
Contents

1 Introduction 1

2 2-step explicit method 2
2.1 2-step Adams-Bashforth . 3

3 How the code works 3
3.1 Flow chart . 5
3.2 Testing the code . 6

4 Zero-stability 7

5 Checking the order 9
5.1 Fixed step-size . 9
5.2 Variable step-size: error vs tolerance 10
5.3 Variable step-size: error vs step-size 11
5.4 Solution with different 2-step explicit methods 12

6 How to use the program 13

7 Conclusion 14

8 Appendix 16

Abstract

This paper shows the Python implementation of a new way of con-
structing a variable multistep ODE solver which is not based on extending
fixed step-size methods but rather on defining interpolation and colloca-
tion conditions for each new point. The implementation allows for any
explicit 2-step method of order 2.

1 Introduction

There are many different ways of solving Initial Value Problems (IVP)
numerically and some of those are better for certain problems than others. The
goal of this project is to convert an explicit 2-step ODE solver from Matlab
into Python. For each point that this method gives the program will create a
piecewise polynomial of degree two. In the end the program will give an explicit
solution to the IVP problem.

This paper will also discuss zero-stability and show which explicit 2-step meth-
ods are zero-stable. We will also discuss the consistency and order of the method.

In the end we want to show that it is possible to construct implementations
of a variable step-size multistep method with a technique that is not based on
extending fixed step-size formulas.

The reader should be informed that the code is not in professional form but
is still in a developmental stage.

1

2 2-step explicit method

There are different methods constructed to solve initial value problems of the
form

y′ = f(t, y), y(t0) = y0 (1)

An explicit 2-step linear method has the general formula

yn + α1yn−1 + α0yn−2 = hn(β1f(tn−1, yn−1) + β0f(tn−2, yn−2)) (2)

Because this is a numerical method, the solution calculated by (2) is

yn ≈ y(tn)

where
tn = tn−1 + hn.

This method starts with the initial points at t0, t1 and takes small step forward
in time to calculate the next solution at t2. Then it will advance by calculating
the solution at t3, t4, ..., tf .

The quantity hn is called the step-size at step n. Although explicit methods can
solve initial value problems by themselves, they are usually used in tandem with
implicit methods in order to predict the solutions at each point. The explicit-
implicit pair is called a predictor-corrector scheme.

The difference of an single-step method such as Euler´s method and an multistep
method such as Adams-Bashforth 2-step method is that multistep methods use
the previous information to calculate the new point while single-step methods
discard all previous information except the last calculated point before calcu-
lating the next step [3].

The fixed 2-step method (2) has the formula

yn + α1yn−1 + α0yn−2 = h(β1f(tn−1, yn−1) + β0f(tn−2, yn−2))

with

ti = t0 + ih.

There is a need to change the step-size after every step in order to make the
method adaptive, and then the method becomes formula (2) with
hn = tn − tn−1. The coefficients α0, α1, β0 and β1 are no longer constant, but
are a function of the last two step-sizes. In [4] these methods are constructed as
collocation methods that are intrinsically of variable step-size. The procedure
is explained in section 3.

2

2.1 2-step Adams-Bashforth

The 2-step Adams-Bashforth method needs two values yn−2 and yn−1 to be able
to compute the next step yn [1],

yn = yn−1 +
3

2
hnf(tn−1, yn−1)− 1

2
hnf(tn−2, yn−2). (3)

Adams-Bashforth methods are the most commonly used explicit multistep
methods and they are used as predictors for the implicit Adams-Moulton
methods.

As the inital value problem only provides with one value and the method re-
quires one more initial value, one can use different numerical methods such as
Euler´s or a Runge-Kutta method to find the second initial value.

3 How the code works

The main purpose of the code is to solve initial value problems of the form (1)
in an interval t ∈ [t0, tf].

As mentioned before, the program will use an explicit 2-step method. How-
ever the program does not directly use formula (2). According to Skeel [2]
there is no general method for the construction of variable step-size multistep
methods other than extending constant step-size formulas. Nevertheless, in [4]
it is shown that you can construct explicit multistep methods as collocation
polynomials such that interpolation conditions at previous points are satisfied.
This shows that you can construct a method not depending on extending fixed
step-size formulas.
Below is a list of the conditions that I used in the program [4, pp16]

P ∈ Π2

P ′(tn−1) = y′n−1

P (tn−1) = yn−1

cos(θ)P (tn−2)− cos(θ)yn−2 + sin(θ)hn−1(P ′(tn−2)− y′n−2) = 0

where

y′n = f(tn, yn).

These four conditions define a polynomial such that the solution at tn is given
by P (tn), that is, yn = P (tn).

The value of θ will define the method. By putting θ = π
2 we will get the

2-step Adams-Bashforth method given by formula (3). All possible 2-step ex-
plicit methods can be obtained by changing the value of θ.

3

The size of the step-size hn is another key aspect of the solver. You can
choose to have fixed or variable step-sizes. By choosing variable step-size the
code runs smoother. The variable step-size is constructed using control theory.
Bascially what the code does is that it takes a smaller hn if the function changes
rapidly in a time interval and the other way around if nothing particular hap-
pens. In order to do this, it estimates the error at each step, and tries to keep it
equal to the user-given tolerance. The same problem is solved with two different
2-step methods and from the results the error can be estimated.

The code also uses a variable called perc. What perc does is that it gives
the user the freedom to chose what percentage of hn is allowed to change. With
the error estimate, the new step-size is proposed. If the proposed hn is too large
or too small it is made equal to a predefined fraction of the previous step-size.

After the points are calculated the program uses these points and the interpola-
tion conditions above to create a polynomial of degree two over the subinterval
[tn−2, tn−1]. The program does this for every point and in the end you get a
graph which is constructed with a piecewise polynomial of degree two.

On the next page there is a flow chart of how the code roughly works.

4

3.1 Flow chart

5

3.2 Testing the code

To illustrate how the code works we will run it on an ordinary differential equa-
tion. Say that we are asked to solve the following system

y′ =

[
6 3
−2 1

]
y, y(20) =

[
−1
−1

]
The analytic answer for this problem is

y =

[
5e3t−60 − 6e4t−80

−5e3t−60 + 4e4t−80

]
The first thing you should do in the program as the flow chart says is to construct
the function in the following way.

de f func t i on (y , t) :
r e turn array ([6∗ y [0]+3∗y [1] ,−2∗y [0]+1∗y [1]])

After this step you can run your 2-step method. As the flow chart says we have
to give the initial conditions, the points where you want to plot your function,
for which θ you want to run your code (that is, what method you want to use),
what tolerance you want to have and choosing perc. How you run the class will
be explained in section 6. For this example it will look the following when I run
the class.

a=IVP Solver (funct ion , array ([−1 ,−1]) , p i /2 , 1 . e−8 ,0 .8)
a (20 ,22)

Here I wrote my initial condition in the program and we choose to solve it in an
interval of lenght two. The method defined by θ = π

2 is Adams-Bashforth, the
tolerance was set to 10−8, and perc was set to 0.8. The solver used 7285 steps.

Figure 1 shows the relative error calculated as the absolute value of the
difference between the exact solution and the computed solution.

Figure 1: The relative error for the first component.

Even though the solution for this ordinary differential equation grows very
fast as t grows the relative error is still small.

6

4 Zero-stability

The solution with a k-step method depends on yn−k, ...yn−2, yn−1. Therefore
we need to know if the numerical solution is stable with respect to perturbations
in the starting values. A linear multistep method is said to be zero-stable if the
method is consistent for the differential equation y′ = 0 [5]. This is equivalent
to checking if the roots of the characteristic polynomial

p(z) = zn +
n−1∑
k=0

αkz
k

have modulus less than or equal to 1 and those with modulus 1 are simple roots.
We then say that the root condition is satisfied [5]. If the root condition is sat-
isfied then the method is zero-stable.

Now we will test zero-stability for our method. Notice that by choosing θ = π
2

we got Adams-Bashforth method but what happens if we take a different θ?
Figure (2) shows a graph of the code solving the differential equation

y′ = −y, y(0) = 1

for different θ. The global error E(h) is

E(h) =
||x̃− x||2

m
, (4)

where x̃ is the vector of computed solutions, x is the vector of exact solutions,
and m is the number of points at which the solution was approximated.

Figure 2: The picture shows us that the methods with θ ∈ [1, 3]
⋃

[4, 2π] are zero
stable, but that there are regions where the methods defined by θ are not stable.

7

Beause the characteristic polynomial is of degree 2, its roots can be obtained
analitically. Since our method is of order two we have [4, pp8].

α1(θ, r) =
2 sin θ + (r2 − 1) cos θ

cos θ − 2 sin θ

α0(θ, r) = − r2 cos θ

cos θ − 2 sin θ
.

Where r = hnew/hold. Note that when r = 1 the step-size is kept fixed.
From this we can build the polynomial ρ(x) = x2 + α1x + α0. All methods
should satisfy the root condition at least in a vecinity of r = 1.
We can write ρ as

ρ(x) = x2 +
2 sin θ

cos θ − 2 sin θ
x− cos θ

cos θ − 2 sin θ
.

The roots of ρ should satisfy the root conditon. We know that one root of ρ is
always 1, and thus we can use this information to get the other root. Define the
second root as z then

(x− 1)(x− z) = x2 +
2 sin θ

cos θ − 2 sin θ
x− cos θ

cos θ − 2 sin θ

z = − cos θ

cos θ − 2 sin θ
.

Thus we have to choose a θ such that the root condition (5) is satisfied, that is,

z(θ) =

∣∣∣∣− cos θ

cos θ − 2 sin θ

∣∣∣∣ < 1. (5)

By solving equation (5) we find that if θ ∈ [π4 , π] then the method is
zero-stable when r = 1. Thus, θ must be in the open interval (π4 , π).

8

Figure 3: Picture of θ ∈ [0, 2π] where the root condition is satisfied when r = 1. The
graph under the line satisfies the root condition, the rest does not.

5 Checking the order

We will now check that the expected order 2 of these methods is observed when
this solver is used.

If the code does not give a solution of order 2 then the code is not working
properly. Down below are different tests that show that the solution obtained
with our code is of order two. The tests solve the differential equation

y′ = y, y(0) = 1, (6)

in the interval [0, 2], for θ = π
2 ,

π
3 ,

4π
3 . All methods gave similar results. The

order was checked for both fixed and variable step-sizes.

5.1 Fixed step-size

Since equation (4) is of order 2, we can write the global error as

E(h) = ch2 +O(h3)

E(h) $ ch2

log(E) $ log(c) + 2 log(h)

which we can rewrite as y = K + 2x, with x = log(h) and y = log(E).
This means that if we run the program and plot log(E) vs log(h) for different
fixed-step sizes we should get a graph with slope two. Figure 4 shown that our
code gave the expected result.

9

Figure 4: Graph with logarithmic x-axis and y-axis. Problem (6) was solved with
fixed step-sizes, for 7 different values of h.

5.2 Variable step-size: error vs tolerance

When we change the tolerance of our method we would like to see a predicted
effect on the global error. The controler in the code tries to make the local error
equal to the tolerance. In a method of order 2, the local error is of order 3.
This implies that

local error = O(h3)

Tol
2
3 $ c1h

2.

Earlier we said that the global error was of order two, which implies that

E(h) $ c2h
2 =

c2
c1
c1h

2 = K ∗ Tol 23

log(E) = log(K) + log(Tol
2
3)

This can be written as y = K + x, where x = Tol
2
3 . Thus when log(E) is

plotted vs Tol
2
3 , the line should have slope 1. This test shows that the global

error depends linearly on Tol
2
3 , so that changing the tolerance leads to a change

of the global error in a predicted way.

10

Figure 5: Graph with logarithmic x-axis and y-axis. Problem (6) was solved with
variable step-sizes by using 8 different values of the tolerance. Note that the slope is
1.

5.3 Variable step-size: error vs step-size

We want to repeat what we did for fixed step-size in figure 4, but now for
variable step size. In this test we are going to change the tolerance but plot the
global error vs the average of h,

H = ||h||1/m.

The tolerance goes from 10−4 to 10−12(8 trials). The parameter perc was set to
0.8, which means that at each step h is allowed to change between 0.8h and 1.2h.

If we plot the global error against H in a log log plot, we get a line with slope
two as shown in figure 6. This means that the order of the method is preserved
when the step-sizes are varied.

11

Figure 6: Graph of the global error vs average h for variable step-size. Note that the
slope is two, as expected.

5.4 Solution with different 2-step explicit methods

By chosing different θ in the interval (π4 , π) we get different methods, and we
want to see if all θ give similar results when problem (6) was solved in the
interval [0, 2]. Table 1 shows the number of steps required by each method and
the root mean square of the global error of the solution.

θ Number of steps Mean global error
1.1 1507 7.1282e-06
1.3 1378 6.4996e-06
π
2 1288 6.0567e-06

2.9 1042 4.8526e-06
4.2 1551 7.3447e-06
5.1 1211 5.6815e-06

Table 1: Numbers of steps required to solve problem (6), and global error at the
endpoint at the interval.

We observe that the different methods will use different number of steps,
but they are of the same magnitude. The number of steps is dependent on the
method, but also on the problem solved. The global error at the final point is
similar for all methods we tried.

12

6 How to use the program

To be able to run the code for your initial value problem you need to have
Python installed on your computure. If we assume that you have imported the
code listed in the appendix the code should not give any error messeges. This
code can be downloaded from

http://www.maths.lu.se/staff/carmen-arevalo/downloads/

To be able to solve an IVP the first thing you should do is to define the right-
hand side of your IVP. Say that we want to define the following equation

y′ =

[
−1 1
1 −3

]
y.

Then you write

de f func t i on (y , t) :
r e turn array ([−y [0] +1∗y [1] , y [0]−3∗y [1]])

The y[0] is the first column, y[k−1] is the k:th column. To switch row you need
to have a comma as seen in the example above.

After this you need to start the class IVP−Solver. The class has the inputs

function Your right-hand side function given by the IVP
y−condition The initial conditions given by your IVP

theta For which method you want to run the solver
TOL What tolerance you want to have
perc Percentage of h allowed to change
t−start The starting value of the time
t−end The end value of the time

Say that we want to solve the IVP given by section 3.2. To solve this IVP
with the program you need to change the function to.

de f f unc t i on (y , t) :
r e turn array ([6∗ y [0]+3∗y [1] ,−2∗y [0]+1∗y [1]])

then run the program. Then you have to initiate the class by writing

some var iab l e=IVP Solver (funct ion , y cond i t i on , theta ,TOL, perc)
some var iab l e (t s t a r t , t end)

Where some−variable can be any object for example a letter or a word.

For this IVP it would be the following

some var iab l e=IVP Solver (funct ion , array ([−1 ,−1] , p i /2 , 1 . e−8 ,0 .8)
some var iab l e (20 ,22)

The class returns the solution of your IVP and the amount of steps it took. If
you want to see the values of the solution to your IVP you write

some var iab l e . y f i n a l e

Notice that theta, TOL and perc are variables that you can change to your
demand.

13

7 Conclusion

We have developed a working Python code for the family of all variable step-size
2-step explicit methods of order two. The method are not based on extending
fixed step size formulas but rather interpolating and collecting information to
calculate the next point.

We have shown that the order of the methods is 2 when the solver is used
for fixed and variable step-size where the global error depends linearly on some
tolerance. We have shown for which θ the solver is zero-stable and which con-
ditions they must satisfy. Solving differential equations with different methods
requires different amount of steps, but they are of the same magnitude.

The program can easly be extended to construct higher order of variable step-
size multistep methods.

14

References

[1] Bashforth, Francis, Adams,J.C, An attempt to test the theories of capillary
action by comparing the theoretical and measured forms of drops of fluid.
With an explanation of the method of integration employed in constructing
the tables which give the theoretical forms of such drops, Cambridge, univer-
sity Press, 1883.

[2] Skeel.R.D, Construction of variables-stepsize multistep formulas,
Math.Comp., 47(176)(1986, pp503-510,S45-S52)

[3] http://en.wikipedia.org/wiki/Linear_multistep_method

[4] Arévalo.C, Parametric variable step-size formulation of multistep methods.
Unpublished Paper,2015

[5] Süli, Endre; Mayers, David (2003), An Introduction to Numerical Analysis,
Cambridge University Press, ISBN 0-521-00794-1.

15

8 Appendix

from f u t u r e import d i v i s i o n
from sc ipy import ∗
import matp lo t l i b . pyplot as p l t
import numpy as np
from sc ipy . i n t e g r a t e import ode int

””” Hi and welcome to t h i s IVP s o l v e r program . To be ab le to run t h i s program
you have to have an IVP problem (or system o f them) in the f o l l o w i n g form
y´=f (t , y) with y0=f (t0) . This code i s a 2−s tep e x p l i c i t method . This code uses
p i e c e w i s e po lynomia l s o f degree two to i l l u s t a r t e the d e s i r e r e s u l t .
”””

””” The f i r s t th ing you have to do to run t h i s program i s to wr i t e your
func t i on . To s o l v e your problem you need to wr i t e your IVP below in the
cons t ruc ted code . Your func t i on should be an array . The dimension o f the array
w i l l depend on how your func t i on l ooks l i k e . I f you j u s t have one equat ion to
s o l v e wr i t e i t in the f o l l w i n g way ” array ([−1∗y [0]]) ” . The y [0] t e l l s the program that to
c a l l that s p e c i f i c y . I f you have a system o f equa t i on f o r example a 2x2 matrix
o f the form
|−y y |
| y −3y |
then you wr i t e ” array ([−y [0] +1∗y [1] , y [0]−3∗y [1]]) ”
Now you are h a l f way to c a l c u l a t e your func t i on ”””

de f func t i on (y , t) :
””” Give your IVP problem here .”””

#return array ([0∗ y [0]+1∗y [1] ,−4∗y [0]+0∗y [1]])
r e turn array ([y [0]])

c l a s s IVP Solver (ob j e c t) :

””” To run the program and get the answear f o r your problem you have to
c a l l the
program ´a=IVP so lver (funct ion , y cond i t i on , theta ,TOL, perc) ´ then a (t s t a r t . t end)

The program re tu rn s a p l o t o f your answear in your i n t e r v a l and how many po in t s
i t took to get the re .

”””

de f i n i t (s e l f , funct ion , y cond i t i on , theta ,TOL, perc) :

s e l f . y cond i t i on=y cond i t i on
s e l f . f unc t i on=func t i on
s e l f . theta=theta
s e l f .TOL=TOL
s e l f . perc=perc

16

de f c a l l (s e l f , t s t a r t , t end) :

r e turn s e l f . E x p l i c i t 2 s t e p m e t h o d w i t h s p l i n e s (s e l f . funct ion ,
s e l f . y cond i t i on , t s t a r t , t end , s e l f . theta , s e l f .TOL, s e l f . perc)

de f e r r o r c o n s t (s e l f , theta , eta) :
””” Ca l cu l a t e s the e r r o r constant .

”””
s e l f . theta=theta
s e l f . e ta=eta
s e l f .K=0
s e l f . k=len (theta) +1

i f s e l f . k==2:
s e l f . cx= cos (theta)
s e l f . sx= s i n (theta)
s e l f . cy = cos (eta)
s e l f . sy = s i n (eta)
s e l f .Kx=(2∗ s e l f . cx−5∗ s e l f . sx)/ (s e l f . cx−2∗ s e l f . sx)/6
s e l f .Ky=(2∗ s e l f . cy−5∗ s e l f . sy)/ (s e l f . cy−2∗ s e l f . sy)/6
s e l f .K= s e l f .Kx/(s e l f .Ky−s e l f .Kx)

re turn s e l f .K

de f po l (s e l f , theta , h , y , yp) :
””” Returns a po in t s which he lps with c on s t ru c t i n g a p i e c e w i s e polynomial between two
given po in t s

”””

s e l f . h=h
s e l f . y=y
s e l f . yp=yp
s e l f . kk= len (theta) +1
i f s e l f . kk ==2:

s e l f . c=cos (theta)
s e l f . s=s i n (theta)
s e l f . p = (s e l f . c ∗(y[−2]−y[−1]+h[−2]∗yp[−1])+ s e l f . s ∗h[−2]∗

(yp[−2]−yp [−1]))/ (h [−2]∗∗2∗(s e l f . c−2∗ s e l f . s))
r e turn s e l f . p

de f ang le2 (s e l f , theta) :
””” Returns eta , eta depends what your theta i s . I f theta=pi /2 the method

w i l l be Adam Bashforth .”””

s e l f . theta=theta
s e l f . k= len (theta)+1
s e l f . e ta=theta . copy ()
f o r j in range (s e l f . k−1):

i f theta [j] <= 5∗ pi /8 :
s e l f . e ta [j]=13∗ pi /16

e l s e :
s e l f . e ta [j]=7∗ pi /16

re turn s e l f . e ta

17

de f s t a r t (s e l f , theta , t , h , y , yp) :
””” This func t i on he lps you to s t a r t with the 2−s tep e x p l i c i t method .

S ince in your problem you are j u s t g iven you one po int (we need two po in t s to
s t a r t the p roce s s) t h i s program c a l c u l a t e s the second po int with help o f the
i n b u i l d func t i on ” ode int ” (Runge−Kutta) . I t a l s o g i v e s you the
second po int in time you need to have . ”
”””

s e l f . theta=theta
s e l f . t=t
s e l f . h=h
s e l f . y=y
s e l f . yp=yp

s e l f . k = len (theta)+1
f o r j in range (s e l f . k−1):

t . append (t [−1]+h [−1])
s e l f .Y=ode int (s e l f . funct ion , y [0] , t)
y . append (s e l f .Y[−1])
s e l f . f=s e l f . f unc t i on (y [−1] , t [−1])
yp . append (s e l f . f)

r e turn t , y , yp

de f c o n t r o l l e r (s e l f , parvec , theta , k , TOL, est , r , perc ,w) :
”””The func t i on c o n t r o l l e r choses how big the next s t e p s i z e should be .
I f the g iven func t i on grows f a s t or slow in an i n t e r v a l the c o n t r o l l e r w i l l
take an sma l l e r h , i f the func t i on does not change much in an i n t e r v a l the
c o n t r o l l e r w i l l take a b igge r h . This func t i on e s t imate s the e r r o r at easch
step , and t r i e s to keep i t equal to the t o l e r a n c e ”””

s e l f . ord = len (theta) + 1
i f s e l f . k== s e l f . ord +1:

s e l f . c e r r o l d=1
e l s e :

s e l f . c e r r o l d= (TOL/ e s t [−2])∗∗ (1/(s e l f . ord +1))
i f e s t [−1]==0:

e s t [−1]=1e−18
s e l f . c e r r= (TOL/(e s t [−1]))∗∗ (1/(s e l f . ord +1))
s e l f . convec =array ([s e l f . ce r r , s e l f . c e r ro ld , r])

r= prod (array ([s e l f . convec [0] ∗ ∗ s e l f . parvec [0] , s e l f . convec [1] ∗ ∗
s e l f . parvec [1] , s e l f . convec [2] ∗ ∗ s e l f . parvec [2]]))

i f r<perc :
r=perc
w=w+1

e l i f r > 2−perc :
r=2−perc
w=w+1

return r ,w

18

de f E x p l i c i t 2 s t e p m e t h o d w i t h s p l i n e s (s e l f , funct ion , y cond i t i on , t s t a r t ,
t end , theta ,TOL, perc) :

””” This program uses other programs below . The program re tu rn s a p l o t o f
the numerica l answear f o r your ODE problem and re tu rn s how many po in t s i t
took to get the re . This p roce s s i s an e x p l i c i t method , the proce s s s t o p i t e r a t i n g
u n t i l the g iven time i n t e r v a l i s reached . Changing theta w i l l g i ve d i f f e r e n t
e x p l i c i t methods , some are zero−s t a b l e some are not . ” theta=array ([p i /2]” i s
Adams−Bashforth method .
”””

s e l f . f unc t i on=func t i on
s e l f . y cond i t i on=y cond i t i on
s e l f . t s t a r t=t s t a r t
s e l f . t end=t end
s e l f . parvec=array ([1 , 1 , 0]) / 6
s e l f . theta=array ([theta])
s e l f . ord =len (s e l f . theta)+1
s e l f .TOL = TOL
s e l f . perc=perc
s e l f .w=0
s e l f . e ta=s e l f . ang le2 (s e l f . theta)
s e l f .K=s e l f . e r r o r c o n s t (s e l f . theta , s e l f . e ta)
s e l f . h=[s e l f .TOL∗∗ (2/(s e l f . ord +1))]
s e l f . t =[t s t a r t]
s e l f . y=[y cond i t i on]
s e l f . yp=[s e l f . f unc t i on (y cond i t i on , s e l f . t [0])]

s e l f . t , s e l f . y , s e l f . yp=s e l f . s t a r t (s e l f . theta , s e l f . t , s e l f . h , s e l f . y , s e l f . yp)

s e l f . e s t =[0]

s e l f . r=1
s e l f . k=s e l f . ord

whi l e s e l f . t [s e l f . k−1]< t end :

s e l f . k=s e l f . k+1

s e l f . h . append (s e l f . r ∗ s e l f . h [s e l f . k−3])

s e l f . t . append (s e l f . t [s e l f . k−2]+ s e l f . h [s e l f . k−2])

s e l f . px = s e l f . po l (s e l f . theta , s e l f . h , s e l f . y , s e l f . yp)

s e l f . py = s e l f . po l (s e l f . eta , s e l f . h , s e l f . y , s e l f . yp)
s e l f . y . append (s e l f . px∗ s e l f . h [s e l f . k−2]∗∗2 +s e l f . yp [s e l f . k−2]∗

s e l f . h [s e l f . k−2]+ s e l f . y [s e l f . k−2])
s e l f . yp . append (s e l f . f unc t i on (s e l f . y [s e l f . k−1] , s e l f . t [s e l f . k−1]))

s e l f . y 1= s e l f . py∗ s e l f . h [s e l f . k−2]∗∗2 +s e l f . yp [s e l f . k−2]∗\
s e l f . h [s e l f . k−2]+ s e l f . y [s e l f . k−2]

s e l f . e s t . append (norm(s e l f .K∗(s e l f . y 1−s e l f . y [s e l f . k−1])/
(abs (s e l f . y [s e l f . k−1])+1e−3)))

s e l f . r , s e l f .w=s e l f . c o n t r o l l e r (s e l f . parvec , s e l f . theta , s e l f . k ,
s e l f .TOL, s e l f . est , s e l f . r , s e l f . perc , s e l f .w)

19

i f l en (s e l f . t) >=100000:
re turn ”To big i n t e r v a l or wrong func t i on ! ”

i f s e l f . t [−1]> t end :
s e l f . t [−1] = t end

s e l f . h [−1] = s e l f . t [−1]− s e l f . t [−2]

s e l f . y=s e l f . y [: −1]

s e l f . yp=s e l f . yp [: −1]
s e l f . px = s e l f . po l (s e l f . theta , s e l f . h , s e l f . y , s e l f . yp)
s e l f . py = s e l f . po l (s e l f . eta , s e l f . h , s e l f . y , s e l f . yp)

s e l f . s = s e l f . yp [−1]∗ s e l f . h[−1]+ s e l f . y [−1]

f o r j in range (2 , s e l f . ord +1):
s e l f . s = s e l f . s + s e l f . px [s e l f . ord −j]∗ s e l f . h [−1]∗∗ j

s e l f . y . append (array (s e l f . s))

s e l f . yp . append (s e l f . f unc t i on (s e l f . y [−1] , s e l f . t [−1]))
s e l f . z = s e l f . yp [−1]∗ s e l f . h[−1]+ s e l f . y [−1]
f o r j in range (2 , s e l f . ord +1):

s e l f . z = s e l f . z + s e l f . py [s e l f . ord −j]∗ s e l f . h [−1]∗∗ j

s e l f . y f i n a l e=ze ro s (shape=(l en (s e l f . t) , l en (s e l f . y cond i t i on)))
f o r j in range (l en (s e l f . t)) :

f o r k in range (l en (s e l f . y cond i t i on)) :
s e l f . y f i n a l e [j , k]= s e l f . y [j] [k]

f o r i in range (l en (s e l f . y cond i t i on)) :
p l t . p l o t (array (s e l f . t) , s e l f . y f i n a l e [: , i])
p l t . y l a b e l (’Y−VALUES’)
p l t . x l a b e l (’TIME’)
p l t . t i t l e (’ Result o f your IVP ’)
p l t . show ()

re turn l en (s e l f . t)

20

