
Optimising clients with API gateways

Anton Fagerberg

MASTER’S THESIS | LUND UNIVERSITY 2015

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2015-14

Optimising clients with API gateways

Anton Fagerberg
anton@antonfagerberg.com

June 8, 2015

Master’s thesis work carried out at Jayway AB.

Supervisors: Roger Henriksson, Roger.Henriksson@cs.lth.se
Nils-Olof Bankell, Nils-Olof.Bankell@jayway.com

Examiner: Görel Hedin, Gorel.Hedin@cs.lth.se

mailto:anton@antonfagerberg.com
mailto:Roger.Henriksson@cs.lth.se
mailto:Nils-Olof.Bankell@jayway.com
mailto:Gorel.Hedin@cs.lth.se

Abstract

This thesis investigates the benefits and complications around working with
API (Application Programming Interface) gateways. When we say API gate-
way, we mean to proxy and potentially enhance the communication between
servers and clients, such as browsers, by transforming the data. We do this by
examining the underlying protocol HTTP/1.1 and the general theory regarding
API gateways.

An API gateway framework was developed in order to further understand
some of the common problems and provide a way to rapidly develop prototype
solutions to them. The framework was applied in three case studies in order to
discover potential problematic areas and solve these in real world production
systems. We could from the results see that the benefits gained from using
an API gateway varied from case to case, and with results in hand, predict in
which scenarios API gateways are the most beneficial.

Keywords: API, gateway, proxy, communication, optimisation, performance, HTTP

2

Acknowledgements

I would like to thank Jayway AB for giving me the freedom and resources to explore
this topic. A big thank you to my supervisors Nils-Olof Bankell at Jayway and Roger
Henriksson at Lund University. Thank you Görel Hedin for being the examiner on this
master’s thesis and providing me with many helpful pointers.

Thank you Erik Ogenvik, Gustaf Nilsson Kotte, Jan Kronquist and Oskar Wickström for
evaluating my framework and providing me with many helpful ideas which greatly im-
proved its design.

Thank you Jens Gustafsson and Alfred Åkesson for your critical reviews as opponents for
this thesis. A big thanks to the developers of Elixir, Plug, Hackney and Poison which made
the development process a pleasure.

Finally, I would like to to make a special dedication my father, Nils Fagerberg, who passed
away just when I started writing this master’s thesis. Nils was a great teacher and the one
who introduced me to the world of computers at a young age—he made all of this possible.

3

4

Contents

1 Introduction 7
1.1 Method . 7

2 Performance issues with HTTP/1.1 9
2.1 Headers . 9
2.2 Maximum TCP connections . 13

2.2.1 Chunked responses . 15
2.3 Compression . 16
2.4 Further reading . 16

3 API gateways in theory 19
3.1 What is an API gateway? . 19
3.2 Differing client needs . 20
3.3 Multiple resources and requests . 20
3.4 Duplicate and unnecessary items . 21
3.5 Format transformation . 22
3.6 Pure REST and HATEOAS . 23
3.7 Compression . 24
3.8 Caching . 24
3.9 Decreasing bandwidth and cost . 25
3.10 Secure point of entry for private networks 26
3.11 Latency . 26
3.12 Error handling . 27
3.13 Security—authentication & authorisation 28
3.14 Conditional back-ends . 28
3.15 Rate limiting . 28
3.16 Support old API versions . 29
3.17 Analytics . 29
3.18 Load balancing . 29
3.19 Similar concepts . 30

5

CONTENTS

4 Rackla: API gateway framework 31
4.1 Technologies: language and libraries . 31

4.1.1 Elixir . 31
4.1.2 The pipe operator . 32
4.1.3 Elixir processes . 32
4.1.4 Plug . 33
4.1.5 Hackney . 33
4.1.6 Poison . 33

4.2 Rackla overview . 33
4.2.1 Pipeline . 33
4.2.2 Monads and Functional programming 34
4.2.3 Function overview . 34
4.2.4 A complete example . 37
4.2.5 Process overview . 40

4.3 Related work . 41

5 Case studies 43
5.1 Streamflow . 43

5.1.1 Case lists . 43
5.1.2 Evaluation . 44

5.2 Bank App . 46
5.2.1 Transaction overview . 46
5.2.2 Evaluation . 47

5.3 Accountant System . 48
5.3.1 Working with XML in JSON clients 48
5.3.2 Translating XML APIs . 49
5.3.3 Evaluation . 51

6 Conclusions 53
6.1 Future work . 54

Bibliography 55

Appendix A Definitions 61
A.1 JSON . 61
A.2 XML . 61
A.3 REST . 61
A.4 HATEOAS . 61
A.5 DMZ . 62
A.6 SOAP . 62
A.7 Proxy . 62
A.8 LAN . 62
A.9 WAN . 62
A.10 VPN . 62
A.11 URL . 62

Appendix B JSON/XML conversion 63

6

Chapter 1
Introduction

This thesis work started with the assumption that the network traffic between back-end
server APIs (Application Programming Interfaces) and the clients using them was not
properly optimised. The reason behind this was thought to be a mismatch between the
client expectations and the predefined server responses. If, for example, a back-end API
was developed with a desktop client in mind and a mobile client was introduced later on,
the traffic to the mobile client would not be properly adapted to fit its specific needs.

There are many reasons why the back-end servers themselves cannot be rewritten. It
can be because of cost factors, risk of breaking existing clients, ownership and licensing
issues or even lack of proper knowledge. Because of reasons like these, we wanted to
investigate whether the introduction of a new software layer between the client and server
could mitigate these issues.

1.1 Method
The previously mentioned new software layer between the client and server corresponds
to the concept of an API gateway [1]. This thesis has been designed to consist of four
majors chapters, all of which build upon the previous chapters—the chapters are briefly
introduced below. Finally, we end the thesis with a conclusion chapter which ties the
acquired knowledge from the four major chapters together.

Performance issues with HTTP/1.1
First we look at the transport protocol HTTP, especially HTTP/1.1, and what problems it
introduces when the server and client does not communicate in an efficient manner. We
look at the problematic areas in the protocol and how they, by utilising clever tricks from
the industry, have been mitigated over the years.

7

1. Introduction

API gateways in theory
Secondly, we theorise around the broad subject of API gateways. Here we try to define
some of the different ways the API gateway can improve the relationship between clients
and servers. We investigate how the problems explored in the previous chapter about HTTP
can be solved by utilising an API gateway.

API gateway framework
Thirdly, an API gateway framework was created to in order to better understand the API
gateway problems from a practical and a more technical point of view. This framework al-
lows us to not only understand but also benchmark the problems defined in earlier chapters
and provide real applicable solutions to them.

Case studies
Finally, we did case studies on three real-world production systems. Each case study con-
sist of an analysis to determine whether the system in question had any issues which could
be improved with the introduction of an API gateway. A solution was created for a selected
part of each system with the framework described in the previous chapter. This was done
in order to verify that not only could the framework be used in real-world scenarios, but
also to provide a method for benchmarking the results before and after the introduction
of the API gateway. By doing so, we can determine in which scenarios it is practical to
implement an API gateway, how it can be done from a practical point of view and what
the expected results will be.

8

Chapter 2
Performance issues with HTTP/1.1

Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collab-
orative, hypermedia information systems. The first standardised version of HTTP/1.1
was released in January 1997 [2]. The subsequent version, HTTP/2 (originally named
HTTP/2.0), was approved for publication as a proposed standard on Feb 17, 2015 by the
Internet Engineering Steering Group (IESG) and the HTTP/2 specification was published
in May 2015 [3]. Although HTTP/2 addresses several of the HTTP/1.1 performance is-
sues, it is reasonable to assume that it will take at least a decade [4, page 21] before HTTP/2
fully replaces HTTP/1.1 as the default protocol used on all client, web servers and middle-
boxes such as proxies and firewalls—and even longer for many legacy back-end systems
and clients used in the slow-moving corporate environment. It is therefore necessary to
acknowledge and mitigate the performance issues related to HTTP/1.1 even many years
after the release of HTTP/2.

2.1 Headers
It is common in modern web applications to send a lot of HTTP requests, consisting of
headers and a payload, toward one or many back-end APIs. The payload of these requests
can be very small, such as a PUT request with the intention of updating a single field or
even a GET request to retrieve a user profile. It is very noticeable, when the payload is
small, just how much data has to be transferred along with it in order to perform a HTTP
request.

There are typically plenty of headers transferred with every HTTP request and these
headers can end up being a substantial amount of the total data in every request. The
data stored in the headers may end up being the performance bottle neck in many HTTP
requests [5]—especially if a lot of small requests has to be transmitted on a frequent basis.

As an example, consider the Instagram API [6] which has an end-point where you can
get information about a certain user account. The response from the API is encoded in

9

2. Performance issues with HTTP/1.1

JSON1 format as seen in Figure 2.1.

1 {
2 "data": {
3 "id": "1574083",
4 "username": "snoopdogg",
5 "full_name": "Snoop Dogg",
6 "profile_picture": "http://distillery[...]",
7 "bio": "This is my bio",
8 "website": "http://snoopdogg.com",
9 "counts": {

10 "media": 1320,
11 "follows": 420,
12 "followed_by": 3410
13 }
14 }
15 }

Figure 2.1: The user profile response from the Instagram API, en-
coded in JSON format. Full profile picture link omitted.

1JavaScript Object Notation, see appendix.

10

2.1 Headers

Suppose a client was built with the intention of showing details about ten users. We
can benchmark how making ten separate API requests would differ, in transmitted HTTP
data size, from how it would behave if we could fetch all ten users with one request—the
difference being that the headers are sent only once in comparison to ten times.

The HTTP requests can be benchmarked with the command-line tool cURL [7]. In
this example, we let the browser Firefox generate the cURL command in order to make
the request look like it was sent from a browser. This includes setting headers such as the
accepted media types, the user agent, cookies and so on.

1 curl --trace-ascii -
'https://api.instagram.com/v1/users/1574083/?access_token=[...]'

2 -H 'Host: api.instagram.com'
3 -H 'User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10;

rv:40.0) Gecko/20100101 Firefox/40.0'
4 -H 'Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8'
5 -H 'Accept-Language: en-US,en;q=0.5'
6 --compressed
7 -H 'DNT: 1'
8 -H 'Cookie: [...]'
9 -H 'Connection: keep-alive'

10 -H 'Pragma: no-cache'
11 -H 'Cache-Control: no-cache'

Figure 2.2: The cURL command used in the benchmark—the ac-
cess token and cookies have been omitted.

11

2. Performance issues with HTTP/1.1

1 => Send header, 705 bytes (0x2c1)
2 0000: GET /v1/users/1574083/?access_token=[...]
3 0040: [...] HTTP/1.1
4 0060: Accept-Encoding: deflate, gzip
5 0080: Host: api.instagram.com
6 0099: User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:40.
7 00d9: 0) Gecko/20100101 Firefox/40.0
8 00f9: Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/
9 0139: *;q=0.8

10 0142: Accept-Language: en-US,en;q=0.5
11 0163: DNT: 1
12 016b: Cookie: [...]
13 02bf:
14 <= Recv header, 17 bytes (0x11)
15 0000: HTTP/1.1 200 OK
16 <= Recv header, 29 bytes (0x1d)
17 0000: X-Ratelimit-Remaining: 4996
18 <= Recv header, 22 bytes (0x16)
19 0000: Content-Language: en
20 <= Recv header, 24 bytes (0x18)
21 0000: Content-Encoding: gzip
22 <= Recv header, 40 bytes (0x28)
23 0000: Expires: Sat, 01 Jan 2000 00:00:00 GMT
24 <= Recv header, 48 bytes (0x30)
25 0000: Vary: Cookie, Accept-Language, Accept-Encoding
26 <= Recv header, 25 bytes (0x19)
27 0000: X-Ratelimit-Limit: 5000
28 <= Recv header, 18 bytes (0x12)
29 0000: Pragma: no-cache
30 <= Recv header, 61 bytes (0x3d)
31 0000: Cache-Control: private, no-cache, no-store, must-revalidate
32 <= Recv header, 37 bytes (0x25)
33 0000: Date: Wed, 27 May 2015 10:28:24 GMT
34 <= Recv header, 47 bytes (0x2f)
35 0000: Content-Type: application/json; charset=utf-8
36 <= Recv header, 121 bytes (0x79)
37 0000: Set-Cookie: [...]
38 0040: [...]
39 <= Recv header, 24 bytes (0x18)
40 0000: Connection: keep-alive
41 <= Recv header, 21 bytes (0x15)
42 0000: Content-Length: 271
43 <= Recv header, 2 bytes (0x2)
44 0000:
45 <= Recv data, 271 bytes (0x10f)
46 0000:H.eU..m.Mo.7....V.Ez........Zd..}..
47 0040: ..."..3...E/W.....k.....hP..............&.....!...../|.q...]v.~~
48 0080: .C\.u..*-{.F.?3.7..Q...6X........f...g....|q..,T8-(.....cLkV..55
49 00c0: %....<.=..H,/...7w..F..-..6........qd....v....QK.c....tLh..S....
50 0100: !9-....,...a...

Figure 2.3: Result from cURL. Cookies and access token omitted.

12

2.2 Maximum TCP connections

We can from the output in Figure 2.3 see that 705 bytes are sent as request header data
(line 1), 536 bytes are received as response header data (line 14, 16, 18, 20, 22, 24, 26,
28, 30, 32, 34, 36, 39, 41 and 43) and the actual response payload is 271 bytes (line 45).
This means that 82% of the data, in every request, sent to this Instagram API end-point is
nothing but header data.

The header data is often useful and in many cases required so we can not just discard it.
Consider instead if we could expose a new end-point where all ten users could be requested
simultaneously with one HTTP request instead of one request per user. In that case, we
would get away with only transmitting the header data once and not ten times.

10 users, 10 request 10 users, 1 request
Total bytes headers 12,410 1,241
Total bytes payload 2,710 2,710

% headers of total data 82% 31%

Figure 2.4: The headers/payload ratio when executing one request
per user compared to ten users in one request. The overhead per-
centage will continue to decrease linearly in relation to the number
of users requested simultaneously.

The header data used in this example can be viewed as a lower bound. A large quantity
of HTTP cookies, which are used for personalisation, analytics and session management,
are also sent with every HTTP request as part of the header data and can add up to multiple
kilobytes of protocol overhead for every single HTTP request [8, page 200].

Another interesting thing in Figure 2.3 happens on line 46–50 which is where the pay-
load is. While it looks like gibberish, it is actually the user profile data in JSON format,
as seen in Figure 2.1, but compressed using Gzip (more about compression on page 16).
Compressing responses is a great bandwidth saving technique—however, only the payload
can be compressed in HTTP/1.1, not the headers [2].

This is one of the issues that can be mitigated by using HTTP/2 since it allows the
header fields to be encoded with a static Huffman code which reduces the transfer size.
HTTP/2 also require that the client and the server remember the previously seen header
fields so that they can be used at a later time as a reference when encoding previously sent
values [4, page 19].

2.2 Maximum TCP connections
The HTTP/1.1 protocol does not allow data to be multiplexed over the same connection
[8, p.194]. For this reason, most browser vendors have introduced a connection pool of six
TCP connections per host (the HTTP/1.1 specification limits the pool to two connections
[2] per host, but modern browsers have refused to conform to this standard in order to
decrease the load times). The limitation caused by the fixed number of connections in the
connection pool is known as the “maximum TCP connections”.

A common way to deal with the connection limit is to use domain sharding [9, page
161] . Since the limit of six TCP connections is on a host name basis, it is possible to

13

2. Performance issues with HTTP/1.1

create multiple subdomains to get around this limitation. If the subdomains <shard1,
shard2, ...>.example.com are created and they all point to the same server, then more
than six TCP connections can be used in parallel at the same time to the same server from
a browser.

This approach is unfortunately not without its downsides as every new hostname re-
quires a new DNS lookup and each new TCP stream requires a TCP three-way handshake
and a TCP slow start, all of which can have a negative impact on the load times [8, page
199]—just the DNS lookup typically takes 20–120 ms [10, page 63]. Another problem
with domain sharding is the fact that the browser always establishes six connections per
shard even if not all, or even any of them are used. In addition to these problems, domain
sharding is a complicated manual process to set-up and it is hard to determine how many
shards to use for achieving optimal performance. Yahoo investigated this problem and
they concluded that you should, as a rule of thumb, use at least two, but no more than four
domain shards [11].

To illustrate this problem with an example, we can benchmark the impact of the con-
nection pool limit when downloading thumbnails for an image gallery. Suppose we want
to download 60 thumbnails and that the connection we are using has a lot of bandwidth
but suffers from high latency.

We can see in Figure 2.5 that the six TCP connection limit will become a bottleneck
if all images are retrieved with one HTTP request per image. The resulting network graph
will typically look like “stairs” where the requests wait in groups of six for a free TCP
connection.

Figure 2.5: Chrome developer tools showing how the six TCP con-
nection limit becomes a bottle neck on a connection with 300 ms
of latency.

We can calculate the total amount of delay caused by latency in our example with the
following formula:

14

2.2 Maximum TCP connections

total latency = number of thumbnails ∗ latency per request
number of parallel requests

(2.1)

In our example, we fetch 60 thumbnails on a connection which has a latency of 300 ms
to the server. Our browser (Google Chrome) can handle six parallel TCP connections
which gives us the following equation:

total latency = 60 ∗ 300

6
ms = 3, 000 ms = 3 seconds (2.2)

If we instead could concatenate these 60 thumbnail requests into a single request, and
the response would contain all of the thumbnails, then we would only have to pay the
latency cost once. This would reduce the total amount of latency by an order of magnitude,
from 3,000 ms to 300 ms, since we only have to pay the price for the latency once and not
for every six thumbnails.

Other similar approaches to the same problem include CSS Sprites [12] where a prede-
fined set of images, such as icons, are merged in to one large image file. Individual images
are then displayed by rendering parts of the larger image across the website. Note that
this approach only works on a predefined set of images since the image merging process
is costly and it would therefore not work in the thumbnail example above.

Text-based files such as JavaScript source code files and CSS stylesheets can also be
concatenated into larger files during the build process in order to decrease the amount of
HTTP requests needed [12].

As a side-note, it is worth pointing out that increasing the bandwidth of the connection
would not resolve this problem as the latency is the only bottleneck in this example. We
often focus on increasing the bandwidth as our connections to the internet improve when
we perhaps should focus more on the latency instead.

It is not uncommon for browsers to wait idle for 100–150 ms before spending 5 ms
actually downloading an image. This means that latency often accounts for 90–95% of the
total waiting time for HTTP requests [13].

This issue has been addressed in HTTP/2 which utilises one multiplexing connection
instead of a connection pool [3]. The effect of this is that a single TCP connection is able
to handle all the requests and responses concurrently and by doing so removes the need
for a fixed number of blocking TCP connections.

2.2.1 Chunked responses
In the previous example where we fetched thumbnails, we often want to display each
thumbnail as soon as each individual image has been loaded. This could cause prob-
lems now that we are using one concatenated request instead of a separate request for each
image. Fortunately we can utilise chunked responses [14] for this—that is sending the cur-
rently available parts of the response as individual pieces, or chunks, to the client before
the entire response is known.

The HTTP server can utilise chunked transfer encoding in the HTTP responses in order
to send the individual thumbnail data in chunks to the client. By doing so, images, or any
other type of data, can be rendered in the client as soon as each chunk is received, even
out of order if necessary.

15

2. Performance issues with HTTP/1.1

This approach, with concatenated requests and chunked responses, has been success-
fully been implemented at Dropbox in their gallery software implementation [15]—much
in the same fashion as the previous example.

Chunked transfer encoding is the only encoding which HTTP/1.1 clients are required
to understand [2]. This makes it very attractive to use—especially in the cases where data
chunks can be separated in to logical pieces.

2.3 Compression
All requested data, especially text based data, can be compressed before it is sent to the
client in order to reduce the transferred data size. A common compression algorithm with
in HTTP is GNU Zip (Gzip). Gzip works best on text-based files such as HTML, CSS and
JavaScript and has an expected compression rate of 60–80% when used on text-based files
[8, page 237].

It is worth mentioning that there are scenarios where Gzip compression applied to
very small files can increase the total size because of the Gzip dictionary overhead. This
problem can be mitigated by defining a minimum file size threshold [16].

As an example, arbitrary user data2 for 50 users was created and encoded in JSON for-
mat. When this data was requested from a server without compression, the total size of the
HTTP response payload amounted to 55,205 bytes of data. By applying Gzip compression
to the same data, the content length was reduced to 16,563 bytes of data which amounts
to a 70% space saving.

Space Saving = 1− Compressed size
Uncompressed size

= 1− 16, 563

55, 205
= 70% (2.3)

An important thing to note about Gzip compression is that only the payload is com-
pressed in HTTP/1.1 [2]. This means that the headers, including cookies, are not com-
pressed which would have otherwise been an additional performance gain. This is one of
the improvements which have been addressed in the development of HTTP/2 [4, page 19].

2.4 Further reading
High Performance Browser Networking - What every web developer
should know about networking and web performance, Ilya Grigorik,
2013, O’Reilly Media
The essential book about browser networking performance. It covers many aspects around
browser networking and the limitations within the HTTP protocol which are essential to
understand in the development of performance increasing API gateways.

2https://gist.github.com/AntonFagerberg/32ddde695fb0e2581176

16

https://gist.github.com/AntonFagerberg/32ddde695fb0e2581176

2.4 Further reading

HTTP/2: A New Excerpt from High Performance Browser Network-
ing, Ilya Grigorik, 2015, O’Reilly Media
A new excerpt from the High Performance Browser Networking book. The new excerpt
describes the new features in the HTTP/2 protocol such as the header compression and
request/response multiplexing.

High Performance Web Sites - Essential Knowledge for Front-End
Engineers, Ilya Grigorik, 2007, O’Reilly Media
Techniques for building high performing web sites. These techniques can also be applied
inside API gateways.

Even Faster Web Sites - Performance Best Practices for Web De-
velopers, Ilya Grigorik, 2009, O’Reilly Media
Follow-up book to High performance Web Sites with additional techniques which can be
applied inside API gateways.

17

2. Performance issues with HTTP/1.1

18

Chapter 3
API gateways in theory

When developing clients for back-end APIs, you often find that the client’s needs and the
back-end APIs functionality is not a perfect match. On top of that, different functionality
is often required based on whether the client is a mobile application, a desktop application
or something entirely different. The way the clients want to use the API can also radically
differ based on what kind of product is being developed.

Not being able to optimise the API for each individual client’s needs can hurt the per-
formance since it has to do a lot of extra work to refit the back-end’s model to its own
model—but it can also strain the developer who may have to refit the API for each new
client.

Changing the back-end API is often not possible, perhaps especially in the industrial
environment where things tend to move slowly. The back-end can be a legacy system where
changes are not allowed to take place—it might be impractical to adapt the back-end for
different client types without breaking existing clients or the back-end development team
may be strained for any other reason.

One approach to mitigate these problems is by utilising an API gateway [1]—a new
software layer between the clients and the back-end APIs. By introducing an API gateway,
the API calls can be modified in many different ways when they are transported between
the client and the back-end API.

In this chapter, we will walk through what an API gateway is and what it can do. Many
of the potential usage areas described here are derived from problems encountered in the
industry while other usage areas are adaptions of existing similar concepts such as those
seen in section 3.19.

3.1 What is an API gateway?
An API gateway works on a new software layer between the clients and the back-end API
servers. For an API gateway to be efficient, it has to be able to modify the communication

19

3. API gateways in theory

between the clients and the servers, and by doing so, improve the clients and potentially
also the back-end API servers performance.

The focus in this thesis is to see how the clients can be optimised in terms of per-
formance but also regarding code complexity and developer productivity. Little effort is
taken to optimise the back-end API server—the goal is however not to put more strain
on the server after introducing the API gateway but rather to keep it on the same level as
before.

Figure 3.1: The API gateway is placed as a new separate layer
between a client and a back-end API server.

One might suspect that the amount of code will increase as we introduce yet another
software component. However, in many scenarios, the code we write in the API gateway
had to be written in the client if the API gateway did not exist. With this reasoning, we
can use, to some extent, the same amount of code but gain a lot from just placing it closer
to the back-end APIs.

3.2 Differing client needs
We now, perhaps more than ever, have a vast variety of consumer devices such as mobile
phones, tablets, desktop computers and other smart devices such as TVs—all of which
often utilise the same APIs. One can imagine an API which returns a collection of the
latest uploaded images to some service.

Since the screen size is drastically different on a mobile phone compared to a TV, the
number of images the client wants to retrieve from the API can vary a lot. Depending on
the type of client which is requesting the data, the API gateway can adapt the number of
returned images.

A similar approach has been implemented at Netflix where each client development
team write their own “adapter” code to fully optimise the underlying API for their client’s
specific needs [17]. This concept is very similar to how an API gateway work.

3.3 Multiple resources and requests
A client often want to perform many requests simultaneously, either to one or multiple
back-end APIs. A typical scenarios is when a user loads a single-page web application for
the first time and the application’s initial state has to be retrieved. Another typical example
is when multiple resources, which are connected in some fashion, has to be loaded.

20

3.4 Duplicate and unnecessary items

Figure 3.2: The API gateway receives a concatenated request
which it distributes to multiple resources, the responses are con-
catenated into a single response which is then sent back to the
client. The resources can either belong to one or several back-end
systems.

When working with HTTP requests, there are multiple penalties for executing many
requests compared to one concatenated request. These penalties includes the previously
mentioned limit of maximum TCP connections (page 13) and the overhead from HTTP
headers (page 9)—but there are also other issues such as the increased battery drain on
mobile devices which occur when the wireless radio has to become active multiple times
[18].

We can, by utilising an API gateway to concatenate many HTTP requests, avoid these
common problems. Concatenating requests can be seen directly in many modern API
designs such as the Facebook Graph API [19]—but for the APIs which lacks this feature,
an API gateway can effectively mitigate these problems.

3.4 Duplicate and unnecessary items
When requesting data from a back-end API, the responses may contain unnecessary data
which the client do not need. In a similar fashion, if a client performs several similar
requests, it is possible that all the responses contains some amount of duplicate data. By
utilising an API gateway, the results from the back-end API can be modified to remove the
items which the different clients do not need.

21

3. API gateways in theory

Figure 3.3: The client requests the items A, B, C, D. The API
gateway fetches A, D from Resource 1—item A from the Resource
2’s response can then be discarded since it is now duplicate data.
Item E, F from Resource 3 can be discarded since they are not
wanted by the client at all. The API gateway can after the retrieval
respond with just the requested items A, B, C, D.

3.5 Format transformation
When working with older legacy systems, the data can be formatted in a way which is not
suitable for modern clients. When looking at clients written in JavaScript, many browsers
and developers prefer to work with JSON rather than XML since the translation between
JavaScript objects to JSON is a 1:1 mapping—more about this on page 48. API gateways
can convert the request and response data to a format more appropriate for the requesting
client or the responding back-end.

Figure 3.4: The client requests “user” in JSON-format. The API
gateway fetches “user” in XML-format from the back-end, con-
verts it to JSON and responds to the client with it.

The approach of using an API Gateway has the additional benefit that the conversion
code does not have to be rewritten in every client. Rewriting the same conversion code,

22

3.6 Pure REST and HATEOAS

potentially in a new language or by using a different library, for each client increases the
risk of introducing bugs. The reason for this is that different libraries works in different
ways even though they solve the same problem—especially when there is no standardised
mapping between two formats. Bugs are also introduced as the size of the code base grows
such as when the same task has to be rewritten several times [20, page 521].

By performing the transformations in the API gateway, the processing work is moved
away from the clients which can improve its performance as well as reducing the code size
and its complexity.

3.6 Pure REST and HATEOAS

REST, Representational State Transfer, consists of guidelines and best practices for creat-
ing scalable web services. The style was developed by the W3C Technical Architecture
Group (TAG) in parallel with HTTP/1.1. RESTful systems often communicate over HTTP
using so called HTTP verbs such as GET, POST, PUT and DELETE to send and retrieve
data between clients and servers.

If an API follows the strict rules of REST, it must utilise the concept of HATEOAS,
Hypermedia as the Engine of Application State, which is a constraint in the REST architec-
ture. Instead of defining and explicitly sharing a collection of end-points which the client
can call, it requires the client to discover the resources itself by first performing a GET
HTTP request to the APIs root URL1. The back-end will respond with all the resources
available from the root such as “users”. The client then has to query the “user root” to
discover which requests can be made in regards to the user resource—and so forth.

By forcing the client to discover all resources, the client developer has to do a lot of
demanding work in the implementation phase [21, page 62]. This approach also introduces
a lot of HTTP requests which increases the network traffic significantly.

API gateways can be utilised to transform a “Pure REST API” with HATEOAS to a
simpler API which only follows some of the restrictions put in place by the REST architec-
tural principles. This can significantly lower the amount of traffic between the client and
the back-end, which can be a big performance gain, especially in cases such as when there
is a high latency between the client and the back-end—assuming that the latency between
the API gateway and the back-end is low such as when they are placed inside the same
LAN2.

1Uniform Resource Locator, see appendix.
2Local Area Network, see appendix.

23

3. API gateways in theory

Figure 3.5: The API gateway performs the pure REST HATEOAS
communication. At the same, the API gateway exposes a simpler
end-point which the clients can call.

3.7 Compression
API gateways can be utilised to compress responses in the cases where no compression is
present on the back-end API servers. This can significantly reduce the amount of traffic
the client has to receive which increases the performance, especially on mobile devices
with low bandwidth. HTTP compression was explored on page 24 where it was noted that
Gzip has an expected compression level of 60-80% on text-based media.

Figure 3.6: The API gateway compresses the responses from the
back-end API with Gzip (or any other supported compression al-
gorithm). This reduces the response traffic in the client by 70%.
Numbers taken from the example on page 24.

3.8 Caching
Responses from frequent API calls can be cached with the API gateway in order to reduce
the load on the back-end system [21, page 107]. The cached items can have a specified life-
time or be invalidated based on certain events. There are several different caching strate-
gies and many popular third-party systems which the API gateway can utilise—caching is
a vast and complex topic in itself and is therefore not explored in further detail here.

24

3.9 Decreasing bandwidth and cost

Figure 3.7: Frequent API calls to the same end-point can be cached
in the API gateway to reduce the load on the back-end servers.

3.9 Decreasing bandwidth and cost
Cloud providers, such as Amazon [22] and Microsoft [23], do not charge for the used
bandwidth as long as data is transferred between servers in the same cloud regions. When
utilising an API gateway in the cloud, bandwidth and its costs, to and from the client, can
be reduced by placing the API gateway in the same cloud region as the back-end servers
and apply bandwidth saving techniques such as the previously in this chapter mentioned:
compression, duplicate & unnecessary items, pure REST and in some cases even format
transformation.

Figure 3.8: Cloud providers such as Amazon [22] and Microsoft
[23] charges based on whether the traffic is in the same cloud re-
gion.

25

3. API gateways in theory

3.10 Secure point of entry for private networks
Corporations usually uses several internal services with APIs that are protected inside a
private network. A VPN3 can be utilised to give clients on the outside access to services
inside the private network. A VPN can however have the undesired side effect of exposing
too much of the private network to the external client machines.

Another approach to solve this is to place an API gateway inside the DMZ4 of the
private network. By doing so, external clients can access the API gateway as a single
point of entry for all internal APIs. The API gateway can be configured to only expose
a predefined collection of the internal APIs and proxy them to the appropriate external
clients.

Figure 3.9: An API gateway used as a secure way of exposing
internal services in a private network to the outside world.

3.11 Latency
One important goal of an API gateway is to reduce, or at least not significantly increase,
the latency experienced in the communication between the client and the back-end server.
Because of this, the placement of the API gateway from a network point of view is very
important. (In all of the following scenarios, we treat LAN latency as negligible which
should be a fair assumption.)

The first approach we look at is placing the API gateway on the same LAN as the client.
Placing the API gateway on the same machine as the client is rarely possible or practical—
it complicates updating the gateway and defeats much its purpose which is introducing a
new layer between the client and server.

Placing the API gateway inside the same LAN as the client can be a good solution,
for example when it is used inside a corporation’s private network. The constraint with
this approach is that no outside clients, such as smartphones not connected to the internal

3Virtual Private Network, see appendix.
4DeMilitarized Zone, see appendix.

26

3.12 Error handling

network, will be able to avoid the extra latency introduced over WAN5—or may not be
able to connect to it at all based on the LAN security. This is however an approach which
does not introduce double latency, but it does not decrease it either.

The second approach is to place the API gateway as a separate application in its own
cloud or on a LAN separated from the back-end and client. While this may be the only
solution for certain hosting setups, this introduces the problem with double latency. Since
the TCP-packets has to go through two WAN connections, both of them can introduce a
substantial amount of latency which can worsen the response times.

Finally, the third approach is to place the API gateway on the same LAN as the back-
end system. This is in many cases the best approach as it avoids the problem regarding
double latency while it at the same time provides access for external clients and introduces
flexibility in regards to updates.

The problem with double latency can however arise, and be unavoidable, if the API
gateway is communicating with several back-end systems which are placed on different
LANs. In such a scenario, several factors have to be considered before deciding which
LAN to place the gateway in. Such factors include which back-end API has the most
traffic, bandwidth costs between LANs, the latency between the different LANs and so
forth.

Figure 3.10: How latency affects the different placement strategies
of the API gateway.

3.12 Error handling
An API gateway should be able to handle errors with different strategies. In the simple
scenarios where a single request is proxied and potentially transformed, the API gateway
can chose to either resubmit the failing request to the back-end API a number of times,
potentially after a small delay, or to simply relay the error to the client.

5Wide Area Network, see appendix.

27

3. API gateways in theory

Deciding what to do in more complex cases where several requests are concatenated
or transformed together is much harder. The developer of the API gateway’s end-point has
to decide if a partial result is relevant for the client or if one failure should invalidate the
entire combined result.

Deciding to invalidate the entire result based on one request failure is problematic if
the API gateway uses chunked responses. Ideally, the API gateway want to transmit data to
the client as soon as it is available but since chunks can not be retracted, the API gateway
either has to wait for all back-end results to arrive before responding or introduce some
kind of an error chunk which tells the client to discard the previously sent data.

The API gateway developer has to decide whether to handle much of the error com-
plexity in the API gateway itself or delegate this responsibility to the client. These factors
has to be considered on a case to case basis—there is no correct answer.

3.13 Security—authentication & authorisation
API gateway security is, like all security scenarios, a very complex problem. All but the
very simplest of cases should be solved outside the implementation of the gateway itself.
What makes an API gateway complex from a security point of view is the fact that an
end-point exposed from the API gateway can communicate with several protected back-
end systems, all of which can utilise different authentication and authorisation protocols.
Because of this, a single sign-on service provided outside the API gateway itself is a good
approach for the more complex setups which communicates with several back-end systems.

Any further in-depth discussion regarding this topic is outside the scope of this thesis
and has therefore been excluded intentionally.

3.14 Conditional back-ends
By utilising an API gateway, several different back-ends can be exposed as one single end-
point. If we, for example, wanted to provide an API with weather reports from Sweden
and Denmark but we have noticed that two different back-end APIs provide better reports
for each country—one is better for Denmark and one is better for Sweden. With an API
gateway, we can translate the incoming API-calls to the format required by the different
back-ends and delegate the call based on certain inputs such as from where the API-call is
made.

3.15 Rate limiting
API gateways can mitigate traffic spikes on back-end services by implementing a rate limit
for API-calls. This can usually be done in many different ways as seen in Azure [24] and
Apigee [25]. Rate limiting strategies include a global rate limit, a per client rate limit or a
per token rate limit. This functionality is often used from a business perspective where a
certain number of calls are free but a fee has to be paid for subsequent calls.

28

3.16 Support old API versions

3.16 Support old API versions
It happens that API developers make changes which break the backward compatibility
when moving on to newer improved versions of the API. Fields can be added, renamed
or removed. In such scenarios, old clients may be forced to update in order to work with
these breaking API changes.

Instead of rewriting many of the already released clients to fit the new API-version, an
API gateway can, in some cases, be used to translate the new API format back to the old
one. How feasible this is depends on what kind of changes that have been introduced and
whether or not they are destructive.

3.17 Analytics
API gateways are in a perfect position to collect data that can be used for analytics. This
is because the API gateway is able to monitor all the traffic sent between the clients and
the back-ends.

API gateways can collect a lot of analytic data from HTTP requests and responses such as:

• Client technology: the browsers user-agent which is sent with request headers is one
way to collect a variety of data. The user-agent normally includes the browsers name
and version, rendering engine, computer architecture and operating system.

• Request-response time for both the client and each individual back-end API calls.

• Latency from different back-end APIs.

• Geolocation from the HTML 5 geolocation API [26] or by geolocating the requesting
IP address.

• Errors and failure rates for the back-end servers.

• Invalid client requests.

• Traffic peak hours.

• Suspicious client behaviour such password or denial of service attacks.

Since performance is usually a top priority in API gateways, the collected data should
preferably be delegated, stored and processed using a third-party analytics engine.

3.18 Load balancing
API gateways can be used as load balancers to distribute workloads across multiple back-
end systems. This can be achieved by implementing different scheduling algorithms—
either by doing a simple round-robin or by implementing a more complex algorithm which
takes additional factors into account such as the back-end systems reported load, response
time, geolocation and so forth.

29

3. API gateways in theory

3.19 Similar concepts
Netflix API
Netflix has applied a concept, similar to API gateways, where each client’s team develop
their own end-points adapted to their client’s specific needs.

Optimizing the Netflix API, Ben Christensen, 2013, The Netflix Tech Blog
http://techblog.netflix.com/2013/01/optimizing-netflix-api.html

Embracing the Differences : Inside the Netflix API Redesign, Daniel Jacobson, 2012, The
Netflix Tech Blog
http://techblog.netflix.com/2012/07/embracing-differences-inside-
netflix.html

The Netflix API Optimization Story, Jeevak Kasarkod, 2013, InfoQ
http://www.infoq.com/news/2013/02/netflix-api-optimization

Managing API Performance, Apigee
Apigee, who work with API tool development, have put together a collection of articles
with focus on optimising API performance in common scenarios which are also applicable
in API gateways.

Managing API Performance, Apigee
http://apigee.com/docs/content/managing-api-performance

30

http://techblog.netflix.com/2013/01/optimizing-netflix-api.html
http://techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html
http://techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html
http://www.infoq.com/news/2013/02/netflix-api-optimization
http://apigee.com/docs/content/managing-api-performance

Chapter 4
Rackla: API gateway framework

As part of this thesis work, we developed the framework Rackla1 in order to better under-
stand, and be able to rapidly develop, custom API gateways. Other API gateway technolo-
gies, such as Microsoft Azure API Management [27], Apigee Edge [28] and IBM API
Management [29], mainly focuses on expanding existing APIs from a business point of
view with focus on monetisation, security and BaaS (backend as a service) using drag-
and-drop graphical interfaces.

Rackla’s goal is to help developers create their own custom API gateways programat-
ically with a high degree of freedom and a small amount of abstractions which otherwise
could limit the use cases. While many existing solutions focus on expanding the existing
APIs with additional functionality, Rackla’s focus is, on the other hand, mainly about data
transformation which happens seamlessly between the client and the server.

4.1 Technologies: language and libraries
Rackla was developed using the programming language Elixir [30] which runs on the
Erlang VM. It utilises the existing libraries Plug [31], Hackney [32] and Poison [33]. In
this section, we will explain what they are and what purpose they have.

4.1.1 Elixir
Elixir is a functional language designed for building scalable and maintainable applica-
tions which run on the Erlang Virtual Machine. The Erlang VM is known for running
low-latency, distributed and fault-tolerant systems while also being successfully used in
web development [30]. We consider all of these properties important when developing a
successful API gateway.

1https://github.com/AntonFagerberg/rackla

31

https://github.com/AntonFagerberg/rackla

4. Rackla: API gateway framework

Other important factors for choosing to use the language Elixir for this framework is the
pipe operator, the asynchronous behaviour defined by Elixir processes and the functional
programming aspect of the language.

4.1.2 The pipe operator
An important concept used in Elixir is the pipe operator: |>. The pipe operator takes
the result from the expression on the left side of the operator and “pipes” it into the first
argument of the right hand side function. People who are accustomed to Unix may see a
similarity to the Unix pipe operator: |.

As an example, we can take a look at the following nested and hard to read code. The code
will take the list of all integers from 1 to 100,000, multiply all the integers with 3, remove
all even numbers and finally summarise them:

1 Enum.sum(Stream.filter(Stream.map(1..100_000, &(&1 * 3)), odd?))

Figure 4.1: Elixir code written without the pipe operator.

The code from Figure 4.1 can be rewritten using the pipe operator which results in a more
easily read version:

1 1..100_000 |> Stream.map(&(&1 * 3)) |> Stream.filter(odd?) |> Enum.sum

Figure 4.2: The same code as seen in Figure 4.1 expressed with
the pipe operator.

Another benefit of using the pipe-operator is that it makes you reason about the code
in a more structured way. When you read it, you might say: “First I have the range of
numbers, then I map over it, then I filter them, then I sum them”—which corresponds to
how the code is written.

The pipe operator is an important part in how Rackla works as it pipes requests to a
response, potentially through transformations along the way. For developers who are not
accustomed to Elixir, the minimalistic syntax used inside Rackla can make it look like an
easy to read DSL (Domain Specific Language) in which they can expose end-points and
pipe requests to the clients without writing a lot of boilerplate code.

4.1.3 Elixir processes
Processes are Elixir’s term for utilising the “actor model” as its concurrency model. In
Elixir, processes are extremely lightweight (in comparison with operating system pro-
cesses) which means that it is not uncommon to have thousands of them running simul-

32

4.2 Rackla overview

taneously. Elixir processes run concurrently, isolated from each other and can only com-
municate by message passing [34].

4.1.4 Plug
Plug is a specification for composable modules in between web applications—but also
as connection adapters for different web servers in the Erlang VM [31]. In Rackla, Plug
is utilised for exposing end-points to which the client can send requests, and a as a way
for the API gateway to send responses back to the clients over the HTTP protocol. An
additional benefit of using Plug is that existing third-party code for handling things like
cookie management and cross-origin requests can be reused inside Rackla.

4.1.5 Hackney
Internally, Rackla uses the Erlang HTTP client library Hackney [32] to send HTTP re-
quests to back-end systems. Hackney is only used internally and it is therefore abstracted
away from the Rackla framework users in order to simplify the API gateway development
process and ensure that Hackney can be removed or replaced in future versions if neces-
sary.

4.1.6 Poison
Poison is an Elixir library used to convert JSON strings to native Elixir data structures and
vice versa. In Rackla, Poison is used to convert responses to JSON format but it can also
be used by the users of Rackla in order to decode JSON responses from the back-end APIs
and transform them with the built-in Elixir functions.

4.2 Rackla overview
4.2.1 Pipeline
A pipeline is the result from using the pipe operator to tie the different functions together.
The goal, when implementing an API gateway with Rackla, is to describe each end-point
as a sequence of steps defined as a pipeline. The simplest scenario is to proxy a request
with the API gateway—that is to relay a request without modifying it. We can do that by
first defining a URL to call, pipe it to the request function and then pipe it to the response
function:

1 "www.example.com"
2 |> request
3 |> response

Figure 4.3: A simple proxy which relays the entire payload un-
touched.

33

4. Rackla: API gateway framework

4.2.2 Monads and Functional programming
A new type, which can be passed between the different functions, has to be defined in
order for the pipeline to work—but also for letting us reason about it. This type has to be
able to handle any number of requests asynchronously while still enable us to transform
the eventual results before they are sent to the client.

With these constraints, a new type was defined with inspiration taken from the con-
cept of monads—a monad is a structure, often used in functional programming, which
represents computations as a sequence of steps.

The new Rackla type defines what it means to chain operations together using well
established concepts commonly found in functional programming such as map, flat_map
and reduce with focus on still being asynchronous.

To illustrate this, we can use Rackla to request two images over HTTP, transform the
images’ binary data by applying a Base64 encoding and finally responding to the client
with the encoded data:

1 ["url-to-image-1", "url-to-image-2"]
2 |> request
3 |> map(&Base.encode64/1)
4 |> response

Figure 4.4: Asynchronously transforming two images requested
over HTTP to Base64 encoded data.

It is important to point out that it is the new Rackla type that allows this pipeline to
be fully asynchronous—the order of the response chunks sent to the client will depend on
which of the URLs that is responding first and which of the Base64 encodings is performed
the fastest. It can very well be the case that one Base64 encoded image has been fully sent
to the client while the other image is still being requested in the API gateway.

4.2.3 Function overview
In this section we will go through and explain the most common functions defined in the
Rackla framework. These functions enable us to build very flexible and powerful API
gateways.

Request
The function request, in the simple case, takes one or many URLs as strings and returns
a Rackla type. The data eventually contained inside the Rackla type will correspond to
either the results from the HTTP requests or error tuples if any error occur such as DNS
lookup failures or a non-responding back-end.

More advanced HTTP requests can be executed by instead passing one or many Request
types to the request function. By using a Request type, we can define which HTTP verb
to use such as GET or POST, what timeout limits we want to use and how we want to

34

4.2 Rackla overview

handle insecure SSL connections. We can also define custom request headers and attach
a request body (payload) to each individual request.

In addition to this, we can in the request function define if we want the Rackla type
to contain just the response body, the HTTP responses payload, or a Response type con-
taining, in addition to the response body, the response status code and response headers.

We noted in section 2.2 that the HTTP specification and the browsers introduce a limi-
tation in the number of TCP connections that the client can establish to the back-end API.
Rackla, in contrast to this, does conform to this limitation which means that the API gate-
way designer can chose to establish any number TCP connections to the back-end API.

Just

The function just takes any existing type and encapsulates it inside a Rackla type. This
function is useful when mixing already available data with eventually available data from
HTTP requests.

Response

The function response takes a Rackla type and converts the underlying types to an HTTP
response and sends it to the client. In order to conform to the asynchronous nature of
Rackla, we only use chunked responses [14]. We can pass in options in order to customise
the response, available options are: json which automatically encodes the response as a
JSON data structure, compress which compresses the response using GZip compression,
sync which guarantees that the responses are sent in a deterministic order, status which
defines the response’s status code and headers which defines the headers that will be sent
with the HTTP response.

Map

The function map is used in order to transform the contents inside the Rackla type from
one type to another type. As an example, we saw in Figure 4.4 that we can apply a Base64
encoding to each individual image’s data from many HTTP requests, contained inside a
single Rackla type.

Flat map

The function flat_map works like map with the exception that the returned type inside its
anonymous lambda function has to be a new Rackla type. The naive approach is to wrap
the returned type using just, but a more appropriate usage is to utilise this function when
you want to initiate another request pipeline inside a transformation.

35

4. Rackla: API gateway framework

1 "example-url"
2 |> request
3 |> flat_map(fn(response) ->
4 "url-get-more-info-#{response}"
5 |> request
6 end)
7 |> response

Figure 4.5: A new request pipeline can be constructed inside the
flat_map function.

In the figure above we make an HTTP request to an end-point which will return some
response. By using flat_map, we can create one or more additional requests from the
received response by creating a new request pipeline inside the flat_map’s anonymous
lambda function. This enables us to define recursive request structures which later boils
down to a single response.

Reduce
The function reduce, or sometimes called fold, is a method for taking a collection of
values and “reducing” them into to a single value. Rackla provides a reduce function
which reduces the values contained inside its own Rackla type into a single value (still
contained inside a Rackla type).

1 Enum.reduce([1,2,3], &(&1 + &2))

Figure 4.6: Illustration of how the reduce function works inside
the built in Enum module in Elixir—the reduction will result in the
value 6 after performing the addition 1+2+3. The reduce defined
by Rackla works in the same way but on a Rackla type instead of
an enumerable type.

Collect
Sometimes we may want to to break out of the asynchronous Rackla type and convert it
to a native Elixir type. In these cases, we can use the blocking function collect which
takes a Rackla type and returns the containing value—or all values in a list if there are
more than one underlying value.

36

4.2 Rackla overview

4.2.4 A complete example
To conclude this section, we will look at a complete end-point which uses the Instagram
API [6]. We will first present the code below and then explain what happens line by line.
This is a complex end-point which uses many of the techniques defined in Rackla.

1 get "/instagram" do
2 "<!doctype html><html lang=\"en\"><head></head><body>"
3 |> just
4 |> response
5

6

"https://api.instagram.com/v1/users/self/feed?count=50&access_token="
<> conn.query_string

7 |> request
8 |> flat_map(fn(response_data) ->
9 case response_data do

10 {:error, reason} ->
11 just(reason)
12

13 http_response ->
14 case Poison.decode(http_response) do
15 {:error, reason} ->
16 just(reason)
17

18 {:ok, decoded_data} ->
19 decoded_data
20 |> Map.get("data")
21 |> Enum.map(&(&1["images"]["standard_resolution"]["url"]))
22 |> request
23 |> map(fn(img_response) ->
24 case img_response do
25 {:error, reason} ->
26 reason
27

28 img_data ->
29 "<img

src=\"data:image/jpeg;base64,#{Base.encode64(img_data)}\"
height=\"150px\" width=\"150px\">"

30 end
31 end)
32 end
33 end
34 end)
35 |> response
36

37 "</body></html>"
38 |> just
39 |> response
40 end

Figure 4.7: A complete example end-point created with Rackla.

37

4. Rackla: API gateway framework

• Line 1: we define our new HTTP end-point which we name /instagram. We use
the macro get defined in Plug in order to listen to GET HTTP requests.

• Line 2–4: we create our first pipeline. What we want to do is to first send some
HTML tags which will make the response a valid HTML document (normally we
would not do this since we are working with API responses, but this serves as a good
example). We do this by storing the HTML code in a string, use the function just
to turn the string into a Rackla type and pipe it to the response function. Since
the pipeline is ended with a response function, it is immediately sent to the client
before moving on to the subsequent pipelines.

• Line 6: we define the underlying back-end URL which is the end-point that we wish
to use. The end-point requires an access token which we pass to it by letting the
client supply it as the query string. The URL will return the current user’s feed with
a lot of data encoded in JSON format.

• Line 7: we pipe our URL string to the request function which will return a Rackla
type immediately while in the background executing the HTTP request.

• Line 8–34: we use flat_mapwith an anonymous lambda function—described below.

• Line 9: we pattern match on the response data from the HTTP request. We know
that the response will either be the actual response body from the API endpoint or
an error tuple in case an error has occurred since this behaviour is defined in Rackla.

• Line 10–11: if we receive an error, we will transmit the reason why the error oc-
curred to the client. We have to call the just function to convert the reason type
into a Rackla type since it is required in the definition of flat_map.

• Line 13: if we have reached this point in the code, then we know that we have gotten
a valid HTTP response. We store the valid HTTP response in a variable called
http_response.

• Line 14: we pass the HTTP response data to the function Poison.decodewhich will
decode the response data from a JSON string to an Elixir data structure by using the
library Poison [33]. This conversion can also fail if the response is not a valid JSON
string, so we will yet again pattern match on the outcome of this operation.

• Line 15–16: we handle the potential failing JSON decoding by transmitting the
failure reason to the client.

• Line 18: we have successfully decoded the JSON string to an Elixir data structure.
We store the decoded data in a variable called decoded_data.

• Line 19–21: we transform the data, from the JSON response, by extracting the URLs
which point to images—all other data will be discarded. This will leave us with a
list of URLs pointing to images. It is worth noticing here that we are using different
types in the different stages of the pipeline—we are actually working with both the
built in Elixir types and the Rackla type seamlessly.

38

4.2 Rackla overview

• Line 22: we pipe the list of URLs pointing to images to the request function. It
is important to notice what is happening here: we transform the response, from the
outer pipeline’s request, to be a new request pipeline which execute many requests.
Also note that we are not providing any response function in the inner pipeline, we
will simply use the response function from the outer pipeline.

• Line 23: we use map to transform the results from our internal pipeline.

• Line 24: once again we pattern match on the response data. Since we have exe-
cuted HTTP requests once more we may end up with failing DNS lookups and other
problems which we want to handle.

• Line 25–26: we handle the potential failing requests as before by transmitting the
reason to the client if any error occur.

• Line 28: we know that we have received a valid HTTP response so we store the
response in the variable img_data. In this case the response will contain binary
image data since the URLs pointed to images.

• Line 29: we Base64 encode the image data and wrap it in a HTML image tag which
enables it to render directly in the browser when we call our new end-point.

• Line 35: we end up in the response function defined in the outer pipeline. This
function will asynchronously receive the HTML image tags from our internal pipeline
and transmit them directly to the client. It is important to point out the asynchronous
behaviour we have defined here—the images will be sent in a nondeterministic order
which depends on the response order of the images requested in the internal pipeline.

• Line 37–39: we define a final pipeline which we will use to send the closing HTML
tags to the client. We are at this point guaranteed that these tags will be sent after
every image has been transmitted since this final pipeline is defined after, and sepa-
rately from, the previous pipelines—the asynchronous behaviour is only applicable
inside of the same pipeline.

When we visit our new endpoint /instagram, we will see a valid HTML page which
will contain images fetched from the Instagram API. Since we use chunked transfer en-
coding, we will see each new image as soon as it is sent from our API gateway to the
browser. The ordering will be nondeterministic since we will send every image as soon
as it is available in the API gateway—we will most likely get a different ordering of the
images every time we refresh the page.

It is worth pointing out that even though we are requesting several images, there is only
one request and one response sent between the client and the API gateway—even though
there are several requests and responses sent between the API gateway and the back-end
API.

To conclude, we should also point out that we would, most likely, in a real world appli-
cation only send the image data as Base64 encoded chunks and apply the HTML markup
inside of the client’s code instead—by doing so we would not have to mix in any HTML
markup in our API gateway. If we, in the API gateway, would attach the ordering when
we send each chunks, the client could also render each received image in the appropriate
position in a grid even though the images arrive out of order.

39

4. Rackla: API gateway framework

4.2.5 Process overview
To fully understand how the asynchronous behaviour is defined “under the hood” is out of
scope for this thesis. However, we can look at a rough sketch over how the Elixir processes
communicate as defined by the Rackla type. We will use the example seen in Figure 4.7—
more specifically, the largest pipeline defined on line 6–35.

Figure 4.8: Sketched overview of how the processes communicate
in the middle pipeline defined in Figure 4.7, line 6–35.

When we call the first request function on line 7, it will spawn a new process which
will execute the HTTP request to the defined URL. We then we call flat_map on line 8 and
it will spawn a matching new process which will send a message to the process defined in
request telling it that it is ready to receive the data as soon as it is ready (as soon as the
HTTP request is done). When the HTTP request is done, the process in request will send
the results to the process defined in flat_map.

A new pipeline is created inside the flat_map function’s process—spawning a process
inside another process means that the internally defined processes has access to the outer
process’s data via the scope.

On line 22, we call request with a list of URLs. The internal request function will
spawn a new process for each URL so that each HTTP request will be executed by a unique
process. When we call map on line 23, it knows how many processes that has been spawned
inside request, and thus, it will spawn the same amount of new processes to receive the
data and transform it.

The response function defined in the outer pipeline will spawn just one new process
even though it will communicate with an arbitrary amount of processes. This is because
its job is to create one HTTP response, consisting of many chunks, by consolidating the
responses from all processes.

It is important to understand that the arrows drawn in Figure 4.8 are independent of
each other and that they are not ordered in any way. We can think of the arrows as open
roads where the messages race like cars to the finish line—the processes spawned by the
request function defined inside flat_map are independent of each other, the first respond-
ing HTTP request has the opportunity to be sent first to the client.

40

4.3 Related work

4.3 Related work
Tyk
Tyk is an open source API gateway written in Go which enables you to control who ac-
cesses your API, when they access it and how they access it. It can, like Rackla, transform
requests but it uses templates instead of code. This approach can make the end-point de-
velopment easier with the downside of being less powerful since the templates are not as
expressive as a full featured programming language. The focus in Rackla is mainly on
transforming the data between the client and back-end API while Tyk’s, on the other hand,
is more about adding additional functionality around existing APIs.

https://tyk.io/

LoopBack-Gateway
LoopBack-Gateway is an experimental, minimum viable product, API gateway developed
by StrongLoop. It is written in JavaScript using Node.js and focuses on rate limiting (limit-
ing the amount of calls a client can make to the API), reverse proxying (retrieves resources
and then relays them untouched to the client) and security (forcing the client to authenticate
itself before making calls to the API). While LoopBack-Gateway in theory could do many
of the things that Rackla does, it would require the users of the framework to implement
many of the features themselves while Rackla provides many helping functions from the
starts which are already optimised for being used concurrently. LoopBack-Gateway, like
Tyk, also add functionality around existing APIs such as rate limiting which is something
that Rackla does not.

https://github.com/strongloop/loopback-gateway

41

https://tyk.io/
https://github.com/strongloop/loopback-gateway

4. Rackla: API gateway framework

42

Chapter 5

Case studies

Three systems were evaluated in order to find potential usage areas for API gateways in
real-world products. The objective was to look at the three systems from different view
points; if more than one system had a common problem, then it will only be mentioned
in one of the case studies. The reasoning behind this was to highlight the different usage
potential for API gateways.

5.1 Streamflow
Streamflow [35] is a system used within municipalities in order to communicate with its
citizens, and inside organisations to communicate with their customers. It is primarily
used to register and track customer cases by working as a central case management hub.

Streamflow exposes a HATEOAS REST API with JSON-encoded responses. The
desktop client for Streamflow was written in Java using Swing—however, a new web-client
written using AngularJS, a JavaScript Framework developed by Google, is currently under
development. The following case study used the in-development AngularJS client with the
current production API which utilises HTTP/1.1.

5.1.1 Case lists
In Streamflow, incoming cases are automatically categorised according to rules defined by
the municipality or organisation. Each category has two folders: “inbox” and “my cases”.
When clicking on the “inbox” or “my cases” for a category, all cases in that folder will be
fetched from the server and the results will be displayed in a list.

43

5. Case studies

5.1.2 Evaluation
When viewing the case list, several recursive requests will be executed from the client in
order to collect all the required information and follow the HATEOAS specification (the
first steps in the request chain has been omitted):

1. Request a list of all cases in the selected category and folder. This will return a list
of case-objects which are 0.9 KB per object.

2. For each case in the list, request the case information. This will return the same case-
object once more plus additional meta data. The reason for executing this request is
to discover the next hypermedia resource called “general”. The wanted payload, the
“general” resource, is 94 bytes while the total response is 3.5–4 KB. This results in
a overhead of roughly 97.5% unnecessary data for each request.

3. Request the “general” resource for each case. From this response, the client wants
two fields: a date and a note. If a priority is present, the client also wants the next
resource called priorities. The total response is 1.5–2 KB and the wanted data is
approximately 130 B resulting in a unwanted overhead of roughly 92.5% for each
request.

4. If the cases has a defined priority, that priority has to be requested. This response is
293 B and will contain information about all priority levels, usually four levels. A
case can only have one priority which results in a 75% overhead for each request.

Figure 5.1: How the recursive requests are executed in the Stream-
flow web client in order to fetch all needed resources and to comply
with HATEOAS in the REST architectural specification.

By placing an API gateway developed with Rackla between the Streamflow web-client
and the Streamflow API, all recursive requests can be concatenated, for the client, to one
request with a single response. By doing so, a lot of unnecessary data can also be discarded

44

5.1 Streamflow

before it is sent to the client. This unnecessary data is duplicate data such as the duplicate
case-information, irrelevant data for the client such as HATEOAS discovery information
and unneeded data such as unused priorities.

In the test environment, measurements were made on a list which contained 156 cases.
For this list, the client had to execute 373 requests: 1 request for the list, 156 requests
for each case to get the location of the “general” resource, 156 requests for the “general”
resource for each case, and 60 “priority” requests for the cases which needed that infor-
mation. All these request were replaced with one single request to the API gateway which
took care of the HATEOAS communication and removed all the unnecessary data. By do-
ing so, the total transmitted data was reduced from 1,100 KB to 159 KB—a 86% decrease
of transmitted data.

The Streamflow API does not compress any of the responses. By adding Gzip com-
pression to the payload inside the API gateway before responding to the client, the data
could be reduced even more, from 1,100 KB to 9.9 KB, which amounts to a 99% decrease
of transmitted data.

In addition to this, the client also had to transform certain data types after retriev-
ing them from the server so that they would fit in its internal model. For example, the
field “dueOn” was truncated from “2015-02-17T23:59:59.000Z” to “2015-02-17” since
the time part was not relevant for the client. By utilising the API gateway, these transfor-
mations could be taken care of before replying to the client. This means that no, potentially
demanding and error prone, transformations had to be performed on the client—instead
the data from the response could be used directly.

Figure 5.2: Illustration of the responses (case, general and prior-
ities) in Streamflow. The actual data needed in the list view is
highlighted in order to illustrate how much unnecessary data that
was sent from the API.

In the production environment, a measurement was made in order to determine the
number of cases present in the municipality of Jönköping at a given time of the day. On
average, the number of cases in the non-empty inboxes was 19 and the maximum number
of cases in one inbox was 296. This means that on average, the number of requests per-

45

5. Case studies

formed, every time an inbox is checked from the client, is roughly 40–60. When the largest
inbox is viewed, the number of requests will be somewhere between 600–900—every time
it is clicked. This is a substantial performance bottleneck for all clients, especially browsers
using HTTP/1.1 considering the TCP max-connection limit and the various textual over-
heads.

It should be noted that the final version of the web-client will most likely be limited
to displaying 10–20 cases at a time using pagination. This would reduce the number of
requests to 20–60 for any given inbox view. This is however still a substantial amount of
HTTP requests to perform every time a user checks an inbox. This approach will neither
address the problem that 86% of the transferred data is unnecessary overhead.

5.2 Bank App

The second system evaluated was a banking app developed for an undisclosed major bank
in Sweden, here after simply called “Bank App”. Bank App is a mobile app with clients for
iOS, Android and Windows Phone. What made the Bank App interesting, from the API
gateway point of view, was that it already had a modern and well designed API, adapted
to the needs of the clients from the start. In addition to this, the clients were written as
hybrid apps in which common web technologies could be shared with only a small amount
of native components that had to be rewritten for each platform.

5.2.1 Transaction overview

An essential part of the application is the transaction overview which is where the users
can view their balance, orders, fund orders, trades and transactions.

When the transaction overview screen is loaded, the client uses promises (asynchronous
computations) to collect and transform the results from the different back-end API end-
points. The results are then bound to the scope variable which in turn makes sure that the
information is rendered in the view.

46

5.2 Bank App

Figure 5.3: How the asynchronous calls to the API works. There
are two places where the code waits for the previous computations
before continuing.

To load the required data, the initial account information has to be fetched first. Using
that response, the client will then load the account information, orders, fund orders and
trades for that account. The client then waits for the four requests to respond, perform
some transformations to the data before merging it with capital and transactions data so
that the fetched information fits the clients internal data model.

5.2.2 Evaluation
All in all, the client requests data from seven different API end-points and uses about twice
as many functions to fetch and transform these results in the transaction overview. Since
the number of parallel requests are less than six in the transaction overview, it will have
no problem with the max TCP-connection limit.

The data served from the API only had a small amount of information which the client
discarded and so the data transfer before and after the introduction of the gateway was
almost identical—about 1 KB less after the introduction of the API gateway.

It is possible that the overhead of unnecessary data can differ from customer to cus-
tomer. One example of this is the fact that the API will send all of the customer’s accounts,
including inactive accounts while the client is only interesting in the active accounts. It is
however hard to argue that this amount of overhead is so substantial that it will cause any
performance issues.

What made the Bank App unique was that the different mobile platforms shared a
common code base for the overview screen. This meant that iOS, Android and Windows
Phone could utilise the same JavaScript code for transforming, filtering and sorting the
requested data.

If the Bank App instead would have been developed using native code, we would see
that the fetching and transforming code had to be rewritten for each platform in a new

47

5. Case studies

language. The industry average defect rate is about 1–25 errors per 1000 lines of code [20,
page 521]—a number which could be reduced if the code only had to be written once in
the API gateway instead.

Perhaps more importantly, moving the code to the API gateway means that the com-
bined codebase would not just be less error prone but it would also be more maintainable.
If we, to take one example, wanted to sort the accounts in descending order rather than
ascending, we could change this code once in the API gateway and avoid updating every
client.

If this code instead was located in the clients, all of them had to be updated individually,
probably by different teams and each of them submitted to the various app stores for a
potentially long review process.

Having different code bases for common tasks in the clients would also increase the
risk of introducing discrepancies by mistake despite the goal of having identically working
clients on all platforms.

In the end, the code in the client to perform these requests and transform the results
amounted to roughly 100 lines of code and the corresponding end-point in the Rackla API
gateway amounted to roughly the same line count.

It is hard to argue for the inclusion of an API gateway in the current state of this project
based on the facts that the Bank App already has a shared cross-platform code base and
a well suited API with mostly optimised end-points. One can imagine that the need for
an API gateway can increase over time if the API is not moving as fast enough or is as
flexible as desired and therefore can not meet the clients needs. It is also a possibility
that new clients will be introduced later on, clients move to native code bases instead of
hybrid technologies or that they will fork the existing cross-platform code base. However,
in the current state of the project, the inclusion of an API gateway will not provide any
substantial benefits.

5.3 Accountant System
Accountant System is a code name for a system used by a large Swedish accountant firm to
help them keep track of important documents, tasks and internal priorities. The client is a
single-page web application written in AngularJS which uses an existing legacy back-end
API. The back-end API communicates entirely with XML encoded messages over HTTP
while the client only works with JSON internally. Working with JSON in web applications
can be considered very beneficial since JSON and its syntax is a subset of the JavaScript
language. JSON support is also included in the ECMAScript standard, which JavaScript
implements, since version 5 [36]. This enables easy (de)serialisation of JavaScript objects
to JSON in all modern browsers.

5.3.1 Working with XML in JSON clients
When it comes to converting XML to JSON, and vice versa, there is no standardised ap-
proach which can be applied in order to make the conversions uniform. Even though the
formats do solve some of the same problems in regards to data encapsulation, the semantics
and features are inherently different and it is therefore impossible to create a 1:1 mapping
between the two formats, see appendix “JSON/XML conversion”.

48

5.3 Accountant System

5.3.2 Translating XML APIs
In Accountant System, the XML-JSON conversion was handled in two different ways—
one way for requests and one for responses.

Response
When working with XML responses from the API, the client utilised a third-party library
which converted the XML responses to JSON which then could be used as JavaScript
objects in the views—often after some transformations. As in the previous examples, this
adds additional complexity to the client which now has to transform the responses before
it can handle them properly.

Request
More interesting is how the requests are made to the API. When we look at a typical REST
end-point which is accessed over HTTP, we first have a HTTP verb such as GET, POST,
PUT or DELETE which indicates how the underlying resource should be manipulated. In
addition to this, we have an end-point which we communicate with via a URL. Lastly, we
add a payload which either contains the data we want to submit or additional parameters
which can make the request more specific than what can be expressed by the URL itself.

In the case of Accountant System, we can look at the simplest scenario which is saving
a note. To do this, the client has to send the XML data seen in Figure 5.4 to the back-end.

1 <SaveNotesRequest>
2 <Notes>
3 <JPTEXT>This is the actual note.</JPTEXT>
4 </Notes>
5 </SaveNotesRequest>

Figure 5.4: XML data used for creating a new note.

This XML data has to be sent with a POST HTTP request to a specific URL which
ends with “/note/create”. We can reason about what the purpose of the XML is. From the
URL we can deduce where the information should be sent and what information we are
sending—a note. We can from the HTTP verb POST see that we want to create a new note
and in this case, the URL also contains this information since it ends with “/create”. The
only thing missing to complete this action is the actual payload which is the note content,
in this case “This is the actual note.”.

When working with this API, the XML is entirely redundant from the clients point
of view and it does not add any value, but for historical reasons the back-end API can
not be changed. This puts additional strain and a new layer of complexity in every new
client which interacts with the API. Not only do the client have to know about the normal
interaction methods such as the URL and HTTP verbs but it also needs to maintain a
collection of XML templates and use a different XML template for each type of request it

49

5. Case studies

wants to execute. It is also worth pointing out that the the actual note amounted to roughly
1/3 of the total payload data and about 2/3 was structural XML data in the example from
Figure 5.4.

Figure 5.5: Each client has to maintain its own collection of XML
templates in order to make requests to the API.

To avoid having to maintain a collection of XML templates in each client, we can
introduce an API gateway to do that instead. By utilising an API gateway, we can expose
corresponding new end-points which can be used without any XML in the client. The API
gateway will maintain the only collection of XML templates which it uses for translating
the client’s API-requests to back-end API requests. This makes the development of clients
a lot easier from the API-calling point of view but also has the additional benefit that there
is only one, easily maintainable collection of XML templates.

Figure 5.6: The API gateway maintains a collection of XML tem-
plates so that the client can communicate to the back-end without
them.

50

5.3 Accountant System

5.3.3 Evaluation
In the case of Accountant System, we can see a decrease in used bandwidth when drop-
ping the XML format in the client since XML is a verbose, and in this case unnecessary,
format. It is worth pointing out that the XML templates were not only transmitted upon
each request but the entire collection of XML templates also had to be downloaded to the
browser every time the single-page application was initially loaded.

A study in 2011 compared the XML-based protocol SOAP1 with FIX (Financial In-
formation Exchange) and CDR (Common Data Representation) in financial messaging
systems and concluded that SOAP had 2–4 times larger messages on average [37]. It is
however hard to draw a fair parallel with that study to this case study.

The biggest gain in utilising an API gateway in this scenario is likely to be found in
developer productivity and code stability. The JSON versus XML is an ongoing debate
which has been active for several years. Jeff Barr who is the Chief Evangelist for Amazon
Web Services stated back in 2003 that 85% of their API users utilised REST while only
15% wanted the XML-based SOAP interface [38]. The comparison here is not entirely
fair either since SOAP is a protocol, not just using XML, while REST is an architectural
style which can utilise XML—and that is the case for Accountant System.

What we can do is to look at the limitations in XML for Accountant System in particu-
lar. The first thing to note is that all modern browsers has built in support for a standardised
way of parsing JSON and that there is a natural 1:1 relationship between JavaScript objects
encapsulating data and the JSON format. For Accountant System to work with XML, a
third-party library was introduced and all API-responses has to be validated to make sure
that the JSON-to-XML parsing works in a decent manner as there are pitfalls to watch
out for. For clients written in JavaScript, it would be a more natural approach to use an
JSON-based API.

An API gateway can, like the client already does, automatically translate the XML-
based responses from the API to JSON. The benefit of placing the translation step in the
API gateway is that all clients will have the translation done in exactly the same way instead
of relying on different local translation libraries.

Figure 5.7: The API gateway exposes a simpler REST interface
to the client and converts this to the more complex XML-based
interface used by the back-end.

When looking at the requests the client sends to the back-end API, we earlier concluded
that the XML in many cases was unnecessary since all information describing data was

1Simple Object Access Protocol, see appendix.

51

5. Case studies

already present in the URL in combination with the HTTP verb. By moving all XML-
templates to the API gateway, all clients can utilise a much simpler API. An additional
benefit to this approach is that all XML-templates are gathered in one place in contrast to
the current approach where every client has to keep track of its own collection of templates.

52

Chapter 6
Conclusions

In this thesis we have defined many use cases where API gateways are useful. We did
this by examining problems encountered in the industry in combination with solutions
developed in concepts similar to API gateways such as the adapters used at Netflix [17].

We hypothesised that API gateways could improve the performance of clients when
they are using APIs over HTTP/1.1—especially when the APIs are not customised for the
clients. This hypothesis was proven true in the Streamflow case study where we in the API
gateway implemented request concatenation, removal of duplicate an unnecessary items
and simplified the communication by not conforming to HATEOAS specification. These
techniques reduced the total amount of transferred data with 99% when using compressed
responses and 86% with uncompressed responses.

In the case study regarding “Bank App”, we saw that API gateways are not only useful
for improving the performance. Instead, we saw that the clients code complexity can be
reduced by moving code away from the clients and into the API gateway. This made the
code in the clients simpler and avoided the code duplication which is normally encountered
when the same problems has to be solved on different client platforms.

But we also noticed that API gateways are not always useful, as seen in the “Accountant
System” case study. The two main factors that we should look for is how well the API con-
forms to the client’s needs as well as the potential limitations introduced by HTTP/1.1—
especially the maximum TCP connections and the headers overhead which we described
in the first chapter.

HTTP/2 addresses the performance issues discussed in regard to HTTP/1.1 by util-
ising header compression and a multiplexing connection which removes the fixed TCP
connection limit [4]. Despite this, HTTP/2 will not solve all problems such as the amount
of duplicate and unnecessary data sent from many APIs or the complicated client imple-
mentation required by using the REST constraint HATEOAS. In addition to this, HTTP/2
will neither solve the problems with code duplication encountered in the clients, nor the
complexity they must be able to handle in order to work with API responses that are not
suited for their specific needs.

53

6. Conclusions

It should also be pointed out that migrating all clients, servers and middle boxes from
HTTP/1.1 to HTTP/2 will take at least another decade [4]. This makes the HTTP/1.1 per-
formance enhancing techniques used in API gateways relevant for at least another decade
and perhaps even longer for legacy systems used in the industry.

The focus of the case studies was to be able to transform existing APIs in order to suit
the client’s needs better. However, we have seen that a this concept can be applied in the
beginning of the development process as well. If we know that we will deal with a lot
of different clients with different needs, then we can use API gateways in the same way
that Netflix optimises its API [17]—their approach is to let the back-end API team develop
general, unoptimised end-points while the client teams are responsible both for developing
the clients as well as developing their own customised end-points using a software layer
similar to API gateways.

6.1 Future work
The API gateway concept is very broad and there are many unexplored areas to which the
concept can be applied. There are many topics in this thesis which are only briefly touched
upon, such as security and caching, which could fill an entire thesis of their own in order
to be fully explored.

The framework Rackla developed in this thesis used Elixir but there is no doubt that the
same functionality could be translated to many other programming languages as well. By
migrating the framework to other languages, new challenges and solutions would doubtless
arise and shine new light on the topic.

54

Bibliography

[1] V. Alagarasan, R.C. Huacarpuma, S.R. Lima, and D. Weich. API Management In-
troduction and Principles, 2015.

[2] R. Fielding, UC. Irvine, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol—HTTP/1.1. RFC: 2616, 1999.
https://tools.ietf.org/html/rfc2616.

[3] M. Belshe, R. Peaon, and M. Ed. Thomson. Hypertext Transfer Protocol Version 2
(HTTP/2). RFC: 7540, 2015. https://tools.ietf.org/html/rfc7540.

[4] I. Grigorik. HTTP/2: A New Excerpt from High Performance Browser Networking.
O’Reilly Media, Inc., 2015.

[5] S. Lorento, P. Saint-Andre, S. Salsano, and G. Wilkins. Known Issues and Best
Practices for the Use of Long Polling and Streaming in Bidirectional HTTP. RFC:
6202, 2011. https://tools.ietf.org/html/rfc6202#section-2.2.

[6] Instagram. User Endpoints, 2015. http://instagram.com/developer/
endpoints/users/#get_users.

[7] D. Stenberg. curl groks URLs, 2015. http://curl.haxx.se/.

[8] I. Grigorik. High Performance Browser Networking. O’Reilly Media, Inc., 2013.

[9] S. Souders. Even Faster Web Sites: Performance Best Practices for Web Developers.
O’Reilly Media, Inc., 2009.

[10] S. Souders. High Performance Web Sites. O’Reilly Media, Inc., 2007.

[11] S. Souders and YUI Team. Performance Research, Part 4: Maximizing Parallel
Downloads in the Carpool Lane, 2007. http://yuiblog.com/blog/2007/
04/11/performance-research-part-4/.

[12] Z. Nagy. Improved speed on intelligent web sites, recent advances in computer sci-
ence, 2013.

55

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc6202#section-2.2
http://instagram.com/developer/endpoints/users/#get_users
http://instagram.com/developer/endpoints/users/#get_users
http://curl.haxx.se/
http://yuiblog.com/blog/2007/04/11/performance-research-part-4/
http://yuiblog.com/blog/2007/04/11/performance-research-part-4/

BIBLIOGRAPHY

[13] B. Hoffman. Bandwidth, Latency, and the Size of your Pipe, 2011. http:
//zoompf.com/blog/2011/12/i-dont-care-how-big-yours-is.

[14] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syn-
tax and Routing—Chunked Transfer Coding. RFC: 7230, 2014. http://tools.
ietf.org/html/rfc7230#section-4.1.

[15] Z. Mahkovec. Improving Dropbox Performance: Retrieving Thumbnails, 2014.
https://tech.dropbox.com/2014/01/retrieving-thumbnails/.

[16] I. Grigorik. Optimizing encoding and transfer size of text-based assets,
2014. https://developers.google.com/web/fundamentals/
performance/optimizing-content-efficiency/optimize-
encoding-and-transfer.

[17] D. Jacobson. Embracing the Differences : Inside the Netflix API Re-
design, 2012. http://techblog.netflix.com/2012/07/embracing-
differences-inside-netflix.html.

[18] Inc. Google. Optimizing Downloads for Efficient Network Access—Reduce
Connections, 2015. http://developer.android.com/training/
efficient-downloads/efficient-network-access.html.

[19] Facebook. Graph API, Making Batch Requests, 2015. https://developers.
facebook.com/docs/graph-api/making-multiple-requests.

[20] S. McConnell. Code Complete, 2nd edition. Microsoft Press, 2004.

[21] D. Jacobson, G. Brail, and D. Woods. APIs: A Strategy Guide. O’Reilly Media,
Inc., 2012.

[22] Amazon Web Services Inc. Amazon EC2 Pricing, 2015. http://aws.amazon.
com/ec2/pricing/.

[23] Microsoft. Microsoft Azure—Data Transfers Pricing Details, 2015.
http://azure.microsoft.com/en-us/pricing/details/data-
transfers/.

[24] Microsoft. API Management access restriction policies, 2015. https://msdn.
microsoft.com/library/azure/dn894078.aspx.

[25] Apigee Corp. Comparing Quota, Spike Arrest, and Concurrent Rate Limit Poli-
cies, 2015. http://apigee.com/docs/api-services/content/
comparing-quota-spike-arrest-and-concurrent-rate-limit-
policies.

[26] A. Popescu. Geolocation API Specification, World Wide Web Consortium, Candi-
date Recommendation CR-geolocation-API-20100907, 2010. http://www.w3.
org/TR/geolocation-API/.

56

http://zoompf.com/blog/2011/12/i-dont-care-how-big-yours-is
http://zoompf.com/blog/2011/12/i-dont-care-how-big-yours-is
http://tools.ietf.org/html/rfc7230#section-4.1
http://tools.ietf.org/html/rfc7230#section-4.1
https://tech.dropbox.com/2014/01/retrieving-thumbnails/
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-encoding-and-transfer
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-encoding-and-transfer
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-encoding-and-transfer
http://techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html
http://techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html
http://developer.android.com/training/efficient-downloads/efficient-network-access.html
http://developer.android.com/training/efficient-downloads/efficient-network-access.html
https://developers.facebook.com/docs/graph-api/making-multiple-requests
https://developers.facebook.com/docs/graph-api/making-multiple-requests
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://azure.microsoft.com/en-us/pricing/details/data-transfers/
http://azure.microsoft.com/en-us/pricing/details/data-transfers/
https://msdn.microsoft.com/library/azure/dn894078.aspx
https://msdn.microsoft.com/library/azure/dn894078.aspx
http://apigee.com/docs/api-services/content/comparing-quota-spike-arrest-and-concurrent-rate-limit-policies
http://apigee.com/docs/api-services/content/comparing-quota-spike-arrest-and-concurrent-rate-limit-policies
http://apigee.com/docs/api-services/content/comparing-quota-spike-arrest-and-concurrent-rate-limit-policies
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/geolocation-API/

BIBLIOGRAPHY

[27] Microsoft. Microsoft Azure API Management, 2015. http://azure.
microsoft.com/en-us/services/api-management/?b=15-05.

[28] Apigee Corp. Apigee Edge, 2015. http://apigee.com/about/products/
apis-and-edge.

[29] IBM. IBM API Management, 2015. http://www-03.ibm.com/software/
products/sv/api-management.

[30] Plataformatec. Elixir, 2015. http://elixir-lang.org.

[31] Elixir-lang. Plug—A specification and conveniences for composable modules in be-
tween web applications, 2015. https://github.com/elixir-lang/plug.

[32] B. Chesneau. Hackney—simple HTTP client in Erlang, 2015. https://github.
com/benoitc/hackney.

[33] D. Torres. Poison—An incredibly fast, pure Elixir JSON library, 2015. https:
//github.com/devinus/poison.

[34] Plataformatec. Elixir—Getting started—Processes, 2015. http://elixir-
lang.org/getting-started/processes.html.

[35] Jayway. Streamflow-–-with citizen service in focus, 2015. http://www.
jayway.com/portfolio/streamflow/.

[36] Standard Ecma. Ecma-262 ecmascript language specification, 2009. http://
www.ecma-international.org/publications/standards/Ecma-
262.htm.

[37] C. Kohlhoff and R. Steele. Evaluating SOAP for High Performance Business Appli-
cations: Real-Time Trading Systems, IW3C2. 2003.

[38] T. O’Reilly. REST vs. SOAP at Amazon, 2003. http://archive.oreilly.
com/lpt/wlg/3005.

[39] S. Goessner. Converting Between XML and JSON, 2006. http://www.xml.
com/lpt/a/1658.

[40] Convert Json to JsonX to JsonML and so on.., 2015. http://orihoch.uumpa.
com/jsonxml/.

[41] IBM. JSONx, 2015. http://www-01.ibm.com/support/
knowledgecenter/SS9H2Y_6.0.0/com.ibm.dp.xm.doc/json_
jsonx.html.

[42] M. S. McKamey. JsonML, 2015. http://www.jsonml.org/.

57

http://azure.microsoft.com/en-us/services/api-management/?b=15-05
http://azure.microsoft.com/en-us/services/api-management/?b=15-05
http://apigee.com/about/products/apis-and-edge
http://apigee.com/about/products/apis-and-edge
http://www-03.ibm.com/software/products/sv/api-management
http://www-03.ibm.com/software/products/sv/api-management
http://elixir-lang.org
https://github.com/elixir-lang/plug
https://github.com/benoitc/hackney
https://github.com/benoitc/hackney
https://github.com/devinus/poison
https://github.com/devinus/poison
http://elixir-lang.org/getting-started/processes.html
http://elixir-lang.org/getting-started/processes.html
http://www.jayway.com/portfolio/streamflow/
http://www.jayway.com/portfolio/streamflow/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://archive.oreilly.com/lpt/wlg/3005
http://archive.oreilly.com/lpt/wlg/3005
http://www.xml.com/lpt/a/1658
http://www.xml.com/lpt/a/1658
http://orihoch.uumpa.com/jsonxml/
http://orihoch.uumpa.com/jsonxml/
http://www-01.ibm.com/support/knowledgecenter/SS9H2Y_6.0.0/com.ibm.dp.xm.doc/json_jsonx.html
http://www-01.ibm.com/support/knowledgecenter/SS9H2Y_6.0.0/com.ibm.dp.xm.doc/json_jsonx.html
http://www-01.ibm.com/support/knowledgecenter/SS9H2Y_6.0.0/com.ibm.dp.xm.doc/json_jsonx.html
http://www.jsonml.org/

BIBLIOGRAPHY

58

Appendices

59

Appendix A
Definitions

A.1 JSON
JSON, JavaScript Object Notation, is a data-interchange text format based on a subset of
the JavaScript Programming Language. It is an open standard format which uses human-
readable text. JSON is often used as an alternative to XML.

A.2 XML
XML, Extensible Markup Language, is a markup language used for encoding documents.
It can be used as an alternative to JSON for data communication but it is also used in other
areas such as document formats.

A.3 REST
REST, Representational State Transfer, consists of guidelines and best practices for creat-
ing scalable web services. The style was developed by the W3C Technical Architecture
Group (TAG) in parallel with HTTP/1.1. RESTful systems often communicate over HTTP
using so called HTTP verbs such as GET, POST, PUT and DELETE to send and retrieve
data between clients and servers.

A.4 HATEOAS
HATEOAS, Hypermedia as the Engine of Application State, is a constraint in the REST
architecture. The clients enter a REST application through a fixed URL and all future
actions are discovered dynamically within resource representations sent from the server.

61

A. Definitions

A.5 DMZ
DMZ, DeMilitarised Zone, is an isolated subnet located outside the protected LAN where
workstations and internal back-end systems are located. It is common that machines, which
have to be directly exposed from the internet, are placed inside the DMZ.

A.6 SOAP
SOAP, Simple Object Access protocol, is an XML-based protocol used for data exchange.
SOAP is primarily transported using HTTP but can also be used with other protocol such
as the e-mail protocol SMTP.

A.7 Proxy
A proxy server acts as the intermediary between clients and servers by relaying the data
between them.

A.8 LAN
LAN, Local Area Network, is a network limited to a smaller area such as a building or an
office.

A.9 WAN
WAN, Wide Area Network, is a network consisting of a large region such as a country or
many countries. The internet is considered to be a WAN.

A.10 VPN
VPN, Virtual Private Network, is a technique used to securely extend a private network,
such as the network inside a corporation, to an outside public network such as the internet.

A.11 URL
URL, Uniform Resource Locator, is a character string which identifies a certain internet
resource such as a website or an API end-point.

62

Appendix B

JSON/XML conversion

In an article from XML.com [39] which was published by O’Reilly Media, a conversion
algorithm was developed in order to highlight some of the issues regarding this topic. One
of the examples starts with a very simple XML structure defined in Figure B.1.

1 <e>
2 <a>some
3 textual
4 <a>content
5 </e>

Figure B.1: Simple XML data structure.

An algorithm was developed to convert the XML-structure to JSON notation. When
this algorithm was tested, the first naive approach to convert the structure from Figure B.1
to JSON would result in the following invalid JSON structure seen in Figure B.2.

63

B. JSON/XML conversion

1 "e": {
2 "a": "some",
3 "b": "textual",
4 "a": "content"
5 }

Figure B.2: The first attempt to transform XML to JSON. The
result is an invalid JSON data structure because of the duplicate
key “a”.

The problem with the JSON structure in Figure B.2 is that we can not have “a” as the
key in two places in an associative array—“a” has to be unique. If we try to solve this by
converting the values for the key “a” to a list instead, then we get a syntactical valid JSON
structure as seen in Figure B.3.

1 "e": {
2 "a": ["some", "content"],
3 "b": "textual"
4 }

Figure B.3: The second approach for transforming XML to JSON.
The result is a valid JSON structure but the ordering problem has
now been introduced.

However, another problem has been introduced with this approach which is that the
element order is no longer perserved. If we would iterate over the values in the XML from
Figure B.1, we would end up with “some, textual, content” but when we iterate over our
JSON-structure from Figure B.3 we would end up with “some, content, textual” which is
not the desired result.

Based on this, the following conclusion was made by XML.com [39]:

“A structured XML element can be converted to a reversible JSON structure,
if all subelement names occur exactly once, or subelements with identical
names are in sequence. A structured XML element can be converted to an
irreversible but semantically equivalent JSON structure, if multiple homony-
mous subelements occur non-sequentially, and element order doesn’t matter.”

Note that the algorithm from XML.com is just one approach to solve some of the prob-
lem around the XML-JSON conversion—there are many additional issues which makes
this conversion very complex. As with many things where there is no 1:1 mapping, dif-
ferent library developers and organisations are developing their own standards to handle
the conversion.

64

To humorously illustrate this problem, a tool was created [40] which converted JSON
to XML with IBM’s JSONx [41] standard and then back to JSON from XML with JsonML’s
[42] standard. These tools follow their own defined conversion standards with differ-
ent syntactical data. When these conversions are performed recursively with each output
added to the others input, you would expect that the formats would stay the same, switching
back and forth between JSON and XML—instead the data structure will grow indefinitely
until the browser crashes since each format adds their own custom syntactical data to it.

In the end—the point is that converting XML to JSON, and vice versa, is troublesome
and since there is no 1:1 mapping, it is handled differently in the variety of libraries used
today.

65

APIer över HTTP anpassas sällan för olika klienters behov vilket medför krånglig
kommunikation och reducerad prestanda. En API-gateway kan placeras mellan
klienter och APIer för att åtgärda detta.

När datan som en server erbjuder inte överensstämmer
med vad en klient vill ha leder detta ofta till att flera an-
rop måste göras och att datan sedan måste sammanfogas
på klienten. Detta medför ökad komplexitet i klienten
och reducerad prestanda. Vanligtvis sker kommunika-
tionen via HTTP/1.1 där begränsningar i protokollet
kan ge upphov till stora problem. Genom att placera en
API-gateway mellan en klient och de APIer som används
kan klientens kod förenklas och trafiken optimeras.
 Ett ramverk för att konstruera API-gateways utveck-
lades och användes sedan i tre fallstudier för att under-
söka vilken eventuell förbättringspotential som kunde
uppnås. I den mest signifikanta fallstudien, vilken un-
dersökte ett system för incidentrapportering i några av
Sveriges kommuner, kunde den överförda datamängden
minskas med hela 99%. Detta uppnåddes genom att
slå ihop flera rekursiva anrop till ett enda anrop, filtre-
ra bort onödig data och komprimera svaret innan det
skickades till klienten.
 En annan fallstudie‚ vilken analyserade ett system vil-
ket används av en revisionsfirma, visade hur kommuni-
kationen kunde förbättras ur utvecklingssynvinkel. Ett
svårarbetat XML API kunde med hjälp av en API-gate-
way översättas till ett enklare JSON API vilket medförde
en förenkling av klientutvecklingen.
 Att introducera en API-gateway leder dock inte alltid
till någon förbättring. En fallstudie av ett mobilt bank-
system byggt med hybrid-teknik visade just detta vilket
understryker behovet av att kunna genomföra en kor-

rekt API analys innan en API-gateway implementeras.
 I studien läggs fokus på de prestandaproblem som
finns i det underliggande protokollet HTTP/1.1 och
hur dessa problem kan undvikas eller reduceras med
hjälp av en API-gateway. Att HTTP/1.1 undersöks be-
ror på att det är ett väldigt etablerat protokoll, vilket an-
vänds i samtliga webbläsare, samtidigt som protokollet
lider av flertalet intressanta prestandaproblem. Tidigare
har andra liknande problem angripits med hjälp av t.ex.
“spriting”, att slå ihop flera bilder till en för att mini-
mera antalet HTTP-anrop, och “sharding”, att använda
olika sub-domäner för samma server med målet att öka
antalet TCP-uppkopplingar i webbläsaren. Med hjälp
av en API-gateway kan liknande tekniker även applice-
ras på API-anrop och inte bara på statiska resurser.
 I studien ingår även en teoretisk översikt över hur
en API-gateway fungerar samt en analys av dess poten-
tial ur flera olika synvinklar – från en enkel “proxy” till
mer avancerade tekniker som att slå ihop anrop och att
transformera datan mellan olika format.
 Ett ramverk för att skapa API-gateways konstruerades
vilket ledde till att reflektioner ur teknisk synvinkel kun-
de ges. Att utveckla en API-gateway ställer höga krav på
tillgänglighet och prestanda med ett stort fokus på “con-
currency”. Som en följd av dessa krav har BEAM, Er-
langs VM, tillsammans med språket Elixir använts vilket
gav insikter i vilken teknik som är lämplig att använda
vid konstruktionen av en API-gateway i praktiken.

EXAMENSARBETE Optimizing clients with API gateways

STUDENT Anton Fagerberg

HANDLEDARE Roger Henriksson (LTH), Nils-Olof Bankell (Jayway)

EXAMINATOR Görel Hedin (LTH)

Optimera klienter med API-gateways
POPULÄRVETENSKAPLIG SAMMANFATTNING Anton Fagerberg

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2015-06-04

	2015-14 Framsida
	Tom sida
	2015-14 Rapport
	2015-14 Rapport
	Introduction
	Method

	Performance issues with HTTP/1.1
	Headers
	Maximum TCP connections
	Chunked responses

	Compression
	Further reading

	API gateways in theory
	What is an API gateway?
	Differing client needs
	Multiple resources and requests
	Duplicate and unnecessary items
	Format transformation
	Pure REST and HATEOAS
	Compression
	Caching
	Decreasing bandwidth and cost
	Secure point of entry for private networks
	Latency
	Error handling
	Security—authentication & authorisation
	Conditional back-ends
	Rate limiting
	Support old API versions
	Analytics
	Load balancing
	Similar concepts

	Rackla: API gateway framework
	Technologies: language and libraries
	Elixir
	The pipe operator
	Elixir processes
	Plug
	Hackney
	Poison

	Rackla overview
	Pipeline
	Monads and Functional programming
	Function overview
	A complete example
	Process overview

	Related work

	Case studies
	Streamflow
	Case lists
	Evaluation

	Bank App
	Transaction overview
	Evaluation

	Accountant System
	Working with XML in JSON clients
	Translating XML APIs
	Evaluation

	Conclusions
	Future work

	Bibliography
	Appendix Definitions
	JSON
	XML
	REST
	HATEOAS
	DMZ
	SOAP
	Proxy
	LAN
	WAN
	VPN
	URL

	Appendix JSON/XML conversion

	Tom sida
	2015-14 Popvet

