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pp. 15 hp (15 ECTS credits) 
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Ida Johansson, Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden. E-mail: Ida. 

Johansson.567@studentt.lu.se 

Abstract: The Nor th Atlantic Oscillation (NAO) is an atmospher ic circulation phenomenon, character ized by 
differences in sea level pressure between the Azores high- and the Icelandic low pressure systems. The NAO fluc-

tuates between a positive and a negative phase depending on how well developed these pressure systems are. The 
NAO has a great impact on northern hemisphere winter climate since it affects temperatures, storms and precipita-

tion over the Atlantic area. In recent years various studies have investigated the underlying mechanisms which 
cause the NAO to oscillate. This paper is a literature study with the aim to summarize the most prominent theories 

of the forcing mechanisms behind the NAO, with a main focus on the effects of variations in solar activity. Differ-
ent studies disagree on whether the NAO is forced by solar activity variations or not. While the NAO has been 
shown to correlate with variations in solar activity in the second half of the 20th century, this correlation is less 

clear during the first half of the 20th century. Several studies indicate that variations in solar activity might affect the 
NAO by inducing stratospheric circulation changes which are propagated down on the troposphere. During high 

solar activity years this enhances the westerly winds and causes a positive NAO. It is also suggested that the varia-
tions in solar irradiance cause atmospheric blockings to occur. These blockings, that interrupt winds and storm 

tracks over the Atlantic, is more persistent during low solar activity years and is associated with a negative NAO. 
Except variations in solar activity, it has been suggested that the NAO varies due to variations in sea surface tem-

peratures, sea ice and volcanic activity.  



 

 

Sammanfattning 

Ida Johansson  

Johansson, I., 2015: Påverkas den Nordatlantiska Oscillationen av variationer i solaktivitet? En litteraturstudie om 

de drivande faktorerna bakom  den Nordatlantiska Oscillationen. Examensarbeten i geologi vid Lunds universitet, 

Nr. 447, 18 sid.  

Nyckelord:  Nordatlantiska Oscillationen,  solaktivitet, stratosfär — troposfär koppling, blockerande högtryck 

Handledare: Flor ian Adolphi & Raimund Muscheler   

Ämnesinriktning: Kvar tärgeologi 

Ida Johansson, Geologiska institutionen, Lunds universitet, Sölvegatan 12, 223 62 Lund, Sverige. E-post: 

Ida.Johansson.567@student.lu.se 

Sammanfattning: Nordatlantiska Oscillationen (NAO) är ett atmosfäriskt cirkulationsfenomen som kännetecknas 
av skillnader i havsnivåtryck mellan högtrycksområdet vid Azorerna och lågtrycksområdet över Island. NAO varie-

rar mellan en positiv och negativ fas beroende på hur väl utvecklade dessa högtrycksområden är. NAO har visat sig 
ha stor påverkan på vinterklimatet på norra halvklotet eftersom den påverkar temperaturer, stormar och nederbörd 

över Atlantområdet. På senare år har flera studier publicerats med teorier angående vilka bakomliggande faktorer 
som driver NAO. Denna kandidatuppsats är en litteraturstudie med syfte att sammanfatta de mest framstående teo-

rierna kring de pådrivande mekanismerna bakom NAO, med främsta fokus inriktat på effekterna av variationer i 
solaktivitet. Det är debatterat huruvida NAO drivs av variationer i solaktivitet. NAO har visat sig korrelera med 
variationer i solaktivitet under den senare halvan av 1900-talet men under första halvan av 1900-talet syns ingen 

korrelation. Studier visar att variationer i solaktivitet kan leda till uppvärmning av stratosfären. På grund av ökade 
temperaturer i stratosfären förstärks de stratosfäriska vindar vilka sedan kan spridas ner till troposfären. Detta leder 

till ökade västvindar och en positiv NAO-fas. Forskning visar även att variationer i solinstrålning leder till blocke-
rande högtryck. Dessa förändrar vind- och stormriktningen över Atlanten, vilket leder till en negativ NAO-fas. För-

utom variationer i solaktivitet har det föreslagits att NAO drivs av skillnader i havsytetemperaturer, havsis och vul-
kanisk aktivitet. 
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1. Introduction  
 
 
The North Atlantic Oscillation (NAO) is an atmos-

pheric circulation pattern affecting mainly winter 

weather and climate over large areas in the North At-

lantic region. The NAO is characterized by differences 

in sea surface pressure between the Azores high- and 

Icelandic low pressure systems. Variations in climate 

dependent on fluctuations of the NAO is seen from 

eastern North America to Siberia, and from the Arctic 

to the subtropical Atlantic (Hurrell et al. 2003).  

  Climatic effects associated with the NAO have 

been recognised by mankind for several centuries, but 

it is not until recently that a larger focus has been put 

on the subject of the NAO. Since the NAO has a 

strong impact on the northern hemisphere climate, it is 

of great importance for people living in this area. The 

weather variations related to the NAO have an impact 

on agriculture, water and energy supplies etc. (Hurrell 

et al. 2003). Hence, numerous detailed studies have 

been carried out investigating the dynamics, triggers 

and impacts of the NAO. Furthermore it is important 

to understand how the NAO reacts to global warming 

since this could lead to improved predictions of re-

gional climate change (Hurrell et al. 2003).   

 The mechanisms driving the NAO are under con-

stant debate. It has been debated whether the NAO is a 

purely atmospherically driven phenomenon or not 

(Wanner et al. 2001). However, while it has been sug-

gested that the NAO on shorter time scales is driven 

mainly by internal atmospheric variations, it has been 

proposed that the NAO on longer time scales is most 

likely forced by other climatic mechanisms 

(Magnusdottir et al. 2004). Several theories of these 

forcing mechanisms behind the NAO have been pre-

sented. Among others, suggestions have been made 

that the NAO fluctuates due to variations in sea sur-

face temperatures, sea ice, volcanic activity and solar 

activity (Wanner et al. 2001).   

 The effects of variations in solar activity on the 

North Atlantic Oscillation are discussed in several 

studies with various sometimes contradicting conclu-

sions (e.g. Ineson et al. 2011, Brugnara et al. 2013). 

The solar irradiance reaching earth varies on different 

time scales. Among these are the 27-day variation as a 

result of solar rotation, annual variations caused by the 

orbit of the Earth, the 11-year sun spot cycle and vari-

ations over centuries between grand solar maxima and 

minima (Lockwood 2012).    

 It has been proposed that the NAO fluctuates in 

connection to changes in the 11-year solar cycle, how-

ever when comparing the NAO index with variations 

in solar activity it was shown that during some time 

periods the NAO index correlates more with solar 

variations than during others (Kodera 2002). The later 

part of the 20th century is characterized by a positive 

relationship between the NAO index and solar irradi-

ance. Opposed to this is the earlier part of the 20th cen-

tury when this connection instead was relatively weak 

(Kodera 2002).  Several studies covering the last 50 

years have shown a correlation between solar activity 

variations and fluctuations of the NAO (Ineson et al. 

2011, Lockwood et al. 2010).  However,  records cov-

ering  a 250-year time period did not to show a signifi-

cant relationship between solar activity and the NAO 

(Brugnara et al. 2013). It is therefore discussed how 

important variations in solar activity are for the devel-

opment of the NAO. It has been debated whether re-

cent correlations really just occurred by chance 

(Oldenborg et al. 2013). Another suggested explana-

tion for recent correlations is that physical changes 

somewhere in the climate system have caused climatic 

coupling to occur or made an already existing cou-

pling apparent (Oldenborgh et al. 2013). One difficul-

ty which makes signals between solar activity and the 

NAO more or less apparent is that different data sets 

and statistical methods are used in different studies. 

Depending on the chosen length of the analysed rec-

ords, different results can be obtained. This means that 

just a small change in the observed time period can 

lead to very different outcomes, making the im-

portance of solar activity as a driving factor on the 

NAO difficult to assess (Brugnara et al. 2013).  

   

 

1.1 Aim of the paper 

As mentioned, one of the biggest question marks con-

cerning the NAO are the forcing factors behind it. Be-
cause of the effects on climate in the Atlantic region it 
is of great importance to understand what is causing 

the NAO to fluctuate. Different views of the matter 
have been presented but no final conclusions have 

been made. The aim of this paper is to conclude and 
summarize some of the more prominent theories be-

hind the mechanisms forcing the North Atlantic Oscil-
lation. The main focus will be on the theories of varia-
tions in solar activity as a forcing factor on the North 

Atlantic Oscillation.   
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2. Background 
 

2.1 What is the NAO?  
 
The North Atlantic Oscillation is usually described as 
a movement of atmospheric mass between the Arctic 
and the subtropical Atlantic (Wanner et al. 2001).  
There is no unique way to define the NAO. However, 
there are two pressure areas often used when describ-
ing the phenomenon, the Icelandic low- and the 
Azores high-pressure systems. The variations in sea 
level pressure between these two areas generate a pres-
sure gradient. Because of this pressure gradient, west-
erly winds over the North Atlantic are generated 
(Wanner et al. 2001). The westerly winds, also known 
as “jets”, reach their maximum speed of 40 m/s at 
about 12 km up in the troposphere (Hurrell et al. 
2003).  
  When measuring the NAO different statistical 
methods can be used, either station-based or pattern-
based (Wanner et al. 2001). A station-based index is 
measured as the normalized sea level pressure differ-
ences between two monitoring stations in the vicinity 
of the Icelandic low and Azores high. Alternatively, a 
spatial-based index, or a principal component based 
index, can be calculated from performing principle 
component analysis on the mean sea level pressure 
anomalies over the North Atlantic sector (usually be-

tween 20-80⁰N and 90⁰W-40⁰E) (Wanner et al. 2001)  
  The NAO is described as being in an either posi-
tive or negative phase (see Figure 1). These phases are 
describing the strength of the circulation pattern. In a 
positive (NAO+) state the Icelandic low and the 
Azores high are well developed, resulting in a greater 
pressure gradient between these two areas. A greater 
pressure gradient causes stronger and more northern 
westerly winds. In a negative (NAO-) phase the pres-
sure anomalies at the nodes of the NAO are less devel-
oped than normal and as a result the westerly winds 
get weaker and are positioned further south. However 
it is important to point out, is that there is not only a 
confined positive and negative phase of the NAO,  but 
also everything in between (Wanner 2001). The NAO 
affects the climate mainly during wintertime when the 
NAO accounts for more than one-third of the total sea 
level pressure variance over the North Atlantic Ocean 
(Hurrell et al. 2003). During summertime the spatial 
extent of the NAO and the sea level pressure variance 
are smaller than during winter. Atmospheric variations 
are lager during wintertime which makes the effect of 
the NAO on surface climate bigger than during sum-
mertime. Because of this, most research on the NAO is 
restricted to wintertime, however the NAO is still no-
ticeable all year around (Hurrell et al. 2003). 
   There have been periods when the NAO persisted 
in an either positive or negative phase. During the be-
ginning of the last century until approximately 1930 
the NAO winters were characterized by a positive 
phase. During the 1960s the NAO winters instead 
showed persistent negative NAO anomalies (Hurrell et 
al. 2003). Although decadal NAO trends is shown, it is 
observed that variations in the NAO can occur on very 
different timescales, making it hard to assess any pre-

ferred timescale of the NAO variability (Hurrell et al. 
2003).    

 

2.2 The climatic effect of the NAO 

The different wind patterns as a result of the various 
phases of the NAO are accompanied by different pat-
terns of temperature and precipitation over the North 
Atlantic area. It has been shown that there are statisti-
cally significant correlations between sea level pres-
sure anomalies and air temperature anomalies over a 
wide region in the northern hemisphere (Van Loon & 
Rogers 1978). Normally during strong positive NAO 
phases, warm maritime air is moved over the North 
Atlantic ocean because of the enhanced westerly winds 
(Hurrell et al. 2003). This makes winter temperatures 
higher than normal in eastern United States and over 
northern Europe. Simultaneously in Greenland and the 
Mediterranean area temperatures are normally below 
average. During strong negative NAO phases the tem-
perature pattern is opposite (Wanner et al. 2001). This 
reversing temperature pattern is often referred to as the 
Greenland seesaw (Van Loon & Rogers 1978).  
  The positive and negative NAO phases are also 
connected to different patterns of precipitation as a 
result of variations in the strength and paths of storms 
generated over the Atlantic. During a positive NAO 
the North Atlantic storm track is usually directed more 
north-eastward over northern Europe than during neg-
ative NAO winters (Hurrell et al. 2003). This makes 
positive NAO phases associated to precipitation anom-
alies above normal in northern Europe and Scandina-
via, while the precipitation levels over southern and 
central Europe are below average. The opposite pre-
cipitation pattern is notable during negative NAO 
phases (Wanner et al. 2001).   
 It is seen that the ocean and the atmosphere inter-
act, which makes variations in the ocean affect the 
NAO (Visbeck et al. 2013). The NAO is also known to 
force responses in different layers of the ocean 
(Visbeck et al. 2013). It is shown that NAO variations 
cause responses in the ocean on multiple time scales. 
Fluctuations in the NAO seems to be synchronized 
with interdecadal changes in convection triggering the 
renewal of intermediate and deep water in the Labra-
dor Sea. On a decadal time scale this has been shown 
to affect the thermohaline circulation and thereby also 
of sea surface temperatures (Hurrell et al. 2003).  
 
2.3 Method 
 
This bachelor thesis is a literature study where differ-
ent views and theories of the forcing mechanisms be-
hind the North Atlantic Oscillation have been studied. 
The most prominent theories of these suggested forc-
ing factors have been summarized and compiled into 
the following chapters of this paper.  
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Figure 1. How the different phases of the NAO affects cur rents (blue and orange ar rows), winds 
(green and yellow arrows) and sea surface temperatures over the Atlantic area. Source: Wanner et al. 2001 
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3. Results  

 
3.1 The NAO response to variations in 

solar activity   
 

3.1.1 Stratospheric – Tropospheric couplings 

Both the lower troposphere and the stratosphere is 

known to be sensitive to changes in solar radiation. 

The lower troposphere is heated due to adsorption of 

visible light, while heating of the stratosphere is 

caused by ozone adsorbing ultraviolet radiation 

(Kodera & Kuroda 2002). Variations in the spectral 

solar irradiance affects the production and destruction 

of ozone. Studies show that spectral changes may re-

sult in increased or decreased ozone in the atmosphere 

(Haigh et al. 2010). Ozone production in the strato-

sphere increases during solar maximum and decreases 

during solar minimum (Rind et al. 2008). The varia-

tion in total solar irradiance during the 11 year cycle is 

approximately 0.1 %. The variations of solar irradi-

ance in the ultraviolet wavelength (200 – 250 nm) are 

considerably larger, with a range from 4 – 8 % be-

tween solar minimum and solar maximum (Chiodo et 

al. 2012).  

  In 2011, using satellite observations of spectral 

solar irradiance variations, Ineson et al. (2011), mod-

elled the atmospheric response to changes between 

solar maximum and solar minimum in the 11-year 

solar cycle. The radiation observations were used to 

force a climate model, with the purpose to demonstrate 

responses in surface climate to changes in ultraviolet 

radiation. The results showed that sea-level pressure 

over the northern hemisphere responds to solar activity 

variations mainly in wintertime. The model showed an 

increasing sea-level pressure at high northern latitudes 

and a decreasing sea-level pressure at mid-latitudes 

during low solar activity winters. This pattern corre-

sponds well with a negative NAO-phase in the North 

Atlantic sector.  The modelling result showed that re-

sponses to declining ultra violet irradiance begin in the 

upper stratosphere. As mentioned above, this is associ-

ated with the decrease of UV-adsorption by ozone 

during solar minima. Stratosphere temperatures show a 

change of 1 – 2 K between solar maximum and solar 

minimum. This temperature change causes a relative 

change in the temperature gradient from the North 

Pole to the equator. This decreased temperature gradi-

ent during low solar activity changes the strength and 

the latitudinal position of the stratospheric jet, result-

ing in a relatively weak and southward shifted strato-

spheric jet stream (Kodera 2002). According to Ineson 

et al. (2011), the wind patterns in the stratosphere as a 

result of solar irradiance variations are propagated 

downwards affecting tropospheric circulations. This  

theory of so called “top-down” propagation of anoma-

lous flow from the stratosphere to the troposphere is 

confirmed in several other studies (e.g. Matthes et al. 

2006). Opposed to the “top-down” mechanism, driven 

by UV-variations, is the “bottom-up” mechanism, 

driven by changes in total solar irradiance. The 

“bottom-up” mechanism is a result of solar heat ad-

sorption by the ocean and land-surfaces. When the 

ocean adsorbs solar radiation evaporation increases 

(Engels & Van Geel 2012, Meehl et al. 2003, 2008). It 

has been suggested that these two mechanisms togeth-

er increases sea surface temperatures and precipitation 

over the Pacific (Gray et al. 2010). Furthermore, varia-

tions in tropical sea surface temperatures might have 

an effect on NAO (see Chapter 3.2) (Hoerling et al. 

2001).   

  Recent winters from 2008 – 2011 showed low tem-

peratures over Northern Europe and United States, and 

milder conditions over the Mediterranean area. During 

this period the NAO also showed low values (Ineson et 

al. 2011). Observations also showed easterly wind 

anomalies in the stratosphere (Ineson et al. 2011). Ac-

cording to Ineson et al. (2011)  these cold winters 

could be a result of a lower solar activity. Chiodo et al. 

(2012) conducted similar climate model runs. The sim-

ulations confirmed the results given by Ineson et al. 

(2011). According to the Chiodo et al. (2012) simula-

tion, high solar activity lead to stronger westerly winds 

on the Northern hemisphere, similar to the positive 

phase  of  the NAO.   

  Using climate models, Scaife et al. (2005) showed 

that the stratospheric impact on the troposphere ac-

counts for a majority of the observed low frequency 

changes of the North Atlantic oscillation from 1965-

1995. During this period when the NAO was increas-

ing, stratospheric winds were also increasing in speed. 

A correlation coefficient of 0.8 is seen between the 

NAO and stratospheric winds during this period 

(Scaife et al. 2005). Although the climate model 

showed that the NAO was strongly influenced by 

changes in the stratosphere during this time, it does not 

automatically mean that the stratospheric changes con-

trol surface temperature. It might as well be that strato-

spheric changes were driven by changes in the tropo-

sphere (Scaife et al. 2005).   
 

 

3.1.2 Variations in spatial extent  of the NAO pat-

tern  

According to observations of the spatial structures of 
the NAO, they vary during the different phases of the 

11-year solar cycle (Kodera 2002). These observations 
show that the NAO has a larger hemispherical struc-

ture, extending to the stratosphere during solar maxi-
mum. During solar minimum the spatial structure is 

instead restricted to the eastern Atlantic and the tropo-
sphere (Kodera 2002). In 2003, Kodera used winter 
mean sea-level pressures, surface temperatures and 
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sunspot numbers from 1900 through 1999 to investi-
gate how well they correlate to the spatial patterns of 

the NAO. Sunspot numbers above and below average 
were used to define high and low solar activity years, 

respectively. Low solar activity winters showed the 
typical sea-level pressure seesaw between Icelandic 

low and Azores high, while high solar activity years 
showed a more hemispherical NAO pattern, as shown 
in Figure 2 (Kodera 2003).  

  The late 20th century experienced a longer positive 
NAO phase. Throughout this phase solar activity was 

high. During the beginning of the 20th century a long 
positive NAO phase also occurred. At this time, how-

ever, solar activity was rather low. By comparing 
mean winter sea-level pressure for both periods differ-

ences in NAO spatial patterns were revealed (Kodera 
2003).  Both periods showed low- and high pressure 
anomalies over the Icelandic low and the Azores high. 

However, the late 20th century positive NAO phase 
showed a greater area with positive and negative pres-

sure anomalies, extending over Europe and the Medi-
terranean, and the North Pole, respectively. In compar-

ison, at the beginning of the 20th century positive sea-
level pressure anomalies never occurred over Europe 
and  negative anomalies only covered parts of the po-

lar region (Kodera 2003). Kodera (2003) draws the 
conclusion that differences in solar activity between 

early and late 20th century are correlated to the differ-
ent spatial patterns of the two time periods. However, 

Kodera suggests that not only solar activity variations 
could have had an effect on the spatial variations of 

the NAO. Kodera also points out that other decadal 

changes in the Pacific sector could have had an influ-
ence on the NAO, and that it is important to keep in-

vestigating the causes of the different spatial patterns 
of the NAO.  

 

3.1.3 Blocking events   

Another debated possible effect of solar activity varia-

tions is the influence on the occurrence of so-called 
atmospheric blocking events or “Blockings”. Block-

ings are described as persistent anticyclones that inter-
rupt the pattern of the westerly winds and form an in-

tegral part of the North Atlantic Oscillation occurring 
more often during negative phases of the NAO 
(Woollings et al. 2008). They can persist for several 

weeks, mainly during northern hemisphere winters, 
and are related to large anomalies in temperature and 

precipitation (Barriopedro et al. 2008). Studies show 
that blocking events on the Northern hemisphere in 

general are not significantly responding to solar activi-
ty, however the biggest response is noticed over the 

Atlantic Ocean where a significant response in block-
ing persistence is seen. (Barriopedro et al. 2008).  
  Persistent, long lasting blocking events over the 

Atlantic area are more common during low solar activ-
ity winters (Lockwood et al. 2010, Barriopedro et al. 

2008). The blocking persistence over the Atlantic is on 
average three days longer in low solar activity years 

(LS years) than during high solar activity years (HS 
years), while short-lived blockings are more frequent 

Figure 2. A) Cor relation between mean DJFM NAO-index and mean JFM sea level pressure over the northern 
hemisphere during low solar activity years between 1900-1999 B) Same as in A) but for high solar activity years  

Dashed lines show negative values. Shaded areas show positive correlation coefficients. Source: Kodera 2003  
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during HS years (Barriopedro et al. 2008). Also the 
spatial blocking patterns between HS and LS winters 

differ. During HS blockings have a more westward 
location than during LS years. These blocking patterns 

resemble those spatial patterns shown by Kodera in 
2003 (see Chapter 3.1.2), especially during HS winters 

when the blocking pattern covers a larger area and a 
larger NAO pattern is shown (Barriopedro et al. 2008). 
Atlantic blockings during HS and LS years have a 

different impact on the climate. Blockings during LS 
years result in cold European winters, while blockings 

during HS years do not affect European winters as 
much because of the more westward location of the 

blocking centre (Barriopedro et al. 2008).  
   In the Atlantic area blockings usually occur in the 

area of southern Greenland leading to that wind flow 
anomalies in this area which resemble the negative 
phase of the NAO (Woollings et al. 2008). From 

around 1960 to 1990 when the NAO went from a neg-
ative to a positive state, the frequency of blockings 

over Greenland was decreasing (Woollings et al. 
2008). In addition, it has been suggested that the nega-

tive NAO phase in the early 1960s was associated with 
cold winters in Europe due to prolonged blocking 
events during this time period (Woollings et al. 2008). 

   The possible mechanisms behind blockings are 
debated. Blockings might be a result of stratospheric-

tropospheric coupling, as mentioned in previous chap-
ter, which could explain the NAO extension into the 

stratosphere, shown by Kodera in 2003, during HS 
winters (Barriopedro et al. 2008). The question re-

mains whether the different phases of the NAO lead to 
blockings or blockings lead to variations in the NAO 
(Barriopedro et al. 2008). Different studies have 

shown contradicting results. Shabbar et al. (2001) pro-
posed that the NAO forces blockings since it largely 

controls temperatures over ocean and landmasses in 
the Atlantic area. During a negative NAO temperature 

are warmer over the ocean and colder over land than 
during the positive phase. According to Shabbar et al. 
(2001) negative NAO conditions make it more favour-

able for persistent blockings to occur. Croci-Maspoli 
et al. (2007) instead stated that blockings might force 

variations in the NAO. Opposed to Shabbar et al. 
(2001) they proposed that persistent blockings could 

be causing the establishment of a negative NAO and 
also extend the occurrence of a negative NAO phase. 
According to Croci-Maspoli et al. (2007) blockings 

evolved during a positive NAO, dependent on their 
location, might also help sustain a positive  NAO.   

 

3.2 The NAO response to variations in 
sea surface temperatures 

 

Several observations show that the NAO causes varia-
tions in the ocean circulation (e.g. Visbeck et al. 

2013). It has been shown that the NAO strongly af-
fects the Atlantic Ocean through changes in the west-

erly winds, modifying ocean-atmosphere heat ex-
change (Czaja et al. 2013). Regarding currents, density 

variations and water masses, the NAO causes large-
scale anomalies over the Atlantic Ocean (Czaja et al. 

2013). Sea surface temperatures (SST) over the Atlan-
tic show a tripole pattern during winters driven by the 

NAO. This pattern is characterized by cold SST anom-
alies in the subpolar and subtropical regions, and warm 
SST anomalies in the mid latitudes during a positive 

NAO (Visbeck et al. 2001) (see Figure 1 & 3).  The 
ocean is seen to lose energy to the atmosphere in the 

subpolar and subtropical Atlantic due to strong wester-
lies, however it gains energy in the midlatitudes be-

cause of a decrease in wind speed. Therefore it is pro-
posed that the large SST tripole is driven by the turbu-

lent energy flux connected to the NAO (Deser et al. 
2010). It is indicated that the SST tripole responds to 
variations in the NAO on a monthly timescale (Bader e 

al. 2011) However, on a longer, decadal to multide-
cadal timescale it is instead suggested that the NAO 

responds to variations in the SST tripole (Bader et al. 
2011).  

  Since the atmosphere exchanges heat and moisture 
with the land and ocean beneath it, it is not an isolated 
system. It is therefore possible that the NAO fluctuates 

as a result of changes in the ocean, just as the ocean 
changes due to NAO variations (Rodwell et al. 1999). 

In a study from 1999, Rodwell et al. simulated Decem-
ber to February NAO and sea surface temperatures 

over northern Europe index from 1947 – 1997, show-
ing a strong significant correlation between both varia-

bles. This could indicate, that if sea surface tempera-
tures are known, it might be possible to predict wheth-
er the NAO is positive or negative in two out of three 

years (Rodwell et al. 1999). The same study showed 
that evaporation increases over areas with positive 

SST anomalies and decreases in areas with negative 
SST anomalies. According to Rodwell et al (1999), 

this means that sea surface temperatures can modulate 
the structure of the NAO as a result of changes in 
evaporation, atmospheric heating and precipitation. 

   Czaja & Frankignoul (2001) suggested that the 
NAO could be driven by a positive feedback between 

the SST tripole and the NAO as a result of a direct 
interaction with the ocean, similar to what Rodwell et 

al. (1999) suggested. They proposed that this might 
affect the NAO on longer timescales. However, Czaja 
& Frankignoul (2001) also suggested that the NAO 

might vary because of a different SST pattern, called 
the North Atlantic Horseshoe (NAH). This SST pat-

tern is generated during summertime, by ocean-
atmospheric interactions, and lasts through early win-

ter. The summertime NAH is shown to correlate with a 
positive NAO during winter. It has been hypothesized 

that the NAH generates a response in the NAO and 
that this response then generates the SST tripole in 
wintertime. However, it appears that the NAH cannot 

generate a NAO pattern during summertime because 
of unidentified, most likely, dynamical reasons (Czaja 

& Frankignoul 2001). Yet, since the NAH is persistent 
through fall and early winter it has an impact on the 
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NAO in wintertime because of a then more active at-
mospheric flow over the North Atlantic area. Different 

to the suggestion that there is a positive feedback be-
tween the NAO and the SST tripole because of a direct 

interaction between the atmosphere and the ocean, the 
idea that the summertime NAH generates a positive 

winter NAO instead proposes that NAO variations are 
caused by an external forcing. By observing summer 
sea surface temperatures Czaja & Frankignoul (2001) 

have been able to predict up to 15 % of the monthly 
NAO variations during winter.    

  It has also been suggested that the NAO varies not 
only because of changes in the Atlantic Ocean but also 

from variations in tropical sea surface temperatures. 
Hoerling et al (2001) proposed that the NAO might 

vary in response to atmospheric heating and tropical 
precipitation over equatorial oceans. Czaja & Frank-
ignoul (2001) also investigated the NAO response to 

tropical SSTs and found a small significant influence, 
however smaller than the response to midlatitude 

SSTs.  
  According to Czaja et al. (2013) observations are 

still too limited in time to conclude the significant im-
pact of the Atlantic Ocean on the NAO. In addition, it 
is difficult to determine the impact of the ocean on the 

NAO, since the NAO show an impact on the ocean 
(Czaja & Frankignoul 2001). 

 

 

3.3 The NAO response to variations in 
sea ice   
 
It has been suggested that the atmospheric circulation 
might be affected by sea ice (e.g. Alexander et al 2003, 

Deser et al. 1999). Variations in sea ice extent can 
modulate the climate by changing the surface albedo 

as well as heat and moisture exchange between the 
ocean and the atmosphere (Deser et al. 1999).   

  An observational study by Honda et al. in 2009 
showed that a low sea ice minima corresponded to a 
negative NAO in wintertime. Due to ice loss in the 

coastal area of Siberia during summer the ice cover in 
Barents sea is reduced in autumn. Honda et al. (2009) 

proposed that the ice loss intensifies the strength of the 
cold northerlies and causes temperature anomalies 

over Eurasia associated with a negative NAO. Francis 
et al. (2009) focused on sea ice losses in summertime 
and the effects on the NAO in the following months. 

This study showed that after summers with less ice 
than average, more heat and moisture extended from 

the surface to the lower stratosphere mainly in areas 
where sea ice was retreating. This heating of the strat-

osphere combined with more solar energy adsorbed by 
the ocean as a result of the decreasing albedo dimin-

ishes the regrowth of sea ice in autumn. In conse-
quence the pressure gradient between the Azores high 
and the Icelandic low is reduced by up to 20% after 

summers with low ice cover, resembling NAO- condi-
tions, which in turn reduces the speed of the westerly 

jets during winter (Francis et al. 2009).   
  Simulations made by Seierstad & Bader in 2008, 

showed that a future reduced sea ice cover would re-
duce storminess in the middle latitudes and towards 
the Arctic. According to Seierstad & Bader this result 

is associated with a negative phase of the NAO during 
late winters. . 

 Magnusdottir et al. 2004, performed simulations 
investigating the effect of SST and sea ice variations 

on northern hemisphere teleconnections. These simu-
lations showed that sea ice variations induce a greater 

atmospheric response associated with the NAO than 
variations in SSTs does. Model simulations with dif-
ferent sea ice extent showed large variations in surface 

energy flux. Simulations where sea ice was removed 
from the area around eastern Greenland showed simi-

larities with the negative phase of the NAO. Areas 
with decreased sea ice were characterized by an in-

creasing latent and sensible surface flux. This demon-
strates the isolation between the ocean and the atmos-
phere by sea ice. Furthermore, the decreasing sea ice 

also led to increasing precipitation over this area. Sim-
ilarly, Magnusdottir et al (2004), suggested that there 

is a negative feedback between the NAO and sea ice 
variations, resulting in a negative NAO when sea ice is 

decreasing.   
 Alexander et al. (2004) suggested that the retreat of 
sea ice forces a direct atmospheric response in a rela-

tively small spatial area, mainly were the ice is retreat-
ing. Alexander et al (2004) stated that evaporation and 

Figure 3. Covar iance map between mean DJFM 
sea surface temperatures and NAO-index from 1900 

– 2000. The map show the SST tripole. Dashed/solid 
lines show negative/positive values.  Source: Vis-

beck et al. 2013  
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precipitation increases just in the area of ice loss. 
However, if this area is in the vicinity of the local 

storm tracks, sea ice loss can then impact on the paths 
and strength of storms. Hence, the findings of Alexan-

der et al (2004), support the idea by Magnusdottir et 
al. 2004, that ice loss in eastern Greenland weakens 

the North Atlantic storm track and is therefore strongly 
associated with the negative phase of the NAO.  

 

3.4 The NAO response to volcanic erup-
tions  
 

Volcanic aerosols are emitted during volcanic erup-

tions. While aerosols from smaller eruptions usually 
remain in the troposphere where they persists only for 

a couple of weeks, larger eruptions inject aerosols up 
to the stratosphere where they can remain for several 
years (Muscheler & Fischer 2012). The climatic effect 

of volcanic forcing, caused by large volcanic erup-
tions, is well observed. In general, the climatic effect 

is large but short-lived (Fischer et al. 2007). It has also 
been shown that large volcanic eruptions can affect 

atmospheric circulation patterns as the NAO, but to 
what extent is still under debate (e.g. Fischer et al. 
2007, Shindell et al. 2004).   

  Fischer et al. (2007) studied the effect of 15 major 
volcanic eruptions onto northern hemisphere climate 

during the last 500 years. Observations indicate that 
volcanic eruptions are followed by a positive NAO, 

resulting in warm and wet winters over Northern Eu-
rope. According to Fischer et al. (2007) northern hemi-

Figure 4. The response to volcanic forcing 
A) Sea level pressure anomalies over  the nor thern hemisphere two years after  a simulated volcanic eruption. The 
pressure anomalies show a positive NAO phase. 
B) Same as in A but showing temperature anomalies over  the nor thern hemisphere.  
Source: Ottera et al. 2010 

sphere winters show strong warm anomalies about two 
years after a large volcanic eruption. This result was 

confirmed by Ottera et al. in 2010. In this study volcanic 
eruptions were modelled by simulating an injection of 

volcanic aerosols into the stratosphere, resulting in heat-
ing of the lower stratosphere. The results imply a two 

year positive NAO phase after a volcanic eruption asso-
ciated with warm temperatures over northern Europe, as 
shown in Figure 4. Similar results were obtained by 

Shindell et al. (2004). Using climate model simulations, 
Shindell et al. (2004) showed that volcanic aerosols heat 

the stratosphere by absorbing longwave radiation. This 
heating enhances westerly winds which in turn are pro-

jected down to the troposphere resulting in stronger 
tropospheric westerlies, showing great similarity to the 

solar driven “top-down” mechanism.  Shindell et al. 
(2004) suggested that volcanic eruptions show a pro-
nounced effect on the NAO during wintertime because 

of enhanced stratosphere-troposphere coupling. During 
summertime volcanic aerosols instead show a cooling 

effect on the northern hemisphere as a result of radiative 
cooling. It is therefore suggested that the effect of vol-

canic eruptions onto the NAO is seasonally dependent 
(Shindell et al. 2004).   
  It has been suggested that during the Little ice age (  ̴ 

1300 – 1900) volcanic eruptions triggered sea ice – 
ocean feedbacks (Schleussner & Feulner 2013). When 

volcanic aerosols scatter solar irradiance back to space 
this might lead to an expansion of sea ice on the north-

ern hemisphere because of surface cooling. When sea 
ice is extended in the North Atlantic Ocean it affects 

ocean dynamics and reduces the possibility for sea ice to 
melt (Zong et al. 2011). In this climate modelling study 



 

 

the NAO went from a persistent positive phase to a 
more fluctuating state when transitioning from the 

medieval warm period into the little ice age. It has 
therefore been suggested that this sea ice – ocean feed-

back as a result of volcanic eruptions might have af-
fected the NAO (Schleussner & Feulner 2013). 

 

4. Discussion  
 

4.1 Summary  

 

The North Atlantic Oscillation is likely driven by sev-

eral different forcing factors, but to what extent is not 

yet established. It has been suggested that the NAO 

might be driven by variations in 11-year solar cycle. 

Observations show that the spatial extent of the NAO 

varies due to variations in solar activity, with a large 

hemispherical structure extending to the stratosphere 

during high solar activity years and a smaller spatial 

structure confined to the troposphere during low solar 

activity years (Kodera 2002). The spatial variations of 

the NAO might be caused by couplings between the 

stratosphere and the troposphere.  Increased irradiance 

in the UV spectrum causes stratospheric heating which 

in turn generates stratospheric winds (Ineson et al. 

2011). This stratospheric wind anoaly can be propagat-

ed downwards into the troposphere, generating a posi-

tive NAO with increased westerly winds during high 

solar activity (“top-down” mechanism). Stratospheric-

tropospheric couplings might also cause atmospheric 

blockings to occur. Studies show that the frequency of 

long lasting blockings increases during low solar activ-

ity (Barriopedro et al. 2008). These blockings tend to 

interrupt the paths of the westerly winds and are 

shown to correlate with a negative NAO, although, it 

is not unequivocal whether blockings lead to variations 

in the NAO or the NAO leads to blockings. Besides 

the “top-down” influence on climate, changes in solar 

activity may also trigger “bottom-up” mechanisms 

causing changes in ocean temperatres via adsorption of 

solar radiation. This mechanism is heating the ocean 

mainly in tropical waters which is suggested to show 

an effect on the NAO as a result of increasing precipi-

tation and evaporation (Meehl et al. 2003, 2008). The 

NAO during wintertime is associated with a SST tri-

pole over the Atlantic that is responding to variations 

in the NAO on shorter time scales. On longer decadal 

time scales however, the NAO is suggested to be 

forced by variations in this SST tripole. Variations in 

the SST tripole may also cause the spatial structure of 

the NAO to vary due to atmospheric heating, evapora-

tion and precipitation (Rodwell et al. 1999). It is also 

suggested that the winter NAO varies due to another 

SST pattern called the North Atlantic Horseshoe. This 

pattern is seen during summertime but is believed to 

show a delayed effect on the following winter NAO 

(Czaja & Frankignoul 2001) .  

Figure 5. The cor relation between the mean NAO index and the mean number  of sunspots dur ing Decem-
ber to February 1830 – 2000.   
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  The ocean is suggested to force the NAO not only 

through variations in sea surface temperatures but 

also by the increase or decrease of sea ice. It is shown 

that the decrease of sea ice is corresponding to a neg-

ative NAO, which might be a result of a negative 

feedback (Magnusdottir et al. 2004). When sea ice 

decreases, heat and moisture are released in to the 

atmosphere. Depending on where the ice is retreating 

this might show an effect on the atmospheric storm 

paths. When sea ice is decreasing in the area east of 

Greenland this may interrupt the Atlantic storm path 

and cause the NAO to respond with a negative phase 

(Alexander et al. 2003). In addition, the NAO can be 

affected by large volcanic eruptions. Volcanic erup-

tions release aerosols into the stratosphere in which 

they can remain for several years. Observations show 

that the winter NAO responds with at positive phase 

for about two years after a large volcanic eruption 

(Ottera et al. 2010). The release of aerosols into the 

stratosphere causes stratospheric heating and enhanc-

es the westerly winds. Opposite to this, volcanic aer-

osols can cause a cooling in the northern hemisphere 

during summertime. It is therefore possible that the 

NAO response to volcanic eruptions is seasonally 

dependent (Shindell et al. 2004).  

 

4.2 Is there an influence of solar activity 
on the NAO?  
 

As shown in Figure 5, there is a similar trend be-
tween the NAO and the amount of sunspots in the 11
-year sunspot cycle during the second half of the 20th 

century. However, it is obvious when studying Figure 
5 that this correlation is not always showing. The 

relationship shown between sunspots and the NAO 
index in the latter part of the 20th century is not seen 

in the beginning of the century.  Many of the studies 
presented on the subject of solar activity as a forcing 
factor on the NAO only covers the last part of the 

20th century, since there is more reliable data cover-
ing this period. However, by only focusing on recent 

years, this though might result in a fabricated picture 
of the relationship between solar activity and the 

NAO. A change in the analysed period can change 
the strength of this relationship significantly. Why 

this obvious correlation is shown in the later 20th 
century and not earlier is the main question to be 
answered. Could it be, as mentioned in the introduc-

tion of this paper, that the dynamics of other factors 
in the climate system have made this correlation ap-

parent? Or did this correlation occur just by chance?   
  Even though the forcing of solar activity is not 

apparent all the time, it might not necessarily mean 

that the sun is not affecting the NAO. It could be that 
other mechanisms are more strongly affecting the 

NAO during certain time periods instead. It is made 
clear that there are various climatic factors such as 

sea surface temperatures, sea ice variations and vol-
canic eruptions that might be forcing the NAO. It is 

seen that variations in some climatic component 
might cause a response somewhere else in the climat-
ic system. For instance, it is suggested that solar irra-

diance affects sea surface temperatures by bottom-up 
mechanisms or that sea ice variations be might be 

affected by volcanic activity. Hence, it is important 
to see these factors as parts of a coherent system, 

instead of as isolated factors. It could be that a series 
of mechanisms are causing the fluctuations of the 

NAO rather than one single forcing. One difficulty is 
therefore that most studies and simulations presented 
on the subject of the NAO only focus on one possible 

mechanism.  
  It is also important to consider that there are other 

factors that are not discussed in this paper which 
could be affecting the NAO.  The climatic effect of 

anthropogenic activity and the increase of greenhouse 
gasses in the atmosphere during the latter half of the 
20th century is one of these factors that should be 

further investigated (Shindell et al. 2001).    

 

 5. Conclusions  
 
In this paper several proposed forcing mechanisms 

behind the variations of the North Atlantic Oscilla-
tion are summarized. It is suggested that the NAO 
might be forced by variations in sea surface tempera-

tures, sea ice, volcanic eruptions and solar activity 
etc. It is shown that the NAO in recent decades corre-

lates with solar activity variations, yet this correlation 
is not apparent in earlier decades. This makes it hard 

to determine the solar impact on the NAO. To be able 
to define the forcing mechanisms behind the NAO 

further investigations, which combine the different 
suggested mechanisms together, need to be done. As 
for the future, it is important to investigate the impact 

of anthropogenic releases of greenhouse gasses into 
the atmosphere since this might show an impact on 

the development of the NAO. 
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