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Abstract: The sediment composition of drumlins in the Åsnen area in Småland, south Sweden is poorly studied. 

Excavations are being planned with intention to study the internal architecture and composition of these drumlins. 

As a preliminary investigation this thesis was done to determine the sediment depths in the tail of a drumlin at 

Rörvik gård, situated on Vemboö in Lake Åsnen. To determine the sediment depths three geophysical methods 

were carried out on the drumlin: (i) resistivity (cves), (ii) electromagnetic slingram and (iii) induced polarization 

effect measurements. Using the data acquired from these measurements, models presenting maximum and mini-

mum potential depths to the bedrock were interpreted. The results indicate that the drumlin has varying sediment 

depths and undulating bedrock with the sediment on top being independent from the form of the bedrock. Sediment 

depths of 2m to 8m were found in the drumlin according to the minimum interpretation, and depths of 2-15+ m 

according to the maximum interpretation. Due to equivalence problems that come with the three selected geophysi-

cal methods, it is suggested that drilling samples are suited to solve the problem, providing much more accurate 

interpretations. It is also suggested that the geophysical method seismic refraction studies could potentially be an-

other choice of method to be used in similar studies. 
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i geologi vid Lunds universitet, Nr. 444, 32 sid. 15 hp.  

Nyckelord: Geofysik, drumlin, resistivitet, inducerad polarisation, elektromagnetisk profilering, stångslingram 

Handledare: Per Möller, Hans Jeppsson 

Ämnesinriktning: Kvartärgeologi (Geofysik) 

Besnik Asani, Geologiska institutionen, Lunds universitet, Sölvegatan 12, 223 62 Lund, Sverige. E-post: boss-

nik@null.net  

Sammanfattning: Sedimentkompositionen av drumliner i Åsnenområdet i Småland, södra Sverige är något som är 

dåligt studerat. Schaktning har planerats med målet att studera den interna arkitekturen och kompositionen av dessa 

drumliner. Som en preliminär studie har detta examensarbete utförts för att bestämma jorddjup i svansen av en 

drumlin i Rörvik gård, belägen i Vemboö i sjön Åsnen. För att bestämma jorddjupet användes tre olika geofysiska 

mätmetoder på drumlinen: (i) resistivitetsmätning (cves), (ii) elektromagnetisk profilering med stångslingram och 

(iii) inducerad polarisation mätning. Den samlade data från dessa mätningar användes för att tolka fram modeller 

vilka visar maximal och minimal potentiellt djup till berggrunden. Resultaten indikerar att drumlinen har varierande 

jorddjup och en undulerande berggrund där formen på jordarterna ovanpå är oberoende av formen av berggrunden. 

Jorddjup på 2m till 8m finns i drumlinen enligt den minimala tolkingen, och djup på 2m till 15+ m enligt den maxi-

mala tolkingen. På grund av ekvivalensproblem vid tolkning av data från de tre valda geofysiska metoderna föreslås 

att borrprov används för att lösa problemet och ge mer noggranna tolkningar. Det föreslås även att den geofysiska 

metoden refraktions seismisk vara användbar för liknande studier.  
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1 Introduction 
1.1 Background  
Drumlins, forming large tracts of streamlined terrain 

has since long been described from central parts of 

Småland (see review in, e.g., Möller (1989)). These 

come in two types (Möller & Dowling, accepted): as 

(i) rock-cored drumlins and (ii) as sediment-cored 

drumlins or larger patches of sorted sediment with a 

streamlined top surface with a till carapace (Möller 

and Murray, accepted). Rock-cored drumlins are total-

ly predominating within and around Lake Åsnen, hav-

ing an oval plan form with a blunt stoss end and a ta-

pering off tail in the former ice-flow direction, and 

with mean height/width of 6.3 and 320 meters, respec-

tively (Möller & Dowling, accepted). LiDAR-derived 

hill shade terrain models suggest that bedrock cores 

are exclusively located in the stoss end of the drum-

lins. The frequency of (exposed) bedrock cores in 

mapped drumlins is presently investigated by Zaman 

(2015) for two field-check areas in the Lake Åsnen 

district  The internal architecture, sediment composi-

tion and relation to bedrock in a wider context of these 

drumlinoid landforms around Lake Åsnen have not yet 

been studied. However, there are plans to excavate and 

study the internals of drumlins around Lake Åsnen and 

this thesis is a preliminary investigation in such a con-

text of future possible excavations. This investigation 

is a geophysical study of one bedrock-cored drumlin at 

Rörvik gård, situated on Vemboö in Lake Åsnen (Fig. 

1).  

 

 

1.2 Aim of the study 
By measuring the resistivity, induced polarization and 

apparent conductivity on the drumlin, a model of the 

internal architecture, showing bedrock and sediment 

will be made. The model will suggest sediment depths 

to the bedrock. 

  
1.3 Geological background  
According to the Swedish Geological Survey (SGU) 

map in Wik et al. (2009), two types of bedrock have 

been interpolated through the drumlin at Rörvik gård, 

one being felsic plutonic rock, and the other felsic ex-

trusive rock (Fig. 2). It was also mapped in 

SGU’s   maps on Quaternary deposits that the drumlin 

merely consists of an undifferentiated till. Sedimento-

logical studies carried out at Horgeboda, which is ap-

proximately 10 km southwest of the study location, in 

transverse to ice-flow moraine ridges (Åsnen-type 

ribbed moraine; Möller (2010)) show that these consist 

of silty-sandy, gravelly-sandy and sandy gravelly dia-

micts with high lithology percentage in the clasts from 

the local bedrock. These results could potentially indi-

cate similar till in the drumlin at Rörvik gård. 

1.4 Methods 
Three geophysical methods were used. (i) Resistivity 

and (ii) induced polarization (IP) measurements with 

the use of the instrument ABEM Terrameter LS, and 

(iii) measurement of electromagnetic waves’ real and 

imaginary parts with the use of the instrument Ge-

Fig. 1. A map of southern Sweden and a zoomed map 

showing the study location marked in black. Map of Sweden 

from Wikipedia and map of study location from Lantmäte-

riet.  

Fig. 2. SGU bedrock map 1:1 million showing the felsic 

extrusive rock as yellow and felsic plutonic rock as pink. 

The study area is inside the black polygon.  
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ophex GEM-2 Ski. The resistivity and IP data were 

topographically adjusted in Microsoft Excel with GPS 

data gathered with the use of TOPCON GPS GR-5 and 

FC336 and then inverted with the use of the software 

RES2DINV. The topography-adjusted data was later 

plotted in the software Erigraph. The electromagnetic 

data was recalculated into apparent conductivity in the 

software EMInvertor and then adjusted in Microsoft 

Excel to be plotted in a map with use of the software 

Surfer 12. Adobe Illustrator and Photoshop were used 

to make the geological models. 

2  Geophysical methods 
 
2.1  Resistivity measurement (CVES) 

theory 
2.1.1 Electrical resistivity  

Ohm’s law states that the potential difference (V) in a 

conducting object is equal to the electrical current (I) 

multiplied with the resistance of the conductor (R) 

(Lowrie, 2007). 

V = IR 

In one dimensional conducting objects, resistance is 

equal to the material property resistivity (ρ) multiplied 

with the geometrical factor, which is the length of the 

object (L) divided by the cross-sectional area (A) 

(Lowrie, 2007; Jeppsson & Dahlin, 2015a). Resistivity 

is the ”ability to oppose a flow of charge” and is meas-

ured in Ohm-meter (Ωm) (Lowrie, 2007; Jeppsson & 

Dahlin, 2015a). 

 
In the formula of resistance, resistance could be rewrit-

ten into V/I, and then in another step be rearranged.  

→  

V/L is “the force that the electric field exerts on a 

charge” (E), and I/A the current density (J) (Jeppsson 

& Dahlin, 2015a). By rearranging the units in the for-

mula, it can be concluded that resistivity is equal to the 

electric field (E) divided by the current density (J). 

 
During resistivity measurements two electrodes con-

duct an adjusted flow of electrical current into the 

ground. The adjustment is handled by the terrameter 

through controlling the potential difference between 

the two electrodes (Jeppsson & Dahlin, 2015a). The 

conduction of electricity into the ground causes a three 

dimensional electric potential field (Jeppsson & 

Dahlin, 2015a). Two other electrodes measure the po-

tential difference in two points (Fig. 3). By knowing 

the electrical current and potential difference the re-

sistance can be calculated. Since the conducting object 

is a three dimensional object and not a metal wire, the 

geometrical factor (G) is not L/A (Jeppsson & Dahlin, 

2015a).  

 
The formula to calculate the resistivity with a three 

dimensional geometrical factor is presented in Jepps-

son & Dahlin (2015a). The formula results in: 

, where 

rA and RA are the distances from the two potential dif-

ference electrodes to the positive current electrode, and 

rB and RB the distances to the negative current elec-

trode. 

2.1.2 Investigation depth  

The practical depth penetration of electricity being 

conducted in the ground is defined by the depth that 50 

% of the current reaches (Jeppsson & Dahlin, 2015a).  

According to Jeppson & Dahlin (2015a) the investiga-

tion depth is dependent on three factors:                           

• distance between the current electrodes,                                                                                                

• the electrode configurations, and,                                            

• the geological units’ properties.                                                                                                      

The investigation depth increases with distance be-

tween the current electrodes, and is estimated to reach 

approximately a depth equal to a third of the distance 

between the midpoint and the furthest current elec-

trode (Jeppsson & Dahlin, 2015a). There are different 

electrode configurations, with each having its strengths 

and weaknesses. The electrical current concentrates in 

conductive geological units and can decrease the in-

vestigation depth if the underlying geological unit has 

high resistivity (Jeppsson & Dahlin, 2015a).  

2.1.3 Apparent resistivity 

When conducting resistivity measurements, it is as-

sumed that the ground is homogenous which,  is not 

the case in most environments (Jeppsson & Dahlin, 

2015a). The terrameter measures a mean resistivity 

from more than one geological unit and the measure-

ment is affected by surrounding heterogeneities, pro-

ducing data that come out as the “apparent resistivi-

ty” (Jeppsson & Dahlin, 2015a; Lowrie, 2007). Appar-

ent resistivity is implausible for geological interpreta-
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tion; it is therefore processed through an inversion 

process in computer programs (Jeppsson & Dahlin, 

2015a; Lowrie, 2007). The inversed data is usable for 

geological interpretation (Jeppsson & Dahlin, 2015a). 

2.1.4 Inversion 

A pseudo section is the result of a resistivity measure-

ment (Fig. 4) and is not plausible data to be used for 

geological interpretation since it presents the apparent 

resistivity. To attribute real resistivity to different parts 

and geological units of the resistivity section, an inver-

sion has to be carried out which creates an inverted 

section (Fig. 5). This is done by assuming a starting 

model, and calculating what pseudo section the model 

would result in and then compare it with the measured 

pseudo section and successively adjust the model until 

there is a minimal difference of around 2 % (Reynolds, 

1997; Jeppsson & Dahlin, 2015a; Barker, 1992; 

Zohdy, 1989).  

2.1.5 Resolution 

The ability to distinguish between geological units in a 

resistivity section is dependent on four factors accord-

ing to Jeppsson & Dahlin (2015a):                                                                                                                                                              

• electrode configuration,                                                                                                                           

• geometry and size of geological units,                                                                                            

• resistivity contrast between geological units, and,                                                                                         

• distance between electrodes.                                                                                                                      

The different electrode configurations have their 

strengths and weaknesses regarding vertical and hori-

zontal resolution. Small geological units at greater 

depths will have low resolution and might not be dis-

tinguished from its surroundings (Jeppsson & Dahlin, 

2015a). Higher resistivity contrasts increase the resolu-

tion. Larger distance between the electrodes means 

Fig. 3. The basics of resistivity measurements. A and B are current electrodes. C and D are potential difference electrodes. M is 

the point of measurement. Dashed lines indicate current flow and blue lines electric field potential. The figure is based on work 

Fig. 4. A resistivity pseudo section showing different apparent resistivity values with pseudo depths. 

Fig. 5.  The result of inversion of Fig. 4. Inverted resistivity section showing resistivity values with real depths.  
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larger depth of penetration but less resolution 

(Jeppsson & Dahlin, 2015a). The effects of lower reso-

lution can be seen in Fig. 6. 

2.1.6 Resistivity of geological material 

Electric current can be conducted through sediment 

and rock in three different ways according to Lowrie 

(2007), Reynolds (1997) and Jeppsson & Dahlin 

(2015):                                                                            

• ohmic conduction,                                                                                                                               

• dielectric conduction, and,                                                                                                                                

• electrolytic conduction.                                                  

Ohmic conduction is found in metals where the elec-

trons drift freely and collide with the atoms                             

causing them to scatter randomly (Lowrie, 2007). 

When an electrical field has been applied, the free 

electrons are transported in the direction of the field 

(Lowrie, 2007). The resistivity is dependent on the 

frequency of collisions, where high frequencies of 

collisions result in high resistivity (Lowrie, 2007). 

Dielectric conduction is the form of conduction in in-

sulators such as most rock (Lowrie, 2007; Reynolds, 

1997). The electrons are not free, but bound to the 

atoms’ nuclei (Lowrie, 2007).  When an electrical cur-

rent is conducted through such a material, the electrons 

are slightly shifted in regard to the protons (Lowrie, 

2007; Reynolds, 1997). Electrolytic conduction is the 

form of conduction found in aqueous solutions and 

occurs by slow movement of the ions (Lowrie, 2007; 

Reynolds 1997).                                                               

 Dielectric conduction is the primary form of con-

duction in geological material, and depends on the 

Fig. 6.  A) Two geological units with different resistivity 

values at a smaller depth, resulting in a clear boundary in the 

resistivity section. B) The same two geological units but the 

boundary at a greater depth, resulting in a gradational bound-

ary in the resistivity section. The figure is based on work by 

 Table 1. Resistivity intervals of geological material, based 

porosity, amount and type fluid in the different geolog-

ical units (Jeppsson & Dahlin, 2015a). The presence of 

groundwater in resistivity sections can cause a noticea-

ble resistivity contrast between the sediment above and 

beneath the groundwater level (Jeppsson &, Dahlin 

2015a). The surfaces of clay minerals are negatively 

charged and cause positively charged ions to bind to 

their surfaces (Jeppsson & Dahlin, 2015a). This gives 

rise to diffuse double layer and shows a significant 

decrease in resistivity in material consisting of clay 

minerals (Jeppsson & Dahlin, 2015a).Weathered rock 

with clay minerals will have a resistivity contrast to its 

surrounding fresh rock (Jeppsson & Dahlin, 2015a). 

 Different geological material show different resis-

tivity intervals and can be used for interpretation 

(Table 1). Some resistivity intervals do overlap with 

each other, making a geological interpretation unrelia-

ble unless compared to other data such as drilling sam-

ples and other geophysical methods, etc.                                     

2.1.7 Configurations and multi-electrode resis-
tivity 

There are several ways the two sets of current and po-

tential difference electrodes can be setup, such as the 

wenner, schlumberger and dipole-dipole set-ups. In 

this study the gradient configuration was used, which 

is an asymmetrical variant of the schlumberger config-

uration (Fig. 7).  It is the most suitable configuration 

Geological material Resistivity interval     

(Ωm) 

Clay 1-100 

Dry sand 800-5000 

Wet sand 100-500 

Clay-rich till 20-200 

Clay-poor till 300-3000 

Bedrock 2000-50000 

Weathered bedrock 200-4000 

 Fig. 7. The gradient configuration. A and B are current elec-

trodes, with different distances to the point of measurement 

M. C and D are the potential difference electrodes and both 

have the same distance to the measuring point. Based on 
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for multi-electrode measurements as it allows most 

measurements to be carried out simultaneously 

(Jeppsson & Dahlin, 2015a; Lowrie, 2007).                     

 The most common type of resistivity setup is the 

multi-electrode setup, which was used in this study. 

Instead of using only 4 electrodes and systematically 

moving them in a profile, up to 81 electrodes are 

placed and connected with the terrameter through a 

cable system. This makes the process automated and 

several measurements are carried out simultaneously 

with different distances between the electrodes to the 

measuring points (Fig. 8). This results in many meas-

uring points with varying resolution and penetration 

depths (Jeppsson & Dahlin, 2015a). 

 
 
 
 

2.2 Electromagnetic slingram measure-
ment theory 

2.2.1 Electromagnetic waves 

An electromagnetic wave is the transport of energy by 

the coupling and interaction of electrical and magnetic 

fields (Lowrie, 2007; Jeppsson & Dahlin, 2015b). The 

waves are made up by two orthogonal vector compo-

nents, the electric intensity field vector (E) which is 

measured in V/m, and the magnetizing force field vec-

tor (H) which is measured in A/m (Lowrie 2007; 

Jeppsson & Dahlin, 2015b; Reynolds, 1997). The en-

ergy between the two vectors is equally divided 

(Lowrie 2007; Jeppsson & Dahlin, 2015b; Reynolds, 

1997). Electromagnetic waves are formed in two ways 

according to Maxwell’s equations as described in 

Jeppsson & Dahlin (2015b): “an alternating electrical 

field gives rise to an alternating magnetic field, and an 

alternating magnetic field gives rise to an alternating 

Fig. 8. Multi-electrode measurement. A and B represent the current electrodes and C and D the potential difference electrodes. 

The dots represent a measurement point. Based on work by Jeppsson & Dahlin (2015a). 



electrical field”. This phenomena causes induction in 

conducting material when being exposed to alternating 

magnetic fields. The induction in the material gives 

rise to new induced electromagnetic waves that do not 

share the same properties as the primary wave (Fig. 9) 

(Jeppsson & Dahlin 2015b; Lowrie, 2007). The in-

duced secondary magnetic field consists of two com-

ponents, one real and one imaginary part (Jeppsson & 

Dahlin 2015b). In a vector diagram showing the pri-

mary and induced secondary magnetic field, the real 

part of the secondary field is the part that is in phase 

with the primary field, and the imaginary part is the 

part that is phase shifted 90° in regard to the primary 

field (Jeppsson & Dahlin, 2015b). The sizes of these 

parts are dependent on the conductivity of the material 

(Jeppsson & Dahlin, 2015b). 

2.2.2 Penetration depth  

In this study the instrument Geophex GEM-2 Ski was 

used, which consists of a coil that transmits the prima-

ry field and another coil that receives the total wave 

that includes both the primary and secondary wave. 

Electromagnetic waves are attenuated with time due to 

energy loss (Jeppsson & Dahlin, 2015b). Skin depth    

(δ) is the depth where the wave has been attenuated to 

approximately 37 % of its original amount of energy, 

and is dependent on the resistivity (ρ) and frequency 

(f) used (Jeppsson & Dahlin, 2015b).  Higher frequen-

cies used and conductivity of the geological units leads 

to more attenuation (Fig. 10) (Jeppsson & Dahlin, 

2015b). A rule of thumb is that the practical penetra-

tion depth is around a 1/5 of the skin depth (Jeppsson 

& Dahlin, 2015b; Lowrie 2007). 

 
 

2.2.3 Conductivity measurement  

An induction number is the transmitter-receiver length 

divided by the skin depth (Jeppsson & Dahlin, 2015b). 

If the induction number is low, the magnitude of the 

imaginary part in the secondary wave is only depend-

ent on the conductivity of the geological units (Milsom 

& Eriksen, 2011). This can be used to recalculate the 

imaginary part of the secondary waves into apparent 

conductivity, measured in mS/m (Jeppsson & Dahlin, 

2015b; Milsom & Eriksen, 2011). 

2.3 Induced polarization measurement 
theory 

2.3.1 Induced polarization  

When electricity is being conducted in the ground 

there is a sudden increase in the voltage (Vi) which 

then is gradually increased until the voltage reaches a 

maximum value of (Vmax). The same applies when the 

conduction of electricity to the ground is stopped; then 

Fig. 9. Illustration of induction of an object giving rise to a 

secondary wave. Based on work by Jeppsson & Dahlin 

Fig. 10. Illustration of attenuation and depth penetration of electromagnetic waves in different geological material with different 

conductivity. Based on work by Jeppsson & Dahlin (2015b). 

14 
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there is a sudden decrease in voltage (Vi) and, con-

cordantly, a gradual decrease of the voltage (Lowrie, 

2007; Jeppsson & Dahlin, 2015a). The time for the 

gradual changes in voltage to reach (Vmax), or original 

voltage, is called delay time (τ) (Fig. 11); this is the so 

called Induced Polarization effect (IP-effect) (Lowrie, 

2007; Jeppsson & Dahlin, 2015a).                                   

 The IP-effect is explained by two main mecha-

nisms, the membrane polarization and electrode polari-

zation (Milsom & Eriksen, 2011). Membrane polariza-

tion occurs when electrolytes in small pore spaces in 

rock are exposed to an electrical field (Jeppsson & 

Dahlin, 2015a). Clayey and platy minerals tend to 

have negatively charged surface layers, in which the 

positive ions of the pore fluid form an immobile layer 

which tend to block nearby pores (Lowrie, 2007; 

Jeppsson & Dahlin, 2015a; Milsom & Eriksen, 2011). 

As explained in Lowrie (2007): “When an external 

voltage is applied, positive ions can pass through the 

“cloud” of positive charge but negative ions accumu-

late, unless the pore size is large enough to allow them 

to bypass the blockage. The effect is like a membrane, 

which selectively allows the passage of one type of ion. 

It causes temporary accumulations of negative ions, 

giving a polarized ionic distribution in the rock”. Ions 

in the fluid will neutralize the oppositely directed field 

formed by the polarization, which will allow the            

voltage to reach a maximum (Jeppsson & Dahlin, 

2015a). When the external voltage is no longer being 

applied, the polarization is reversed and the ions return 

to their original positions (Lowrie, 2007; Jeppsson & 

Dahlin, 2015a; Eriksen & Milsom, 2011). Electrode 

polarization occurs in material with free electrons and 

is caused by external electrical fields being applied to 

Fig. 11. A diagram showing the IP-effect. Voltage on the Y-axis and time on the X-axis. Based on work by Jeppsson & Dahlin 

(2015a). 

Fig. 12. Delay time divided into several IP-windows. Based on work by Jeppsson & Dahlin (2015a). 
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the material, causing the electrons to move and polar-

ize (Jeppsson & Dahlin, 2015a). This causes ions 

surrounding the material to attract and form an oppo-

sitely directed field which with time will be neutral-

ized, then allowing the voltage to reach a maximum 

(Jeppsson & Dahlin, 2015). In IP-effect measure-

ments the chargeability (M) is measured, which is an 

area in a voltage diagram between two times during 

the delay time (Fig. 11) (Jeppsson & Dahlin, 2015a). 

It is measured in mV/V and the formula for chargea-

bility in mV/V is according to Jeppsson & Dahlin 

(2015a):  

 

 

The delay time can be divided into many time periods 

and all be used to measure chargeability, giving better 

information. These are called IP-windows (Fig. 12). 

 The IP-effect can be measured together with resis-

tivity measurements, since both of them use the same 

setup with two current electrodes and two potential 

electrodes with a terrameter.  

2.3.2 IP-effect in geological material 

The IP-effect can be calculated in milliseconds and mV/

V. When measured in mV/V with an integration time of 

around 1 s, the two different units are interchangeable. 

In this study the integration time was around 0.96 s and 

values gathered in mV/V can also be considered inter-

changeable with ms. 

3 Study methodology 
3.1 Resistivity and IP-effect measure-

ments 
3.1.1 Profiles 

Five profiles were laid out over the Rörvik gård drumlin 

for resistivity and IP-effect measurements. Four of these 

profiles (profiles 1-4, Fig. 13) are cross profiles over the 

distal tail of the drumlin and one (profile 5, Fig. 13) is a 

length profile along the crest line of the drumlin. Profile 

1-4 have east to west direction, and profile 5 a north to 

south direction.  GPS data was gathered for every elec-

trode, which is approximately at every 2 m of the pro-

files, providing altitude and coordinates. The GPS data 

Table 2.Chargeability in milliseconds with integration time 

of 0.02-1 s. The values and their geologic interpretation are 

Geological material Chargeability (ms) 

Shale 50-100 

Granite 10-50 

Gneiss 6-10 

Weathered gneiss 5-30 

Till 1-10 

Sand and gravel 1-10 

Weathered bedrock 

containing clay 

200-4000 

Fig 13. Location of resistivity and IP-effect profiles, laid 

out over the Rörvik gård drumlin. GPS data were plotted in 

Fig. 14. Equipment used. A) Car battery to the left of the pic-

ture, terrameter in the middle and a cable set to the right. B) 
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was gathered using the devices TOPCON GPS GR-5 

and FC336. 

3.1.2 The field work 

At start, four 40 m long cable sets with electrode dis-

tances of 2 m were rolled out along a profile. An elec-

trode pole was pressed into the ground at every 2 m 

interval and connected to the cable with jumpers (Fig. 

14). The terrameter and a car battery were connected at 

the end of the first cable and then the first measuring 

sequence was carried out on the three first cables. The 

fourth cable was not used in the first measurement 

sequence of a profile, this to increase the amount of 

measurement points in the beginning of the profile. 

Each measurement sequence gave around 450-700 

readings in total. After the first measurement sequence 

of a profile was finished, the fourth cable was connect-

ed, and the terrameter and car battery were moved up 

to the middle of the four cable sets, and then a new 

measurement sequence was started. When the second 

measuring sequence was finished the first cable was 

disconnected and moved up in the profile, to become 

the fourth cable set in the next measurement, and the 

terrameter and car battery were moved to the middle of 

the four cable sets. This procedure was repeated until 

the end of the profile has been reached by the fourth 

cable set, which was then finished by a last measure-

ment sequence where only 3 cables were used like in 

the first measurement in the profile, but the terrameter 

and car battery was then connected in the end of the 

second cable. The IP-effect was measured simultane-

ously during resistivity measurement sequences, and 

used the same setup with 81 electrodes and cable sets.  

3.1.3 Data processing 

The data collected was altitude adjusted with the GPS 

data, and that later underwent an inversion process in 

RES2DINV, after which it was handled in Erigraph to 

be used for interpretation.  

3.2 Electromagnetic slingram measure-
ments 

3.2.1 Profiles 

The drumlin ridge was also covered with the slingram 

measurements. This was carried out by walking across 

the length axis of the drumlin ridge at varying distanc-

es between the slingram profiles, ranging from approx-

imately 5 to 15m (Fig. 15). Slingram measurements 

were also done on the north to profile 1, i.e. north of 

the crossing road (Fig. 2 and 13) where bedrock is 

exposed above ground surface, this to give an indica-

tion of what conductivity is the bedrock. 

3.2.2 The field work 

The measurements were done by carrying the instru-

ment across the study area, covering as much ground 

as deemed needed. During measurements the instru-

ment recorded over several frequencies (18125Hz, 

35025Hz and 63375Hz) as different frequencies give 

different resolutions and penetration depths (Hauck & 

Kneisel, 2008). The slingram has an inbuilt GPS but 

creates a local coordinate system. 

3.2.3 Data processing 

The data collected was converted from real and imagi-

nary parts into apparent conductivity, using EMInver-

tor by GEM, and later adjusted in Microsoft Excel to 

be used in the mapping software Surfer 12.  

4 Results 
4.1    Methodology of interpretation 
Each measured profile has its' resistivity and IP-effect 

presented together with a section showing interpreted 

bedrock. Using the interpreted section, maximum and 

minimum depths are calculated for the different pro-

files. The IP-effect data shows very low values 

throughout all sections, especially in profile 2 and 3 

where values are ≤0.9mV/V. With such low values it 

is not possible to distinguish between bedrock and 

sediment. Bedrock is known to be present from the 

resistivity measurements with resistivity values 

>10000Ωm in profile 2 and 3, but in spite of this no 

contrast is seen in the IP-effect values. The IP-effect 

data has therefore not been used to interpret location of 

bedrock. It was however used to interpret fractures in 

rock and anomalies caused by disturbing objects. 

Weathered rock tends to show higher IP-effect values 

(Jeppsson & Dahlin, 2015a). Therefore, when resistivi-

ty anomalies have been observed, such as in profile 1, 

the IP-effect data was used to interpret the cause of the 

anomaly. Electromagnetic slingram measurement was 

done on exposed bedrock to get apparent conductivity 

values of the local bedrock, which is around 0.1 mS/m, 

Fig 15. Measurement methodology used in this study for the 

slingram measurements, by moving from start to end accord-
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and values observed in the drumlin close to 0.1 mS/m 

will be assumed to have smaller sediment depths. 

Higher apparent conductivity values, such as 3mS/m, 

are interpreted as indications of relatively larger sedi-

ment depths. Since there was no drilling data to corre-

late the slingram data with, it is merely an indicator of 

relative depth and was used to strengthen interpreta-

tions of sediment depths from resistivity data. This 

leaves the resistivity data as the core of the interpreta-

tions made.  

Resistivity sections are limited to show values from 0 

to 10000Ωm divided up in a legend that shows 12 col-

ours in the software Erigraph and attributing one col-

our to each interval of resistivity values. By limiting 

all measurements above 10000Ωm to one maximum 

value, the 12 colours will display smaller resistivity 

intervals. A difference in resistivity between 10000Ωm 

and 20000Ωm is judged to be of minor importance for 

the type of interpretations done in this study, as they 

both indicate bedrock according to Jeppsson & Dahlin 

(2015a). Each IP-effect section has its own legend 

limited to its minimum and maximum chargeability. 

The resistivity values in Tables 1 and 2 have been used 

as guidelines for attributing different geological mate-

rial to different resistivity and IP-effect values. As 

seen in Table 1, the resistivity values of some sedi-

ment types and bedrock overlap, and can have very 

large intervals. As an example, bedrock can have val-

ues from 200Ωm up to 50000Ωm, depending if it is 

weathered or not in the upper part. This means that a 

certain resistivity value can be the same for several 

types of geological material. A resistivity value of 

1800Ωm could according to Table 1 represent dry 

sand, non-clayey till or bedrock. As there is no  drill 

data or sections in the drumlins to use for “calibrating” 

the resistivity data, they can only be classified as rep-

resenting sediment or not (i.e. bedrock), with no fur-

ther subdivision into different types of sediment.  

For the resistivity interpretation, all resistivity values 

above 3000Ωm have been classified as confirmed bed-

rock, and values under 1600Ωm as undifferentiated 

sediment. This leaves a gap from 1600 to 3000Ωm, for 

which it is unclear whether it is more likely bedrock or 

sediment. If not ”geological common sense” suggests 

one or the other, strata or section parts with such an 

resistivity interval has been classed as indistinguisha-

ble. If this is the case over parts of the sections, this 

means that the boundary between bedrock and sedi-

ment could be anywhere in that zone with maximum 

depth being the depth if the indistinguishable zone is 

entirely sediment, and minimum depth if the indistin-

guishable zone is entirely bedrock. The true value 

could be anywhere in-between. In some profiles there 

are very low resistivity values in relation to the bed-

rock, but seen to cut through bedrock at large depths. 

These units have been marked as anomalies. These can 

either be caused by disturbing objects, or increased 

conductivity from weathered rock. Weathered rock can 

contain more fluids in comparison to fresh rock, and 

therefore has lower resistivity (Jeppsson & Dahlin, 

2015a).   

 

Fig 16. Resistivity section of profile 1.  
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Fig 17. IP-effect section of profile 1.  

Fig 18. An interpreted geological model of profile 1. At 110 m a red line marks the crossing with profile 5. The unit marked as 

bedrock is very likely bedrock, and the unit marked as sediment is very likely such, based on their high versus and low resistivi-

ties, respectively (Table 1).The units marked ‘indistinguishable’ and ‘anomaly’ are zones where the bedrock and sediment could 

Table 3. The interpreted maximum and minimum thickness of sediment down to bedrock along profile 1. The (*) marks the 

thickness of sediment at the 110 m mark, which is the crossing point with profile 5 in which no ‘indistinguishable’ zone record-

ed, which makes this thickness value more likely. 

Distance (m) 30 50 70 90 110 130 150 170 190 

Max (m) 3 3 8 8 5 5 4 4 4 

Min (m) 3 2 6 6 4* 5 2 4 4 
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4.2    Resistivity and IP-effect results 
4.2.1    Profile 1 

4.2.1.1 Inverted models  

Profile 1 (Fig. 13) measures 196 m in length, over 

which the maximum measurement depth is 40 m (Fig. 

16). The resistivity profile is based on 2517 measure-

ments by the terrameter. The measurements are pre-

sented as inverted 2D resistivity and IP-effect sections 

in Figs. 16 and 17, respectively. Fig. 17 has been lim-

ited to showing the maximum value 13mV/V, as it is 

the highest value seen outside the anomaly which 

shows much higher values. If the legend included the 

value of the anomaly present in the section, it would 

result in only two colours being shown in the section 

due to the very large contrast, making the IP-effect 

section very crude.                                                              

 At the 25 m mark (Fig. 16) the profile crosses  a 

small gravel track that runs along the length of the 

drumlin along its eastern side, which clearly comes out 

as an anomaly in both the resistivity and IP-effect sec-

tions. The IP-effect anomaly that can be seen at 25 m 

has a high value of ~70mV/V. 

4.2.1.2 Interpretation  

Based on the sections in Figs. 16 and 17, an interpret-

ed model section has been constructed (Fig. 18). The 

anomaly at the 25 m mark has been interpreted as a 

measurement error, caused artificially. Potentially due 

to a cable or metal object under the gravel track.  This 

is because the anomaly has very low resistivity of 

around 100Ωm and a chargeability of 70mV/V, which 

is a value approximately 7 times larger than any other 

IP-effect measured in this study. The shape seen in the 

inverted model is rectangular and strange looking. A 

substantial part of the interpreted model section is 

classified as ‘indistinguishable’ and can either be bed-

rock or sediment. The bedrock in profile 1 is undulat-

ing and the thickness and configuration of covering 

sediment seem to be independent from bedrock mor-

phology. 

4.2.1.3 Sediment depths 

The sediment thickness along the profile is presented 

in Table 3, with interpreted maximum and minimum 

values. At the 110 m mark sediment thickness was 

Fig 19. Resistivity section of profile 2.  

Distance (m) 20a 30 50 70a 90 110 130 

Max (m) 7   6 12 5 5 4 

Min (m) 6 6 6 3* 4 5 2 

Table 4. The interpreted maximum and minimum thickness of sediment down to bedrock along profile 2. The (*) marks the 

sediment thickness at 70 m, which is the intersection with profile 5; at comparison between the two profiles the 3 m thickness is 

seen in both. The (a) marks indicate the presence of an anomaly .    
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Fig 20. IP-effect section of profile 2.  

Fig 21. A) The intersection of the two resistivity sections of profiles 2 and 5, on the western side of the drumlin. The intersection 

is at the 75 m mark in profile 2. B) The east part of the resistivity section of profiles 2 and 5, from the 75 m to 135 m marks. 

also measured in profile 5. Profile 5 does not indicate 

any ‘indistinguishable’ zone at this point and gives a 

sediment thickness here that is equal to the interpreted 

maximum thickness of profile 1, making this value 

more likely to be close to the true depth to bedrock.  

4.2.2    Profile 2 

4.2.2.1 Inverted models  

Profile 2 (Fig. 13) measures 140 m in length, over 

which the maximum measurement depth is 34 m (Fig. 

19). The resistivity profile is based on 1384 measure-

ments by the terrameter. The measurements are pre-

sented as inverted 2D resistivity and IP-effect sections 

in Figs. 19 and 20, respectively.  

At 18 m mark (Fig. 19) is the crossing with the drum-

lin-parallel gravel track, but no anomaly is seen as in 

profile 1. At approximately the 32 m and 70 m marks 

are vertically standing anomalies in the resistivity sec-
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tion (Fig. 19). The IP-effect section gives very low 

values of around 0.7 mV/V throughout the profile. 

4.2.2.2 Interpretation 

Based on the sections in Figs. 19 and 20, an interpret-

ed model section has been constructed (Fig. 22). The 

resistivity section shows two anomalies that cut 

through interpreted bedrock at the 32 and 70 m marks. 

The anomaly at 32 m shows values of around 200 to 

300Ωm, but no anomaly in the IP-effect section. This 

indicates that the anomaly is not caused by disturbing 

objects in the ground with high IP-effect and that, if 

the anomaly is caused by weathered rock, then it does 

not contain clay. Profile 5 crosses profile 2 at the 75 m 

mark, which is close to the anomaly at 70 m. Profile 5 

shows a deep anomaly close to where the two profiles 

intersect. Resolution decreases with depth and resistiv-

ity values are affected by its surroundings, also known 

as “3D-effects”, as described in Jeppson & Dahlin 

(2015).  The resistivity value in profile 1 is therefore 

affected by the nearby anomaly from profile 5, result-

ing in the small anomaly seen at 70 m (Fig. 21). The 

bedrock is undulating and the thickness and configura-

tion of covering sediment seem to be independent of 

the bedrock morphology. The ‘indistinguishable’ zone 

in profile 2 is very small and has not been marked in 

the interpreted model in Fig. 22. 

4.2.2.3 Sediment depths 

The sediment thickness along the profile is presented 

in Table 4, with interpreted maximum and minimum 

values.  The 70 m mark is close to the intersection 

with profile 5. The sediment thickness in profile 5 is 

here approximately 3 m. This is the same as the mini-

mum thickness at 70 m in profile 2, making this a 

more likely value for the true sediment thickness. 

 

 

 

Fig 22. An interpreted geological model of profile 2. At 75 m a red line marks the crossing with profile 5. The unit marked as 

bedrock is very likely bedrock, and the unit marked as sediment very likely such, based on their high versus low resistivities, 

respectively (Table 1).  The units marked indistinguishable and anomaly are zones where the bedrock and sediment could be 

Distance (m) 15 35 45a 55 75 85 

Max (m) 7 8   6 6 4 

Min (m) 7 8 8 6 6 4 

Table 5. The interpreted maximum and minimum thickness of sediment down to the bedrock along profile 3.The (a) mark indi-
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Fig 23. Resistivity section of profile 3.  

Fig 24. IP-effect section of profile 3.  

4.2.3    Profile 3 

4.2.3.1 Inverted models  

Profile 3 (Fig. 13) measures 110 m in length, over 

which the maximum measurement depth is approxi-

mately 23 m. The resistivity profile is based on 863 

measurements by the terrameter. The measurements 

are presented as inverted 2D resistivity and IP-effect 

sections in Figs. 23 and 24 respectively.                             

 At the 15 m mark (Fig. 23) is the crossing with the 

drumlin-parallel gravel track, but no anomaly is seen 

as in profile 1. At approximately the 50 m mark is a 

vertically standing anomaly in the resistivity section 
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Fig 25. A) The intersection of the two resistivity sections profiles 2 and 5, on the western side of the drumlin. The intersection is 

Fig 26. An interpreted geological model of profile 3. At 45 m a red line marks the crossing with profile 5. The unit marked as 

bedrock is very likely bedrock, and the unit marked as sediment is very likely such, based on their high versus low resistivities, 

respectively (Table 1).The units marked ‘indistinguishable’ and ‘anomaly’ are zones where the bedrock and sediment could be 

(Fig 23). The IP-effect section gives very low values 

of around 0.6 mV/V throughout the section. (Fig. 24) 

4.2.3.2 Interpretation  

Based on the sections in Figs. 22 and 23, an interpret-

ed model section has been constructed (Fig. 26). The 

resistivity section shows an anomaly that cut through 

the interpreted bedrock at the 48 ~m mark. The anom-

aly shows values of around 300Ωm, but only a differ-

ence in chargeability of approximately 0.1 mV/V to its 

surroundings. This indicates that the anomaly is not 

caused by disturbing objects with high IP-effect in the 

ground and that, if the anomaly is caused by weathered 

rock, then it does not contain clay. Profile 5 crosses 

profile 3 at the 45 m mark, which is close to the anom-

aly. The anomaly is not visible in profile 5 in the inter-

section, but at larger depths there are anomalies that 

could be connected to the anomaly from profile 3 (Fig. 
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Fig 27. Resistivity section of profile 4.  

Fig 28. IP-effect section of profile 4.  

25). The bedrock is undulating and the thickness and 

configuration of covering sediment seems to be inde-

pendent of the bedrock morphology.  

4.2.3.3 Sediment depths 

The sediment thickness along the profile is presented 

in Table 5, with interpreted maximum and minimum 

values. The 45 m mark was also measured in profile 5 

and gives a sediment thickness here of 9 m. The two 

profiles differ approximately 1 m in sediment thick-

ness. 

4.2.4    Profile 4 

4.2.4.1 Inverted models  

Profile 4 (Fig. 13) measures 80 m in length, over 

which the maximum measurement depth is approxi-

mately 16 m (Fig. 27). The resistivity profile is based 

on 486 measurements by the terrameter. The measure-
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ments are presented as inverted 2D resistivity and IP-

effect sections in Figs. 27 and 28, respectively.          

 At the 16 m mark (Fig. 27) is the crossing with the 

drumlin-parallel gravel track, but no anomaly is seen 

as in profile 1. The entire resistivity section shows low 

values, ranging from 100 to 500 Ωm (Fig. 27). The IP-

effect changes like a gradient from approximately 3.5 

to 5mV/V throughout the section (Fig. 28). 

4.2.4.2 Interpretation 

Based on the sections in Figs. 27 and 28, an interpret-

ed model section has been constructed (Fig. 28). The 

absence of resistivity values that interpret bedrock in 

the section does not have to mean there is no bedrock 

present. The resistivity section shows very low values 

of around 100 Ωm, from 35 to 70 m at 143 meters 

above sea level. It could be a more conductive type of 

Fig 29. An interpreted geological model of profile 4. At 25 m a red line marks the crossing with profile 5. The unit marked as 

bedrock is very likely bedrock, and the unit marked as sediment very likely such, based on their high versus low resistivities 

respectively (Table 1). The units marked as ‘indistinguishable’ and as ‘anomaly’ are zones where the bedrock and sediment 

Fig 30. Resistivity section of profile 5.  
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Fig 31. IP-effect section of profile 5.  

Fig 32. An interpreted geological model of profile 5. At 25, 130, 255 and 325 m the red lines mark where profiles 1, 2, 3 and 4 

intersect with profile 5. The unit marked as bedrock is very likely bedrock, and the unit marked as sediment very likely such, 

based on their high versus low resistivities, respectively (Table 1). The units marked indistinguishable and anomaly are zones 

where the bedrock and sediment could be interpolated. Fig. 17 for the legend.  

sediment or presence of water. A possibility is also 

that the sediment depth reaches to 143 m above sea 

level and the low resistivity values are due to fractures 

in rock. Profile 5 intersects with profile 4 at the 25 m 

mark and has a sediment thickness reaching approxi-

mately 143 m above sea level around this mark. There 

are no height-determined IP-values in that area. The 

profile length is short, and results in smaller investiga-

tion depths. This makes it harder to find the boundary 

between bedrock and soil. Profile 4 intersects in the 

end of Profile 5 which has low investigation depth at 

the intersection. Due to the complexity of the section, 

three different models are deemed possible:                   

1) The entire section consists of only sediment, as the 

resistivity values are very low.                                             

2) The indistinguishable zone and the anomaly zone 

are both fractured rock.                                                           

3) The indistinguishable zone is either rock or sedi-

ment, and the anomaly zone is fractures in rock. 

 4.2.4.3 Sediment depths 

In the intersection of profile 4 and 5 there are almost 

no resistivity values that confirm bedrock. Depending 

on which of the three models to use, the sediment 

Distance (m) 25 85 130a 165 195 215 245 285 325 

Max (m) 4* 4   2 4 9 9 8 6-15+* 

Min (m) 4* 4 2* 2 4 9 9 8 5-7+* 

Table 6. The interpreted maximum and minimum thickness of sediment down to bedrock along profile. The (*) marks the sedi-

ment thickness at points that intersect and were also measured in another profile.  The ( 
a) mark indicates the presence of an 
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thickness can vary with several meters. In model 1 the 

sediment thickness in profile 5 is at least 7+ meters in 

this area and profile 4 suggests at least 15+ meters. In 

model 2 and 3 of profile 4 the sediment thickness is 

approximately 5-6 m. Due to the low investigation 

The anomaly at the 135 m mark shows values of 

around 300 to 2000 Ωm and an anomaly in the IP-

effect section. This anomaly is also weakly present in 

profile 2, but with a smaller thickness. This anomaly 

has been interpreted as fractures in rock. The width is 

approximately 2 meter, but shows a larger width at 

larger depth. This is likely due to lower resolution that 

comes with larger depths. The anomaly at the 255 m 

mark is also present in profile 3, and is clearly visible 

in the IP-effect section. Very low resistivities of 

around 400 Ωm is visible at 118 m above sea level at 

the 235 m and 285 m marks. These could be due to the 

fractures in rock, as suggested from profile 3 that is 

close by. Thus, the anomaly marked at 255 m is based 

on IP-data from profile 5 and resistivity data from pro-

file 3 (Fig. 23). The bedrock has a sudden increase in 

sediment thickness at around 205 m. This interpreted 

increase in sediment thickness could be a misinterpre-

tation, instead being fractured rock which could cause 

the lower resistivity values. The bedrock level was 

interpolated from 210 m to 240 m to be around 141 m 

above sea level due to the high resistivity values being 

interpreted as bedrock seen around this depth, at the 

300 m mark (Fig. 30). 

 4.2.5.3 Sediment depths 

The sediment thickness along the profile is presented 

in Table 6, with interpreted maximum and minimum 

values. The 25 m mark was also measured in profile 1. 

Profile 5 does not display any indistinguishable zone 

here; thus max/min thicknesses are the same. The 130 

m mark was correlated with profile 2. The 325 m mark 

was discussed in the section regarding results from 

profile 4. 

4.3    Electromagnetic slingram results 
4.3.1    Conductivity data 

The slingram measured with three different frequen-

cies, albeit only the two higher frequencies gave usa-

ble data (Fig. 33). The lowest-frequency 18125 Hz did 

not give conductivity measurements that can be used 

for interpretation, since almost all conductivity data 

show values near 0 mS/m. The anomaly seen in the far 

right in Figs. 32 and 33 is due to disturbing objects 

such as vehicles and other metal objects. The X and Y 

axis use a grid system in UTM. The maximum value 

of the apparent conductivity in Figs. 32 and 33 were 

limited to 5 mS/m. However, the measurements at 

35025 Hz and 63375 Hz gave interpretable data. The 

anomaly seen in the top right is also visible in profile 1 

at the 25 m mark. Measurements at both frequencies 

show the same patterns, but with different values. 

There is a general trend of increase in conductivity 

from north to south. Another general trend is higher 

depth and possible fractures in rock giving resulting in 

the low resistivity values that falsely give the impres-

sion of absence of bedrock, it is more likely that the 

sediment thickness is around 5-6m if compared to the 

thickness trend of the entire drumlin in the previous 

profile sections. 

4.2.5    Profile 5 

4.2.5.1 Inverted models  

Profile 5 (Fig. 13) measures 346 m in length, over 

which the maximum measurement depth is 35 m. The 

resistivity profile is based on 5965 measurements by 

the terrameter. The measurements are presented as 

inverted 2D resistivity and IP-effect sections in Figs. 

30 and 31, respectively. 

At the approximately 135 m and 255 m marks, and at 

120 meters above sea level, there are two dominant 

resistivity anomalies (Fig. 30). These two anomalies 

are also seen in the IP-effect section (Fig. 31) albeit 

clearer than in the resistivity section.  

4.2.5.2 Interpretation 

Based on the sections in Figs. 30 and 31, an interpret-

ed model section has been constructed (Fig. 32). The 

resistivity section shows an anomaly that cut through 

the interpreted bedrock at the 135 and 255 m marks. 

Fig 33.The apparent conductivity of the ground measured 

with slingram at the 35025 Hz (to the left) and 63375Hz (to 

the right) frequencies. The box in the centre image shows 

exposed bedrock. The image to the right shows the resistivity 



 

29 

geophysical study compared to the three methods used 

in this study. Since the aim of this study is to find the 

sediment thicknesses in relation to bedrock, a refrac-

tion study is suggested to be tested as an alternative 

method since it could show a clearer contrast between 

bedrock and sediment, compared to performed resis-

tivity measurements. This is because resistivity is af-

fected in three dimensions and has to be inverted. 

However, if the sediment consists of different units/

types and with decreasing seismic speeds for occurring 

sediment type beds, then refraction studies might not 

be optimal. It is quite common that that the fracture 

zones in bedrock occur together with lithological 

changes. As mentioned in the section of geological 

background, there is a mapped change of bedrock type 

beneath the drumlin (Fig. 2). It is possible that the 

anomalies seen in the different profiles are caused by 

this lithological change. It was however not considered 

important to analyse the suspected fracture zones in 

more detail in this study more than noting that the dis-

played anomalies are due to fractures and not due to 

sediment changes 

6     Conclusions 
The sediment thickness on top of bedrock, as interpret-

ed along four cross profiles and one longitudinal pro-

file over the Rörvik gård drumlin varies between 2 – 8 

m for calculated minimum values and between 2 – 15 

m+ for calculated maximum values. The sediment 

thickness seems in general increase from the flanks of 

the drumlin towards its centreline and also increase 

towards the drumlin’s tail. The bedrock surface be-

neath the drumlin has an undulating morphology and 

the smooth surface of the drumlins seems to be unre-

lated to that bedrock morphology. However, presented 

geophysical models are very crude and should only be 

taken as indicators of sediment thicknesses and not 

precise values as there are no drill logs or test pit infor-

mation to calibrate the geophysical measurements 

with. 
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conductivity values at the sides and lower values in the 

centre of the drumlin.  

4.3.2    Interpretation 

According to profile 1 in Table 3, the sediment thick-

ness increases towards the centre of the profile and is 

lower at the sides. Yet the slingram measurements 

show a decrease in conductivity towards the centre of 

the profile according to Fig. 33. Considering that it is 

apparent conductivity, which is an average conductivi-

ty of the underlying ground, the values are not precise 

but rather relative. This could be interpreted as that the 

indistinguishable zone in profile 1 is more likely bed-

rock than sediment. In profile 2 the sediment thickness 

starts of at ~7 m in the east part of the profile and de-

creases towards the centre and the end of the profile. 

The slingram conductivity data conforms somewhat to 

this, with higher conductivity values in the beginning 

of the profile (Fig. 33), which is due to the higher sedi-

ment depth and the anomaly. The conductivity de-

creases in the centre of the profile where the sediment 

depth decreases. Profile 3, which show a sediment 

thickness of ~7 m in the east part of the profile has 

higher conductivity values throughout the profile ac-

cording to the slingram data. The general increase of 

slingram conductivity from north to south conforms to 

the models presented in the interpreted resistivity sec-

tion. According to profile 5 (Fig. 32) there is a large 

increase of approximately 5 m in soil depth at around 

the 210 m mark. Profile 4 also suggested large sedi-

ment thickness (Fig. 29), which is in line with the 

higher conductivity values in the south of the conduc-

tivity measurements (Fig. 33).  

5     Discussion 
As previously mentioned, the models presented suffer 

from what is mentioned in Jeppson & Dahlin (2015a) 

as an equivalence problem. This means that the resis-

tivity sections could be interpreted in many different 

ways, and all being geologically sound. It should also 

be noted that the bedrock level is much approximated 

due to overlapping resistivity intervals between geo-

logical material and resolution, causing diffuse bound-

aries between different units. Due to the inaccuracy, 

the suggested sediment thicknesses should be consid-

ered indicators rather than exact values. The same ap-

plies for the electromagnetic slingram measurements 

that have no values to correlate certain depths to. 

These issues could be solved by drillings or excava-

tions, because then certain resistivity values can be 

attributed to confirmed types of geological material. 

Due to equivalence problems, it is proposed that seis-

mic refraction studies are might be a more suitable 
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9     Appendix 
Inversion settings 

Initial damping factor (0.01 to 1.00) 

0.1500 

Minimum damping factor (0.001 to 0.75) 

0.0200 

Local optimization option (0=No, 1=Yes) 

0 

Convergence limit for relative change in RMS error in 

percent (0.1 to 20) 

5.0000 

Minimum change in RMS error for line search in per-

cent (0.5 to 100) 

0.5000 

Number of iterations (1 to 30) 

7 

Vertical to horizontal flatness filter ratio (0.25 to 4.0) 

1.0000 

Model for increase in thickness of layers(0=default 

10%, 1=default 25%, 2=user defined) 

2 

Number of nodes between adjacent electrodes (2 or 4) 

4 

Flatness filter type, Include smoothing of model resis-

tivity (0=model changes only,1=directly on model) 

1 

Reduce number of topographical data points? 

(0=No,1=Yes. Recommend leave at 0) 

0 

Carry out topography modeling? (0=No,1=Yes) 

1 

Type of topography trend removal 

(0=Average,1=Least-squares,2=End to end) 

2 

Type of Jacobian matrix calculation (0=Quasi-Newton, 

1=Gauss-Newton, 2=Mixed) 

1 

Increase of damping factor with depth (1.0 to 2.0) 

1.0500 

Type of topographical modeling (0=None, 1=No long-

er supported so do not use, 2=uniform distorted FEM, 

3=underwater, 4=damped FEM, 5=FEM with inverse 

Swartz-Christoffel) 

4 

Robust data constrain? (0=No, 1=Yes) 

1 

Cutoff factor for data constrain (0.0001 to 0.1)) 

0.0500 

Robust model constrain? (0=No, 1=Yes) 

1 

Cutoff factor for model constrain (0.0001 to 1.0) 

0.0050 

Allow number of model parameters to exceed data 

points?  (0=No, 1=Yes) 

1 

Use extended model? (0=No, 1=Yes) 

0 

Reduce effect of side blocks? (0=No, 1=Slight, 

2=Severe, 3=Very Severe) 

1 

Type of mesh (0=Normal,1=Fine,2=Finest) 

0 

Optimise damping factor? (0=No, 1=Yes) 

1 

Time-lapse inversion constrain 

(0=None,1&2=Smooth,3=Robust) 

3 

Type of time-lapse inversion method 

(0=Simultaneous,1=Sequential) 

0 

Thickness of first layer (0.25 to 1.0) 

0.5000 

Factor to increase thickness layer with depth (1.0 to 

1.25) 

1.1000 

USE FINITE ELEMENT METHOD (YES=1,NO=0) 

1 

WIDTH OF BLOCKS (1=NORMAL WIDTH, 

2=DOUBLE, 3=TRIPLE, 4=QUADRAPLE, 

5=QUINTIPLE) 

1 

MAKE SURE BLOCKS HAVE THE SAME WIDTH 

(YES=1,NO=0) 

1 

RMS CONVERGENCE LIMIT (IN PERCENT) 

0.100 

USE LOGARITHM OF APPARENT RESISTIVITY 

(0=USE LOG OF APPARENT RESISTIVITY, 

1=USE RESISTANCE VALUES, 2=USE APPAR-

ENT RESISTIVITY) 

0 

TYPE OF IP INVERSION METHOD 

(0=CONCURRENT,1=SEQUENTIAL) 

0 

PROCEED AUTOMATICALLY FOR SEQUENTIAL 

METHOD (1=YES,0=NO) 

0 

IP DAMPING FACTOR (0.01 to 1.0) 

1.000 

USE AUTOMATIC IP DAMPING FACTOR 

(YES=1,NO=0) 

0 

CUTOFF FACTOR FOR BOREHOLE DATA (0.0005 

to 0.02) 

0.00010 

TYPE OF CROSS-BOREHOLE MODEL 

(0=normal,1=halfsize) 

0 

LIMIT RESISTIVITY VALUES(0=No,1=Yes) 

0 

Upper limit factor (10-50) 

50.000 

Lower limit factor (0.02 to 0.1) 

0.020 

Type of reference resistivity (0=average,1=first itera-

tion) 

0 
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Model refinement (1.0=Normal,0.5=Half-width cells) 

1.00 

Combined Combined Marquardt and Occam inversion 

(0=Not used,1=used) 

0 

Type of optimisation method (0=Gauss-

Newton,2=Incomplete GN) 

2 

Convergence limit for Incomplete Gauss-Newton 

method (0.005 to 0.05) 

0.005 

Use data compression with Incomplete Gauss-Newton 

(0=No,1=Yes) 

0 

Use reference model in inversion (0=No,1=Yes) 

1 

Damping factor for reference model (0.0 to 0.3) 

0.01000 

Use fast method to calculate Jacobian matrix. 

(0=No,1=Yes) 

1 

Use higher damping for first layer? (0=No,1=Yes) 

1 

Extra damping factor for first layer (1.0 to 100.0) 

5.00000 

Type of finite-element method 

(0=Triangular,1=Trapezoidal elements) 

1 

Factor to increase model depth range (1.0 to 5.0) 

1.050 

Reduce model variations near borehole (0=No, 1=Yes) 

0 

Factor to control the degree variations near the bore-

holes are reduced (2 to 100) 

5.0 

Factor to control variation of borehole damping factor 

with distance (0.5 to 5.0) 

1.0 

Floating electrodes survey inversion method (0=use 

fixed water layer, 1=Incorporate water layer into the 

model) 

1 

Resistivity variation within water layer (0=allow resis-

tivity to vary freely,1=minimise variation) 

1 

Use sparse inversion method for very long survey lines 

(0=No, 1=Yes) 

0 

Optimize Jacobian matrix calculation (0=No, 1=Yes) 

0 

Automatically switch electrodes for negative geomet-

ric factor (0=No, 1=Yes) 

1 

Force resistance value to be consistant with the geo-

metric factor (0=No, 1=Yes) 

0 

Shift the electrodes to round up positions of electrodes 

(0=No, 1=Yes) 

0 

Use difference of measurements in time-lapse inver-

sion (0=No,1=Yes) 

0 

Use active constraint balancing (0=No,1=Yes) 

0 

Type of active constraints (0=Normal,1=Reverse) 

0 

Lower damping factor limit for active constraints  

0.4000 

Upper damping factor limit for active constraints  

2.5000 

Water resistivity variation damping factor 

8.0000 

Use automatic calculation for change of damping fac-

tor with depth (0=No,1=Yes) 

0 
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