulse duration.

7



2.2 On the refractive index 2 BACKGROUND

2.2 On the refractive index
The refractive index of a material where the phase velocity is c for a given frequency
is related to the electric permittivity ε = ε0εr and magnetic permeability µ = µ0µr, with
subscripts 0 and r indicating vacuum and relative permittivity/permeability. εr and µr are
in turn dimensionless quantities related to the electric and magnetic susceptibilities χe =
εr− 1 and χm = µr− 1. These determine how well a material is polarized/magnetized by
the electric/magnetic components of the light wave as it propagates through the material.
With the above relations, we can write

n =
c0

c
=

√
εµ

ε0µ0
=
√

εrµr. (22)

The materials of relevance in this thesis are dielectrics, which means that they are easily
polarized by external electric fields but not very easily magnetized. Thus, µ ≈ µ0 is a
reasonable approximation to make for such materials.

In the two sections above it has been assumed that no absorption occurs in the material:
that the EM wave is not attenuated as it propagates. Absorption can easily be incorpo-
rated into the model by introducing a complex refractive index nc = n + iα with α being
the attenuation coefficient. This imaginary part adds a real term in the exponent of the com-
plex wave U(z, t) = eiω(t−z/c), which thus becomes attenuated as z increases. However,
for many dielectrics α ≈ 0 in the visible and near infrared region. For the small propa-
gation distances of relevance in this thesis it is thus reasonable to neglect absorption and
only include the real part n.

2.3 The Fresnel equations of transmission and reflection
Consider a plane EM-wave of wave vector k propagating in a dielectric of refractive index
n1 encountering a boundary to a dielectric of index n2 at an angle θ1 to the boundary
normal. If there is no absorption, the wave will split into a refracted component k’ and
a reflected component k”. Figure 2 on page 9 illustrates the situation. The ratio of the
amplitudes depends on θ1, n2/n1 and the incident wave polarization. If the polarization
is such that the electric field is orthogonal to the plane spanned by k and k”, it is said
to be transverse electric (TE) or σ-polarized. The other case is transverse magnetic (TM)
or π-polarization. An arbitrarily polarized wave is thus a linear combination of these
polarization modes. Each mode is considered separately in the treatment that follows.
The relationship between angles of incidence and refraction is determined by Snell’s law:

n1 sin θ1 = n2 sin θ2. (23)

We also have that θ1 = θ3 which is the law of reflection. These two results are independent
of the polarization, however the amplitudes and phases of the refracted and reflected
waves are not unless the angle of incidence is zero. Only considering the complex electric

8



2.3 The Fresnel equations of transmission and reflection 2 BACKGROUND

Figure 2: Refraction and reflection of a plane wave with wave vector k incident on a
boundary between two dielectrics of different refractive indices. n1 is smaller than n2.

field U, we can write U′ and U′′ for refracted and reflected waves in terms of incident U
using the complex reflectance r and transmittance t, with the only requirement being that
|r| and |t| is≤ 1 from energy conservation. r and t are complex and thus incorporate both
amplitude and phase. For the two polarizations σ and π we get the following relations.

U′σ = tσUσ, U′′σ = rσUσ. (24)

U′π = tπUπ, U′′π = rπUπ. (25)

Now we only need to find r and t. They can be obtained by the boundary conditions
provided by Maxwell’s equations in materials: the parallel electric component and the
transverse magnetic component must be continuous across the boundary regardless of
the polarization. This combined with Snell’s law gives the Fresnel equations below3.

rσ =
n1 cos θ1 − n2

√
1− (n1/n2)2 sin2 θ1

n1 cos θ1 + n2

√
1− (n1/n2)2 sin2 θ1

, tσ = 1 + rσ. (26)

rπ =
n1 sec θ1 − n2

(√
1− (n1/n2)2 sin2 θ1

)−1

n1 sec θ1 + n2

(√
1− (n1/n2)2 sin2 θ1

)−1 , tπ =
(1 + rπ) cos θ1√

1− (n1/n2)2 sin2 θ1

. (27)

For normal incidence (i.e. θ1 = 0) the Fresnel equations reduce to the following for both
polarizations:

r =
n1 − n2

n1 + n2
, t = 1 + r =

2n1

n1 + n2
. (28)

3For the full derivation, see pages 302-306 in Ref. [10]
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2.4 Scattering and transfer matrices 2 BACKGROUND

If n1 < n2 as in figure 2, the reflection is said to be external. In this case r is real and
negative. This means that the reflected wave experiences a phase shift of π, since eiπ =
−1. Also, θ1 > θ2 if θ1 6= 0. In the other case known as internal reflection there is no phase
shift and θ1 < θ2 if θ1 6= 0.

To get the intensity reflectance R representing the fraction of power in the incident wave
that is reflected, one simply takes the modulus squared of r: R = |r|2. Figure 3 illustrates
how r and R depends on the ratio n2/n1 for external and internal reflection when θ1 = 0.
As can be seen in figure 3b, the difference between the refractive indices should be as high
as possible if the amount of reflection is to be maximized.
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Figure 3: Fresnel reflection coefficients for both external and internal reflection as
function of n2/n1 at normal incidence. (a) Amplitude reflectance, r: note that it is
negative for external reflection due to the phase shift of π. (b) Power reflectance, |r|2.

2.4 Scattering and transfer matrices
Most dielectrics suitable for mirrors have a refractive index below ≈ 3 in the visible and
near-infrared range [11]. It is thus not sufficient with a single layer to obtain a high re-
flectance at normal incidence as is clearly demonstrated by figure 3. That is why multi-
layer dielectrics are used, as elaborated on in section 2.6. To theoretically describe pulse
propagation through multilayer configurations, an analysis framework which incorpo-
rates both Fresnel reflection at the boundaries as well as dispersive propagation is re-
quired. Each frequency component in the pulse must be modelled to have obtained the
correct phase and amplitude after reflection. Now, consider a single plane wave incident
on a layered dielectric. It will separate into transmitted and reflected parts at each bound-
ary, and those parts will continue to separate at other boundaries. The process results in a
large number of interfering waves and it becomes very complex to keep track of them all.
A pulse is a superposition of many different frequencies: modelling pulse propagation
by simply using the Fresnel equations every time one of the frequency components hits a
boundary is therefore even more complicated. Clearly, another approach is needed.

10



2.4 Scattering and transfer matrices 2 BACKGROUND

Due to the principle of superposition, all of the waves in a layer can be grouped together
into a resulting pair of waves: one travelling in the positive direction (U+) and one in the
negative (U−) as shown in figure 4. Thus we only get two terms for each layer (or four for
each boundary), and so the complexity of the problem is greatly reduced. If the complex
amplitude for each of the waves can be calculated at all points in the layer, we know how
an incident plane wave propagates through and is scattered by the multilayer structure.

Figure 4: An illustration of right and left-going waves in a dielectric. (a) Waves on
each side of a boundary between two different dielectrics of refractive indices n1 and
n2. (b) Waves on each side of a slab with refractive index n and width d.

This approach makes it possible to describe the wave propagation with a matrix formal-
ism. Consider one boundary in a multilayer structure, like the one in figure 4a. There are
two complex waves on each side of the boundary: both incident (U1+ , U2−) and outgoing
(U1− , U2+) ones as illustrated. Due to the linearity of the wave equation the outgoing
waves can be expressed in terms of the incident ones with a matrix S, defined as the scat-
tering matrix: (

U2+

U1−

)
= S

(
U1+

U2−

)
=

(
t12 r21
r12 t21

)(
U1+

U2−

)
. (29)

The coefficients in the scattering matrix are thus the transmission and reflection coeffi-
cients given by the Fresnel equations: t12 is transmission from layer 1 to layer 2 for U1+

and so on. An S-matrix can also describe propagation through a medium as in figure 4b.
Since the coefficients in S are complex they may incorporate the phase acquired during
this propagation. For a medium of refractive index n and thickness d, the accumulated
phase ϕ for a plane wave of vacuum wave number k is then ϕ = nkd. Therefore we get:(

U2+

U1−

)
=

(
e−iϕ 0

0 e−iϕ

)(
U1+

U2−

)
. (30)

The absence of reflection is thus clearly equivalent to the S-matrix being diagonal.

Another way of relating the wave amplitudes is to write the waves on the right side in
terms of the ones on the left side. This can be done using the transfer matrix T:(

U2+

U2−

)
= T

(
U1+

U1−

)
=

(
T11 T12
T21 T22

)(
U1+

U1−

)
. (31)
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The T-matrix coefficients are not as easily interpreted as the coefficients in the S-matrix.
The two different approaches both completely describe the optical properties of a system,
though, and relations between the coefficients of S and T may be derived since the two
formalisms are equivalent. Performing the matrix multiplications, eqs. (29) and (31) can
be written explicitly as

U2+ = t12U1+ + r21U2− , U1− = r12U1+ + t21U2− . (32)

U2+ = T11U1+ + T12U1− , U2− = T21U1+ + T22U1− . (33)

Solving for U2− in the second eq. (32) and inserting this expression in the first eq. (32),
one obtains

U2− =
1

t21
U1− −

r12

t21
U1+ , U2+ =

(
t12 −

r12r21

t21

)
U1+ +

r21

t21
U2− . (34)

By comparing these coefficients with those in eq. (33), it follows that

T =
1

t21

(
t12t21 − r12r21 r21
−r12 1

)
. (35)

With a similar approach, the converse relation can be obtained: the coefficients of the
S-matrix expressed in terms of those in the T-matrix. The result is

S =
1

T22

(
T11T22 − T12T21 T12

−T21 1

)
. (36)

To obtain the relations between transfer and scattering matrices describing propagation
like in figure 4b, one can use a procedure identical to the one explictly written above.
Figure 5 below illustrates the concepts of transfer and scattering matrices and how they
relate complex wave amplitudes on the two sides of any optical component.

Figure 5: How the two different matrix formulations relate complex wave amplitudes
U, where the white boxes represent the optical system described by the matrices. (a)
The transfer matrix connects waves on the left side with those on the right side. (b)
The scattering matrix connects incoming waves with outgoing.
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2.5 The transfer matrix method
To analyze a multilayer structure, one can set up a scattering matrix to characterize every
layer and boundary. The desired goal is of course to determine the transmission and
reflection coefficients for the entire structure. To do this, all of the individual scattering
matrices need to somehow be combined into a single one. Since a scattering matrix does
not explicitly relate the left and right hand sides, it is not possible to simply multiply the
individual matrices together to get the total matrix. It seems to be possible to combine
them with the so called Redheffer star product [12], but this procedure is complicated
and non-intuitive. On the other hand, multiple transfer matrices can be combined using
ordinary matrix multiplication. To demonstrate this, consider the case of a boundary with
vacuum to the left and a medium with refractive index n and thickness d on the right.
There are then three pairs of right and left-going waves, UL, UR and Ud to the left, right
and at distance d from the boundary respectively. The optical properties of the boundary
and material are then determined by the matrices T1 and T2 so that(

UR+

UR−

)
= T1

(
UL+

UL−

)
,

(
Ud+

Ud−

)
= T2

(
UR+

UR−

)
. (37)

By inserting the expression for UR from the first equation into the second, we obtain(
Ud+

Ud−

)
= T2T1

(
UL+

UL−

)
. (38)

Thus the matrix Ttot = T2T1 is a complete description of the composite optical system. It
is easy to generalize this result to apply for N transfer matrices. In that case we get(

UN+

UN−

)
= TNTN−1 · · · T2T1

(
U1+

U1−

)
. (39)

Putting everything together one can conclude that if d and n of every layer is known,
there is a completely general procedure to find the total Fresnel coefficients. Start by de-
termining the Fresnel coefficients for every boundary and the phase ϕ for the propagation
between the boundaries. This is equivalent to determining the S-matrices. Then use eq.
(35) to convert them into T-matrices in order to exploit the multiplicative property im-
plied in eq. (39). After having carried out the multiplication, use eq. (36) to convert the
resulting T-matrix to the S-matrix for the entire structure. The optical properties of the
multilayer are thereby obtained. The procedure outlined above is in this thesis referred to
as the transfer matrix method (TMM) and can be used to model propagation through any
kind of multilayer optics.

2.6 Dielectric mirrors
If a mirror is to reflect an ultrashort pulse well, its reflectance must of course be very high
over the entire bandwidth of the pulse. For a pulse with a FWHM of 10 fs in the time
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2.6 Dielectric mirrors 2 BACKGROUND

domain and carrier wavelength λ0 = 800 nm, the bandwidth FWHM is almost 200 nm.
In order for most of the pulse to be reflected, the region of high reflectance in frequency
space must thus be much wider than this. One can obtain a rather high reflectance across
such a bandwidth using a mirror in the form of a thin sheet of metal such as silver or
gold. This is the common type of mirror used in almost any type of optical setup. An-
other advantage with such metallic mirrors is that since there is no propagation through
a dispersive material, the pulse shape remains essentially the same after reflection. How-
ever, the reflectance is not high enough for many ultrashort pulse applications: it is hard
to achieve a power reflection coefficient larger than 99 % [13]. A pulse of short duration
means a very high peak intensity, and the small fraction of absorbed light may very well
be enough to significantly heat the thin metallic layer. The damage caused by this can
either change the optical properties of the mirror in an undesired way or even completely
destroy it. Other mirror designs must thus be considered for the short, high-intensity
pulses used in modern femtosecond Ti:sapphire laser systems.

2.6.1 The Bragg reflector

A reflectance much higher than 99 % can be obtained using a stack of dielectrics with lay-
ers of alternating refractive index. The low index layers l usually have nl ≈ 1.5 while the
high index layers h have nh ≈ 2.5− 3: common materials are silicon dioxide (SiO2) and
titanium dioxide (TiO2) respectively. At the value of nh/nl for these materials, the Fresnel
reflectance at each boundary is not very high as demonstrated in figure 3. The reflec-
tions at all boundaries will however add up with the result being that the total reflectance
grows quickly with the number of layers in the stack.

The layer thickness d is an important parameter since it determines how much phase a
propagating wave acquires. A dielectric mirror of the kind discussed above will not work
as well if the reflected waves are out of phase with each other and interfere destructively.
Maximum reflection will occur when the optical thickness nd is equal to a quarter of the
light wavelength. In this case all reflected waves will interfere constructively which can
be understood as follows. If the reflection occurs from a low-index medium the phase
shift is π. The light incident on this boundary has aquired a phase of π/2 from propaga-
tion before reflection, and acquires this same phase after reflection as well: it adds up to a
phase of 2π, exactly one wavelength. Light reflected from the previous and next bound-
ary is internally reflected and is thus not phase shifted in the reflection process. These
three reflected waves will then all have the desired phase difference of an integer number
of 2π and by extension this is true for all reflected waves. Such a mirror is called a Bragg
reflector since the condition for constructive interference is similar to the famous Bragg’s
law describing the scattering of X-rays off of a crystal lattice. The temporal effects such a
mirror has on an ultrashort pulse are extensively studied in this thesis.

2.6.2 More complex designs

A short pulse is very sensitive to the group delay variations induced by propagation
through even a short distance in a dispersive dielectric. It should however be possible to
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3 METHOD

modify the structure of a thin Bragg reflector slightly so that the reflected pulse exhibits
a certain GD variation profile. Therefore a dielectric mirror might be used to compensate
for GD variations in the incident pulse. The most basic way to do this is to vary the optical
thickness with the layer depth. Thereby the different spectral constituents in the pulse
are maximally reflected at different mirror depths, which clearly introduces a GDD. Such
mirror designs are usually referred to as chirped in analogy with the previously discussed
concept of frequency chirp. It is not trivial to determine just how the mirror shall be
chirped for a certain GD variation profile to be obtained: the problem is often solved
using numerical optimization instead of being deduced by principle.

2.6.3 Manufacturing techniques

Since the layers must be very thin (on the order of hundreds of nanometers for visible
light) for the Bragg condition to be satisfied it is not so easy to actually fabricate a dielec-
tric mirror. The thickness of only some thousand atoms per layer also makes the mirror
prone to deposition irregularities at the layer boundaries. Such manufacturing errors may
induce significant undesired effects like diffuse reflection, resulting in a spatial spread of
the pulse. It is therefore crucial to use a deposition method with very high precision. Var-
ious procedures are available: some commonly used ones are electron beam deposition,
ion-assisted deposition and ion beam sputtering [14]. Via such procedures, multilayer op-
tics can be produced whose reflection characteristics agree well with theoretical results.

3 Method
3.1 General description
The basic idea behind the analysis framework used in this thesis is to combine the TMM
with the FFT in the programming language MATLAB. In the version of the TMM de-
scribed in section 2.5 it is assumed that the input wave is monochromatic. This approach
can also be used to model a pulse since a pulse is a linear combination of plane waves.
However, every frequency component has to be sent through an individual TMM-routine
since the mirror materials are dispersive. The entire procedure from input pulse to re-
flected pulse is described below.

The complex electric field amplitude U0(t) of the input pulse is defined and discretized
in temporal space in MATLAB. It is then Fourier transformed using FFT into frequency
space so that U0(ω) is obtained. Frequency components that have an intensity |U0(ω)|2
larger than a certain value are then selected: these are the plane waves for which the TMM
shall be applied. This selection is done since components of very low amplitude barely
affects the shape of the pulse, and so these can be neglected. Now the refractive indices
n(ω) for the mirror materials must to be obtained. They are needed since they are crucial
for determining the reflection and propagation S-matrices: every frequency component
must acquire the correct reflection coefficients and propagation phase ϕ = nk0d. At this
stage the mirror structure must be decided upon: the amount of layers and the thickness
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d of every layer is chosen. The Fresnel equations are used to find the coefficients of all
boundary S-matrices. When they are determined, the TMM is applied for every selected
frequency by for-looping through all frequencies. The desired complex reflectance r12 =
r(ω) is obtained from the total T-matrix: r(ω) = −T21(ω)/T22(ω).

Now it is known how each complex wave constituting the selected input pulse is affected
by the reflection. This is equivalent to knowing how the pulse itself is affected. We get
the reflected pulse U(ω) in frequency domain by simple element-wise multiplication:
U(ω) = r(ω)U0(ω). The mirror thus acts as a frequency domain filter. To evaluate the
temporal properties of the reflected pulse the inverse FFT (IFFT) in MATLAB is used to
obtain U(t) from U(ω).

3.2 The input pulse
Let the pulse be incident from the left onto the mirror at z = 0 and assume that the
propagation occurs along the z-axis only. This means that the angle of incidence is zero
and that r12 is the relevant reflection coefficient. Only the temporal shape of the reflected
pulse at this same point is of interest. Thus it is not necessary to include the z-dependence
in the expression for the input pulse. As implied in section 2.1.2 the input pulse will be
assumed to be Gaussian, and will at z = 0 be on the form

U0(t) = e−
π
2 (

t
τ )

2
eiω0t, (40)

where ω0 corresponds to the central wavelength of 800 nm for a Ti:sapphire laser. Figure
6 shows the temporal and spectral intensities of the three transform limited input pulses
used in the simulations: pulses of top-hat durations τ = 5, 10 and 20 femtoseconds. It is
clear that a higher pulse duration means a narrower bandwidth and vice versa.
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Figure 6: The three input pulses in both the time and frequency domain. (a) Temporal
intensity |U0(t)|2. (b) Spectral intensity |U0(λ)|2. The non-Gaussian shapes are due
to that |U0(ω)|2 is Gaussian, and therefore intensity as function of λ is not.
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3.3 Refractive indices and mirror designs
As demonstrated by figure 6 the range of wavelengths selected to be filtered by the TMM
must be at least 600-1300 nm for the shortest pulse. Therefore the dispersion curves n(λ)
for SiO2 and TiO2 should reliably cover this range of wavelengths. Refractive indices as
function of wavelength were obtained as data files4 from Refs. [17] and [18] for SiO2 and
TiO2 respectively. To be certain to cover as much of the pulse as possible, data ranging
from 375 to 1370 nm was used for both materials. To match a value of n to every λ in
the chosen wavelength range, least square-fits to 10-degree polynomials5 were made to
the data points obtained from the .txt-files. Figure 7 shows the data points along with
the fitted curves for both materials. As can be seen, the curves accurately describe the
material dispersion across the chosen filtering wavelength range of 375-1370 nm.

For each mirror type, several different designs were modelled. First and foremost the
number of layer pairs of SiO2/TiO2 was varied, since it is the most obvious parameter
that should affect the features of the reflected pulse. It was also tested if it mattered
whether the outermost layer was TiO2 or SiO2. At all times it was assumed that there was
vacuum (with n(λ) = 1) outside the mirror. With the simple Bragg mirror 5, 10, 20 and 40
layer pairs were tested for each input pulse. The thickness of the layers are obtained from
the Bragg condition and is about 138 and 90 nm for SiO2 and TiO2-layers respectively.
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Figure 7: Refractive index data and fit for the two materials constituting the mirrors.
(a) Silicon dioxide (fused silica), SiO2. (b) Titanium dioxide, TiO2.

A linearly chirped mirror structure was also modelled for the three different pulses. Lin-
ear chirp means that the Bragg wavelength varies uniformly with the depth in the mirror.
This type of chirp was investigated for the same amount of layer pairs as for the Bragg
mirrors, since one can then directly compare the similarities and differences between the
two designs.

4These are in turn extrapolations of data from actual measurements in Refs. [15] and [16] respectively.
5This is the highest order supported by MATLABs ”basic fitting” and was deemed satisfactory as sup-

ported by the very good fits shown in figure 7.
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3.4 Evaluating the results
Several parameters are employed to describe the reflected pulse. Two of these measures
reflectance. They are the mirror reflectivity R(λ) = |r(λ)|2 which is plotted, and the
integrated power reflectance Rtot for the pulse given by

Rtot =

∫ ωmax
ωmin

I(ω)dω∫ ωmax
ωmin

I0(ω)dω
, (41)

where ωmin and ωmax are the frequencies delimiting the filtering range. Rtot is calculated
for the different designs, as is the ratio of temporal peak intensities Rmax = I(t)max/I0(t)max.

The value of Rmax indicates how much the pulse is smeared out in the time domain.
Several other parameters describe how the temporal shape of the pulse is affected by
the mirror. Among them is the accumulated phase ϕ(λ), which determines how much
the different frequencies in the pulse have been delayed. More specifically it determines
the GD and the GDD given by the first and second derivative of ϕ(ω) respectively. The
GD is plotted across the range of filtered wavelengths for some selected mirror designs.
Also plotted is the electric field E(t) = <[U(t)] for these designs which provides a direct
measure of what the pulse looks like in the time domain after reflection.

4 Results and discussion

4.1 The Bragg mirror
Reflection properties of the eight different Bragg mirrors and the three input pulses that
were modelled are summarized in tables 1 and 2 on the format [Rtot/Rmax]. In the mirror
types represented by table 1 both the substrate and outermost layer was SiO2 while it
was TiO2 for the mirror types in table 2. It is clear that the longer pulses are reflected

Table 1: Power reflectance coefficient Rtot / ratio of peak intensities Rmax for the dif-
ferent input pulses and mirror designs with SiO2 as substrate and outermost layer.

Pulse duration τ / fsNumber of
layer pairs 5 10 20

5 0.90244 / 0.70772 0.96230 / 0.94685 0.96697 / 0.96569
10 0.92948 / 0.70789 0.99870 / 0.97432 0.99980 / 0.99974
20 0.92963 / 0.70789 0.99899 / 0.97433 1.0000 / 0.99998
40 0.92968 / 0.70798 0.99899 / 0.97437 1.0000 / 0.99998

better than shorter ones regardless of the number of layers or mirror type used. Also, Rtot
and Rmax both increase rapidly with the layer number for τ = 10 and 20 fs but not as
rapidly for the shortest pulse. The rate of increase also decreases at high layer numbers:
the difference is generally larger going from 5 to 10 layer pairs than going from 20 to 40.
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Table 2: Power reflectance coefficient Rtot / ratio of peak intensities Rmax for the dif-
ferent input pulses and mirror designs with TiO2 as substrate and outermost layer.

Pulse duration τ / fsNumber of
layer pairs 5 10 20

5 0.92203 / 0.72741 0.98738 / 0.96752 0.99035 / 0.98964
10 0.92972 / 0.72741 0.99890 / 0.97339 0.99994 / 0.99988
20 0.92977 / 0.72741 0.99899 / 0.97339 1.0000 / 0.99995
40 0.92974 / 0.72732 0.99899 / 0.97335 1.0000 / 0.99995

This indicates that most of the reflected frequencies do not penetrate much past the 20th
layer pair. Having the high index material as substrate and outermost layer seems slightly
beneficial over the other configuration in nearly all cases: it is thus chosen to be the mirror
type of focus in the analysis that follows.

Apparently the 5 fs pulse is reflected much worse than the longer pulses for every mirror
configuration. This implies that a simple Bragg mirror is not very suitable for pulses of
such short duration: Rtot is rather low and Rmax even lower, indicating a smearing of the
pulse in the time domain. To identify the reason for this it is instructive to consider R(λ),
shown in figure 8 for the TiO2-substrate mirrors, and E(t) as well as GD(λ), shown in
figure 9 for the same mirror type with 20 layer pairs.

The mirror reflectance evidently increases with the number of layers inside a band of
wavelengths around the Bragg wavelength: this band is henceforth referred to as the
”stop band”. Even for only 5 layer pairs, most wavelengths of light between 750 and 850
nm are well reflected (R ≈ 0.99). For 10 layer pairs this has increased to a reflectance
of about 99.9 %, easily surpassing that of a good metallic mirror. The stop band is also
somewhat widened. Further increasing the number of layer pairs results in an extremely
high reflectance between 700 and 950 nm. The stop band does not seem to widen much
beyond this wavelength range, however. Outside the band the reflectance does not rise
further by increasing the number of layers: this only raises the number of peaks where
the reflectance is semi-high (0.2 ≤ R ≤ 0.9). Figure 8b is similar to figure 7.1-11 in Ref. [9]
where a structure with 10 layer pairs of refractive indices of 1.5/3.5 is used. This suggests
that the general features of the results shown in figure 8 are what one could expect from
any Bragg mirror. It is further supported by a striking resemblance of figure 8c with figure
3.5 a) in Ref. [19] where a 20 layer SiO2/TiO2 mirror structure is modelled.

Comparing figure 8 with the input pulses in figure 6, it is easy to understand why the
reflectance decreases with pulse duration. The 20 fs pulse has a bandwidth clearly within
the stop band and is consequently very well reflected. For the 10 fs pulse the situation
is somewhat worse with a bandwidth slightly larger than that of the stop band, which
explains the smaller values of Rtot in tables 1 and 2. The bandwidth of the 5 fs pulse is
wider than the stop band by a substantial amount and so a lot of frequency components
in the pulse are not very well reflected. This is true regardless of the number of layers.
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Figure 8: (a)-(d) shows power reflectance as function of wavelength for Bragg mirrors
with TiO2 as substrate and outer layer. Note the ”stop band” centered around 800 nm.

The effect of an input pulse bandwidth exceeding the stop band also manifests itself in the
time domain. Inside the stop band the GD is essentially constant at about 2-3 fs as shown
in figure 9d. Therefore a pulse with most frequency components between 700 and 950 nm
is simply delayed by this amount and is barely broadened nor chirped in any way. This
is the case for the 20 fs pulse in figure 9a. A GD of a couple of femtoseconds means that
the accumulated phase is on the order of 10 radians, equivalent to a penetration depth
of only a few layers. Outside the stop band the situation is different. Here the GD is
much higher in average and shows strong, irregular oscillations with wavelength. This
implies the presence of high-order dispersion. The inevitable consequence for a pulse
with a bandwidth broad enough to lose a part of its frequency content is thus an uneven
smearing and delay in the time domain. This is visible in figure 9b and even more clearly
seen in figure 9c for the 5 fs-pulse. The problem can be somewhat reduced by decreasing
the number of layers, but that simultaneously lowers the reflectance.

The conclusion is thus that ordinary Bragg mirrors are unsuitable for reflecting sub-10 fs
pulses for two reasons. Firstly, the pulse bandwidth exceeds the width of the stop band,
limiting the reflectance and so defeats the purpose of using a dielectric mirror. Secondly,
the strongly varying GD outside the stop band along with the missing frequencies tem-
porally distorts and widens the pulse. These undesired effects worsen with decreasing τ.
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Figure 9: (a)-(c) shows the real electric field in the time domain for incident pulses of
duration 20, 10 and 5 fs respectively. This is for a TiO2-substrate mirror with 20 layer
pairs. (d) shows how the GD varies with wavelength for the same mirror.

4.2 The linearly chirped mirror
Introducing a chirped mirror is primarily for the purpose of increasing the width of the
stop band and to induce a controlled GDD in the pulse. A TiO2-substrate mirror was se-
lected to be the basis for this design since such mirrors performed best as simple Bragg
reflectors studied in the previous section. Table 3 shows the reflectance parameters for
such a mirror of linear chirp that has an increasing Bragg wavelength with mirror depth.
Longer wavelengths are then maximally reflected deeper in the mirror, which should pro-
duce a negatively chirped pulse due to the anomalous dispersion. The table data is shown
on the same format used in table 1 and 2. Each column contains results for a given range
of the mirror chirp. Four different ranges were investigated because the chosen range
would probably have a large impact on the mirror performance. For example, the left-
most column displays results where the outermost layer pair is optimized for reflection
of 700 nm light, while the innermost pair is optimized for 1000 nm. The 5 fs input pulse
was always used.
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Table 3: Power reflectance coefficient Rtot / ratio of peak intensities Rmax for the dif-
ferent input pulses and chirped mirrors with TiO2 as substrate and outermost layer.

Wavelength range spanned by layer chirp / nmNumber of
layer pairs 700 - 1000 550 - 1100 650 - 1250 600 - 1200

5 0.91281 / 0.70113 0.83760 / 0.39587 0.83455 / 0.65979 0.83923 / 0.56224
10 0.98016 / 0.66358 0.96438 / 0.31048 0.96147 / 0.58438 0.96439 / 0.39249
20 0.99432 / 0.63462 0.99868 / 0.23744 0.99632 / 0.50899 0.99841 /0.32793
40 0.99725 / 0.61959 0.99981 / 0.19447 0.99963/ 0.47514 0.99995 / 0.30993

It is immediately apparent that Rtot is greatly improved upon from the simple Bragg mir-
ror, regardless of the wavelength range targeted by the chirp. There are some differences,
however. For a small amount of layers it appears to be most efficient to concentrate on the
central pulse wavelengths. This changes rapidly so that for 20 layer pairs it seems favor-
able to focus on the shorter wavelengths. For 40 pairs the design based on encompassing
the entire pulse bandwidth is by far the best in terms of Rtot.

All designs appear to smear the pulse badly in the time domain since Rmax � 1 in all
cases. Targeting short wavelengths maximally smears the pulse, while chirping only for
central wavelengths maintains the initial Imax fairly well. It must be stressed that a low
Rmax is not necessarily bad for a chirped mirror, though. Dispersion of some kind is
expected, and an initially transform limited pulse affected by dispersion will inevitably
widen temporally. What is important is rather that the GD varies consistently across the
pulse bandwidth, so that only certain orders of dispersion are introduced in the pulse. It
is namely much easier to compensate for dispersion if it is relatively uncomplicated.

In figure 10 the temporal effects of the design with 20 layer pairs and chirp range of
550-1100 nm are illustrated (a) together with the reflectance (b) and GD characteristics
(c). As suggested by table 3, the stop band is very wide indeed. Emax (and thereby Imax)
is low for the reflected pulse compared to the incident, and the pulse is widened by a
great amount by the mirror. There is some negative chirp, but the irregular pulse shape
implies many different higher orders of dispersion as well. Consequently, the difficulty
of making the pulse transform limited again by dispersion compensation is immensely
high. Designing an optical component with the complicated ϕ(λ)-characteristics required
would be a nearly hopeless task.

The periodic oscillations in the GD as shown in figure 10c explain the irregular pulse
shape in the time domain. Very similar oscillations are seen in figure 3.7 in Ref. [19]
where a linearly chirped mirror is modelled. The cause of the oscillations appear to be
interference between reflections in shallow and deep parts of the mirror, like in a so-called
Gires-Tournois interferometer (GTI). The oscillations were first observed in 1985 [20] and
not studied in detail as GTI-like effects until in 1999 [19]. To conclude: the naive expecta-
tion of a GD varying linearly with the wavelength is wrong and the simple chirped mirror
would be useless inside a Ti:sapphire laser cavity or in an external pulse-shaping setup.
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Figure 10: Characteristics of a linearly chirped mirror with 20 layer pairs targeting
550 - 1100 nm. (a) Pulse shapes in the time domain for a 5 fs pulse. (b) Power
reflectance: note the very wide stop band. (c) Group delay: note the oscillations.

For completeness it must be said that the other mirror designs represented in table 3 result
in plots very similar to those in figure 10. Especially noteworthy is that the main features
of the GD oscillations are always the same, even though the position of the peaks and
troughs varies between designs. This of course results in a somewhat different temporal
pulse shape for every design. The general trend of the GD is however the desired linear
increase with wavelength, which manifests itself as an overall slightly negative frequency
chirp in E(t).

If the mirror chirp could be somewhat modified, it would perhaps be possible to eliminate
most of the oscillations so that only the linear trend remains. It is nevertheless not obvious
at all at this stage how the design should deviate from the linear case presented here.
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4.3 Accuracy of the simulations
What matters in the end is of course that actual fabricated dielectric mirrors exhibit the
desired reflection properties demonstrated in section 4.1 and 4.2. The easiest way to in-
vestigate the accuracy of the TMM-based model in this thesis would of course be to man-
ufacture one of the simulated designs using one of the techniques mentioned in section
2.6.3. Unfortunately this was beyond the scope of the thesis work. Models similar to this
one are used by many research groups to simulate multilayers, though, and very often
the obtained results seem to be in good agreement with experimental realizations. This is
shown for example by figure 4 in Ref. [21]. Using a model which incorporates the bulk
parameter that is the refractive index therefore appears to work well even if each mirror
layer is only a couple of hundred atoms thick. It must be noted that the agreement with
fabricated mirrors depend a lot on the manufacturing process. The refractive index can
vary greatly with for example the pressure and temperature used.

The precision of the specific numerical model used here remains to be assessed. One of
its advantages is that it takes into account the frequency dependence of n, thereby mod-
elling the reflectivity and phase for every single frequency component more accurately
compared to models which do not. Especially TiO2 exhibits significant dispersion within
the relevant wavelength range of 375-1370 nm, and so the benefit of using a unique n for
every wavelength in the pulse is likely to be substantial. The advantage is strengthened
further by the very detailed knowledge of the refractive indices across these wavelengths
as is demonstrated in figure 7.

Applying r obtained by the TMM only for wavelengths between 375 and 1370 nm is likely
to have a negative effect on the end results. Even the 20 fs pulse does after all contain spec-
tral components outside this range. The amplitudes of these components are, however,
very insignificant. At 375 nm the 5 fs pulse has a spectral intensity I0 below a billionth
of Imax = I0(λ0) where λ0 = 800 nm. At the other end of the spectrum at 1370 nm the
situation is somewhat worse: I0 for the 5 fs pulse is 1/2000 of Imax, while the 10 and 20
fs pulses have values of I0 below a billionth of Imax. The results for the 5 fs pulse are
probably not notably affected by this though: Imax/2000 is still very insignificant. The
wavelength range used is thus concluded to be wide enough to provide a very high ac-
curacy for all pulses modelled here. If considering even shorter pulses than in this thesis,
it would however be desirable to have access to refractive index data beyond 1370 nm.

When transforming back and forth between the time and frequency domain as done in
this model it is important to have both a high temporal and spectral resolution. This is
achieved by having a high sampling rate (or equivalently, a short sampling interval) and
a time vector much longer than the pulses themselves. In the MATLAB-code used in the
simulations a total of two million samples were used, spanning from -5000 to +5000 fs
resulting in a sampling interval of 5 as. Since GD(λ) never goes higher than about 150 fs
for any of the mirror designs, there should be virtually no observable aliasing effects in the
time domain. This means that there is no noticeable ”false signal” due to the periodicity
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of the time vector. If the time vector would have been shorter than 150 fs, frequencies
delayed by more than this amount would instead have appeared as such false signals in
the other end of the time vector.

The conclusion is that the TMM-based method used in this thesis produces accurate re-
sults. Optical characteristics exhibited by one of the studied mirror designs manufactured
with a high-precision technique should thus agree well with the simulations. The method
is also very efficient: it takes only between ten and thirty seconds to run a simulation.

5 Summary and outlook
In this thesis, we have shown that if a Ti:sapphire laser is to be used for generation of 20
fs pulses or longer, ordinary Bragg mirrors can be used in the setup since they provide
the necessary bandwidth with very high reflectance and an approximately constant GD.
Bragg reflectors can for the same reasons also replace conventional mirrors outside the
laser itself to guide the pulse along a desired beam path, with hardly any pulse energy
loss or induced group delay variations. For shorter pulse durations a Bragg mirror fails
to fulfill these two criteria as has been discussed in section 4.1.

Also shown in the thesis is that the linearly chirped mirror is a double-edged sword. It
does exhibit an outstandingly wide stop band resulting in excellent reflectance for even
a 5 fs pulse, but its unsatisfactory dispersion profile renders it useless. However, as im-
plied in section 4.2 the tendency of the GD to increase linearly with wavelength is of key
interest. A refinement of the linear chirp design might display only the linear variation,
inducing a negative chirp in the reflected pulse. The normal dispersion exhibited by the
Ti:sapphire crystal can then be compensated for, if the dispersion provided by the mirror
is of the same magnitude as that of the crystal. The standard approach is to use a pair of
prisms for dispersion compensation in a Ti:sapphire laser [8]. Since it imposes a negative
GDD, a chirped mirror could replace the prism pair as the down-chirping optical com-
ponent in the laser. Such mirrors have been devised via computer optimization, using a
linearly chirped mirror like the one studied in section 4.2 as a starting design [22]. Replac-
ing the prism pair would be greatly desired since the prisms exhibit substantial amounts
of unwanted higher order dispersion which will notably affect very short pulses6. A cor-
rectly designed mirror, however, does not.

The solution to the GD oscillation problem is to have an anti-reflection coating on top of
the mirror structure together with a slight additional chirp in layer thickness, affecting
how strongly a wave incident on a given layer interferes with the wave reflected off of
that layer. This is called a double-chirped mirror. How such a mirror has to be chirped to
achieve a certain desired GD(λ)-curve can been derived analytically [23]: the important
result is often called the chirp law. This law is not exact: mirror designs based on the

6See figure 3.3 in Ref. [19]
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chirp law still have to be fine-tuned using numerical optimization. GD(λ) for a given
starting design determined by the chirp law does not, however, deviate very much from
the desired dispersion characteristics.

The analytical description of chirped mirrors has resulted in rapid progress: double-
chirped mirrors with dispersion curves based on the chirp law are now commercially
available and used in many femtosecond laser systems. New areas of applications for
such dielectric mirrors have also started to appear as a result of recent advances in at-
tosecond science. The pulses generated in the HHG process are often chirped and con-
sequently not as short as a transform limited pulse of the same frequency content. A
chirped mirror with the opposite GDD of the pulse itself could thus be used to bring the
frequency components together in time, shortening the pulse durations. This has been
done theoretically as reported in a recent paper [24]. These promising results indicate
that the already short pulses could potentially be compressed down to durations of only
tens of attoseconds.

It was stated in section 2.5 that methods based on the transfer matrix method could ”be
used to model propagation through any kind of multilayer optics”. The results obtained
for the mirror designs in section 4 support this claim, and this is further validated for
instance by ref. [25], where a multilayer mirror reflecting an attosecond pulse is modelled
employing a transfer matrix approach combined with FFT. This clearly demonstrates the
applicability and generality of the main analysis framework used in this thesis, which
thus should provide a basis for further studies in the field of ultrafast optics.
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[2] U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen,
V. Scheuer, G. Angelow, and T. Tschudi. Sub-two-cycle pulses from a Kerr-lens mode-
locked Ti:sapphire laser. Optics letters, 24(6):411–413, 1999. doi:10.1364/OL.24.

000920.

[3] Ahmed H. Zewail. Femtochemistry. Past, present, and future. Pure and Applied Chem-
istry, 72(12):2219–2231, 2000. doi:10.1351/pac200072122219.

[4] Anne L’Huillier, M. Lewenstein, P. Salières, Ph. Balcou, M. Yu Ivanov, J. Larsson,
and C. G. Wahlström. High-order Harmonic-generation cutoff. Physical Review A,
48(5):69–72, 1993. doi:10.1103/PhysRevA.48.R3433.

[5] C. G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, Ph.
Balcou, and Anne L’Huillier. High-order harmonic generation in rare gases with an
intense short-pulse laser. Physical Review A, 48(6):4709–4720, 1993. doi:10.1103/

PhysRevA.48.4709.

[6] P. Johnsson. Attosecond Optical and Electronic Wave Packets. PhD thesis, Lund Univer-
sity, 2006.

[7] Pierre Agostini and Louis F. DiMauro. The physics of attosecond light pulses. Reports
on Progress in Physics, 67(8):1563–1563, 2004. doi:10.1088/0034-4885/67/8/C01.

[8] J. Zhou, G. Taft, C. P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov.
Pulse evolution in a broad-bandwidth Ti:sapphire laser. Optics letters, 19(15):1149–
1151, 1994. doi:10.1364/OL.19.001149.

[9] B.E.A. Saleh and M.C. Teich. Fundamentals of Photonics. John Wiley & Sons, Inc., 2nd
edition, 2007.

[10] John David Jackson. Classical Electrodynamics. John Wiley & Sons, Inc., 3rd edition,
1999.

[11] M. N. Polyanskiy. Refractive Index database. Visited 2015-03-05. URL: http://
refractiveindex.info.

[12] R. Redheffer. Difference equations and functional equations in transmission-line the-
ory. In Modern Mathematics for the Engineer, chapter 12. McGraw-Hill, New York,
1961.

[13] R. Paschotta. Metal-coated mirrors, Encyclopedia of Laser Physics and Technology. Vis-
ited 2015-04-06. URL: http://www.rp-photonics.com/metal_coated_mirrors.htm.

http://dx.doi.org/10.1063/1.1655222
http://dx.doi.org/10.1364/OL.24.000920
http://dx.doi.org/10.1364/OL.24.000920
http://dx.doi.org/10.1351/pac200072122219
http://dx.doi.org/10.1103/PhysRevA.48.R3433
http://dx.doi.org/10.1103/PhysRevA.48.4709
http://dx.doi.org/10.1103/PhysRevA.48.4709
http://dx.doi.org/10.1088/0034-4885/67/8/C01
http://dx.doi.org/10.1364/OL.19.001149
http://refractiveindex.info
http://refractiveindex.info
http://www.rp-photonics.com/metal_coated_mirrors.htm


[14] R. Paschotta. Dielectric Coatings, Encyclopedia of Laser Physics and Technology. Vis-
ited 2015-04-06. URL: http://www.rp-photonics.com/encyclopedia_cite.html?
article=dielectriccoatings.

[15] I. H. Malitson. Interspecimen Comparison of the Refractive Index of Fused Silica.
Journal of the Optical Society of America, 55(10):1205, 1965. doi:10.1364/JOSA.55.

001205.

[16] J. R. Devore. Refractive Indices of Rutile and Sphalerite. Journal of the Optical Society
of America, 41(6):416, 1951. doi:10.1364/JOSA.41.000416.

[17] Refractive Index of SiO2, Filmetrics, Inc. Visited 2015-03-12.
URL: http://www.filmetrics.com/refractive-index-database/SiO2/

Fused-Silica-Silica-Silicon-Dioxide-Thermal-Oxide-ThermalOxide.

[18] Refractive Index of TiO2, Filmetrics, Inc. Visited 2015-03-12. URL:
http://www.filmetrics.com/refractive-index-database/TiO2+-+Amorphous/

Titanium-Dioxide.

[19] Nicolai Matuschek. Theory and Design of Double-Chirped Mirrors. PhD thesis, Swiss
Federal Institute of Technology Zürich, 1999.
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