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Abstract

This thesis is the culmination of an action research project conducted at Axis
Communications, which tries to enable test selection based on historical test
data. In order to realize this, a prototype program — the Difference Engine
— was created, which can parse and analyze historical test data drawn from
a large database. The analysis produces a weighted correlation between code
packages and test packages, and this correlation can then be used to select only
a recommended subset of the full regression test suite in order to minimize the
time spent running tests which are not related to the code that was changed.

The evaluation results of the Difference Engine shows that its algorithm for
finding correlations is robust, and running only the recommended tests is more
effective than running the full regression test suite by a significant factor. On
average it successfully identifies nearly all relevant tests (median success rate
is 100%), and it discards 14 times more irrelevant tests given the code that has
been changed compared to the default selection strategy of running all tests.
Furthermore, the average size of the recommended subset is only 5% of the
size of the full regression test suite, meaning that the time spent running tests
can be decreased by a factor of 20.

Keywords: regression testing, test selection, test prioritization, RTS
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Chapter 1

Introduction

Many companies perform what is called regression testing in order to make sure that
introducing modifications to software does not affect existing system functionality.
The simplest regression testing strategy is to rerun all test cases. It is an easy
strategy to implement, but often it is also unnecessarily expensive, especially if
changes affect only a small part of the whole system under test (SUT). Therefore,
applying regression test selection (RTS) techniques in order to only select and run
a subset of the full test suite is of great advantage, as long as critical bugs are not
missed.

Some existing RT'S techniques are very meticulous in finding exactly which function
affects which test, and they must therefore perform a deep analysis which may be
very time consuming (Yoo and Harman 2012). At a company with a large codebase
such a fine grained correlation of functions in the code to tests in the test suite
is not necessarily needed, or even possible, if the SUT is too large and complex,
involving interaction between several different components and layers; furthermore,
this complex interaction is quite difficult to quantify by static analysis alone. Instead,
a faster, high-level analysis correlating whole code packages to test packages is better
suited to the task. Additionally, since the analysis will be cheaper it means it will be
performed more often, leading to that it can better keep up with the transformations
of an active, ever-changing codebase.

My work therefore focuses on implementing software that enables a continuous anal-
ysis of the history of changed packages and their test outcomes, which can then be
used to predict the tests that need to be run when a certain code package is changed
or updated. After the software has been implemented, the high level analysis it
produces has to be evaluated in order to determine whether test selection based on
historical data is an effective and feasible means of minimizing time spent performing
regression tests.




1. INTRODUCTION

The research was conducted at Axis Communications. Axis has a big regression test
suite that is run several times daily and nightly to verify that any changes to packages
do not break anything. The problem is that their large, complex codebase requires
a large, complex regression test suite, and the whole test suite takes approximately
seven hours to run. This effectively means that a developer has to wait a whole work
day before knowing whether regressions were introduced after making any kind of
change to a package, severely delaying integration of new code into the platform.
Having such a slow turnaround time is obviously a huge waste of time, and makes
development more difficult and costly than necessary.

The SUTs at Axis contain several hundred packages encompassing several millions of
lines of code. As alluded to earlier, with so many packages, an overview connecting
code packages to test packages would be more useful than mapping a single function
to a single test, which is the most common way of performing RTS selection today
(Yoo and Harman 2012). This can be solved with a tool that continuously connects
changes to code with failing tests on a package level. Since we do not want to
run any tests that are not historically affected by the altered packages, said tool
needs to select a subset of the full regression test suite containing only tests that
are historically relevant. In other words, we need software that can analyze the
history of regression tests and correlate changed code with failing tests. The result
of such an analysis is a model that can predict that if, for example, changes are
made to packages x, y and z, the tests a, b and ¢ have a historical risk of being
affected by said change. The changed packages, the potentially affected tests, and
an abstraction of the risk level (referred to as weight in later chapters) for each test
will then be presented for a tests coordinator to assess, so she can better choose a
subset of tests to run. Alternatively, the regression test system could be configured
to make the selection automatically, for example running all tests that are correlated
to the changed packages and which have a risk level above some specified threshold.
In the end, this should ultimately enable cutting down on regression test time to
a fraction of the time a full test suite run takes at Axis today, enabling a shorter
verification feedback loop.

In summary, as software development today moves ever faster, fast turn around
time enabling continuous integration' becomes ever more important. Waiting a full
workday for integrating a new feature is not acceptable. If intelligently selecting
and running only the necessary regression tests enables more integrations per day,
Axis will benefit greatly; immense cost savings are possible, as it will enable faster
development of new features, and bug fixes can be pushed out to customers earlier.

This document is structured in the following manner: The Introduction chapter
is followed by a chapter discussing the background of RTS strategies. Chapter 3
expands on the background by discussing related work in the area of test selection.
The fourth chapter gives a somewhat brief summary of the software written in order
to perform a high level analysis on historical test data. Chapter 5 reveals how the
results of the analysis achieved by the software are to be evaluated, and chapter 6
discusses the results of the evaluation. A general discussion featuring a summary

1See http://en.wikipedia.org/wiki/Continuous_ integration. Basically, CI is a way to make
software development and release more effective.
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Figure 1.1: How chapters 2-6 are grouped into research,
development and evaluation

and conclusion regarding the results is presented in chapter 7, as well as some future
work and improvements that can be implemented to achieve better results.

Finally, chapter 8 includes a glossary which the reader can use for reference if any of
the concepts discussed herein are unfamiliar. At their first occurrence in this text,
all words in the glossary have been italicized to indicate that they are explained in
further detail there.

The work underlying this thesis can be divided into three main components: research,
development and evaluation. Figure 1.1 shows how each area relates to the chapters
of this document. Most of my effort was spent on development, writing the software
necessary to perform the analysis. Effort wise the evaluation part comes a close
second, as it also involved writing a lot of code. In data science, a robust evaluation
is necessary since results alone are useless unless we can be sure that they are also
extensively tested.
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Chapter 2

Background

As more and more companies leave the Waterfall development model behind and
begin adopting more Agile practises, the concept of fast and continuous integration
has become increasingly more important, and tests are run a lot more often than
before. This means that determining how to minimize the time spent running un-
necessary tests has become more important, and, consequently, it has become an
increasingly more popular research topic since the early 1990’s.

In a comprehensive survey of 159 papers, Yoo and Harman (2012) have analyzed
trends in RTS strategies. Most strategies fit within either the test case minimization,
test case selection and test case prioritization categories. The test case minimization
strategy involves permanently minimizing the regression test suite in order to cut
down on testing times. Test case prioritization attempts to optimally change the
order in which regression tests are run so as to find faults as soon as possible. Test
case selection can be seen as a middle road between the two; given a defined selection
criteria only the most relevant tests in the regression test suite are selected and run,
yet there is no permanent change made to the suite. As I see it, test case selection
gains the benefit of less time spent on testing — as with minimization — by running
only a subset of the tests, but also maintains the benefit of prioritization by not
permanently excluding any tests that might turn out to be important later on.

As of late, research has shifted towards test prioritization (Yoo and Harman 2012).
One obvious reason for this is that a correctly prioritized test suite will find faults
early, but will not miss out on any later potential test faults as all tests are run even-
tually. This differs from test minimization or test selection which only run a subset
of the whole suite, and might miss out on important faults. Another reason may
be that a lot of papers published around the advent of this millennium showed that
minimized test sets on average performed worse than even randomly selected sets,
while requiring a significantly more expensive analysis (see e.g. Graves et al. 2001).

5



2. BACKGROUND

However, I attribute this more to the manner in which the minimized sets were
achieved (using static white-box analysis of code, and no continuous re-evaluation
of the analysis) than to any inherent weakness in the concept of minimizing the test
sets.

As we shall see in the results chapter of this thesis, test set selection by manner
of optimally selecting a smaller regression test suite is definitively a viable and
effective solution for achieving a smaller regression test suite. With the context
of this thesis in mind, prioritization is not needed or even recommendable — the
desired outcome of my research is to minimize the time of the regression testing
feedback loop during the day when developers are working on their code. During
the night, nightly builds will ensure that the whole regression suite is run, to catch
any potential regressions the minimized test selection might have missed, and to
update the database with historical data that can be used in subsequent analyses
for finding correlations between tests and code packages.

In their survey Yoo and Harman (2012) observe that while there is a lot of academic
research on RTS techniques, application of said techniques at an industrial level
remains limited. This thesis should therefore be interesting in that it is an empirical
study within an industrial context. The lines of code (LOC') involved are at least an
order of magnitude® larger than what has been evaluated in virtually all of the papers
surveyed by Yoo and Harman, where only 14% of the papers evaluated systems of
more than 100k LOC?.

LAn exact estimate is very difficult to make due to all the third party code in Axis products.
The Linux kernel itself, even reduced and customized as it is in Axis products, consists of almost
16 million lines of code. An approximate estimate would be about 30 million LOC.

2The largest, being a significant outlier, contained 18 million LOC.




Chapter 3
Related Work

As I have mentioned, a lot of the RTS research is based on employing static code
analysis on a functional level to perform the test case selection (Rothermel and
Harrold 1997; G. Rothermel and Harrold 1996; Graves et al. 2001). Such an analysis
can be slow because it goes into such detail. If an analysis is too slow it might
become so costly to perform that more cost-effective results can be achieved by not
employing any RTS techniques at all. This means that if the analysis is so slow that
it cannot be continuously updated, it will result in analyses that quickly become
outdated for codebases where people constantly modify the source code.

Some studies, e.g. Kim & Porter (2002), have tried to improve on the problem of test
selection from costly static analysis by including a historical context as well as taking
into consideration the fact that the tests need to be continuously re-evaluated and
re-prioritized. They achieved lower predicted costs without reducing effectiveness
by running only carefully selected subsets of the test suite.

However, in their work, Kim & Porter only analyze a couple of smaller programs
(less than 10k LOC) on a function-based level involving only a relatively low amount
of tests, which is not always sufficient for the needs of the companies who wish to
streamline the regression testing process. A function based approach like theirs
might also be unnecessarily granular when performed on several thousands of lines
of code, where it would be sufficient to keep the analysis at the package level. Also,
much of the work behind this thesis is based on the premise that the analysis should
be continuously re-evaluated to provide the best test selection. It is in other words
important to note that if the analysis is too granular it will also be more costly to
perform.

Wikstrand et al. (2009) worked on a paper that discusses the usage of a file cache
for regression test selection. If a source code file that exists in the cache is changed,
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all its dependent tests will be run. One drawback of their approach is the process
involved to link tests to source code files; human interaction is needed since the cache
is updated based on error reports that have been closed during the day. This is only
an acceptable approach if there is sufficient existing infrastructure to aggregate the
data in this manner, which is not the case at Axis. The idea of a cache is explored
in this thesis, though this cache will hold the correlations between code and test
based on an analysis of historical test data extracted from a database, and it will
be fully automated, with no human interaction necessary.

While the fault prediction effectiveness was good with the method proposed by Wik-
strand et al (2009), the efficiency of the regression testing based on its recommen-
dations was not empirically evaluated. Engstrém, Runeson, and Wikstrand (2010)
report on an empirical evaluation of test suite efficiency with the fix-cache method
compared to manual selection.

They arrive at the conclusion that a fix-cache regression test selection technique is
simple yet efficient, if it can make use of information that is already collected and
stored in different databases. Data in a form that can easily be aggregated in the
manner needed for fix-cache selection is unfortunately not available at Axis, so their
approach was not applicable in my case.

In the study Empirical Study of Regression Test Application Frequency (Kim, Porter,
and Rothermel 2005), the authors argue that while RT'S technique can produce cost
savings, the effectiveness varies widely with the characteristics of the workloads,
where said characteristics may be program size, test suite size, change size and
change distribution. Notably, they conclude that the frequency of regression testing
has a strong effect on the behavior of the RTS techniques.

The effectiveness of minimization RT'S techniques increased as the number of changes
increased, given that the testing interval was frequent. Infrequent testing yielded
high minimized test numbers, since many changes were made to the code between
regression test runs.

Their results concluded that random selection worked very well and the most min-
imized selection performed the worst of all their tested selection models. As this
is virtually the opposite of my findings based on the work behind this thesis, one
should consider that our approaches to test selection are quite different: They based
selection not on test result history but on static source code analysis. With only
one exception, their analysis utilized very small programs and small test suites of
less than 1000 LOC. None of the programs contained more than 10k lines of code.

These differences are telling because one of the improvements they suggest is to ex-
tend the study to larger programs with more tests and a wider variety of naturally
occurring faults. Another suggested improvement is to explore techniques that incor-
porate previous testing history. As I have mentioned, many previous papers I have
studied seemed to have analyzed smaller programs, and smaller test suites, basing
the test selection on static analysis of the code packages. Though my test selection
techniques differ from theirs, this thesis fulfills both of the suggested improvements,
as my analysis uses an abundance historical test data drawn from regression testing
on a much larger codebase.

8



Finally, there is also some interesting research focusing on improving the test selec-
tion by adding more intelligence to the selection algorithms. In their paper, Rees
et al. (2001) argue on the benefits of employing Bayesian graphical models (BGMs)
for more effective test selection. Once a BGM has been constructed it can be used
for optimal reduction of the probabilities of failures for a given number of tests. Al-
ternatively, a BGM can be used to analyze how good a given subset of a test suite is
likely to be, and indicate whether or not there are particular test cases which could
be deleted /replaced by tests that reveal more about the quality of the software. Un-
fortunately the process was not fully automated and it was inconclusive whether
creating a BGM is suitable and/or justifiable for all testing situations. While I be-
lieve utilizing Bayesian statistical reasoning is a very robust way of incrementally
building a prediction model for how tests and code are correlated, I decided that
in the early stages it would be unnecessary to implement. I was content to keep
such a possible future development in mind, if the selection produced by a simpler
algorithm would prove to be too inadequate.

Huang et al. have written about cost cognizant history based test case prioritization
techniques (Y.-C. Huang, Peng, and Huang 2012). Their technique employs what
they call a genetic algorithm to analyze historical data on regression test runs to
produce a test suite ordered by level of importance; test cases which have poor
historical records are given a chance for a higher priority. Their results show that
their technique improves the effectiveness significantly in comparison with three
coverage analyzing techniques. They also conclude that prioritizing test cases based
on historical information can provide great effectiveness.

While adding greater intelligence to the test selection algorithm is an interesting
prospect, I eventually decided against it, reasoning that it is better to keep test
history analysis and test case selection as simple as possible in order to make intro-
spection of results, maintenance, and possible future extension of the algorithm as
easy as possible. I figured that if the basic algorithm would then prove to be wildly
ineffective I could always reconsider and perhaps explore more exotic algorithms.

The basic algorithm did not prove to be wildly ineffective. In fact, it worked quite
well from the start, as we will see in the later chapters.




3. RELATED WORK
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Chapter 4

Software

Developing the software enabling the correlation analysis is where I put down most
of the work and effort behind this thesis — by a large margin — yet this chapter
will provide little more than a cursory overview, as discussing the implementation
details, bugs, and the difficulty of correctly wrangling the vast store of data would
considerably shift the scope of this thesis. In addition to the analysis software
presented below, a lot of code was written in order to perform the evaluation of
the analysis. This code will not be discussed here at all, since, while it helps lend
credence to the RTS strategy suggested herein, it is not directly affiliated with the
goal of this thesis as such: to provide a means to use historical regression test
data to perform a more effective test selection in future regression test runs. For
the curious, however, most of the code is published and available on Github at
https://github.com/eddie-dunn/test-selection.

All code was written in the language Python', which is a very flexible and clear
language with many readily available machine learning libraries and diagram gener-
ating utilities’. The code was written with the functional programming paradigm in
mind, in order to produce very few side effects and make unit testing easier; currently
the core code modules have nearly 100% unit test coverage, and should therefore be
easy to modify and improve should the need arise. Some object oriented features
are introduced, though, in order to gather functions into logical units in order to
enable composability and ease of use.

The analysis software is split up into three main modules: The Difference Engine,
providing the actual analysis of the correlations, and two auxiliaries, Seeker, the

thttps://www.python.org/

2The library sklearn, for example, provides a flexible module for running the K-fold cross
validation technique presented in the Evaluation chapter, and the library matplotlib has been
used to generate all the diagrams present in this thesis.
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4. SOFTWARE

program that extracts the historical test data, and the Simulatron, a program that
generates simulated historical test data which can be used to ascertain that the
analysis performed by the Difference Engine is plausible. All three programs were
developed in parallel, and iteratively, where the results of improving Seeker or Sim-
ulatron could be used to improve the analysis of the Difference Engine.

In summary, we have the following software

o The Difference Engine. What is to be considered the end result of this project;
the code that generates the actual correlations between tests and code packages

o Seeker. The application that communicates with the MySQL database con-
taining the real world historical regression test data, parses the result, and
passes it on to the Difference Engine.

o Simulatron. Generates a simulated regression test history that the Difference
Engine can analyze

For a graphical representation see Figure 4.1.

4.1 The Difference Engine

Simply put, the Difference Engine takes a set of Builds as input, and gives a weighted
correlation between code packages and test cases as output. Each Build is extracted
from the data generated by either Seeker or Simulatron, containing packages and
their revisions, and the regression tests and their result. Once a given set of Builds
have been analyzed the cumulative correlations can then, in future regression test
runs, be used in order to determine which tests to run given changes to one or several
packages.

4.1.1 The Difference Engine Algorithm

The Difference Engine takes data generated by either the Simulatron or Seeker,
parses it, and calculates the correlations between tests and code packages. Since
the raw historical data in the database does not contain information of changed
packages or flipped tests, this must be calculated on the fly when performing the
analysis, by comparing code packages and tests with those of the previous test run.

The correlation is calculated using a simple algorithm, namely:

e From the raw data containing historical regression test runs, extract packages
and test results, building an intermediary data structure containing only the
test run results that are of interest for the analysis; i.e. packages and their
revisions, and regression tests and their outcome.

12



4.1 THE DIFFERENCE ENGINE

Difference Engine

Analysis & Recommendations

Figure 4.1: Graph describing program dependency chain

Given this set of test run results, go through every regression test run (aka
Build), and find each code package that was changed for that particular test
run, by comparing the revisions with the previous test run.

For every package that was changed, look at each test outcome for the same
test run and compare it with said test’s outcome in the previous test run.

If the test result has “flipped”, meaning that it goes from pass to fail or from
fail to pass, add one to the correlation coefficient between the changed package
and the test, since changes to said package might have affected the outcome
of the test.

Iterate over the whole set of Builds, repeating the process described above,
building a correlation database of code packages and the tests that are depen-
dent on them.

Or, in pseudo code:

For each <build result> in <set>:
For each <code_package> in <build_result>:
If <code_package> is changed:
For each <test> in <build result>:
If <test> flipped:
correlation coefficient += 1

13



4. SOFTWARE

This algorithm thus attempts to map package changes to changes in test outcomes,
i.e. when tests “flip”.

4.1.2 Difference Engine example

The following example attempts to illustrate how the correlation weights indicate
that a test outcome is dependent on changes to a code package. The example shows
the results produced when running the Difference Engine analysis on simulated data
generated by the Simulatron.

Input:
$ ~/difference_engine regression_test_data.db
Output:

Analyzing data...
Results:

code/package3.py
package3_test: 19
package2_test: 2

code/package94.py
package94 test: 8
package3_test: 3
packagel7 _test: 1

Here we see that package3_test has a correlation weight of 19 to package3. This
means that a change to package3 that constitutes a new bug or a bug fix correlates
very strongly to a change (flip) in the test outcome for this test. Since we are using
simulated data we can tell from the name that this test is in fact dependent on
package3 and that this strong correlation is quite correct. If this analysis had been
performed on real data, it would then be prudent to run package3_test every time
a package3 is changed.

The correlation weight between package94 and the test for package3 is interesting,
since it means that three times when this test flipped package94 was changed as
well. The correlation is totally random however, and is just due to the noise that
the Simulatron adds when generating simulated regression test data. In reality
package94 just happened to be changed three times at the same time as a bug was
either fixed or added to package3.

14



4.2 AUXILIARIES — SEEKER AND SIMULATRON

Additionally, there are a lot of packages with correlation weights of 1, but most
have been removed from the heavily pruned example output above. A weight of 1
is too low to be able to distinguish true correlations from random noise. That is,
if two packages are changed and only one test flips, both packages will have their
correlation weight increased by one, yet only one of the changes caused the flip. It
isn’t until we start to see a trend — that is, weights of 2 or more — that we can be
more sure of the correlations between the code packages and test packages. It is easy
to intuit that the likelhood that a test and package are truly correlated increases
exponentially with the correlation weight, since each increment to the weight makes
it ever more likely that the correlation is not just due to random noise.

4.2 Auxiliaries — Seeker and Simulatron

4.2.1 Seeker

The purpose of Seeker is to communicate with the database containing the historical
regression test data, extract the relevant records (e.g. based on a specific Axis prod-
uct and its package configuration), and organize them into a format that is parsable
by the Difference Engine.

The test history at Axis resides in a vast MySQL database called DBDiffer. In this
database all sorts of regression test data is kept, and among this data one can extract
which packages were changed before the regression test suite was run, and which
tests failed and succeeded. DBDiffer contains everything we need in order to find the
correlation between code packages and tests, but the data in the MySQL database
exists in several tables which are loosely linked to each other by MySQL ids, which
serve as unique identifiers. Therefore, one problem with working with the database
is that while all the necessary data is available, it has to be parsed, analyzed and
aggregated into a format that the Difference Engine understands. Builds only exist
conceptually; in order to find which modules where changed in a build, and which
test cases flipped, packages and tests first have to be linked to the build in question.

When parsing the database, Seeker needs to perform two actions:

1. Extract all code packages and their revisions and map them to their unique
MySQL Build identifier.

2. Extract the statuses and names from all testcases and map them to their
unique MySQL Build identifier.

After this, Seeker joins all code packages and testcases based on their unique iden-
tifiers to create the Build data structures that the Difference Engine uses in its
analysis. All subsequent Builds are then added to an ordered list to form a BuildSet,
which is the data metastructure passed on to the Difference Engine for analysis.

As mentioned, the database contains no explicit information on which packages
where changed in a given build. As a consequence of this, the changed packages

15



4. SOFTWARE

need to be somewhat awkwardly calculated: In an intermediary step, the Difference
Engine iterates through the BuildSet generated by Seeker, and for each Build looks
at the packages and their revisions in the previous build in order to generate a diff
between them and the packages and revisions in the current build. The flipped
tests are calculated in a similar manner — by comparing the previous build with the
current — and the changed packages and flipped tests are then put in a new list that
is used for the actual correlation analysis.

4.2.2 Simulatron

Since the database containing the historical test results is is gargantuan — around
100 gigabytes — and the code base contains several millions of lines of code, it is
impossible to intuitively determine whether the correlations found by the Difference
Engine are correct; how do we know whether the correlations are due to real depen-
dencies between tests and code packages, or if they are due to random noise, or if
they may be due to errors in the correlation algorithm?

Therefore, in order to be able to assess whether the Difference Engine produces
reasonable results, an important auxiliary program — the Simulatron — was developed.
The Simulatron is used to create a fake regression test history where packages and
tests are named so that it is immediately apparent whether they should be correlated
or not. In other words, using data from the Simulatron makes it obvious if the
Difference Engine finds erroneous correlations, something which is not the case when
analyzing and correlating real historical test data. In their survey Yoo and Harman
(2012) argue that a realistic simulation may provide an efficient manner in which to
assess RT'S selection strategies, which lends credence to the idea of using simulated
data to evaluate the Difference Engine.

The Simulatron is used to generate

a variable number of code packages

 tests for each package

« associated test flips when changing a package

e noise, i.e. flipped tests with no corresponding package change, or changed
packages with no corresponding test flip

 a fake regression test history containing the packages, tests and noise specified

above.

Noise in this context is Simulatron adding random changes to packages, or random
flips to tests, in order to simulate the noise present in the real historical data ex-
tracted from the database. Noise in the real data is not entirely random however,
and may be due to any number of reasons. For example, with real historical data,
2 packages are, in average, changed per build. This means that any potential test
flips that occur will correlate both code packages to the tests, even if only changes
in one package is responsible for the flip. In practice, this means that one of the
code packages will be falsely correlated to the test, and we have “noise”. One other
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4.3 ITERATIVE DEVELOPMENT PROCESS

possible source of noise is when something outside of the control of the regression
test suite — for example a network error — causes tests to flip.

Simulatron uses package and test names such that you can immediately tell which
test should fail due to a bug in a package. For example, with real data, pack-
ages are named similarly to os/boot, os/linux and apps/storage_manager, and
tests test_image, test_recording, and test_syslog. If the Difference Engine
shows that test_image is correlated to os/boot, there is no way to immediately
assess the validity of this correlation. In contrast, the Simulatron packages are
named packagel, package2, package3 etc., and tests are named packagel_test,
package2 test. Later on, in the analysis stage, this very simple but explicit map-
ping can be used to determine whether the predicted correlations are correct or
not.

A great advantage of having the Simulatron is that if the correlation algorithm
used by the Difference Engine proves to be inaccurate or inadequate, a modified or
entirely different algorithm can be quickly tested and evaluated easily with simulated
data from the Simulatron. Another advantage is that fake test history can easily
be generated by the Simulatron to test different variations in input data, to see in
what manner such variations affect the performance of the selection algorithm. We
will see some examples of this in the Evaluation chapters.

4.3 lterative development process

Neither of the three main modules were developed in a vacuum. Rather, they
were implemented in parallel, where improved results from one of the programs
would be used to modify the code of the other two in turn, improving their results.
Developing the software in such a manner leads to iterative, incremental and robust
improvements of the code, though it is necessary to realize when “enough is enough”,
and decide it is time to cease development and improvement efforts. Deciding when
to stop sounds easier than it may seem. For example, while the data produced by
the Simulatron is designed to be similar to the real data extracted by Seeker, there
are still some differences; Simulatron generates much more dense data than Seeker,
meaning that changes (changed code, flipped tests) are guaranteed to happen for
every Build, though this is not the case with real historical regression test data,
where large portions of the data have either no changed packages or flipped tests
and therefore cannot be used for analysis. The denseness of the simulated data is a
conscious choice since — as we shall see in the Results chapter — it can reveal long
term trends not immediately apparent when analyzing real historical data, though
this also means that there is a risk of missing some vital characteristic that will only
be apparent when real data is used.

In the end, it is important to realize that, while I spent a considerable amount of
time on it, none of the code is perfect and can therefore still be improved. In its
current state, the data that is generated, extracted or analyzed will give results that
can be used to draw significant conclusions, which is enough for the scope of this
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thesis. It is not, however, production ready, and will need further refinement before
it can be used in production at Axis for example.
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Chapter 5

Evaluation Methodology

This chapter presents how the results of the high level analysis produced by the
Difference Engine will be evaluated. The F-measure is introduced as a tool with
which the accuracy and effectiveness of the test selection can be compared between
different RTS strategies. The three RTS strategies that I will compare are then
presented, and finally it is explained how the Difference Engine will be evaluated
based on whether its algorithm can be trusted to find correlations, how effective its
suggested tests are at finding test flips, and whether any time is saved by running
only the suggested tests.

5.1 F-measure

The F-measure is the tool I have used to evaluate the accuracy of the test selection.

The goal of the test selection, apart from saving time, is to be sure that the tests
that are run are relevant tests. A relevant test is a test that will reveal a flip in
the changed code. The trivial method of finding all possible flips — achieving the
highest recall — is to run all tests, but then accuracy is low. Accuracy can be high if
the only tests we suggest are fault revealing tests, that is, we say that the selection
has high precision. However, even if all selected tests include flips, we might miss
some flips since we cannot guarantee 100% recall. Both precision and recall are
therefore important for test selection, and the F-measure (Witten and Frank 2005,
Wikipedia (2014)) is used to calculate a singular measurement statistic based on the
ratio of precision and recall. In other words, the F-measure is a way to compress
two dimensions of selection quality — recall and precision — into one dimension, in
order to make direct comparisons between different selection models easier.
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e Precision is defined as the fraction of selected tests that are relevant to a
particular build. The precision score ranges between 0.0 and 1.0. A precision
of 1.0 means that 100% of the selected tests are included in the set of relevant
tests.

|{relevant tests} N {selected tests}|
|{selected tests}|

precision = (5.1)

e Recall is defined as the fraction of relevant tests that are included in the
presented selected tests. The recall score ranges between 0.0 and 1.0. A
recall of 1.0 means that 100% of the relevant tests are included in the set of
selected tests.

[{relevant tests} N {selected tests}|
|{relevant tests}|

recall =

o relevant is defined in this context as a test that has flipped.

o selected is defined in this context as a test suggested by the Difference Engine.

1

e The F-measure, or balanced F-score, is the harmonic mean' of precision and

recall and is defined as

recision - recall
F=9.2

5.3
precision + recall (5:3)

o Just like with precision and recall, the F-measure lies in the range [0.0, 1.0].
1.0 is a perfect score, meaning that both precision and recall are perfect as
well.

Remember these definitions (or bookmark this page), because intimately under-
standing the definitions of recall, precision and F-measure are necessary in order to
understand the discussion in the succeeding sections.

5.2 Test selection strategies: All, wide &
narrow

The evaluated test selection strategies are all, wide, and narrow. In spite of being a
successful selection strategy in other papers (See the Background and Related Work
chapters), randomized test selection is not a chosen strategy for my evaluation; the
reasoning behind this is explained in the Evaluation Results chapter.

!Compared to the arithmetic mean, the harmonic mean is an average value that is less affected
by a small amount of extreme outliers.
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5.3 EVALUATION PROCEDURE OVERVIEW

All No test selection is performed; run all tests.

Wide selection Select all tests that have ever flipped, regardless of which packages
have been changed. Can be useful if the narrow selection method returns very
few suggested tests, or none.

Narrow selection Select tests based on which packages have been changed for a
particular build. Some packages will have no correlated tests, which is when
it might be useful to fallback to the wide test selection strategy.

5.3 Evaluation procedure overview

The evaluation attempts to answer the following questions:

1. Correctness: Are the test correlations found correct?

2. More builds, better F-measure: Does the F-measure get better when more
builds are available for analysis?

3. Flip-finding: Will running the tests suggested by the Difference Engine find
all the flipped tests?

4. Time: What is the time savings compared to running the full regression test
suite?

Each point is discussed in further detail below.

5.4 Correctness

Are the correlations correct?

A “correct” correlation in this context is a correlation between a code package and
a test that we know must be true. For example, if we add a bug to packagel, we
might know that packagel_test must fail. This is basically what the RTS strategies
mentioned in the Related Work chapter achieve through static analysis of code and
tests.

Unfortunately, at Axis it is virtually impossible to know whether the correlations
found are correct when running the analysis on real data as there is no available
mapping between code packages and tests. And, as mentioned earlier, the codebase
at Axis is so large and complex that achieving such a mapping through static analysis
is impractical, if not impossible. Therefore the evaluation of the correctness of the
correlations will be performed on simulated data produced by Simulatron, which
produces results where the correctness of the correlations are known. With data
generated by Simulatron we know whether the correlations found are valid since it
is immediately apparent from the names of the code packages and test names.
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5. EVALUATION METHODOLOGY

The evaluation of the test selection algorithm’s ability to find correct correlations
will be performed by determining whether the most highly weighted correlations
are true correlations (i.e. that the correlations are not due to package changes and
test flips that coincide incidentally). To evaluate this we will look at the result of
the finished analysis on simulated data, going through each package, and checking
whether their most highly correlated test is also the one we know is associated with
said package. A 1 will represent this being true, a 0 will represent this being false.
The resulting ones and zeroes will be added to a list from which the mean value can
be calculated.

Simulatron parameters:

75% package noise and 30% test noise, for a variable number of builds.

— This means that in 75% of the builds a random package will be changed,
but its corresponding test wont flip, and in 30% of all builds a test will
flip but its corresponding package will not be changed.

99% package noise and 99% test noise, for a variable number of builds.
500, 1000 and 10 000 builds.

A pool of 100 packages to change.

A pool of 100 tests to flip.

75% package noise and 30% test noise were chosen because a cursory inspection and
analysis of the historical test data show that these numbers provide fake data that
resembles the real data, approximately. Fake data with 99% package noise and 99%
test noise is more noisy than the real data, but is included to see how the Difference
Engine performs with data that is noisier than the real data.

It should be noted that the Simulatron generates much more dense data than the
true historical data extracted with Seeker. That is to say, many of the builds that
Seeker extracts are blank builds, meaning that either no packages have been changed
or no tests have flipped since the preceding build. Such builds cannot be used for
an analysis, and are therefore discarded. With data generated by the Simulatron,
however, all builds are guaranteed to have at least one package changed, and one
test flipped.

5.5 More Builds, better F-measure

Does the F-measure get better when more builds are analyzed?

Early prototyping work during the iterative development of the code showed that
one weakness of the Difference Engine is that it does not work well if the BuildSet
it analyzes contains too few Builds, which is not very surprising. The minimal
number of Builds necessary to provide a reasonable analysis is highly dependent on
the input data, and which packages you are interested in finding test correlations
for. For example, if you look for correlations for one specific package, you may be
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5.6 FLIP-FINDING

very lucky and the package will have been changed often in many recent builds, and
therefore have many relevant and/or high correlations with tests, or very unlucky
and the package will never have changed in the BuildSet you analyzed, and will
therefore have no correlations.

If the Difference Engine does not work well with too few Builds, then what about
the opposite? With an increasing number of Builds, we can hypothesize that the F-
measure must increase and become better as well, as with enough Builds to analyze
the recall must be near a 100%.

This evaluation will therefore compare the F-measures for different sizes of build sets.
The range of builds will be 10, 100, 500, 1k, 2.5k and 10k builds. The Simulatron
will be instructed to randomly change a code package and its corresponding test,
creating a Build. First, ten Builds will be created in this manner, joined together as
a BuildSet, and then the BuildSet will be analyzed by the Difference Engine. With
the data from the analysis the median F-measure for the whole BuildSet can be cal-
culated. Then I will increase the number of generated Builds for each corresponding
BuildSet; a hundred, a thousand, and so on, Builds will be generated and joined
into a BuildSet, and the average F-measure calculated for each.

The Simulatron parameters will be the following:

o 75% package noise, meaning that 75% of the builds will contain changed pack-
ages with no corresponding test flips.

30% test noise, meaning that 30% of the builds will contain flipped tests with
no corresponding package changes.

A pool of 100 code packages to change.

A pool of 100 test packages to flip.

10, 100, 500, 1000, 2500 and 10 000 builds.

From this data a graph can be produced that shows a better F-measure as the
number of builds increase. 10 builds is really not enough to get a good F-measure,
100 is a better, and hopefully at 1000 the F-measure will be quite high. At 10 000
it should be clear that the correct tests are suggested for the code package that is
changed, as recall must be nearly 1.0, i.e. close to 100%.

5.6 Flip-finding

Will the Difference Engine find the actual test flips?

As you may recall, the technique of finding flips is by passing a sanitized data
structure of sequential builds to the Difference Engine, whereupon its algorithm finds
package changes and test flips to build a correlation database. These correlations are
then used to suggest which test should be run when given a set of changed packages.
Even if the Difference Engine performs well with simulated data in the two prior
evaluation steps, the question is if these suggestions can be used to accurately predict
the flips that actually occur on real data?
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To evaluate this, I will first use the regression test database to compile the correlation
database. Then, in a second pass, I will

1. go through each build in the regression test database,

2. see which packages were changed,

3. query the correlation database for suggested tests to run, given the changed
packages,

4. check which tests actually flipped,

5. and finally use the F-score to measure how well the suggested tests predicted
the actual outcome.

In other words, I will be using the historical builds — where the test outcomes are
already known — to test the prediction model. But the prediction model itself has
been created by analyzing the historical builds, which presents a problem since I am
basically training and validating the Difference Engine by using the same data. If
the training data and the validation data is the same, the Difference Engine will of
course perform quite well — it is similar to taking an exam where the only studying
material is the exact same exam you will be taking, with the exact same questions!
You will obviously become quite adept at passing that particular exam. If you are
then subjected to a new exam with different but related questions, you will most
likely not pass however, since you have only memorized each particular solution to
each particular problem, but have no concept of applying a generalized solution to
a generalized question.

In data science this problem is referred to as overfitting your model to the training
data. Your model is overtrained to solve particular problems, and therefore will not
be as effective in the general case. The solution to this problem is to split the data
into a training set and a validation set, see Figure 5.1. The prediction model can then
be then tested on the validation set after being trained on the training set, without
risking overfitting. Unfortunately, while splitting the data into two sets like this
may solve the overfitting problem, it presents the risk that some vital information
exists only in the validation set. Since this vital information is not present in the
training set, there is no way for the prediction model to make a correct prediction
concerning that particular data.

To make sure that this does not happen, we can split the data several times, with
a different training set and validation set each time. A variant of this method is
called K-fold cross validation (Witten and Frank 2005), where you split the data K
times, into K different parts. In my evaluation I have K=10, so the data will be split
into 10 different parts, where 9 parts are used for training and 1 part for validation.
Each of the ten parts is used as validation once, while the remaining comprise the
training set. See Figure 5.2 for an explanation of the 3 K-fold variant.

For each of the 10 validation sets the F-measure will be calculated, and then I will
take the average of all these F-measures to arrive at a final F-measure for the whole
set of analyzed data. The F-measure as well as the individual average recall and
precision values will then be shown in appropriate diagrams.
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Available data

Training Validation

Figure 5.1: To avoid overfitting the data can be split into
a training set and a validation set. There is a risk that the
validation set may contain important information missing in
the training set, however.

Validation Training Training

Training Validation Training

Training Training Validation

Figure 5.2: A 3 K-fold cross validation example. For each
fold two sets are selected as training set and one set is selected
as the validation set. All sets take turn acting as the validation
set. 10 K-fold is the same, except that it splits the data into
10 folds instead of 3, meaning that for each of the 10 folds
1/10th of the whole data set is used for validation, instead of
1/3rd.
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5.7 Time

Is time saved by running the selected tests?

This can be a hard question to answer, as ‘time saved’ can be applied in a consider-
ably general sense. For example, if factoring in the time spent on working on this
thesis, when does the cost of developing a test selection program pay off in terms of
saved time?

Or, in the case that a lot of time is saved at the cost of missing some crucial fault-
revealing test, how much time will it take to find the error and adjust the code?

For the sake of simplicity I will evaluate the time saved by comparing the average
time it takes to run the selected tests to the time it takes to run the full regression
test suite. As stated earlier in this document, the full regression test suite takes
seven hours. Simply stated, for the sake of this evaluation, if analysis_time +
subset_test _run_time < full test_run_time, time is saved®.

If time is saved it is of course also interesting to see numbers of approximate time
savings running only the selected tests. This data will be presented in the results
section.

2Optionally, see Leung and White (1991) for an especially rigorous discussion of test cost models.
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Chapter 6

Evaluation Results

In this chapter the results of the evaluation are presented and discussed, based on
the criteria of how trustworthy the correlations found by the Difference Engine are,
its ability to suggest the tests that will find flips, and whether any time can be saved
by running only the tests suggested by the Difference Engine.

The first two evaluation tests, Correctness and More Builds, better F-measure are
performed on simulated data, and the following two, Flip-finding and Time are
performed on real historical test data.

6.1 Correctness

Are the correlations correct?

This section attempts to answer the question whether we can trust that the majority
of correlations found by the Difference Engine are true correlations, or if they are
more likely to be due to noise.

The results in Table 6.1 show that the correlation algorithm is very robust. Even
when there is both package and test noise in 99% of the builds, the correct corre-
lation is still weighted the highest in almost all cases. The more builds that are
analyzed, the better the algorithm will perform in mapping the correct test to their
corresponding package.

6.2 More Builds, better F-measure

Does the F-measure improve when more builds are analyzed?
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Nbr builds Pkg noise Test noise Mean Median

200 75 30 096 1.0
500 99 99 088 1.0
1000 75 30 0.99 1.0
1000 99 99 099 1.0
10k 75 30 1.0 1.0
10k 99 99 1.0 1.0

Table 6.1: The mean and median of correct correlations

weighted the highest for different values of noise and number
of builds.

First, 10 builds is generally not enough to produce any meaningful test selection
analysis. Most often there is not enough data to perform a narrow test selection.
Even though 10 builds were suggested to be part of the evaluation, they are not
shown in the graph in Figure 6.1, since the results where too random and fluctuating
to be of much use.

Second, due to the denser data some trends are significantly accelerated when an-
alyzing the simulated data compared to when analyzing real historical data. This
should be considered given the results presented below, where accumulated noise
will quickly deteriorate the F-measure value as the number of builds increase. It
will not happen as quickly when running the analysis on real data.

In the diagram in Figure 6.1 the F-measure appears to reach a maximum at around
100 builds, before deteriorating. The Difference Engine did not perform as predicted
in the Evaluation section (i.e. that more builds will lead to better F-measure values),
which in hindsight should be quite obvious; given enough builds, the accumulated
noise quickly overwhelms the true correlation data.

Discarding the case when there are not enough builds to perform an analysis and
provide a recommended test selection, the narrow selection continuously outperforms
running all tests, until the amount of noise is too overwhelming. At that stage, at
10k analyzed builds, it performs as bad as running all tests, since it will basically
recommend running all tests.

This can be observed in Figure 6.1 where at 10k builds the F-measure is almost
the same as the average F-measure for performing no test selection, which is 0.031
regardless of number of builds. I believe this owes a lot to the fact that at the default
settings, the Difference Engine performs no filtering at all, and even correlations of
weight 1 are included in the selection of recommended tests. A 1-weight correlation
is just as likely to be random noise as a true correlation’. Thus, as the number of
builds increase, more noise is added to the set of recommended tests, until finally,
there is virtually no difference between the set of selected tests and the set of all
tests.

The solution to this problem is to introduce an intelligent way of culling the noise.

1See the Simulatron section in the Software chapter.
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no selection s e P R

0.0 0.1 0.2 0.3 0.4 0.5
F-measure median

Figure 6.1: Diagram showing F-measure for 50, 100, 500,
1k, 2.5k and 10k builds, using the narrow test selection strat-
egy. The F-measure for 10 builds is not included since only
10 builds generally do not provide enough data for the Differ-
ence Engine to construct a reliable pkg/test correlation table.
The median F-measure for no test selection is also shown, for
reference.
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Currently the Difference Engine supports a primitive filter for discarding all test
recommendations beneath a specified threshold weight. Setting this threshold at
1 (highly recommended, for the reasons stated above), will keep the narrow test
selection superior to running all tests longer, but it will eventually be overwhelmed
as well. Consequently, I propose that a much needed future improvement to the
Difference Engine would be introducing a form of memory to the analysis: As more
builds are added to the analyzed pool, the weights should be decreased for tests that
have not flipped for some amount of time. For example, if a test has not flipped
together with the change of a package after, say, 1000 builds, its correlation weight
should be decreased by 1.

Finally, observing Figure 6.1, counterintuitively it seems that after a 100 builds,
fewer analyzed builds give better results. The reason is that the median value
for recall maxes out at 1.0 already at 500 builds, and cannot go any higher after
that, while the precision continues dropping as more noise is added to the results
of the analyzed builds. All in all, the results of this part of the evaluation provide
compelling reasons for introducing a strategy for handling the accumulation of test
noise.

6.3 Flip-finding

Will the Difference Engine find actual test flips?

The figures in this section display the recall, precision and F-measure of the differ-
ent test selection strategies, answering the question of how effective the Difference
Engine is when used on actual historical test data.

In summary, yes, the Difference Engine finds the actual test flips, and it does so
much more effectively than running all tests.

6.3.1 Randomized test selection

In many of the related studies random test selection was shown to be a very effective
RTS strategy. Because of this, I was planning on adding diagrams for selecting ran-
dom tests, but I eventually decided against it since the analytical results I calculated
were so abysmal that I felt there was little point in considering it.

A randomized choice based on the average number of tests that flip per build (2),
would yield an average recall value of of avg_number flipped/size_of test_pool
= 2/1265, which is a far cry from the results obtained by any of the other selection
methods, all, wide or narrow.

Another method of selecting random tests would be selecting as many tests as the
number of packages that were changed for the build, but that would only improve
the average recall ratio slightly, as no more than 10 packages are generally changed
per build, and it would still never reach above 0.8 which is the lowest mean recall
for the other selection methods.
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Finally, in order to try to achieve better recall from a random RT'S strategy, one could
randomly choose as many tests as the wide selection method, which is approximately
a third of the size of the test pool. However, this would in average never yield better
results than those obtained by either the wide or narrow selection model; assuming
that the test flips are evenly distributed across the test pool (I honestly doubt they
are, though), randomly choosing 1/3rd of the test will give an average recall of 0.33
which is way lower than any of the other RTS strategies. Regarding precision, the
median number of tests suggested by the narrow RTS strategy is 25. Since the
average number of test flips per build is 2, it is impossible to achieve the same
precision as the narrow strategy; the average narrow precision is 2/25 while the
average precision using this version of random selection would be 2/400. Since both
the recall and precision for this random RTS strategy is lower, the F-measure will
be lower as well.

A randomized RTS strategy also has the disadvantage that two consecutive test runs
are likely to look entirely different. For various reasons engineers at Axis often want
to compare the results of the newest regression test run with older versions. When
the selection of tests is totally random such a comparison will not be possible since
the selection of tests is likely to differ too much between different versions.

The only benefit of random selection that I can think of is that it is cheap
computation-wise, as all it needs to do is randomly draw some tests from the test
pool. Therefore evaluating a randomized selection model could still be interesting
if it weren’t for the fact that the analysis performed by the Difference Engine is
also very fast; it finishes in mere seconds. As it stands, I decided performing an
evaluation on the results of a random selection was not worth the effort.

6.3.2 Recall for test flips on real data

Figure 6.2 displays the recall of the different test selection strategies.

As expected the average recall value for running all tests is the highest, since running
all tests guarantees that you will not inadvertently miss out on any relevant tests.
The wide test selection places second, and the narrow test selection places last, also
according to expectations, since they run fewer tests in turn. While the narrow
selection might appear to have 20% worse recall than selecting all tests, this number
is somewhat pessimistically skewed as the (arithmetic) mean is sensitive to extreme
outliers. It is very likely that sometimes the narrow selection has a recall of 0,
which will drag the average recall down a lot. But because the mean is sensitive to
aberrations, it can be a useful indicator of outliers when used in conjunction with
the median. Therefore it is important to consider both the mean and the median
values when looking how effective a test selection strategy is in practice.

In spite of the lower mean recall, it is encouraging to note that the median values
for all selection strategies is 1.0, even for the narrow strategy.
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Figure 6.2: Bar chart showing the mean and median values
for recall using different test selection strategies

6.3.3 Precision for test flips on real data

Figure 6.3 displays the precision of the different test selection strategies.

Now it gets interesting; the more specific the test selection strategy, the greater the
precision. In other words, the most specific test selection strategy (narrow in the
chart), yields the best results.

While the absolute values of the precision appear very low, the relative ratio between
no test selection and test selection is the important factor. Greater precision means
less time wasted on running irrelevant tests. Less time wasted is the final goal of
performing the test selection in the context of the work behind this thesis.

Also, it is important to keep in mind that the test selection is only a recommenda-
tion based on historical data. Just because a (correct) correlation has been found
between a code package and a test, there is no guarantee that said test will flip just
because that package is changed. Given the plausible assumption that the code-
base is relatively stable, i.e. that new code most of the time does not introduce
faults, most of the time most tests that are run will not flip, because, as stated, the
codebase is stable. If a test is recommended, but it does not flip, its precision will
inevitably suffer, no matter how accurate the RTS selection technique is.

In other words, even though the precision values in Figure 6.3 are no where near
1.0, they are still perfectly acceptable. In relative terms the narrow test selection
strategy significantly outperforms the all test strategy, by about a factor of 14.

32



6.4 TIME

Precision

Test selection method

| I I I I
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Precision mean

narrow

wide

Test selection method

all

: i :
0.000 0.005 0.010 0.015 0.020
Precision median

Figure 6.3: Bar chart displaying the mean and median val-
ues for precision using the different test selection strategies

6.3.4 F-measure for test flips on real data

As discussed earlier, the F-measure is the weighted harmonic mean of the recall and
precision, given the recommended tests (retrieved tests) and the actual test flips
(relevant tests). Figure 6.4 displays the F-measure for the different test selection
strategies.

As can be seen in the charts, the F-measure ratios depend mostly on the values
of the precision for the test selection strategies; this is because the recall for all
selection strategies is close to 1.0 for all selection strategies, which means it will not
affect the F-measure very much.

The narrow selection strategy is, again, the superior approach, while running all
tests fares the worst.

6.4 Time

Is time saved by running only the selected tests?

As discussed earlier, if analysis_time + subset_test_run_time < full test_run_time,
time is saved.

For the sake of this analysis, all tests are considered equal in duration. This is
obviously not true, and will have to be revised at a later date in order to achieve a
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Figure 6.4: Bar chart displaying the mean and median val-
ues for the F-measure using the different test selection strate-
gies

more correct analysis, but the work involved is considerable, and outside the scope
of this thesis.

Extracting the data from the database with Seeker takes slightly less than 5 minutes.
Analyzing the data with the Difference Engine takes less than 15 seconds. So we
can say that analysis_time equals approximately 5 minutes”.

subset_test_run_time, or, the duration of running the selected tests, is calculated
as the number of tests suggested by a selection model, multiplied by the average
duration time of one test.

All tests make up 1265 units and take about 7 hours to complete. The average
duration of one test is therefore calculated to 7 x 60/1265 ~ 0.33 minutes.

The time savings are presented in Table 6.2 and in Figure 6.5.

As seen in figure 6.5 it is safe to say that a lot of time is saved by running only
the tests recommended by the Difference Engine. With the narrow test selection
strategy, it is possible to perform 20 integrations in the same time frame as it takes
to perform one integration running all tests. At that rate, it is doubtful whether the
regression test runtime is a bottleneck any longer; more likely, the bottleneck will
be other manual processes that are involved in an integration of new code into the
platform.

2This is strictly not true, however, since the database extraction and analysis can be performed
incrementally, significantly reducing the duration of the analysis. We are assuming a worst case
scenario here.
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Tests

Task Duration Total Time saved Comment
Run all tests 1265 420 420 0

Wide subset 470 152 157 263 63% time
runtime saved
Narrow 50 16 21 399 95% time
subset saved
runtime

Table 6.2: Time savings calculations. The unit of time is
minutes. The duration is calculated by multiplying the num-
ber of tests with the average duration of one test (0.33 min-
utes). The total is calculated by adding the time of analysis
(5 minutes, worst case scenario) to the duration.

Test selection method

Median test duration

i i i
400 600 800
Time running tests

i i
1000 1200

1400

Figure 6.5: Bar chart showing the average number of tests
run with different selection models. The runtime of the narrow
subset selection is 5% of the duration of running all regression

tests where no selection strategy is applied.
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Finally, an interesting observation is that because of how the wide RTS strategy is
implemented — recommending all tests that have ever flipped, regardless of which
package has been changed — we see in table 6.2 that over 60% of all the tests in the
full regression test suite have never flipped. Therefore, running the full test suite
regardless of how small the change is, is generally a huge, huge waste of time. Just
culling the tests that have never shown any relevant results would result in reducing
the time spent on regression testing by 60%.
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Chapter 7

Discussion

In this chapter we will summarize the results and draw conclusions from the sum-
mary, as well as discuss future possible improvements that can be implemented in
the Difference Engine in order to make the test selection based on historical data
(even) more effective.

7.1 Summary and Conclusion

In the first three chapters we saw that RTS techniques can theoretically be very
beneficial if implemented properly, and that many researchers have been looking into
test selection in order to enable a shorter test verification feedback loop. The other
research has had an approach quite different from mine, where the most common
way of performing test selection has been to analyze the code of the SUT (system
under test) and then map different functions in the code to different tests. Such a
low level analysis is costly — sometimes even prohibitively expensive and not possible
in practice — if the SUT if too large and complex. The Difference Engine algorithm
described in chapter 4 is very simple, but works fine and is fast even for large
and complex systems. It is, on the other hand, highly dependent on having a
regression test history to analyze and draw conclusions from. In order to provide a
sufficient analysis we need a lot of historical data in order to cover all code packages
and tests, and the data needs to contain enough failing tests to provide sufficient
correlations. Ironically, the test selection algorithm thrives on an unstable code base
that regularly introduces faults for as many different packages as possible, which is
usually something you do not want when running regression tests. For the Difference
Engine however, if the code base is too stable, test selection based on the historical
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regression test data might be dangerous since some packages very seldom cause test
flips.

Chapter 5 dealt with how the analysis produced by the Difference Engine should be
evaluated, and chapter 6 discussed the results of the evaluation. It was found that
test selection based on historical data can show marked improvements in regression
test execution time while still finding almost as many faults as running all tests
would.

While performing the narrow test selection might on average appear to yield 20%
worse recall than running all tests, it is important to remember that running all
tests is a very expensive insurance policy, and that the median value for the narrow
selection is the same as it is for running all tests. Additionally, one should keep in
mind that the test recommendation given by the Difference Engine is essentially self
correcting, if one makes sure that the latest build is added to the pool of analyzed
builds. In other words, one might miss out once on a flipping test, but the next time
it will be in the list of recommended tests, if the analysis is performed continuously.

This self correction comes at a price, however. As the recall ratio is increased and as
more tests are added to the list of recommended tests, the precision will inevitably
drop further. This is unavoidable since even though a code package and a test may be
correctly correlated, there is never any guarantee that said test will flip just because
its correlated package is changed. In fact, changing code without introducing bugs
and test failures is practically the modus operandi of any decent developer. Yet, as
long as the recall is high, and the regression test suite time is kept low, a somewhat
lower mean recall value for the set of selected tests will not be a problem.

Given that with real code, most changes do not introduce test flips, I have some
reservations with how many of the papers I studied relied on a statistical model
that evaluate whether the selection of tests was successful based on one, or very
few, analyses. Since it is safe to assume that any selection algorithm will miss
out on important tests, it is better to accept this reality and instead provide a
selection algorithm that can be continuously adjusted and calibrated. An organic,
self adjusting selection methodology — such as the one presented in this paper —
works fine, as my empirical results clearly demonstrate.

There is, of course, a weakness in that such an approach depends on easy access to
historical test results. If there — for whatever reason — is a dearth of historical data
to analyze I can see the benefit of test selection based on an up front static analysis
of the code and tests, but then my recommendation is to as quickly as possible get
access to historical data which can be used to augment the test-to-code correlations.

In other related research a lot of effort is spent on validating that the selected tests
will find all possible faults. Our approach is different; we accept the reality that
relevant tests may — and will — be missing from the set of selected tests. However, as
stated above, we also plan for this being a self correcting problem by continuously
providing the Difference Engine with fresh historical data to analyze. Since running
only the recommended tests will starve the Difference Engine of historical data to
analyze it is imperative that the full regression test suite is run periodically, for
instance in regular nightly builds. Given this strategy, a test will only be missing
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from the pool of recommended tests for one day, then the full regression test run will
pick it up during the night and it will be included in the set of recommended tests
the next day. It is however important to remember that the (slight) risk of missing
relevant tests will still be there for a full day, which has to be taken into account
when verifying firmware using only the tests recommended by the Difference Engine.

As I see it, there are two apparent problems with using the F-measure to verify the
efficacy of the test selection strategy proposed in this paper. The first is related
to how precision is defined; in essence, precision is a value to measure whether a
recommended test has flipped. A code package may be very strongly correlated to
a test, but there is no guarantee that the test will flip just because that particular
code package has been changed. In most cases — as mentioned above — the test will
not flip, since most changes to the code do not cause any faults, and this means that
the value of the precision will suffer greatly. As long as a low average precision is
accounted for, however, and one realizes that it is the precision relative to other RTS
strategies that is important, the low absolute values of precision and the F-measure
are of little consequence except that they make the evaluation statistics looks worse
than they really are.

The second problem is related to recall. With any form of test selection there is
always the risk that a relevant test will be missing from the pool of recommended
tests. This means that it is important that we regularly run the full regression test
suite, for instance nightly as recommended above. In other words, we cannot solely
rely on the tests selected by the Difference Engine, and we will still have test runs
that take the full 7 hours to complete.

A less apparent problem with the F-measure as an evaluation tool is that for most
intents, great recall and decent precision are more beneficial than decent recall and
great precision, yet it is not taken into account when calculating the F-measure. In
Axis case, for example, high recall should beat high precision every time, as long
as the list of recommended tests is still a fraction of the size of the whole test pool.
In other words, in practice it is better to run 10 tests where only 2 are relevant
(recall = 1, precision = 2/10, F-measure = 1/3), than only run 4 tests, but where
one relevant test is missed (recall = 4/5, precision = 1, F-measure = 0.89). The
calculated F-measure scores in this paper do not reflect this reality unfortunately”.

In the end, I ultimately think that it is valuable to start using the RTS strategy
suggested in this paper since, as we saw in figure 6.5, a 20-fold increase in integration
productivity is possible. This means that the cost saving potential of implementing
intelligent test selection for the daily regression tests at Axis is enormous, and the
risks involved are only slight in comparison to the money that can be saved.

Tt should be noted that the F-measure equation can be modified to take this into account, by
weighting the recall and precision scores differently. It was not attempted in the evaluation of this
thesis, though.
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7.2 Future work

While the results of this thesis are usable already, there are of course a lot of im-
provements that can be added at a later date.

While the software is already performant enough, it can be enhanced. Python
has an abundant selection of libraries that are specifically tuned for the kind of
computations used to analyze the historical test data. I have used some of them to
great effect, but there is still a lot of code that can be replaced by more competent
libraries. For example, there is a library called Pandas” that features data structures
that are much more optimized for the kind of data wrangling that is necessary for
the Difference Engine to successfully analyze the raw data it has to work with. Also,
currently the most time consuming process is the extraction of data from the MySQL
database, and this can definitely be optimized further by someone more proficient
with efficient SQL queries.

While doing the work involved with this thesis I realized that a lot can be learned
by adding more metadata to the final analysis. For example, which code package
causes most tests to flip? Which package causes the least amount of tests to flip?
Which package is changed the most, and which is changed the least? Which tests
fail or flip most often? What is the average amount of packages that change per
build, and what is the average amount of tests that flip? Given more powerful
and flexible data structures than the ones currently implemented in the Difference
Engine, these questions can be answered quite easily. Said answers can then be used
to gain a better understanding of how the regression test suite performs, provide
ideas to attain better performance from the test suite, and perhaps even help explain
why some previously inexplicable things occur during regression test runs. Since
some tests in the regression test suite have proven to be quite unstable I think
adding support for blacklisting such troublesome tests is important, which is another
improvement that can be added to the Difference Engine. With proper metadata
and analysis this process can even be automated.

At the outset, I had plans for utilizing a more advanced analysis algorithm since
I somewhat incorrectly assumed that the initial algorithm would not produce as
good results as it did. I planned to realize part of this more advanced algorithm by
employing Bayesian inference, which is a method of statistical inference that can be
used to update the probability for a hypothesis as more evidence is acquired. While
it did not prove necessary for the work in this thesis, I still think this is a suitable
and natural further improvement for evolving the algorithm. The correlation weights
given by the initial analysis of the current implementation of the Difference Engine
can seamlessly be used as the prior probabilities for which code packages and tests
are correlated. It is unsurprising if this topic seems a bit hard to grasp; introducing
Bayesian inference to RTS techniques is a subject worthy of a full thesis in its own
right, and is difficult to explain within one paragraph. Suffice it to say, Bayesian
inference is a great tool that has been used effectively to improve machine learning
and statistical methodologies over a broad field of sciences, and I believe it can be

2http:/ /pandas.pydata.org/
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used to improve the work underlying this thesis as well.

Finally, T believe it is vital to find a way to automate the selection of tests and
seamlessly integrate it into the developer workflow and code verification process to
ensure employing advanced RTS strategies is as easy as possible for its intended
users.
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Chapter 8

Glossary

As T am perhaps presumptuously assuming that a majority of the terminology in
this paper is already known to all potential readers, this glossary has been added to
ensure that we share a common concept of the vocabulary used herein.

Bayesian inference A method of statistical inference in which Bayes’ rule is used
to update the probability of a hypothesis as evidence is acquired. See
http://en.wikipedia.org/wiki/Bayesian_inference

Build In this thesis a “Build” is a data structure that contains the data of packages
and their revisions, and the regression tests and their statuses (pass/fail).

BuildSet A set of Builds, ordered by time

Code package One or more source code files that are compiled together into a
program.

DBDiffer The MySQL database containing the historical regression test data

Difference Engine The software that analyzes the raw historical data extracted
from the MySQL database. Named after what can arguably be considered the
first computer ever constructed.

Flip The word used in this paper to concisely express that the outcome of a test
has gone form pass to fail, or from fail to pass. It is important to not only
look at failed tests since a package change might make a historically failing
test suddenly pass.

Functional test Tests how several units of code work together.

LOC Lines Of Code.

Mean Unless otherwise specified, whenever the word “mean” is used in this thesis,
it refers to the arithmetic mean.

Narrow test selection The regression test selection strategy proposed by this the-
sis. Uses the output from the Difference Engine to define which tests should
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be run based on the found correlations between code packages and tests.

Noise Also referred to as random mnoise, package noise and test noise. Package
noise in the context of this thesis is for example when multiple packages are
changed at once, but only one of the package changes cause a test to flip. All
of the changed packages will be correlated with the flippsed test, yet only one
of the correlations are valid — the others are package noise. Likewise there can
be test noise in the case where several tests flip, but some flips are not directly
due to code package changes (for example, environment issues that cause tests
to fail). These other test flips will be correlated with the changed packages
even though they are due to other reasons; such false correlations will be noise
as well, test noise.

Precision The ratio of selected tests that are relevant to a particular build. To
calculate it you take the union of the set of relevant tests and the set of
selected tests, count the size of the union, and divide it by the size of the set
of selected tests.

Prior The probability distribution that expresses one’s beliefs about a quantity
before more tangible evidence is taken into account. See
http://en.wikipedia.org/wiki/Prior_probability

Recall The ratio of relevant tests that are selected for a particular build. To cal-
culate it you take the union of the set of relevant tests and the set of selected
tests, count the size of the union, and divide it by the size of the set of relevant
tests.

Regression test A test that is run in order to make sure that changes to code do
not introduce a regression, i.e. break things that have been working previously.
Regression tests can be either functional or unit tests. At Axis, all regression
tests are functional tests.

Relevant test A test that will flip for a particular Build.

RTS Regression Test Selection

Selected test A test that the Difference Engine has predicted will flip for a partic-
ular Build, given the changed package(s).

Static analysis Static analysis in the context of this thesis is when correlations
between code units and tests are found by analyzing the source code of both,
without actually running the code. The work underlying this paper is dynamic
analysis — i.e. we find correlations by running the code and inspecting the
results.

SUT System under test. The compiled code upon which regression testing is per-
formed.

Test minimization An effort to permanently prune the regression test suite in
order to only run the relevant test given a particular context.

Test prioritization An effort to reorder the regression test suite in order to run
the most relevant tests first.

Test selection An effort to select and run only the tests from the regression test
suite that are relevant given a particular testing context. This is the RTS
strategy implemented in this thesis, and relevant tests are decided based on
which code packages have been changed.
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Test package One or more tests that test a Code package.

Unit tests Tests a single unit of code, e.g. one function.

Wide test selection A compromize between running all tests and the narrow RTS
strategy. Uses the output from the Difference Engine to suggest all the tests
that have flipped historically. It is a decent RTS strategy since a majority
(>60%) of the tests in the regression test suite have never flipped.

Wrangling Also data wrangling. The process of converting or mapping data from
a raw form into another format that is more convenient for consumption of au-
tomated tools. Data visualization, data aggregation, the training of statistical
models are examples of data wrangling.
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Intelligently selecting the most relevant tests by analyzing historical test data can
cut down on the average time spent on regression testing by 95%, speeding up

code integration by a factor of 20.

Automated regression testing is the practice of running
tests that ensure nothing has been broken after changes
have been made to the code, i.e. that no regressions
have been introduced. In the 80s and 90s one of the
most popular software project managing models was the
Waterfall model. Waterfall is a sequential design process,
meaning that all planning is done first, then the software
is developed, and lastly it is verified by, for example,
passing a regression test suite. In Waterfall, even if a test
suite takes several hours to run it is not costly in relative
terms since it is only run at the end of a project cycle
which may have lasted several months or more.
Nowadays however, Waterfall has largely fallen out of
favor, and so-called Agile processes have taken its place,
where planning, development and verification are done
iteratively and continuously. In other words, integration
cycles are much shorter in Agile development and code
changes are continuously verified several times per day.
This means that a regression test suite that takes hours to
complete has become massively inconvenient and costly.
My thesis work at Axis involved analyzing a vast
database of historical regression test runs. Going through
each testrun in turn, I mapped the code that was changed
to the tests that failed during the same run, which in the
end resulted in a set of correlations between regression

tests and code packages. Then, in future regression test
runs, whenever code in a package is changed and has
to be verified, we can use this correlation set to select
only the regression tests that have historically proven to
be affected by the changed package. All tests which are
historically unaffected by changes in that particular part
of the code are thus excluded from the regression test
verification, and time is saved.

Evaluation of my results have shown that when
running only the intelligently selected tests we find
nearly as many regressions as when running the full
regression test suite. Yet, since the test set is much
smaller, time spent on regression test verification is only
5% of the time compared to running the full test suite.
In Axis’ case it means going from an 8 hour regression
test suite to one that on average takes less than 20
minutes to complete.

The consequence of cutting down on time wasted on
running unnecessary tests is that developers no longer
need to wait a full work day to verify code changes. The
rate of integration can be sped up by a factor of 20.
With more rapid code integration, it takes less time
to fix bugs and introduce new features, which leads to
more highly valued software, and, ultimately, increased
revenue for the company.
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