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Abstract

This thesis proposes a novel method for multi-pitch estimation. The method
operates by posing pitch estimation as a sparse recovery problem which is solved
using convex optimization techniques. In that respect, it is an extension of an
earlier presented estimation method based on the group-LASSO. However, by
introducing an adaptive total variation penalty, the proposed method requires
fewer user supplied parameters, thereby simplifying the estimation procedure.
The method is shown to have comparable to superior performance in low noise
environments when compared to three standard multi-pitch estimation methods
as well as the predecessor method. Also presented is a scheme for automatic
selection of the regularization parameters, thereby making the method more user
friendly. Used together with this scheme, the proposed method is shown to yield
accurate, although not statistically e�cient, pitch estimates when evaluated on
synthetic speech data.
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1 Introduction

This thesis is concerned with estimating the fundamental frequencies, or pitch
frequencies, of multi-pitch signals. A pitch is defined as a set of harmonically
related sinusoids, i.e., sinusoids whose frequencies all are integer multiples of a
single common frequency. This means that the frequency content of a pitch can
be expressed as the set

⌦k ✓
�
!k,` | !k,` = !k,1` , ` = 1, 2, . . . , Lk

 
(1)

where !k,1 is referred to as the angular fundamental frequency of the pitch ⌦k

and the individual frequency components constituting the pitch are referred to
as harmonics or partials. Furthermore, Lk is the harmonic order, i.e., the high-
est order harmonic of the pitch. Pitch estimation can mean both estimation
of the fundamental frequency !k,1 and all the harmonics !k,`, i.e., the set of
coe�cients {`}. Often, only the former is considered and the terms pitch es-
timation and fundamental frequency estimation are then used interchangeably.
In this thesis, we are concerned with estimating the fundamental frequencies
!

1,1,!2,1, . . . ,!K,1 of a given K-pitch signal without assuming a priori knowl-
edge of neither the number of pitches K nor the number of harmonics for each
pitch. In many of the experiments in this thesis, temporal frequencies fk,` in-
stead of angular frequencies !k,` will be used. The connection between the two
is

fk,` =
!k,`

2⇡
fs (2)

where fs is the sampling frequency. In those cases, pitch estimation refers
to estimating the temporal fundamental frequencies f

1,1, f2,1, . . . , fK,1. When
there is no risk of confusion, both angular and temporal fundamental frequencies
will be referred to as fundamental frequencies or pitch frequencies.

1.1 Applications of pitch estimation

Pitch estimation is a problem arising in a variety of fields, not least in audio pro-
cessing. It is a fundamental building block in several music information retrieval
applications such as automatic music transcription, i.e., automatic sheet music
generation from audio [1]. Pitch estimation could also be used as a component
in methods for cover song detection and music querying, possibly improving
currently available services. For example, the popular query service Shazam [2]
operates by matching hashed portions of spectrograms of user provided samples
against a large music database. As a change of instrumentation would alter the
spectrogram of a song, such algorithms can only identify recordings of a song
that are very similar to the actual recording present in the data base. Thus,
services such as Shazam might fail to identify, e.g., acoustic alternate versions
of rock songs. A query algorithm based on pitch estimation could on the other
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hand correctly match the acoustic version to the original electrified one as it
would recognize, e.g., the main melody. The applicability of pitch estimation to
music is due to the fact that the notes produced by many instruments used in
Western tonal music, e.g., woodwind instruments such as the clarinet, exhibit a
structure that is fairly true to the harmonic sinusoidal structure in (1) [3]. How-
ever, for some plucked stringed instruments such as the guitar and the piano,
the tension of the string results in the harmonics deviating from perfect integer
multiples of the fundamental frequency, a phenomenon called inharmonicity.
For some instruments, such as the piano, there are models describing the struc-
ture of the inharmonicity based on physical properties of the instrument [4].
Dealing with inharmonicity in full generality is a research area in its own right
and will not be considered in this work.

1.2 Previous research

Estimating the fundamental frequencies of multi-pitch signals is generally a
hard problem. There are a lot of methods available, see, e.g., [5], but many
of them require a priori model order knowledge, i.e., they require knowledge
of the number of pitches present in the signal, as well as the number of active
harmonics for each pitch. Three such methods will be used in this thesis as
reference estimators. The first method, here referred to as ORTH, exploits
orthogonality between the signal and noise subspaces to form pitch frequency
estimates. The second method is an optimal filtering method based on the
Capon estimator and therefore here referred to as Capon. The third method
is an approximate non-linear least squares method, here referred to as ANLS.
All three methods are described in detail in chapters 4.7, 3.5, and 2.7 in [5],
respectively.

Methods not requiring a priori model order knowledge have also been proposed.
For example, [6] uses a sparse dictionary representation of the signal and reg-
ularization penalties to implicitly choose the model order. A similar, but less
general, method was introduced in [7], which used a dictionary specifically tai-
lored to piano notes for estimating pitch frequencies generated by pianos. Other
source specific methods include [8] and [9]. In [9] and [10], pitch estimation is
based on the assumption of spectral smoothness, i.e., the amplitudes of the har-
monics within a pitch are assumed to be of comparable magnitudes. This is
an assumption that will be used also in this thesis. Another field of research
is performing multi-pitch estimation, often in the context of automatic music
transcription, by decomposing the spectrogram of the signal into two matrices,
one that describes the frequency content of the signal and one that describes
the time activation of the frequency components. This method makes use of
the non-negative matrix factorization, first introduced in this context in [11]
and since then widely used, such as, e.g., [12]. There are also more statisti-
cal approaches to multi-pitch estimation, posing the estimation as a Bayesian
inference problem (see e.g. [13]).
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1.3 Organisation of the thesis

This thesis is organized as follows: Section 2 introduces some concepts and meth-
ods from convex optimization that in this thesis are used to perform multi-pitch
estimation. Section 3 describes the assumed signal model as well as the pro-
posed estimation method. In the same section, some numerical results obtained
using Monte Carlo simulation are presented and comparisons to other pitch
estimation methods are made. As the proposed method requires user defined
regularization parameter, Section 4 explores ways of systematically choosing
these parameters. The same section presents a self-regularizing version of the
proposed method. The refined method is then evaluated using synthetic data
modelled on authentic speech signals and is compared to other pitch estimation
methods. Section 5 o↵ers some conclusions based on the findings and Section 6
suggests further research areas.

2 Convex optimization

In this thesis, multi-pitch estimation will be posed as solving a convex optimiza-
tion problem. Therefore, this section briefly presents some methods for solving
such problems. Convex optimization problems can be solved by using publicly
available convex minimizers such as the interior point methods SeDuMi [14] or
SDPT3 [15]. However, increasing the number of data samples, these methods
will become computationally cumbersome. Therefore, the Alternating Direc-
tion Method of Multipliers, abbreviated ADMM, will be used in this work.
This algorithm class attempts to merge the e↵ectiveness of dual ascent with the
robustness of augmented Lagrangian methods. Below is an outline of these two
methods and how they are combined into the ADMM. For more details, see
e.g. [15].

2.1 Dual ascent and augmented Lagrangians

Let f : Rn 7! R be a convex function, x 2 Rn, b 2 Rm , A 2 Rm⇥n and
consider the convex optimization problem

min
x

f(x)

s.t Ax = b
(3)

The Lagrangian L(x,y) and its dual function, g(y), with dual variable y 2 Rm,
are defined as

L(x,y) = f(x) + yT (Ax� b)

g(y) = inf
x
L(x,y) = �f⇤(�ATy)� bTy

(4)
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where f

⇤ is the complex conjugate of f . Assuming that strong duality holds,
we have that

min
x

f(x) = max
y

g(y) (5)

Thus, under the assumption that f is strictly convex, the optimal primal point
x? can be retrieved from the optimal dual point y? as

x? = argmin
x

L(x,y?) (6)

The dual ascent method attempts to solve the dual and primal problems us-
ing gradient ascent of the dual problem. Assuming that g is di↵erentiable, its
gradient is given by rg(y) = Ax � b, i.e., the residual of the primal equality
constraint. The dual ascent method operates by iteratively solving

x(k+1) = argmin
x

L(x,y(k))

y(k+1) = y(k) + ↵

(k)rg(y(k)) = y(k) + ↵

(k)(Ax(k+1) � b)
(7)

where ↵

(k) is the step size of the algorithm at step k. The strength of the dual
ascent method is that it allows for splitting the problem in a number of simpler
subproblems in the case of f being separable in the variable x, that is if f(x)
can be written as

f(x) =
NX

i=1

fi(xi) (8)

where xi 2 Rni and
PN

i=1

= n. If one partitions the matrix A according to this
separation, i.e., A = [A

1

, . . . ,AN ], the Lagrangian can be decomposed as

L(x,y) =
NX

i=1

Li(x,y) =
NX

i=1

⇣
fi(xi) + yTAixi �

1

N

yTb
⌘

(9)

Thus, the updating of x(k+1) in (7) can be split into N subproblems as

x
(k+1)

i = argmin
x

Li(x,y
(k)), i = 1, . . . , N

y(k+1) = y(k) + ↵

(k)(Ax(k+1) � b)
(10)

which may, for example, be distributed to and solved separately by di↵erent
CPUs. However, the drawback of dual ascent is that it requires rather strong
assumptions about the convexity of f to guarantee convergence. To improve
the robustness of the method, (3) may instead be augmented as

min
x

f(x) + ⇢/2||Ax� b||2
2

s.t Ax = b
(11)
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where ⇢ is a positive scalar. This problem obviously has the same solution as
the original one, as the added penalty term will be zero for any feasible point
x. The Lagrangian of this problem is

L⇢(x,y) = f(x) + ⇢/2||Ax� b||2
2

+ yT (Ax� b) (12)

with associated dual function g⇢(y) = inf
x
L⇢(x,y). This formulation requires

less restrictive assumptions for the dual function to be di↵erentiable than the
original formulation. Also, the primal and dual problems can be solved as before
using the iterative scheme

x(k+1) = argmin
x

L⇢(x,y
(k))

y(k+1) = y(k) + ⇢(Ax(k+1) � b)
(13)

where the step size ↵

(k) in (7) now is fixed and identical to ⇢ for all k. Con-
vergence under this formulation, which is called the Method of Multipliers, can
be shown to be more robust than under the original scheme. The reason for
choosing ⇢ as step size is that this automatically yields dual feasibility. Primal
and dual feasibility for a point (x,y) in (3) is, respectively

Ax� b = 0

rf(x) +ATy = 0
(14)

As we from (13) have

x(k+1) = argmin
x

L⇢(x,y
(k)) (15)

it follows that

rxL⇢(x
(k+1)

,y(k)) = 0 (16)

Using (12), it follows directly that

0 = rxL⇢(x
(k+1)

,y(k))

= rf(x(k+1)) +AT
�
y(k) + ⇢(Ax(k+1) � b)

�

= rf(x(k+1)) +ATy(k+1)

(17)

i.e., dual feasibility is obtained in every iteration of (13). Eventually, the optimal
point (x?

,y?) is reached as the primal residual Ax(k+1) � b converges to zero.
However, it should be noted that the augmented Lagrangian L⇢ will no longer
be separable in x if f is, meaning that the problem of finding argmin

x
L⇢(x,y(k))

cannot be split. In the following section, it will be presented how the ADMM
attempts to remedy this.
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2.2 Alternating Direction Method of Multipliers (ADMM)

Consider the problem

min
x,z

f

1

(x) + f

2

(z)

s.t Ax+Bz = c
(18)

where x 2 R, z 2 Rm, A 2 Rp⇥n, B 2 Rp⇥m, c 2 Rp, and f

1

and f

2

are convex
functions. The augmented Lagrangian of this problem is

L⇢(x, z,y) = f

1

(x) + f

2

(z) + yT (Ax+Bz� c) + (⇢/2) kAx+Bz� ck2
2

(19)

The corresponding method of multipliers algorithm for this problem would be

(x(k+1)

, z(k+1)) = argmin
x,z

L⇢(x, z,y
(k))

y(k+1) = y(k) + ⇢(Ax(k+1) +Bz(k+1) � c)
(20)

The ADMM, on the other hand, does not update x and z jointly and instead
uses the scheme

x(k+1) = argmin
x

L⇢(x, z
(k)

,y(k)) (21)

z(k+1) = argmin
z

L⇢(x
(k+1)

, z,y(k)) (22)

y(k+1) = y(k) + ⇢(Ax(k+1) +Bz(k+1) � c) (23)

As (21)–(23) is a variation of the method of multipliers, with the di↵erence that
the updating of x and z is done sequentially, the method is called Alternating
Directions Method of Multipliers. In order to make the implementation of the
ADMM simpler, a scaled version of (21)–(23) can be used. To this end, introduce
the scaled dual variable u = ⇢

�1y and define the primal residual r as

r = Ax+Bz� c (24)

From this, we have that

yT r+ (⇢/2) krk = (⇢/2) kr+ uk2
2

� (⇢/2) kuk2
2

(25)

which allows us to re-write (21)–(23) as

x(k+1) = argmin
x

f(x) + (⇢/2)
���Ax+Bz(k) � c+ u(k)

���
2

2

(26)

z(k+1) = argmin
z

f

2

(z) + (⇢/2)
���Ax(k+1) +Bz� c+ u(k)

���
2

2

(27)

u(k+1) = u(k) +Ax(k+1) +Bz(k+1) � c (28)

To ensure convergence of (26)–(28), two assumptions are needed:

8



• The functions f
1

: Rn [ {+1} 7! R and f

2

: Rm [ {+1} 7! R are closed,
proper, and convex, and

• 9(x?
, z?,y?) : L

0

(x?
, z?,y)  L

0

(x?
, z?,y?)  L

0

(x,y,y?) 8x, z,y, i.e.,
the unagmented Lagrangian L

0

has at least one saddle-point (x?
, z?,y?).

Let

p

? = inf{f
1

(x) + f

2

(z) | Ax+Bz = c} (29)

denote the optimal value of (18) and define the residual of the constraint in the
kth iteration of (26)–(28) as

r(k) = Ax(k) +Bz(k) � c (30)

Then, if the above stated assumptions hold, we have

• Residual convergence: limk!+1 r(k) = 0, i.e., the iterates approach primal
feasibility.

• Objective convergence: limk!+1 f

1

(x(k)) + f

2

(z(k)) = p

?, i.e., the objec-
tive function of the iterates approach the optimal value.

• Dual variable converge: limk!+1 y(k) = y?, i.e., the dual iterates ap-
proaches a dual optimal point.

Note that objective converges only states that the objective value converges
to p

?. To guarantee limk!+1 x(k) = x? and limk!+1 z(k) = z?, additional
assumptions are needed. The reader is referred to [15] for the proof of the above
statement and additional details.

3 Multi-pitch estimation

3.1 Signal model

Consider a complex-valued1 signal consisting of K pitches, where the kth pitch
is constituted by a set of Lk harmonically related sinusoids, defined by the
component having the lowest frequency, !k, according to (1), such that

x(t) =
KX

k=1

LkX

`=1

ak,`e
i!k`t (31)

for t = 1, . . . , N , where !k` is the frequency of the `th harmonic in the kth
pitch, and with ak,l denoting its magnitude and phase. The occurrence of such
harmonic signals is often in combination with non-sinusoidal components, such

1
For notational simplicity and computational e�ciency, we here use the discrete-time an-

alytical signal formed from the measured (real-valued) signal.
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as, for instance, colored broadband noise or non-stationary impulses. In this
work, only the narrowband components of the signal are considered, although
noting that audio signals often also contain other features of notable perceptual
importance such as the signal’s timbre. In general, selecting model orders in
(31) is a daunting task, with both the number of sources, K, and the number of
harmonics in each of these sources, Lk, being unknown, as well as often being
structured such that di↵erent sources may have spectrally overlapping overtones.
In order to remedy this, this work proposes a relaxation of the model onto a
predefined grid of P � K candidate fundamentals, each having L

max

� maxk Lk

harmonics. Assume that the candidate fundamentals are chosen so numerous
and so closely spaced that the approximation

x(t) ⇡
PX

p=1

L
maxX

`=1

ap,`e
i!p`t (32)

holds. As only K pitches are present in the actual signal, we want to derive an
estimator of the amplitudes ap,` such that only few, ideally

PK
k=1

Lk, dictionary
elements are non-zero. This approach may be seen as a sparse linear regression
problem reminiscent of the one in [16] and has been thoroughly examined in
the context of pitch estimation in, e.g., [6, 17, 18]. For notational convenience,
define the set of all amplitude parameters to be estimated as

 =
�
 !

1

, . . . , !P

 
(33)

 !k =
�
ak,1, . . . , ak,L

max

 
(34)

where, as described above, most of the ak,` in  will be zero. Note that the
structure of  will be sparse, i.e., having few non-zero elements. Also, the
pattern of this sparsity will be group wise, meaning that if a pitch with fun-
damental frequency !p is not present, then neither will any of its harmonics,
i.e.,  !p = 0. Due to the harmonic structure of the signal, candidate pitches
having fundamental frequencies at fractions of the present pitches fundamentals
will have a partial fit of their harmonics. This may cause misclassification, i.e.,
erroneously identifying a present pitch as one or more non-present candidate
pitches. This is the cause of the so-called halfling problem, which is mistaking
the true pitch with fundamental frequency !p for the candidate pitch with fun-
damental frequency !p/2. This may occur if the candidate set  is structured
such that the halfling pitch may perfectly model the true pitch, which is when
L

max

� 2Lp. This is illustrated in Figure 1, displaying a pitch with fundamen-
tal frequency 100 Hz and four harmonics and as well as its halfling, i.e., a pitch
with fundamental frequency 50 Hz and eight harmonics where only the even-
numbered harmonics are non-zero. Relating to music signals, this is the same
as mistaking a pitch for the pitch an octave below it. Thus, when estimating
the elements of  , one also has to take into account of some structure of the
block sparsity in order to avoid erroneously selecting halflings. A method for
doing this will be presented in the following section.
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Figure 1: The upper picture depicts a pitch with fundamental frequency 100
Hz and four harmonics. The lower picture depicts a pitch with fundamental
frequency 50 Hz and eight harmonics where all odd-numbered harmonics are
zero (marked with dashed red).

3.2 Proposed estimation algorithm

Assume that we have measured a time frame of the signal in (31), for t =
1, . . . , N , and that the observations are corrupted by an additive broadband
noise, e(t), such that our measurements are well modeled as y(t) = x(t)+e(t). A
straightforward approach to estimate  would then be to minimize the residual
cost function

g

1

( ) =
1

2

NX

t=1

�����y(t)�
PX

p=1

L
maxX

`=1

ap,`e
i!p`t

�����

2

(35)

However, setting

 ̂ = argmin
 

g

1

( ) (36)

will not yield the desired sparsity structure of  and will be prone to also model
the noise e(t). A solution to this would be to add terms penalizing solutions  ̂
that are not sparse, for example as

 ̂ = argmin
 

g

1

( ) + �|| ||
0

(37)
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where || ||
0

is the pseudo-norm counting the number of non-zero elements in  
and � is a regularization parameter. However, this in general leads to a combi-
natorial problem that is NP-hard to solve. To avoid this, one can approximate
the `

0

penalty by the convex function

g

2

( ) =
PX

p=1

L
maxX

`=1

|ap,`| (38)

The resulting problem

min
 

g

1

( ) + �g

2

( ) (39)

is known as the LASSO [19]. In fact, it can be shown that under some restric-
tions on  , (see also [20]), the LASSO is guaranteed to retrieve the non-zero
indices of  with high probability, although these conditions are not assumed
to be met here. To encourage the group-sparse behavior of  ̂, one can further
introduce

g

3

( ) =
PX

p=1

vuut
L

maxX

`=1

|ap,`|2 (40)

which is also a convex function. The inner sum corresponds to the `
2

-norm, and
does not enforce sparsity within each pitch, whereas instead the outer sum, cor-
responding to the `

1

-norm, enforces sparsity between pitches. Thereby, adding
the g

3

( ) constraint will penalize the number of non-zero pitches. However,
if we for some p have 2Lp  L

max

, the above penalties have no way of dis-
criminating between the correct pitch candidate !p and the spurious halfling
candidate !p/2. However, as the candidates will di↵er in that the halfling will
only contribute to the harmonic signal at every other frequency in the block,
as was seen in Figure 1, one may reduce the risk of such a misclassification by
adding the further penalty

ğ

4

( ) =
PL

maxX

q=2

����|aq|� |aq�1

|
���� (41)

where the reparametrization is q = (p� 1)L
max

+ `, which would add a cost to
blocks where there are notable magnitude variations between neighboring har-
monics. Unfortunately, (41) is not convex, but a simple convex approximation
would be g̃

4

, detailed as

g̃

4

( ) =
PL

maxX

q=2

��
aq � aq�1

�� (42)

which would be a good approximation of (41) if all the harmonics had the
same phase. Clearly, this may not be the case, resulting in that the penalty in
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(42) would also penalize the correct candidate. An illustration of this is found
by considering the worst-case scenario, when all the adjacent harmonics are
completely out of phase and have the same magnitudes, i.e., ap,`+1

= ap,`e
i⇡

with magnitude |ap,`| = r, for ` = 1, . . . , Lp � 1. Then, the penalty in (42)
will yield a cost of g̃

4

( !p) = 2rLp rather than the desired ğ

4

( !p) = 2r.
The cost may also be compared with that of (38), which is g

2

( !p) = rLp,
suggesting that this would add a relatively large penalty. More interestingly,
for the halfling candidate pitch, the cost will be just as large, i.e., if !p0 = !p/2,
then g̃

4

( !p0 ) = 2rLp provided that L
max

� 2Lp, thereby o↵ering no possibility
of discriminating between the true pitch and its halfling. Obviously, such a
worst case scenario is just as unlikely as all harmonics having the same phase,
if assuming that the phases are uniformly distributed on [0, 2⇡). Instead, the g̃

4

penalty of the true pitch will be slightly smaller than its halfling counterpart,
on average, and together with (40), the scales tip in favour of the true pitch, as
shown in [6]. One may thus conclude that the combination of g

3

and g̃

4

provides
a block sparse solution where halflings are usually discouraged. However, it
should be noted that such a solution requires the tuning of two functions to
control the block sparsity.

This work proposes to simplify the described estimator by improving the ap-
proximation in (42), by using an adaptive penalty approach. In order to do so,
let 'k,` denote the phase of the component with frequency !k,` and collect these
phases in the parameter set

� =
�
�!

1

, . . . ,�!P

 
(43)

�!k =
�
'k,1, . . . ,'k,L

max

 
(44)

The penalty function in (42) may then be modified to

g

4

( ,�) =
PL

max

�1X

q=1

��
aq+1

e

�'q+1 � aqe
�'q

�� (45)

thus penalizing only di↵erences in magnitude. In order to do so, the phases
'k,` need to be estimated as the arguments of the latest available amplitude
estimates ak,`. As a result, (45) yields an improved approximation of (41),
avoiding the issues of (42) described above, and also promotes a block sparse
solution. The block sparsity is promoted due to the reparametrization of the
amplitude indices: as the dictionary resolution of the dictionary is high, we do
not expect adjacent candidate pitches to be present in the signal. In e↵ect, this
introduces a penalty for activating a pitch block. As a result, the block-norm
penalty function g

3

may be omitted, which simplifies the algorithm noticeably.
Thus, we form the parameter estimates by solving

 ̂ = argmin
 

g

1

( ) + �

2

g

2

( ) + �

4

g

4

( ,�) (46)

where �

2

and �

4

are user-defined regularization parameters that weigh the im-
portance of each penalty function with that of the residual cost. To form the
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convex criteria and to facilitate the implementation, consider the signal ex-
pressed in matrix notation as

y =
⇥
y(1) ... y(N)

⇤T
(47)

=
PX

p=1

Wp ap + e , Wa+ e (48)

where
W =

⇥
W

1

. . . WP

⇤
(49)

Wp =
⇥
z1 . . . zLmax

⇤
(50)

zp =
⇥
e

i!p1
. . . e

i!pN
⇤T

(51)

a =
⇥
aT
1

. . . aTP
⇤T

(52)

ap =
⇥
ap,1 . . . ap,L

max

⇤T
(53)

The dictionary matrix W is constructed of P horizontally stacked blocks, or
dictionary atoms Wp, where each is a matrix with L

max

columns and N rows.
In order to obtain an acceptable approximation of (41), the problem must be
solved iteratively, where the last solution is used to improve the next. To pursue
an even sparser solution, a re-weighting procedure is simultaneously used for
g

2

( ), similar to the one used in [21]. The solution is thus found at the k-th
iteration by solving

â(k) = argmin
a

X

j=1,2,4

gj(H
(k)
j a,�j) (54)

where

H
(k)
1

= W (55)

H
(k)
2

= diag
�
1/(

���â(k�1)

���
1

+ ✏)
�

(56)

H
(k)
4

= F diag(arg
⇣
â(k�1)

⌘
)�1 (57)

and with

g

1

(H(k)
1

a, 1) =
1

2

���
���y �H

(k)
1

a
���
���
2

2

(58)

g

2

(H(k)
2

a,�
2

) = �

2

���
���H(k)

2

a
���
���
1

(59)

g

4

(H(k)
4

a,�
4

) = �

4

���
���H(k)

4

a
���
���
1

(60)

where diag(·) denotes a diagonal matrix formed with the given vector along
its diagonal, arg(·) is the element-wise complex argument, and ✏ ⌧ 1. Also, I
denotes the identity matrix, and F is a first order di↵erence matrix, having ele-
ments F{n, n} = 1, F{n, n+1} = �1, for n = 1, . . . , PL

max

�1, and zeros every-
where else. As intended, the minimization in (54) is convex, and may be solved
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using one of many convex solvers publicly available, such as, for instance, the
interior point methods SeDuMi [14] or SDPT3 [15]. However, as mentioned ear-
lier, these methods are quite computationally burdensome and will scale poorly
with increased data length and larger grids. Instead, we here propose an e�-
cient implementation using ADMM. The problem in (54) may be implemented
in a similar manner as was done in [22], thus requiring only two tuning param-
eters, �

2

and �

4

. The proposed method compares to the PEBS and PEBS-TV
algorithms introduced in [6] as improving upon the former, and requiring fewer
tuning parameters than the latter. The proposed method is therefore termed a
light and improved version of PEBS, here denoted the PEBSI-Lite algorithm.

3.3 ADMM implementation

In order to solve (54), an ADMM implementation is needed. Therefore, (54) has
to be written on the form (18). To this end, introduce the auxiliary variables
z 2 CPL

max , u
1

2 CN , u
2

2 CPL
max , and u

4

2 CPL
max

�1 and let

G(k) =
h
H

(k)T
1

H
(k)T
2

H
(k)T
4

iT
(61)

u =
⇥
uT
1

uT
2

uT
4

⇤T
(62)

Note that the earlier ADMM results which were derived for real variables also
hold in the complex case as complex numbers can be represented as real vectors.
Thus, we want to solve

min
z

f(G(k)z) (63)

where

f(G(k)z) =
1

2

���y �H
(k)
1

z
���
2

2

+ �

2

���H(k)
2

z
���
1

+ �

4

���H(k)
4

z
���
1

(64)

Using the auxiliary variabel u, one may equivalently solve

min
z,u

f(u) +
µ

2

���G(k)z� u
���
2

2

subject to G(k)z� u = 0

(65)

where µ is a positive scalar, as the added term is zero for any feasible point.
Introducing the (scaled) dual variable

d =
⇥
dT
1

dT
2

dT
4

⇤T
(66)

where d
1

2 CN , d
2

2 CPL
max , and d

4

2 CPL
max

�1, the Lagrangian of the
problem is

Lµ(z,u,d) = f(u) +
µ

2

���G(k)z� u� d
���
2

2

� µ

2
kdk2

2

(67)
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Algorithm 1 The proposed PEBSI-Lite algorithm

1: initiate k := 0, H(0)

4

= F, and
a(0) = z

save

= d
save

= 0PL
max

⇥1

2: repeat {adaptive penalty scheme}
3: initiate ` := 0, u

2

(0) = a(k),
z(0) = z

save

, and d(0) = d
save

4: repeat {ADMM scheme}
5: z(`) =

�
G(k)HG(k)

��1

G(k)H
�
u(`) + d(`)

�

6: u
1

(`+ 1) =
y�µ

⇣
H

(k)

1

z(`+1)�d
1

(`)
⌘

1+µ

7: u
2

(`+ 1) = T
⇣
H

(k)
2

z(`+ 1)� d
2

(`), �
2

µ

⌘

8: u
4

(`+ 1) = T
⇣
H

(k)
4

z(`+ 1)� d
4

(`), �
4

µ

⌘

9: d(`+ 1) = d(`)�
�
G(k)z(`+ 1)� u(`+ 1)

�

10: ` `+ 1
11: until convergence
12: store a(k) = u

2

(end), z
save

= z(end), and d
save

= d(end)

13: update H
(k+1)

4

= Fdiag
�
arg

�
a(k)

���1

14: k  k + 1
15: until convergence

The Lagrangian (67) is separable in the variables z, u
1

, u
2

, and u
4

and one may
thus form an updating scheme similar to (26)–(28) as

z(j + 1) = argmin
z

���G(k)z� u(j)� d(j)
���
2

2

(68)

u
1

(j + 1) = argmin
u

1

1

2
ky � u

1

k2
2

+
µ

2

���H(k)
1

z(j + 1)� u
1

� d
1

(j)
���
2

2

(69)

u
2

(j + 1) = argmin
u

2

�

2

ku
2

k
1

+
µ

2

���H(k)
2

z(j + 1)� u
2

� d
2

(j)
���
2

2

(70)

u
4

(j + 1) = argmin
u

4

�

4

ku
4

k
1

+
µ

2

���H(k)
4

z(j + 1)� u
4

� d
4

(j)
���
2

2

(71)

d(j + 1) = d(j)� (G(k)z(j + 1)� u(j + 1)) (72)

The updates of z and u are given by

z(j + 1) = argmin
z

���G(k)z� u(j)� d(j)
���
2

2

(73)

=
�
G(k)HG(k)

��1

G(k)H
�
u(j) + d(j)

�
(74)

and
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u
1

(j + 1) = argmin
u

1

1

2
ky � u

1

k2
2

+
µ

2

���H(k)
1

z(j + 1)� u
1

� d
1

(j)
���
2

2

(75)

=
y � µ

�
H

(k)
1

z(j + 1)� d
1

(j)
�

1 + µ

(76)

respectively. Finally, using the element-wise shrinkage function from [6],

T (x, ⇠) =
max(|x|� ⇠, 0)

max(|x|� ⇠, 0) + ⇠

� x (77)

one may update u
2

and u
4

as

u
2

(j + 1) = argmin
u

2

�

2

ku
2

k
1

+
µ

2

���H(k)
2

z(j + 1)� u
2

� d
2

(j)
���
2

2

(78)

= T

✓
H

(k)
2

z(j + 1)� d
2

(j),
�

2

µ

◆
(79)

and

u
4

(j + 1) = argmin
u

4

�

4

ku
4

k
1

+
µ

2

���H(k)
4

z(j + 1)� u
4

� d
4

(j)
���
2

2

(80)

= T

✓
H

(k)
4

z(j + 1)� d
4

(j),
�

4

µ

◆
(81)

respectively. Having this in place, the full algorithm is presented in Algorithm 1,
where the solution is given as â = a(kend

) where k

end

is the last iteration index
of the outer loop.

3.4 Numerical results

In order to examine the performance of the proposed algorithm, it was evalu-
ated using a simulated dual-pitch signal, measured in white Gaussian noise at
di↵erent Signal-to-Noise Ratios (SNRs), ranging from �5 dB to 20 dB in steps
of 5 dB. The SNR is here defined as

SNR = 10 log
10

�

2

x

�

2

e

(82)

where �

2

x and �

2

e is the variance of the signal and the noise, respectively. For
a pitch signal generated by (31), under the simplifying assumption of distinct
sinusoidal components, the variance of the signal is given by

�

2

x =
KX

k=1

LkX

`=1

|ak,`|2

2
(83)

At each SNR, 200 Monte Carlo simulations were performed, each simulation
generating a signal with fundamental frequencies of 600 and 700 Hz. To reflect
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Figure 2: The periodogram estimate and the true signal studied in Figure 3.

the performance in presence of o↵-grid e↵ects, the fundamental frequencies were
randomly chosen at each simulation uniformly on 600±d/2 and 700±d/2, where
d is the grid point spacing. The phases of the harmonics in each pitch were
chosen uniformly on [0, 2⇡), whereas all had unit magnitude. The signal was
sampled at fs = 48 kHz on a time frame of 10 ms, yielding N = 480 samples
per frame. As a result, the pitches were spaced by approximately fs/N Hz,
which is the resolution limit of the periodogram. This is also seen in Figure 2,
illustrating the resolution of the periodogram as well as the frequencies of the
harmonics, at SNR = �5 dB. From the figure, it may be concluded that the
signal contains more than one harmonic source, as the observed peaks are not
harmonically related. Furthermore, it is clear that the fundamental frequencies
are not separated by the periodogram, indicating that any pitch estimation
algorithm based on the periodogram would su↵er notable di�culties. In order to
form the estimates, the estimation procedure began by using a coarse dictionary,
with candidate pitches uniformly distributed on the interval [280, 1500] Hz, thus
also including !p/2 and 2!p for both pitches. The coarse resolution was d = 10
Hz, i.e., still a super-resolution of fs/10N . After estimation on this grid, a
zooming step was taken where a new grid with spacing d/10 was laid ±2d
around each pitch having non-zero power. This zooming approach was taken
for the proposed method, as well as for PEBS and PEBS-TV. The regularization
parameter values used for PEBSI-Lite, PEBS-TV, and PEBS are presented in
Tables 1, 2, and 3 respectively. The values where selected using manual cross-
validation for similar signals. Comparisons were also made with the ANLS,
ORTH, and the harmonic Capon estimators, which had been given the oracle
model orders (see [5] for more details on these methods). The simulation and
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Figure 3: Percentage of estimated pitches where both fundamental frequencies
lie at most 2 Hz, or d/5 = 1/50N , from the ground truth, plotted as a function
of SNR. Here, the pitches have [5, 6] harmonics, respectively, and L

max

= 10.

estimation procedure was performed for two cases; one where the number of
harmonics Lk were set to 5 and 6, and one where Lk were set to 10 and 11.
In the former case, L

max

= 10 and in the latter L

max

= 20, i.e., well above
the true number of harmonics. Figures 3 and 4 show the percentage of pitch
estimates where both lie within ±2 Hz from the true values for the six compared
methods, for the case of 5 and 6 as well as 10 and 11 harmonics, respectively.
As is clear from the figures, the proposed method performs as well, or better,
than the PEBS-TV algorithm, although requiring fewer tuning parameters. In
this setting, PEBS performs poorly, as the generous choices of L

max

allows it to
pick the halfling, as predicted.
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SNR (dB) -5 0 5 10 15 20
�

2

0.4 0.4 0.2 0.2 0.2 0.2
�

4

0.4 0.4 0.2 0.2 0.2 0.2

Table 1: Regularization parameter values for PEBSI-Lite.

SNR (dB) -5 0 5 10 15 20
�

2

0.2 0.2 0.2 0.15 0.1 0.1
�

3

0.3 0.3 0.3 0.2 0.2 0.15
�

4

0.1 0.1 0.1 0.75 0.75 0.05

Table 2: Regularization parameter values for PEBS-TV.

SNR (dB) -5 0 5 10 15 20
�

2

0.2 0.2 0.2 0.15 0.15 0.1
�

4

0.4 0.4 0.4 0.3 0.3 0.2

Table 3: Regularization parameter values for PEBS.
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4 Choosing the regularization parameters

The pitch estimates produced by PEBSI-Lite in the preceding section were
highly dependent on the values of the regularization parameters �

2

and �

4

,
which had to be hand-tuned to produce good results. In general, large values
of �

2

encourage sparse solutions while large values of �
4

encourage solutions
that are smooth within blocks. As the model order is unknown, it is generally
hard to determine how sparse the solution should be in order to be considered
the desired one. Therefore, one often determines the values of the regulariza-
tion parameters using cross-validation schemes, making the performance of the
methods user dependent. Thus, one would like to have a systematic and prefer-
able automatic method for choosing �

2

and �

4

, and thereby the model order. A
common approach to solving model order problems is to use information criteria
such as AIC or BIC [23], which measure the fit of the model to the data, while
penalizing high model orders, resulting in a trade-o↵ criterion that should take
its optimal (minimal for AIC and BIC) for the correct model order. For the
LASSO problem, there have been suggestions of appropriate model order cri-
teria [24], [25]. In [6], the authors suggest a BIC-style criterion for multi-pitch
estimation. However, this criterion can only be applied to a single estimate,
i.e., one PEBS-TV solution, to determine which of the found pitches are true
and which are spurious. Thus, it cannot be used to choose between di↵erent
estimates. To the author’s knowledge, there are no good model order selection
rules available that are applicable to PEBSI-Lite.

Also, even if one has an e�cient criterion for choosing between di↵erent mod-
els, one first has to form a set of candidate models, in e↵ect running Algo-
rithm 1 for di↵erent values of �

2

and �

4

. As the set of possible choices is
{(�

2

,�

4

)|(�
2

,�

4

) 2 R
+

⇥R
+

} one also needs a strategy for choosing a smaller
set of (�

2

,�

4

) candidates. Ideally, one would like to only fit one model per
sparsity level, with sparsity meaning either the number of activated blocks, i.e.,
pitches, or elements, i.e., sinusoidal components. For each sparsity level one
would like to fit a model having the least biased estimates of the sinusoidal
amplitudes. This means that one, for a given sparsity level, would like to find
the smallest pair (�

2

,�

4

) resulting in that sparsity level.

Figure 5 shows a plot of the number of pitches present in the solution when ap-
plying PEBSI-Lite to a three pitch signal for a grid of parameter values (�

2

,�

4

).
The number of harmonics of each pitch is 4, 5, and 4 respectively, resulting in a
total of 13 sinusoidal components. In the figure, ridges on the solution surface
where the number of present pitches changes can be seen. To find our set of
candidate models, we would therefore like to find these ridges without having to
solve PEBSI-Lite for the whole plane of regularization parameter values. In an
attempt to understand how to construct such a path algorithm, the next section
presents a variation of an algorithm published in [25] for the simpler LASSO
case.
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Figure 5: The number of pitches present, (K), in solutions obtained when apply-
ing the PEBSI-Lite algorithm to a three pitch signal with a total of 13 sinusoidal
components for varying values of (�
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).

4.1 Candidate model selection for the LASSO

The LASSO problem is often stated as

min
a

||y �Wa||2
2

+ �||a||
1

(84)

which, as noted above, is a relaxation of the, in general, NP-hard problem

min
a

||y �Wa||2
2

+ �||a||
0

(85)

where y is an N -vector, a is an P -vector, and W is an N ⇥ P matrix. Often,
W is an over-complete dictionary with P � N . As mentioned earlier, the term
�||a||

1

acts as an approximation of the non-convex penalty �||a||
0

and induces
sparsity on the solution vector a. If ||a||

0

= K, a is said to be K-sparse. If the
true model order is unknown, one might be interested in solving the problem
for values of � inducing di↵erent sparsity levels K and then apply some model
order selection criterion in order to choose the correct model order. There exists
algorithms that solve (84) for all values � 2 [0,+1) in the case of real variables
and matrices, the probably most well-known method being called LARS [26].
However, instead of solving (84) for regularization parameters along the positive
real line, one might be interested, perhaps for computational reasons, to solve
(84) for only one value of � per sparsity level K. In [25], a method for finding
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these values � was proposed for the slightly di↵erent problem

min
a

||y �Wa||
2

+ �||a||
1

(86)

The authors introduce the term singular point to denote values � for which a
slight increase in � changes the sparsity of the solution to (86). This means that
the k-th singular point �(k) is defined as

�

(k) = max{� | ka(�)k
0

= k} (87)

where a(�) is the solution to (86). As the problems (84) and (86) are not
the same, we here present some modifications of the results given in [25] as to
fit (84). Assume that (84) has been solved for a value of � and denote the
solution a(�). In order to derive a condition for a(�) to be a solution to (84),
we consider the real valued counterpart of (84). Let W = [w

1

, . . . ,wP ] be the
column representation of W and introduce ã(�), ỹ, w̃j , and W̃ as

ã(�) =
⇥
Re{a(�)}T Im{a(�)}T

⇤T
(88)

ỹ =
⇥
Re{y}T Im{y}T

⇤T
(89)

w̃j =


Re{wj} �Im{wj}
Im{wj} Re{wj}

�
(90)

W̃ =


Re{W} �Im{W}
Im{W} Re{W}

�
(91)

where Re{·} and Im{·} denote the real and imaginary parts of the vectors and
matrices, respectively. Using this notation, we can reformulate (84) as

min
˜a

1

2

���ỹ � W̃ã
���
2

2

+ �

PX

j=1

��[ãj , ãj+P ]
T
��
2

(92)

where [ãj , ãj+P ]T is the column vector representation of the complex number
aj . Thus, we have e↵ectively transformed (84) to an equivalent group-LASSO
problem in real variables with P groups. Further, a(�) is a solution to (84) if its
real counterpart ã(�) solves (92). The objective function (92) is convex which
means that ã(�) is a solution if and only if

�w̃T
j

�
ỹ � W̃ã(�)

�
+ �s̃j = 0 , j = 1, . . . , P (93)

where s̃j is the sub di↵erential of
��[ãj , ãj+P ]T

��
2

, i.e.,

s̃j 2
(

[ãj ,ãj+P ]

T

k[ãj ,ãj+P ]

T k
2

if [ãj , ãj+P ]T 6= 0

v if [ãj , ãj+P ]T = 0
(94)

where v is a 2⇥ 1 vector such that kvk
2

 1. As is shown in [27], the condition
on v can be strengthened to kvk

2

< 1. Using (93), we can state the equivalent
conditions for the complex valued case, which are

�wH
j

�
y �Wa(�)

�
+ �sj = 0 , j = 1, . . . , P (95)

23



Algorithm 2 LASSO singular points algorithm

1: initiate �

(1) = max
j2{1,...,P}

|wH
j y|

2: for k = 1, . . . ,K � 1 do
3: a(�(k)) = argmin

a

1

2

ky �Wak2
2

+ �

(k) kak
1

4: Ik = {j | aj(�(k)) 6= 0}
5: for j

0
/2 Ik do

6: initiate ` = 1
7: repeat

8: ⇤(`)
j0 = R

�
wH

j0P
?
WIk

y , wH
j0WIk(W

H
Ik
WIk)

�1�(`)
�

9: a
(`)
Ik

= (WH
Ik
WIk)

�1(WH
Ik
y � ⇤(`)

j0 �
(`))

10: �

(`+1)

l =
a
(`)
l

|a(`)
l |

, l = 1, . . . , |Ik|
11: ` `+ 1
12: until convergence
13: ⇤j0 = ⇤j0(end)
14: end for
15: �

(k+1) = max
j0 /2Ik

⇤j0

16: end for

where

sj 2
(

aj

|aj | if aj 6= 0

v if aj = 0
(96)

with |v| < 1. Let I denote the set of indices corresponding to non-zero compo-
nents of a(�), i.e., I = {j | aj(�) 6= 0} and let WI = [wj

1

. . .wjK ] be the part
of the dictionary corresponding to these non-zero components. Then, if a(�) is
a solution to (84), it must hold that

wH
j (y �Wa(�)) = �

aj

|aj |
, j 2 I (97)

|wH
j (y �Wa(�))| < � , j /2 I (98)

From (98), we see that the correlation between a vector wj and the model
residual y �Wa(�) decides whether aj will be set to zero or not. Further,
�

0
< � is a singular point if it is the largest �

0 that changes condition (98) to
equality for one j /2 I, i.e.,

�

0 = max
j /2I

|wH
j (y �Wa(�0)| (99)

where a(�0) solves (84) for � = �

0. Let �(1) be the largest � yielding a non-zero
solution. By definition a(�) = 0, for � > �

(1), and we therefore see from (99)
that

�

(1) = max
j2{1,...,P}

|wH
j y| (100)
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Figure 6: True LASSO path for a test signal consisting of four pitches with a
total of 20 harmonics with 19 unique sinusoidal components. Also plotted are
the 29 first singular points as given by Algorithm 2. Note that the LASSO path
has not been computed for a fine enough grid to produce solutions for sparsity
levels K = 5, 21, and 26.

Having �

(1), [25] proposes a scheme for determining �

(k) for k > 1 for the
problem in (86). We here present the corresponding scheme for (84). Assume
that we have obtained a singular point �

(k). Solving (84) for �

(k) yields the
solution a(�(k)) from which the set Ik = {j | aj(�(k) 6= 0} of active indices can
be determined. Let aIk denote part of the vector a restricted to the index set Ik.
Then, the next singular point �

(k+1) is determined by for each j

0
/2 Ik solving

the set of equations

wH
j (y �WaIk(⇤j0)) = ⇤j0

aj(⇤j0)

|aj(⇤j0)|
, j 2 Ik (101)

|wH
j0 (y �WaIk(⇤j0))| = ⇤j0 (102)

and obtaining the next singular point as �

(k+1) = max
j0 /2Ik

⇤j0 . In order to solve

the counterpart equations to (101) and (102), a numerical iterative scheme is
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Figure 7: BIC computed for the models corresponding to the sparsity levels
K = 1, . . . , 29, plotted against corresponding values of the regularization pa-
rameter �. The candidate models have been obtained using Algorithm 2. The
optimal value of the regularization parameter is � = 4. The signal consists of
four pitches with a total of 20 harmonics of which 19 are unique.

proposed in [25]. The corresponding scheme here is to iterate

⇤(`)
j0 = R

�
wH

j0P
?
WIk

y , wH
j0WIk(W

H
Ik
WIk)

�1�(`)
�

a
(`)
Ik

= (WH
Ik
WIk)

�1(WH
Ik
y � ⇤(`)

j0 �
(`))

�

(`+1)

l =
a

(`)
l

|a(`)l |
, l = 1, . . . , |Ik|

(103)

where �

(1)

l = al(�
(k)

)

|al(�(k)

)| for l = 1, . . . , |Ik|, with |Ik| denoting the cardinality of

the set Ik, R(a, b) the root of the equation r = |a+ rb|, and

P?
WIk

= I�WIk(W
H
Ik
WIk)

�1WH
Ik

(104)

Note that �(1) is initialized by the LASSO solution aIk(�
(k)). Note also that we

here have to require WIk to have full column rank. The algorithm for finding
the first K singular points is presented in Algorithm 2. The performance of
this scheme is illustrated in Figure 6, where it has been used to determine the
singular points �(k), for k = 1, . . . , 29, for a signal consisting of four pitches with
a total of 20 harmonics of which 19 are unique. Also plotted in the figure is the
sparsity level of the LASSO path evaluated for a grid of values of �. As can be
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Figure 8: BIC computed according to (105) for models corresponding to di↵erent
sparsity levels K. The candidate models have been obtained using Algorithm 2.
The signal consists of four pitches with a total of 20 harmonics of which 19 are
unique. Note that the BIC criterion correctly selects sparsity level K = 19 as
the optimal one.

seen, the true LASSO path and the singular points determined by the iterative
scheme agree. Note that the LASSO path has not been evaluated for a fine
enough grid to identify sparsity levels k = 5, 21, and 26, whereas the iterative
scheme correctly identifies all singular points. Also, considering computational
speed, the iterative scheme for finding the singular points is much faster than
finding the whole LASSO path as (84) only has to be solved for the singular
points �

(k). Having fitted these K models with their respective sparsity level,
one might choose the optimal model, and thereby the optimal �, as the model
minimizing the BIC criterion [23]

BIC(�(k)) = 2N log �̂2(�(k)) + (5k + 1) logN (105)

where �̂

2(�(k)) is the MLE of the residual variance corresponding to the model
determined by �

(k). Figures 7 and 8 present plots of BIC(�(k)) computed ac-
cording to (105) for the 29 singular points �

(k) also presented in Figure 6.
Figure 7 plots BIC(�(k)) against �(k), whereas Figure 8 plots BIC(�(k)) against
the implied sparsity level k. Note that the BIC criterion correctly selects the
singular point � = 4 as the optimal, which corresponds to a solution a(�) with
19 non-zero components.
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4.2 Candidate model selection for PEBSI-Lite

Returning to our original problem of multi-pitch estimation, we want to choose
�

2

and �

4

, and given these regularization parameter values form our amplitude
estimate from (46). One would therefore like to use something similar to Al-
gorithm 2 to find a set of candidate models specified by (�

2

,�

4

) and from that
set of models choose the optimal one according to some metric. The analog to
finding singular points would here be to find singular ridges, i.e., curves through
the �

2

��

4

-plane separating di↵erent sparsity levels. However, we now have two
di↵erent candidate interpretations of sparsity; sparsity meaning the number of
active components, i.e., harmonics, or block sparsity meaning the number active
sources or pitches. Also, the equations that the optimal solution has to satisfy
are now

�wH
j

�
y �Wa(�)

�
+ �

2

sj + �

4

(⌧j � ⌧j�1

) = 0 j = 2, . . . , P � 1 (106)

�wH
j

�
y �Wa(�)

�
+ �

2

sj + �

4

⌧j = 0 j = 1 (107)

�wH
j

�
y �Wa(�)

�
+ �

2

sj � �

4

⌧j�1

= 0 j = P (108)

where

sj 2
(

aj

|aj | if aj 6= 0

vs if aj = 0
(109)

⌧j 2
(

aj�aj�1

|aj�aj�1

| if aj � aj�1

6= 0

v⌧ if aj � aj�1

= 0
(110)

where |vs|  1 and |v⌧ |  1. Attempting something similar to Algorithm 2
would therefore be quite complicated. There have been suggestions on how to
compute the solution path for the real variable counter part of our problem,
called the sparse fused LASSO [28], which is formulated as

min
�

1

2
ky �W�k2

2

+ �

2

k�k
1

+ �

4

P�1X

j=1

|�j � �j+1

| (111)

where y 2 RN , � 2 RP , and W 2 RN⇥P . In [29], the authors present a
very elegant way of computing the solution path in the case when P = N and
W = I, for which (111) is known as the Fused Lasso Signal Approximator
in which the solution � is a smoothed version of the signal y. However, for
a general matrix W, the algorithm becomes considerably complex. Also, the
presented algorithm demands W to have full column rank, something that is
not true for our dictionary W. In [30], the authors present an approach to find
the solution path of

min
�

1

2
ky �W�k2

2

+ � kD�k
1

(112)
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Figure 9: The BIC computed for the models corresponding to the sparsity
levels K = 1, . . . , 29 plotted against corresponding values of the regularization
parameter �. The candidate models have been obtained using Algorithm 2. The
optimal value of the regularization parameter for the LASSO problem is � = 4.
However, for the pitch estimation problem, we set �

2

= 1.1427, slightly larger
than the next singular point. The signal consists of four pitches with a total of
20 harmonics of which 19 are unique.

for the real-variable case with a general penalty matrix D by considering the
solution paths of the dual variable. Unfortunately, this is only for the one-
dimensional case, i.e., for the case when the minimization has only a single
regularization parameter, �.

Instead of trying to determine appropriate values of (�
2

,�

4

) simultaneously, one
could try to decouple the problem by first determining the value of one of the
parameters and then move on to determine the value of the other. Having a fast
path algorithm for the LASSO problem in Algorithm 2, a simple idea would be
to first solve (84), set �

2

to the optimal � as determined by (105), and then
conduct a line search for �

4

. It should be noted that the dictionary W used in
(47) contains columns that are potentially identical as two or more candidate
pitches may have overlapping harmonics. Using such a W in (84) renders the
problem ill-posed, with infinitely many solutions. To remedy this, one might
construct W̆ as the dictionary containing only unique columns of W. Assume
that we have run Algorithm 2 using W̆ and have determined k to be the optimal
number of sinusoids with corresponding singular point �(k). These k sinusoids,
corresponding to k unique frequencies, might be a superposition of a larger num-
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ber of harmonics, having overlapping frequencies. Together with the fact that
we introduce an additional penalty with �

4

when performing pitch estimation,
setting �

2

= �

(k) might therefore yield only solutions with all amplitudes aj set
to zero. A more conservative choice would instead be to set �

2

= �

(k+1) + ✏

for some ✏ > 0, as � 2 (�(k+1)

,�

(k)] yields k non-zero components when solving
(84). This is illustrated in Figure 9. That would leave only a line search to
determine �

4

. Also, as performing this line search with the full dictionary W
would be computationally cumbersome, we could exploit the knowledge gained
from the solution of (84). As we know the present sinusoidal components, we
can discard the pitches in W that have no harmonics that correspond to any
of the k detected sinusoids, resulting in a smaller problem that can be solved
faster.

Although this approach seems attractive at first glance and works in some stan-
dardized cases, it turns out that we in practice cannot use Algorithm 2 to
determine �

2

and thereby reduce the complexity of our problem. This is due
to that Algorithm 2 only converges for a su�ciently large number of singular
points if the dictionary W̆ is moderately resolved in frequency. Constructing
W̆ from the unique columns from our standard pitch dictionary W yields too
high frequency resolution, causing Algorithm 2 to break down. Thus, using
this approach as a preprocessing step will only work if one has prior knowledge
of the frequency content of the signal, i.e., there are no o↵-grid e↵ects, and if
the frequencies are not too closely spaced, something that we cannot assume to
hold.

4.3 Adaptive dictionary construction

As finding an e�cient path algorithm for PEBSI-Lite proves elusive, an alter-
native approach could be to conduct a grid search to find appropriate values
of �

2

and �

4

. As noted earlier, such a search using the full pitch dictionary
W would be computationally cumbersome. Therefore, this section proposes a
signal dependent dictionary construction aimed at forming a dictionary that is
smaller than the default dictionary, W, but better suited to the signal to be
analysed.

The dictionary construction begins by estimating the frequency content of the
signal without imposing a harmonic structure, i.e., we are just estimating multi-
ple sinusoids in noise. This estimation could be performed by standard methods
such as ESPRIT. As the number of sinusoidal components is unknown, esti-
mates corresponding to di↵erent model orders can be evaluated using the BIC
criterion (105) in order to choose a suitable model order. As the only interest-
ing pitch candidates are those having at least one harmonic corresponding to
a present sinusoidal component, we can design a considerably reduced dictio-
nary, containing only pitches with such matching harmonics. If one has some
prior knowledge of the nature of the signal, one could impose stronger assump-
tions on the candidate pitches in order to reduce the dictionary further, e.g.,
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Figure 10: True pitch spectrum of a three pitch signal with fundamental frequen-
cies 400, 500 and 700 Hz with 6, 5, and 5 harmonics, respectively. The fp-axis
gives the fundamental frequency of each pitch and the fpk-axis the frequencies
of the harmonics.

by allowing only pitches whose first harmonic is found in the set of estimated
sinusoids. Using the obtained dictionary, one could then proceed to conduct
a search for �

2

and �

4

. However, with this smaller dictionary, the total vari-
ation penalty as formulated in (45) might result in erroneous solutions. This
is illustrated in Figures 10 and 11. Figure 10 displays the true pitch spectrum
of a three pitch signal with fundamental frequencies 400, 500, and 700 Hz and
6, 5, and 5 harmonics, respectively. When constructing a dictionary based on
estimated frequency content using ESPRIT, the candidate pitches with funda-
mental frequencies 350 and 400 Hz are placed in adjacent blocks. Subsequently,
when performing pitch estimation with PEBSI-Lite the optimal solution is the
one presented in Figure 11. Note that the fifth harmonic of the 700 Hz pitch now
has been mapped to the tenth harmonic of the 350 Hz candidate pitch. This
erroneous solution is due to that the total variation penalty in (45) penalizes
amplitude variation not only within pitches, but also between adjacent pitches.
When using a large dictionary, this does not pose a problem as it is unlikely
that adjacent pitches will have good fit to the signal. However, the dictionary
considered now is constructed of only pitches with reasonable signal fit. In order
to remedy this, the total variation penalty has to be modified. Note that (45)
resulted in not only smoothness, but also block sparsity in the case of a large
dictionary W. In order to keep the block sparse e↵ect, one can change the total
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Figure 11: Estimated pitch spectrum of a three pitch signal with fundamen-
tal frequencies 400, 500 and 700 Hz with 6, 5, and 5 harmonics, respectively.
The fp-axis gives the fundamental frequency of each pitch and the fpk-axis the
frequencies of the harmonics.

variation penalty to

g

4

( ,�) =
PX

p=1

L
maxX

`=0

��
ap,`+1

e

�'p,`+1 � ap,`e
�'p,`

�� (113)

ap,0e
�'p,0 = ap,L

max

+1

e

�'p,L
max

+1 = 0 , 8p (114)

In matrix notation, this means that the matrix H
(k)
4

in (57) is modified by
redefining the matrix F as a P (L

max

+1)⇥PL

max

matrix F = diag(F
1

, . . . ,FP ),
where each block Fp is a (L

max

+ 1)⇥ L

max

matrix with elements

fk,` =

8
>>><

>>>:

1 if k = ` = 1

�1 if k = ` 6= 1

1 if k = `+ 1

0 otherwise

(115)

Algorithm 1 remains the same, except for the auxiliary variable u
4

and dual
variable d

4

which now both are in CP (L
max

+1). Using this modified total vari-
ation penalty, pitch estimates are independent of the ordering of the candidate
pitches in the dictionary and the reduced dictionary can be used without ex-
periencing the above mentioned problem. Having this in place, the search for
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Figure 12: Number of pitches, (K), present in the solution of PEBSI-Lite for
di↵erent values (�

2

,�
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) when applied to a three pitch signal with 4, 8, and 12
harmonics, respectively.

(�
2

,�

4

) can be conducted. Although considerably cheaper as compared to when
performed using a full dictionary, a complete evaluation of the �

2

� �

4

plane
is still quite expensive. To avoid a full grid search, the following heuristic con-
cerning the connection between �

2

and �

4

can be used. Assume that we have
a single pitch signal where all Lk harmonics have equal magnitude r. Further,
assume that when setting �

4

= 0, �0
2

is the largest value of �
2

resulting in a
nonzero solution, where each harmonic amplitude is estimated to r

0. If we would
instead set �

2

= 0 and consider which value of �
4

that should result in the same
solution, this value should be

�

0
4

=
Lk

2
�

0
2

(116)

as this would result in precisely the same penalty as with �

4

= 0, �
2

= �

0
2

. If we
assume (116) to be true, we should, for spectrally smooth signals, expect to see
ridges in the solution surface where the number of pitches present in the solution
changes, and the shapes of the ridges in the �

2

� �

4

plane should be described
by lines similar to (116). This indeed seems to be the case. Figure 12 presents a
plot of the number of pitches present in the solution for di↵erent values (�

2

,�

4

)
for a signal consisting of three pitches with 4, 8, and 12 harmonics, where each
harmonic amplitude has been drawn uniformly on (0.9, 1.1). On the plateau
with two pitches, the pitch with four harmonics have been set to zero, whereas
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Algorithm 3 Self-Regularized PEBSI-Lite

1: initiate !̂ = ;, ` = 1
2: repeat {sinusoidal component estimation}
3: !̂`  ` sinusoidal components from ESPRIT
4: BIC`  2N log �̂2(!̂`) + (5`+ 1) logN
5: until BIC` > BIC`�1

6: construct dictionary W from !̂`�1

7: L largest number of active harmonics among candidate pitches in W
8: initiate � = ✏, k = 1
9: �̂

2

y  Var(y)
10: repeat {regularization parameter line search}
11: �

2

 �, �
4

 L
2

�

12: form amplitude estimate â(k) from Algorithm 1
13: estimate the variance of the model residual �̂2(�

2

,�

4

)
14: � �+ ✏

15: k  k + 1
16: until �̂2(�

2

,�

4

) > ⌧ �̂

2

y

17: â â(k�1)

on the plateau with one pitch present, only the pitch with twelve harmonics is
present. Note the shape of the di↵erent plateaus: seen in the �

2

��

4

plane, the
slopes of the ridges seem to be proportional to (116) where Lk = 4, 8, and 12, for
the three ridges corresponding to changes from three to two, from two to one,
and from one to zero pitches, respectively. The signal corresponding to Figure 12
has a relatively low noise level, with SNR = 20 dB. Decreasing the SNR-level,
the least regularized solutions, i.e., with �

2

and �

4

close to zero, results in more
than three non-zero pitches. Guided by this observation, one could by a re-
parametrization reduce the search for (�

2

,�

4

) from a two-dimensional to a one
dimensional search. Keeping the plateaus in Figure 12 and our assumption of
spectral smoothness in mind, we should expect a desirable solution to correspond
to a (�

2

,�

4

)-pair with �

2

 �

4

. In order to get solutions regularized with respect
to spectral smoothness, while keeping the risk of getting only zero solutions low,
the following parametrization can be used. Let � denote the only free parameter
and set

�

2

= � (117)

�

4

=
L

2
� (118)

where L is the largest number of harmonics among the pitches present in the
signal. Although L is unknown, it can be estimated during the dictionary con-
struction phase as we have access to ESPRIT estimates of the signal’s sinusoidal
components. Having this in place, a line search can be conducted for the value
of �. As for choosing an optimal � from the set of candidates, we unfortunately,
as noted earlier, do not have a fully functioning BIC criterion that takes into
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Figure 13: Spectrogram for a signal consisting of one, two and lastly three
MIDI-saxophones playing notes with fundamental frequencies 311, 277, and 440
Hz, respectively.

account the harmonic structure of the signal and that would allow us to choose
between candidate solutions. Though, assuming that we obtain at least one
solution that correctly retrieves the support of the true pitches, one could make
the model order choice based on the MLE of the residual variance �2

� as follows.
Having obtained a solution with PEBSI-Lite using the regularization parameter
�, the residual variance �

2

� can be estimated by least squares and the unique
frequencies of that solution. In low noise environments, we expect false pitches
that model noise to not contribute much to the signal power. Thus, the first
significant rise in residual variance is expected to occur when one of the true
pitches are set to zero. Therefore, we propose keeping only models that corre-
spond to lower values of �2

� and then choosing the optimal model as the one
having the least number of active pitches. This might be expected to work for
high values of SNR but might break down when the power of the noise is close to
that of the clean signal. The complete algorithm for the dictionary construction,
line search, and pitch estimation is outlined in Algorithm 3, where ✏ denotes
the step size of the line search and ⌧ 2 (0, 1) is a threshold for detecting an
increase in model residual variance. Figure 13 shows a plot of the spectrogram
of a signal consisting of three MIDI-saxophones playing notes with fundamental
frequencies 311, 277, and 440 Hz. The 311 Hz saxophone starts out alone and is
after 0.45 seconds joined by the 277 Hz saxophone and after 0.95 seconds by the
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Figure 14: Frame wise pitch estimates for a signal consisting of one, two and
lastly three MIDI-saxophones playing notes with fundamental frequencies 311,
277, and 440 Hz, respectively.

440 Hz saxophone. The image is quite blurred for the later parts of the signal,
but for the first half second, one can clearly see the harmonic structure of the
saxophone pitch. It is worth noting that a large number harmonics is present.
Figure 14 shows pitch estimates produced by Algorithm 3, using ⌧ = 0.1, when
applied to the same signal. As can be seen, the estimates are quite accurate,
with the exception of the beginning of the first tone and for a single frame where
the 440 Hz pitch is mistaken for a 220 Hz pitch.

4.4 Numerical results

In order to examine the performance of Algorithm 3, it was evaluated using a
simulated triple-pitch signal, measured in white Gaussian noise at di↵erent SNR
levels, ranging from 0 dB to 25 dB, in steps of 5 dB. To make the simulations
realistic, the spectral envelopes of the three pitch components were constructed
from periodograms of three di↵erent speech recordings. The formants of the
three pitches are displayed in Figure 15. The pitches had fundamental frequen-
cies 200, 350, and 530 Hz, and 7, 8, and 11 harmonics, respectively. At each level
of SNR, 1000 Monte Carlo simulations were performed, where the fundamental
frequencies were chosen uniformly on 200 ± 2.5, 350 ± 2.5, and 530 ± 2.5 Hz,
respectively, and the phase of each harmonic was chosen uniformly on [0, 2⇡).
The signal was sampled in a 40 ms window at a sampling frequency of 20 kHz,
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Figure 15: Formants for the three pitches constituting the test signal for the
Monte Carlo simulations.

generating 800 samples of the signal. The algorithm settings were ⌧ = 0.1 and
✏ = 0.05. Here, Algorithm 3 was compared to the ANLS, ORTH, harmonic
Capon, as well as PEBS-TV estimators. The three first comparison methods
were given the oracle model orders. To illustrate the fact that the choice of
regularization parameter values is not universal, the values in Table 2 were used
initially. However, this resulted in such poor performance that the parame-
ter values had to be slightly altered in order to make PEBS-TV an interesting
reference method. As a compromise, the parameter values corresponding to
SNR 20 dB in Table 2 were used for all SNRs in this simulation setting. For the
dictionaries of PEBSI-Lite and PEBS-TV, L

max

= 16 is used. Figure 16 shows
the percentage of the pitch estimates where all three pitch estimates lie within
±2 Hz of the true values for the five di↵erent methods. As can be seen, the per-
formance of PEBSI-Lite is poor for low SNRs while improving considerably in
lower noise settings. The low scoring for PEBSI-Lite for low SNRs is mainly due
to selection of wrong model orders. This is illustrated in Figure 17, which shows
the percentage of the estimates in which PEBSI-Lite and PEBS-TV selects the
correct number of pitches. As can be seen, for an SNR of 0 dB, PEBSI-Lite
selects the true model order in less than 10% of the simulations. Mostly, a
too high model order is selected, which is to be expected as the model order
choice is based on the power of the model residual and that the pitch estimates
depend on the accuracy of the initial ESPRIT estimates. Though, for higher
SNRs, PEBSI-Lite clearly outperforms the reference methods. Arguably, one
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Figure 16: Percentage of estimated pitches where all three fundamental frequen-
cies lie at most 2 Hz from the ground truth.

could improve on these results by either using prior knowledge of the noise level
or by estimating it, and based on this make the model order selection scheme
more robust. Figure 18 shows a plot of the root mean squared error (RMSE)
for the estimated fundamental frequencies. Instead of presenting three separate
RMSE plots, Figure 18 shows an aggregate version where the MSE for the three
pitches have been summed. In order to construct the RMSE values for PEBSI-
Lite and PEBS-TV, estimates where the model order has not been correctly
determined have been discarded. Thus, for SNR level 0 dB, the RMSE values
for PEBSI-Lite is based on quite few samples. However, as PEBSI-Lite finds
the correct model order for high SNR levels with high probability, the corre-
sponding RMSE values are more trustworthy in these regions. For the reference
methods ORTH, ANLS, Capon, and PEBS-TV, some of the estimates deviate
from the true pitch frequencies with as much as 100 Hz, resulting in very large
RMSE values should all estimates be used in their computation. Thus, in order
to obtain RMSE values comparable to that of the PEBSI-Lite estimates, only
estimates found within 2 Hz of the true pitch frequencies are used when com-
puting RMSE for the reference methods. With this, as can be seen in Figure 18,
PEBSI-Lite performs worse than the reference methods for SNRs of 0 to 10 dB,
while outperforming all reference methods except Capon for SNRs of 20 and 25
dB. Though, one should bear in mind that the RMSE values for Capon for these
SNRs are based on only 15% respectively 8% of the available pitch estimates,
as can be seen in Figure 16.
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Figure 17: Estimated probability of PEBSI-Lite determining the correct number
of pitches for the triple pitch test signal.

Also presented in Figure 18 is the root Cramér-Rao lower bound (CRLB) for
the estimates of the pitch frequencies. As the frequencies of the harmonics in
this case are distinct and the additive noise is Gaussian, the lower limit for the
variance of an unbiased pitch frequency estimat f̂k is given by [5]

Var(f̂k) �
6�2(fs/2⇡)2

N(N2 � 1)
PLk

`=1

|ak,`|2`2
(119)

where �2 is the variance of the additive noise, ak,` is the amplitude of harmonic
` of pitch k, N is the number of data samples, and fs is the sampling frequency.
In analog with the summed MSE values for the pitch estimates, the root CRLB
curve presented here is the sum of the three separate limits, i.e.,

CRLB =
3X

k=1

6�2(fs/2⇡)2

N(N2 � 1)
PLk

`=1

|ak,`|2`2
(120)

As can bee seen in Figure 18, PEBSI-Lite, as well as the other methods, fail to
reach the CRLB. In an attempt to improve the PEBSI-Lite estimates for SNR
levels above and including 15 dB, a non-linear least squares (NLS) search was
performed. This means that we obtain refined estimates of the pitch frequencies
fk contained in the vector f as (see, e.g, [31])

f = argmax
f

yHB(BHB)�1BHy (121)

39



0 5 10 15 20 25
−5

−4

−3

−2

−1

0

1

2

3

4

5

SNR (dB)

R
M

S
E

 (
lo

g
−

s
c

a
le

)

 

 
PEBSI−Lite
ORTH
ANLS
Capon
PEBS−TV
CRLB

Figure 18: The RMSE for the fundamental frequency estimates for the triple
pitch test signal. Also plotted is the (root) CRLB. For PEBSI-Lite and PEBS-
TV, only estimates where the number of pitches is found are considered. For the
reference methods ORTH, ANLS, Capon, and PEBS-TV only estimates where
all estimated pitch frequencies lie within 2 Hz of the true pitch frequencies are
considered.

where B is a block matrix consisting of K blocks, B = [B
1

, . . . ,BK ], where each
block Bj corresponds to a pitch and is constructed as

Bj =

2

64
e

i2⇡fj/fst1
. . . e

i2⇡Ljfj/fst1

...
...

e

i2⇡fj/fstN
. . . e

i2⇡Ljfj/fstN

3

75 (122)

Given that the PEBSI-Lite estimates are fairly close to the true pitch frequen-
cies, we expect the NLS scheme to converge if we solve (121) using routines like
MATLAB’s fminsearch initialized with the PEBSI-Lite estimates. However, the
success of such a scheme is not only dependent on good initial frequency esti-
mates, we also need the true number of harmonics Lj for each pitch. Figure 19
presents a plot of the average absolute error in the number of detected harmon-
ics for each pitch for the test signal when using PEBSI-Lite. As can be seen,
the number of detected harmonics is only correct for the third pitch even for the
largest SNRs. The errors in number of harmonics for the first and second pitches
are due to the relatively small amplitudes of both pitches highest order harmon-
ics, as shown in Figure 15, making these harmonics prone to being cancelled out
by the PEBSI-Lite regularization penalties. Using erroneous harmonic orders
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Only estimates where the right number of pitches is found are considered.

as input to the NLS search, we expect the resulting pitch frequency estimates
to be somewhat biased. Indeed, this is what happens. Figure 20 presents a plot
of the RMSE of the pitch frequency estimates when the PEBSI-Lite estimates
for SNRs above and including 15, 20, and 25 dB have been post-processed using
NLS. As can be seen, we still fail to reach the CRLB, although the estimation
errors have become smaller. Note also that the slopes of the RMSE curve for
PEBSI-Lite and CRLB now are somewhat di↵erent, which is due to that the
erroneous harmonic orders induces varying degrees of bias in the estimates.

Considering computational complexity, ANLS and ORTH are by far the fastest
methods, with average running times of 0.03 and 1.6 seconds per estimation cy-
cle, respectively. For Capon and PEBS-TV, the corresponding running times are
6.1 and 6.4 seconds, respectively, while running PEBSI-Lite using Algorithm 3
requires on average 40.1 seconds per estimation cycle. Although Algorithm 3
is considerably more expensive to run than the reference methods, it should be
noted that the method does not require any user input in terms of regularization
parameter values. PEBS-TV could arguably be tuned to perform on par with
PEBSI-Lite if one is allowed to change the values of its regularization parame-
ters. However, PEBS-TV needs the setting of three parameter values and after
trying only seven such triplets, the computational time is the same as running
Algorithm 3.
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Figure 20: The RMSE for the fundamental frequency estimates where the esti-
mates obtained using PEBSI-Lite have been improved using NLS for SNR levels
15, 20, and 25 dB, as compared to the (root) CRLB. Only estimates where the
number of pitches is found are considered.
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5 Discussion and conclusions

The proposed algorithm PEBSI-Lite has been shown to be an accurate method
for multi-pitch estimation. The method was shown to perform as good as,
or better than, state of the art methods when evaluated using Monte Carlo
simulations of a smooth synthetic two-pitch signal. The advantage over similar
methods presented in [6] is that fewer regularization parameters are needed,
simplifying the calibration of the model. However, automatically choosing the
regularization parameters proved to be a di�cult task. A method for finding an
appropriate model, and thereby the regularization parameters, by means of a
line search was presented, combined with a scheme for constructing an e�cient
dictionary of candidate pitches. Combined with this scheme, PEBSI-Lite was
shown to outperform other multi-pitch estimation methods for high levels of
SNR, while breaking down in too noisy settings. Also, even if this scheme
would fail to select the correct model order, the obtained e�cient dictionary
facilitates a more rigorous grid search in terms of computational complexity.
Such a grid search could also exploit information about the solution surface
obtained from the line search. Although the results are encouraging, it should
be noted that the design of the method prohibits any economics of scale: the
dictionary and regularization parameters are tailored specifically to the signal,
so when performing pitch estimation over several frames, consecutive frames
cannot necessarily share the same dictionaries as di↵erent pitches may be present
in di↵erent frames. Also, with the present design of the method, it seems hard
to obtain statistically e�cient pitch frequency estimates.

6 Future research

In its present formulation, PEBSI-Lite does not allow for any sharing of infor-
mation between consecutive time frames, even if the algorithm should be ap-
plied to multi-frame signals for, e.g., music transcription. Arguably, the method
could be enhanced both in terms of accuracy and in terms of speed, could it
incorporate information about pitch estimates from preceding time frames when
forming pitch estimates. An issue not addressed in this thesis is inharmonicity.
As noted earlier, the perfectly harmonic model of pitches fail to capture the
frequency content of, e.g., the piano. An interesting area of investigation would
therefore be finding ways of adaptively adjusting the harmonic frequencies of
the dictionary, should one want to remain in the field of sparse recovery. There
are methods available that are able to handle inharmonicity in the case of known
sources, such as pianos, so elaborating on such approaches to make them more
general would be an interesting topic. As for the issue of choosing regularization
parameters, a path algorithm for e�ciently finding solutions for all such choices
to sparse recovery problems should be of great interest also outside the field of
multi-pitch estimation.
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