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Abstract

Valuing single-name Credit Default Swaps (CDS) is a difficult task since in order
to make a fair valuation, one needs to assess the credit risk of the corresponding
company. Many different models exist when it comes to modelling the credit
risk, this report specifically focuses on the branch of models named structural
models. The aim of this thesis is to, for a number of companies, model the CDS-
spreads given by the market by first modelling the credit risk of the company in
the aforementioned models, and then using key metrics calculated in the models
to value the corresponding CDS-contract.

A couple of different models are tested with different sets of key parameters,
and the results show that a certain implementation of the Black-Cox model
produces best results, which also happens to be the model with the most real-
world like features. The model manages to follow both major changes in the
CDS-spreads, as well as minor changes. The corresponding residuals show some
stationarity-features and are slightly improved when adjusting for the current
level of volatility, however, they do not appear to be white noise as corresponding
SACF-plots show clear correlation for many lags. The Black-Cox model also
proves to be better than a simple regression model, used as a benchmark.
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1 Introduction

1.1 Background

During the 21st century, the market for credit derivatives has grown to one of
the world’s biggest financial markets [1], which in turn has generated a demand
for successfully being able to evaluate the credit risk of a firm, since the value
of a credit-related security more or less boils down to the credit risk of the
company. In short, credit risk can be summarised as the risk that a borrower
will default on its debt, i.e. being unable to deliver on the predetermined cash
flows of the debt.

One of the most common credit derivatives used today are credit default swaps.
They essentially work as an insurance for bond holders in case the bond issuer
is unable to deliver the promised cash flows on the debt. When determining
the price of a credit default swap, one must have some opinion of the credit
risk of the reference company. How one decides to estimate the credit risk is
essential for the resulting price of the credit default swap. One way to do this is
through the use of structural models, assigning dynamics to a company’s assets
that connects its debt and its equity.

Using structural schemes to model a firm’s stock price is one of the fundamental
breakthroughs in financial mathematics. This was first done by Black & Scholes
which ultimately led to the elegant closed-form solutions used when valuing
European call and put options [5].

The market value of a firm’s assets consists of the the market value of its equity
(essentially the market capitalisation) and the market value of its debt. The
market capitalisation is directly observable in the market for listed companies,
the market value of debt however is not as easily assessed. A firm’s debt can
consists of several different types of liabilities, ranging from issued bonds, bank
loans, accounts payable and so on. Bonds are usually traded on the secondary
market, or over the counter (OTC) which it is often referred to as. Although
the bonds are not listed on any exchange, the prices they trade for are however
often publicly available, making it easy to assess the market value of a company’s
debt that is in the form of bonds. Other types of debt however is more or less
only observable four times per year, when firms state their financial results for
the past quarter, which includes the current state of the balance sheet where
the latest information of the current book value of debt is available. Therefore,
the only part of the debt where the market value can be easily observed is
debt raised through bonds. But how does one assess the market value of the
remainder of the debt? Due to the relative lack of observability of the company
debt, the asset value of the firm consequently becomes difficult to determine.

One of several approaches to assessing the credit risk of a company is through a
model approach, i.e. assigning certain dynamics to, for example, the company’s
assets, and through the model, assuming the dynamics are true, estimating the
credit risk of a company.
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1.2 Short history of model types

There exists primarily two types of models for modelling credit risk, structural
models and reduced form models. Reduced form models model the time of
default τ simply as an exogenous random variable, with some default intensity
λ. These models argue that default occurs at a completely random point in time
[2]. Structural models however try to connect the default time with economic
properties of the company. One of the first attempts at this was presented
in 1974 by Merton, whom proposed the firm assets had similar dynamics as
that of an individual stock presented earlier by Black & Scholes. The Merton
model states that a default occurs if the company’s assets has fallen below some
predetermined default barrier after a certain period of time has passed [15].

There is of course both positives and negatives with the two approaches. The
reduced form models generally give more flexibility, but may not be as intuitive
as the structural model [12]. The structural model however is more easy to
understand in the sense that it assigns a dynamic to the firms assets and from
these dynamics estimates credit risk. Though it is difficult to implement these
models successfully due to the face that what the model is trying to model, the
company assets, are not observable.

1.3 Objective of the thesis

This thesis will focus on trying to value credit default swaps when the market
value of the firm’s assets are given dynamics according to structural models,
hence the reduced form models will not be further investigated. Through the
models, different measures of credit risk can be found, which can be used in
order to value different types of credit related instruments.

The models that will be analysed begin from the Merton model, the simplest of
the models. Then, more and more complex models will be tested, all of which
are in one way or another derived from the Merton model. Since the asset value
of the company is not directly observable like its equity, validation of the model
is not straight forward. To accommodate this issue, validation of the models
themselves will not be done. Instead, the goodness of fit of a model will be
determined directly by its ability to value credit default swaps (CDS), whose
prices (spreads) are observable.

By starting with a simple model and adding more and more complexity to it,
one will be able to assess whether a complex model is favourable to a simpler
model. One can expect that there is a trade off between performance in terms
of accuracy of valuing the CDS-contracts and complexity of the models.

The key question of the report can be summarised as: Is it possible to success-
fully replicate market CDS-spreads through a structural model approach?

As a test to assess whether an advanced model scheme is necessary at all, a
simple regression will be implemented to price the CDS-contracts. Although an
advanced structural model can outperform a simpler structural model, it is not
evident that it needs to outperform a regression model.
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1.4 Credit Default Swaps

1.4.1 How the contract works

Credit default swaps are a credit derivative with a bond as an underlying se-
curity. In a CDS-contract there is always a protection buyer and a protection
seller. For some predetermined time T and notional amount N , the protection
seller promises to insure the protection buyer against a credit event in the un-
derlying bond. A credit event can be a number of things, but mostly it is a
default, in other words, the company fails to pay its liabilities. The protection
seller is compensated for taking on this extra risk by being paid a fee by the
protection buyer known simply as the spread, which is fixed throughout the con-
tract time. The spread, denoted in basis points (bps), is the total annual fee,
but payments are often done quarterly. The total annual payment is the spread
multiplied by the notional amount N. In case of a credit event, the payment
streams to the protection seller stops and instead, the protection seller must
provide the protection buyer with the difference between the notional amount
N and recovered value of the bond [3].

For example, assume person A agrees to sell credit protection to person B at
a notional amount of $10MM, contract length of 5 years and a spread of 200
bps, with a bond of company C as underlying security. Nothing happens during
the first year of the contract, so at this point, person B has paid a total of
$0.02·10MM = $0.2MM to person A. However, during the first quarter of year
2, company C files for bankruptcy, hence defaults on all its bonds. A credit
event is triggered and no more payments are done from person B to person A.
Instead, person A must now pay person B an amount equal to $(1−R)·10MM,
where R denotes the recovery rate of the underlying bond, usually assumed to
be 40% when pricing. Therefore, if person B actually would have owned the
bond, which he need not do in order to enter the CDS-contract, he would have
been completely reimbursed due to the CDS-contract.

A higher spread is generally associated with a higher credit risk, as the protec-
tion seller gets larger payments the higher the spread is, naturally because the
premium required tends to increase with the associated risk.

During 2009 the convention of how CDS contracts worked was changed. Prior
to the change, the contract worked as described in the example above, in terms
of cash flows. It was very simple to enter a contract, regardless of if one was
buying or selling credit protection, since there was no cost or fee associated with
entering. Now however, the contracts conceptually work the same way as they
provide the same sort of insurance against a credit event, but what has changed
is that the CDS trade on fixed coupons and require an upfront payment from
one of the parties in the contract. The upfront payment is a percentage of the
total notional sum to be paid. In the United States, the fixed coupons are either
100 bps or 500 bps, depending on credit quality [7].

Given the points upfront that the CDS currently trades at, the fixed coupon
associated with the specific company and the interest rate curve, the implied
CDS-spread can be calculated, since the points upfront are essentially the ex-
pected present value between the CDS-spread and the fixed coupon. Once this
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upfront payment is made, the contract works as before, with the exception of
the annual payments from the protection buyer to the protection seller is equal
to the fixed coupon.

Because of these changes, CDS:s are often quoted in terms of points upfront
instead of the rolling spread, however, since everyone is so used to viewing a
CDS in terms of its spread, one still commonly uses this notation, and it will
be used throughout this report.

1.4.2 Valuation

When valuing a CDS-contract, it all comes down basically to finding the spread
that makes the contract give the same expected return, regardless of if one would
buy or sell credit protection. The contract can thus be divided into two legs, the
premium leg and the protection leg [3]. The premium leg is the expected pay-
ments to the protection seller, while the protection leg is the expected payments
to the protection buyer. In the setting of the CDS-contract prior to the change
to points upfront in 2009, the payments to the protection seller consists of the
coupon payments paid each quarter and a single payment of accrued premium
in the event of a default. The payments to the protection buyer consists only
of the payment that occurs in case of a default. Define the following variables:

• D(ti) = Present value of $1 at time ti discounted using the risk free rate
of return

• q(ti) = Risk neutral probability of no default up until time ti

• S = Spread of the credit default swap

• R = Recovery rate of the reference bond

• di = Time between coupon payments, 0.25 assuming quarterly payments

• N = Total number of planned payments over the length of the contract,
4 · 5 = 20 for a 5 year CDS-contract

Assuming a notional sum of $1 and that defaults occur on average between two
payment dates, using the notation above, the premium leg and protection leg
can be found as

PVProtectionLeg = (1−R)

N∑
i=1

D(ti)
[
q(ti−1)− q(ti)

]
PVPremiumLeg =

N∑
i=1

D(ti)q(ti)Sdi +

N∑
i=1

D(ti)
[
q(ti−1)− q(ti)

]
S
di
2

The risk neutral CDS-spread is the spread that makes the value of the legs the
same, thus solving for the spread S yields
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S =
(1−R)

∑N
i=1D(ti)

[
q(ti−1)− q(ti)

]∑N
i=1D(ti)q(ti)di +

∑N
i=1D(ti)

[
q(ti−1)− q(ti)

]
di
2

(1)

Note that there exist even more detailed and advanced expressions for the CDS-
spread, see for instance research provided by OpenGamma [19]. The expression
obtained in equation (1) is more or less derived from those expressions, with
some points simplified, and will be sufficient for this study.
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2 Methodology

This section describes the outline of the analysis and the models to be tested.
First, a section describing some of the models and work that has been done in
the field of structural credit risk modelling is presented, followed by a section
presenting more in depth the method of how the analysis will be done.

2.1 Models and earlier work

2.1.1 Merton’s Model

One of the first attempts to use a structural scheme to model a firm’s assets
was presented by Merton in 1974 [15]. He proposed the asset value of a firm to
follow similar dynamics to that of a single stock presented a few years earlier
by Black & Scholes [5]. The model has become famous all over the world as
it presents a very simple way of modelling the assets, providing elegant closed
form solutions and relations between parameters.

Merton proposes the following dynamics of the assets of a firm:

dVt = µV Vtdt+ σV VtdWt, V0 > 0 (2)

which has the solution

Vt = V0e
(µV −

σ2V
2 )t+σVWt (3)

Equation (2) can be restated under the risk neutral measure Q with dW ∗t =
dWt + µV −r

σV
dt

dVt = rVtdt+ σV VtdW
∗
t , V0 > 0 (4)

Where Vt denotes the asset value of the firm at time t, r denotes the risk
free interest rate and W ∗t is a geometric Brownian Motion. Moreover, Merton
suggests that the firm debt is simply a zero coupon bond with amount K due at
time T . A default is said to occur if at time T , VT < K, i.e. if the asset value of
the firm at time T is less than the amount of debt due, the firm defaults. In case
of a default, the owners of the company debt are highest prioritised in terms of
liquidation of the firm, therefore their cashflow at time T will be min(VT ,K).
Equity holders on the other hand will receive what is left after the debt holders
have been compensated, i.e. their cashflow at time T will be max(0, VT −K).
The cashflow of the equity holders is exactly the same as that of a European
call option with strike = K and underlying security Vt. Since the dynamics
of equation (4) is identical to the dynamics of the stock presented by Black &
Scholes, the value of equity at time t is therefore

EQ
[

max(0, VT −K)|Ft
]

= VtN(d1)− e−r(T−t)KN(d2), (5)
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where d1 =
log(VtK ) + (r +

σ2
V

2 )(T − t)
σV
√
T − t

and d2 = d1 − σV
√
T − t

N(·) simply denotes the standard Gaussian cumulative distribution function
evaluated at point (·) and {Ft} is the filtration generated by the Brownian
Motion W ∗t . However, at each point in time, the value of equity is known and
observable, it is simply the market capitalisation Et of the company, calculated
as the number of shares multiplied by the current price per share. Hence, the
following relation with equation (5) must be true

Et = VtN(d1)− e−r(T−t)KN(d2) (6)

Equation (6) provides a relationship between the unobservable asset value Vt
and the observable value of equity Et. Therefore, at each point in time, it is
possible to infer the current asset value of the firm given the current value of
equity, but in order to do this properly, the volatility of the assets σV must be
known. Fortunately, another relation can be found which relates the volatility
of the equity to the volatility of the assets.

Assuming first that the value of equity has the same dynamics as the assets, i.e.

dEt = µEEtdt+ σEEtdWt (7)

Since under the assumptions in the Merton model, equity is a call option on the
assets of the firm and equity is assumed to follow an Ito-process, one can apply
Ito’s lemma on the equity process [14]. This yields

dEt =
∂Et
∂Vt

dVt +
∂Et
∂t

dt+
1

2

∂2Et
∂V 2

t

dV 2
t + ... =

{
Replacing dVt with (2)

}
=

=
∂Et
∂Vt

(µV Vtdt+ σV VtdW
V
t ) +

∂Et
∂t

dt+

+
1

2

∂2Et
∂V 2

t

(µ2
V V

2
t (dt)2 + 2µV σV V

2
t dtdW

V
t + σ2

V V
2
t (dWV

t )2) =

= {as dt→ 0, (dt)2 → 0 & dtdWV
t → 0 & (dWV

t )2 → dt} =

=
∂Et
∂Vt

(µV Vtdt+ σV VtdW
V
t ) +

∂Et
∂t

dt+
1

2

∂2Et
∂V 2

t

σ2
V V

2
t dt =

=
(∂Et
∂Vt

µV Vt +
∂Et
∂t

+
1

2

∂2Et
∂V 2

t

σ2
V V

2
t

)
dt+

∂Et
∂Vt

σV VtdW
V
t (8)

Now, comparing diffusion terms in equation (7) and (8) the following relation
is obtained

σEEt =
∂Et
∂Vt

σV Vt (9)
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Moreover, from equation (6) one can find that ∂Et
∂Vt

= N(d1). Plugging this into
equation (9) the final relation is found:

σEEt = N(d1)σV Vt (10)

By combining equation (6) and (10), one has two equations and two unknowns
(σV and Vt). By solving these two equations simultaneously, values of asset
volatility and current asset value can be found [11].

Another fundamental formula can be derived in the Merton model, namely the
probability of default. As mentioned before, the company is said to default if
and only if VT < K, the firm cannot default prior to T . Hence, the risk neutral
probability of default, evaluated at time t = 0 is calculated the following way

Q
[
VT < K

]
= Q

[
log(VT ) < log(K)

]
=
{

Logarithm of equation (3)
}

=

Q
[

log(V0) + (r − σ2
V

2
)T + σVW

∗
T < log(K)

]
=
{
W ∗T =

√
T ·X,X ∼ N(0, 1)

}
=

Q
[
σV
√
T ·X < log(K)− log(V0)− (r − σ2

V

2
)T
]

=

Q
[
X < −

log(V0

K ) + (r − σ2
V

2 )T

σV
√
T

]
= Q

[
X < −d2

]
= N(−d2). (11)

One of the major advantages of the Merton model is the fact that it makes it
possible to directly apply the theory of standard European options, resulting
in simple to use formulas. However, it has also been subject to criticism. First
of all, it is not very realistic that the debt structure of the firm only consists
of a single zero coupon bond. Companies usually have many types of debt
outstanding, ranging from zero coupon bonds, bonds with coupons, convertible
bonds etc. Related to this, there is also an issue of different seniority levels of
debt. Not all debt is prioritised the same in the case of a default, this becomes
a big issue if one would use the Merton model to try to model CDS-spreads
linked to both senior and subordinated debt since the Merton model does not
make it possible to separate seniority of debt.

Another point is the fact that the model only allows for default at time T . For
instance, if a company’s assets become extremely small just before time T , but
somehow then manages to recover and exceed the default threshold K at time
T , the firm did not default according to Merton. In real-life, it is natural to
assume that a company can default or file for bankruptcy at any point in time,
which is not possible in the Merton model.

2.1.2 Moody’s KMV

Moody’s KMV is the name of a particularly successful implementation of the
Merton model, now used commercially by the rating agency Moody. The KMV
implementation looks initially very similar to the Merton scheme, but later
diverges and makes use of new assumptions and relations. The KMV model
name three key steps in determining the default probability of a firm
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• Estimating the asset value and asset volatility

• Calculating the distance-to-default (DD)

• Calculating the default probability

When estimating asset value and asset volatility, the KMV model makes use of
the option-pricing relation, i.e. equation (6). They chose as value of equity the
current market capitalisation of the firm, and find the debt K as the book value
of liabilities for the predetermined maturity time T . It should be noted that
KMV puts the default point K somewhere in the range of short term liabilities
and total debt, depending on the choice of T [9]. Moreover, they set equity
volatility simply as the volatility of the underlying stock of the firm. Given all
the variables, asset value and asset volatility are inferred through equation (6).

The next step is evaluating the so called distance-to-default. This metric is

defined as DDt =
log(

Vt
K )+(r−0.5σ2

V )(T−t)
σV
√
T−t and gives a rough estimate of how

”far” the firm is from default at a given point in time. The smaller the value
of DDt, the closer the firm is to default. Although Vt may be close to K, the
firm can have a very small asset volatility, and thus obtain a fairly large value
of DDt. This metric is defined exactly the same as d2 used in equation (5). The
distance-to-default metric is used to calculate the probability of default, and
this is where the two models diverge from each other.

In the Merton model, DDt was assumed to be Gaussian, as seen in equation
(11). KMV on the other hand instead introduces a new mapping of finding the
probability of default from the given DDt. Essentially, they rely on their huge
data base where they have calculated, at each point in time, the current DDt

for a very large set of firms, many, many years back in time to present. The
probability of default, or expected default frequency (EDF) as they call it, is
calculated by looking into the database, finding how many cases of firms having
a similar DDt defaulted within the specified maturity time T and then dividing
that by the total number of firms that had the same DDt [9].

Since the KMV model is more or less identical to the Merton model up until
the point of calculating the EDF, the previous assumptions made in the Mer-
ton model hold here as well, making it valid to use the relations presented in
equations (6) and (10) to estimate asset value and asset volatility.

In terms of criticism to the model, one can argue against the lack of ability
to make a distinction between senior and subordinated debt just like for the
Merton model. However, the KMV model is used commercially by Moody’s
nowadays, and apparently seems to provide them with adequate results.

2.1.3 Black-Cox Model

The Black-Cox model is the simplest of the so called first passage models [12].
This model has a very similar model setup as the Merton model, however there
are two major differences between the models. The Black-Cox model makes
room for default at any point in time, not only at time T, which is a major re-
striction of the Merton model. It also allows for a time varying default threshold
K(t) which is a much more realistic assumption [4]. There are many possible
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choices of the default threshold, it can chosen to be a stochastic process, a mono-
tone increasing function with time etc. In the case of the latter, if the default
threshold is defined as K(t) = K0e

kt, where K(T ) is the debt due at time T,
and k > 0 and K0 < K(T ), the probability of default can be expressed in closed
form.

In this model-scheme, default occurs when Vt < K(t). This event can be refor-
mulated the following way{

Vt < K(t)
}

=
{
Vt < K0e

kt
}

=
{

log(Vt) < log(K0) + kt
}

={
log(V0) + (r − σ2

V

2
)t+ σVW

∗
t < log(K0) + kt

}
=

{
W ∗t +

(r − σ2
V

2 − k)t

σV
<

1

σV
· log(

K0

V0
)
}

={
Xt < d

}
.

Where Xt = W ∗t + mt, m =
(r−σ

2
V
2 −k)
σV

and d = 1
σV
· log(K0

V0
). Hence, a default

has occurred on the time frame [0, T ] if {mins≤T Xs < d}. The risk neutral
probability of default can therefore be shown to be [12]

Q
[

min
s≤T

Xs < d
]

= 1−N
[
−d+mT√

T

]
+ e2mdN

[
d+mT√

T

]
. (12)

However, note that this relation only holds in the case when the default thresh-
old is assumed to follow K(t) = K0e

kt. Most other default threshold dynamics
would require Monte Carlo simulation in order to calculate the default proba-
bility.

Another possible choice of default threshold, which may be considered more
realistic, is choosing the default threshold K(t) as the debt due at each time
t for the company. At each point in time, the debt structure of the company
is observable in terms of outstanding bonds, when they are due and what cash
flows they will make. The company may have a large part of its debt due in
two years, and after that they have relatively little debt, which most likely will
result in a probability of default much higher in the two first years than in the
following two years, if calculated using the information available today.

The default threshold can also be chosen to be stochastic, for example following
similar dynamics to that of the assets. An argument for using the type of
threshold could be that one considers default to be an event that occurs at a
random point in type, which may or may not be true. For instance, one may
choose

dKt = µKKtdt+ σKKtdW
K
t (13)

as the dynamics of the default threshold. Also, one may consider some correla-
tion between the movements of the company assets and the default threshold,
i.e. dWK

t dW
V
t = ρdt. However, the choice of σK and ρ are not straight forward

and it is unclear how one would go about estimating these parameters.
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A drawback with the Black-Cox modelled compared to Merton’s original model
is the absence of simple equations that relate asset value and asset volatility
to market implied data. Only in the special case where one sets K(t) to be
constant over time, one can once again use the relation in equation (6). The
reason for this is because the value of equity in the Black-Cox setting instead has
become the value of an American call option (an option that can be exercised
at any point in time until T ), but since no dividends of the firm are included in
this model scheme, the value of the American call option becomes exactly the
same as the value of the European call option, since in this specific case, one can
show that one should never exercise an American call option before maturity
[17]. Note though that the only difference in this specific case of the Black-Cox
model and Merton’s model is the fact that default can occur at any point, the
default threshold is still said to be the same over time.

To further visualise the difference between the Merton and the Black-Cox model,
see figure 1. The figure shows two simulations of a fictive company’s assets,
where the risk free rate of return has been set to 5%, the asset volatility has
been set to 35% and finally the default threshold has been set to $500M.

Time

0 100 200 300 400 500 600 700 800

M
 U

S
D

400

600

800

1000

1200

1400

1600

1800
Two simulations of the assets of a firm

Simulation 1
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Default level

Figure 1: Simulated trajectories of a company’s assets along with a default level

The green ellipse shown in the figure illustrates that both cases of the company
assets in this case did not default, if they had been modelled through the Merton
model. Since both trajectories end up above the default threshold at maturity,
the Merton model states that they did not default.

The red ellipse however show that the blue trajectory of the company assets did
fall below the default threshold during a period, but then managed to recover
and emerge from the abyss. This is where the two models diverge, the Merton
model still does not consider the blue trajectory to have defaulted as that model
is not path dependant and only care about the terminal value of the assets, while
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the Black-Cox model would have deemed the blue trajectory as a default as soon
as it dipped below the default threshold.

2.1.4 Adding Complexity

2.1.4.1 Stochastic Volatility
One possible extension to both the Merton model and the Black-Cox model is
the addition of stochastic volatility. It is natural to assume that a company can
be more or less stressed at times, which calls for different levels of volatility. The
Merton model and the Black-Cox model in their natural state do not account
for this, which may be considered as restrictive, as the choice of volatility of the
assets is one of the key factors when evaluating the credit risk of the entity.

One natural choice of scheme to model stochastic volatility together with the
assets is the Heston model [6], giving the following dynamics

dVt = rVtdt+
√
νtVtdW

V
t

dνt = κ(θ − νt) + ξ
√
νtdW

ν
t

dWV
t dW

ν
t = ρdt.

Where νt denotes the instantaneous asset volatility. The parameter θ can be
interpreted as the long run variance, i.e. as t becomes large, one can expect νt
to approach θ. Moreover, κ is the parameter which decides how quickly νt tends
to θ, and finally ξ is the volatility of νt, i.e. how much one expects νt to vary.

If one was to incorporate this scheme into either the Merton model or the Black-
Cox model, the same ”rules of default” would still hold true, the only change
would be the fact that one allows for the asset volatility to vary over time. Also,
no closed-form solutions of the default probability would exist, which implies
that one would have to use Monte Carlo-simulations in order to get estimates
of such probabilities.

The biggest issue however if choosing to implement this scheme is the fact that
one would have to estimate the parameters κ, θ, ξ and ρ somehow. Although
one has a theoretical interpretation of the parameters, it is far from evident
how one would go about deciding the parameters. Since the assets Vt are not
observable, one cannot just take a snippet of time-series data on Vt and use that
to estimate the parameters, like one could have been able to do if one was to
model the equity of the firm instead. Because of this issue, stochastic volatility
will not be incorporated in any of the models in this report, although it would
have been an interesting feature to have in the study.

2.1.4.2 Stochastic Interest Rates
One might also be interested in modelling using stochastic interest rates. Ob-
viously, rates are not constant over time, so it is reasonable to model them
somehow. One possible choice of model scheme for the interest rates is the
Vasicek model, presented in 1977 by Oldrich Vasicek [18]. He proposes the
following dynamics of the interest rate

drt = a(b− rt)dt+ σdWt
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where Wt is a Brownian Motion under the risk neutral probability measure.
Here b can be seen as the ”long term mean level” of the interest rates, a can be
viewed as how quickly the trajectories of the interest rate regroups around b, a
is also assumed non-negative. Finally, σ can be seen as the volatility of interest
rate where a large value of σ, will yield more volatile trajectories of the interest
rate.

Just as for the case when incorporating stochastic volatility, no closed form
solutions for the default probability would be possible to obtain, meaning that
one is stuck with Monte Carlo-simulation. Moreover, once again, one would
have the issue of estimating parameters in a reasonable way. Although it feels
natural to allow for varying interest rates, the complexity of the implementation
rapidly increases. Hence, stochastic interest rates will also not be included in
this study.

2.1.5 Regression model

As a benchmark model against the structural models, a very simple regression
model will be used. It is reasonable to assume that a company during times
with high CDS-spreads will tend to have a higher equity volatility than during
other times, as the firm most likely is more distressed during this period. Hence,
an interesting regression would be one where the equity volatility, along with
a constant, is regressed against the market spreads. The following regression

model will thus be implemented: y
(t)
CDS = α+β ·σ(t)

E +ε(t), where V ar(ε(t)) = σ2
ε

and E[ε(t)] = 0 and ε(t) is assumed Gaussian.

2.2 Method of approach

The previous section presented some of the models that will be analysed in
this report. This section will present how the models will be implemented and
validated.

Each model implemented will be tested on a number of different companies,
coming from different industry sectors in order to get as good an assessment
as possible of the models. The only requirement of each company included
in the analysis is that it has outstanding bonds, and therefore tradable CDS-
contracts, and is ”large enough”, so that there is liquidity in the market, making
the CDS-spreads trustworthy.

For each model and company, metrics such as probability of default, asset volatil-
ity, asset value and so forth will be calculated at each point in time (each
day) and used to value CDS-contracts according to equation (1). Only CDS-
contracts with a reference bond of 5 years maturity will be valued, as these
are by far the most liquid in the market, implying more trustworthy spreads
[8]. Therefore, the implementation scheme of the models will yield a time series
of CDS-spreads, which in turn can be compared with the market spreads. By
determining how well the model-implied spreads follow the market spreads, one
can validate whether or not a model is considered good.
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Although the CDS-spreads returned from a model are different from the market
spreads, it does not necessarily mean that the model is wrong. The market
spreads can of course also be wrongly valued, but since it is very difficult to
assess whether this is the case or not, in terms of validating the spreads returned
from a model, it is easiest to assume the market spreads to be true, fair values
of the contracts.

Validation of the models can be done both by looking at the absolute error of
the model-implied CDS spreads versus the market spreads, but is can also be
done by looking at the relative error of the model-implied CDS spreads versus
the market spreads. Perhaps one may allow for a certain level of error, relative
to the market spreads. Hence, the absolute error in the CDS spreads may vary
over time, but the relative error of the CDS spreads may be fairly stable.

2.2.1 Data

In order to model the company’s credit worthiness according to the structural
model approach the following data is required: market capitalisation, book value
of the company’s debt, volatility of the company’s market capitalisation, value
of the risk free rate of return, asset value and volatility of the assets. And of
course, in order to validate the models, spreads of the company’s 5 year CDS is
needed.

The asset value and asset volatility of the company are calculated through the
models. The remaining data is observable in the market and can be downloaded
using the Bloomberg Terminal. However, some further details regarding the
data should be clarified.

Market capitalisation
The values of the market capitalisation are simply taken as the close price at each
day of the underlying stock, multiplied by the number of shares outstanding.

Equity volatility
There are many options of how the volatility could be chosen. For example, one
could, at each day, estimate the volatility of the log returns of the stock, trailing
n days back. This would however require one to decide how many days trailing
to calculate from, and would require daily calculations.

Another approach which seems more attractive is simply to take the implied
volatility of vanilla American call or put options. However, one then faces the
problem of deciding what level strikes to use and what maturity. This is an issue
since different level strikes can yield different values of implied volatility. This
phenomenon is known as skew, or smile, depending on the situation [13]. One
of the reasons why this occurs is because the market sometimes is, for instance,
very bullish towards a certain stock, yielding a greater demand for OTM (Out-
of-The-Money) call options, thus pushing the price for those options up, and
consequently the implied volatility for those options increase. One advantage
with using realised volatility would be that one then gets the volatility that is
really given by actual movements in the underlying stock, unlike implied volatil-
ity from options that may be subject to market anticipations on the underlying
stock, which may overstate or understate the volatility.
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Since it is the 5-year CDS to be valued, one may argue that the implied volatility
should come from a option with a maturity of five years. This is of course a
valid point, as one could perhaps expect a option with the same maturity as
the CDS-contract to have a implied volatility more true, and more suitable to
the analysis. However, the simple reason why this volatility is not used instead
is simply because options with such a long maturity are hardly traded, hence
there is little to no data accessible.

Preferably, one would want volatility from the most liquid options as one can
expect those volatility levels to be most fair. Without spending too much time
with this issue, a quick and empirical investigation was done to see what level
options seemed to be most liquid. This resulted in 90% OTM put options with
a one year maturity, i.e. put options with strike level = 90 % of current spot
price, that mature in one year. Therefore, these options will be the source of
the equity volatility.

Book value of company debt
The debt of a company is observable in the sense that it is updated and reported
once per quarter and can be observed in the balance sheet of the company. Here,
both short term debt and long term debt has been downloaded for each day that
the study is done, which of course means that the debt will be the same every
day until the company presents a new balance sheet.

Risk free rate of return
Just as for the equity volatility, a couple of alternatives of what interest rate to
use exist. However, as will be presented shortly, the companies to be analysed
are all listed in the United States (and Canada), therefore the choice of risk free
interest rate as the 12 month Interbank Offered Rate in London (LIBOR) for
the US dollar seems like a valid choice.

The LIBOR is the average interest rate that a bank would be charged if it was
to borrow from other banks in London.

CDS-spreads
Since CDS-contracts are traded over-the-counter (OTC), they are not directly
observable per se, however companies such as Markit and CMA collect and pro-
vide data for CDS-trades each day and are available in the Bloomberg Terminal.
Just as for the market capitalisation, the close price each day is used.

Recovery rate
The recovery rate of the reference bond can in reality be anything between 0%
and 100%. However, the market convention for quotation of CDS-contracts
referring to senior unsecured bonds is a recovery rate of 40%, which will be used
in this report.

Companies to be analysed
Table 1 presents the companies to be analysed and what industry sector they
are active in. All of the chosen companies are active in very distinct industries
and should thus provide a good variation to the analysis. Note however that
not a single company from the financials sector has been included, and this is
done on purpose. Whether it is a bank, an investment company or an insurance
company, assessing the credit risk in those type of firms is notoriously difficult as
there are so many factors affecting them that are not observable for a bystander.
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Banks for instance are very exposed to regulators, which means that new rules
can change the entire industry over night. Therefore, for ease of implementation,
they are simply excluded from the analysis.

Table 1: Companies to be analysed and their respective industry group and
sector

Name Industry Sector Industry Group

United States Steel Corp Basic Materials Iron/Steel
J.C. Penney Co Consumer, Cyclical Retail

Avon Products Inc Consumer, Non-cyclical Cosmetics
Bombardier Inc Industrial Misc. Manufacturer

Peabody Energy Corp Energy Coal
Advanced Micro Devices Technology Semiconductors

Data will be collected from 2011-07-01 up until 2015-02-09, each trading day.
Why this period of time is chosen is due to a couple of things. Firstly, during
the second half of 2011, the financial markets were being highly affected by
the Euro-crisis, resulting in overall uncertainty and volatility. Moreover, during
this period of time, many of the companies to be analysed have at least during
one period been distressed, solely due to the individual company. Thus, in the
data set, there is a period of time when macroeconomic variables affect all the
companies, but also times when the companies individually are under pressure.
A good model should be able to handle all situations, hence, the chosen period
of time and the list of companies to be analysed should be a good combination
for this thesis. All plots of time series will show this time period, unless else is
specified.

Figures 2 to 4 shows the market capitalisation, equity volatility and CDS-spreads
that will be used during the period to be analysed for US Steel. Figures 5 to 7
show the corresponding data for J.C. Penney, figures 8 to 10 for Avon Products,
figures 11 to 13 for Bombardier, figures 14 to 16 for Peabody Energy and figures
17 to 19 for Advanced Micro Devices.
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Figure 2: Observed market capitalisa-
tion of US Steel

Date
11-Apr 11-Oct 12-May 12-Nov 13-Jun 14-Jan 14-Jul 15-Feb 15-Aug

V
o
la

ti
lit

y
 (

%
)

30

35

40

45

50

55

60

65

70

75
Equity Volatility - US Steel

Figure 3: Implied equity volatility for
US Steel
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Figure 4: Observed spreads of US Steel’s 5 year CDS

As one can see for US Steel, the beginning of the period is fairly calm, with
a relative high market capitalisation, however, something appears to happen
short after as the volatility sky rockets in tandem with the CDS-spreads. By
the end of the period, things appear to have calmed down, though there seems
to be something going on again at the very end.
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Figure 5: Observed market capitalisa-
tion of J.C. Penney
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Figure 6: Implied equity volatility for
J.C. Penney
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Figure 7: Observed spreads of J.C. Penney’s 5 year CDS

For J.C. Penney, the trend appears to be negative, apart from the beginning
where the market capitalisation increases and the equity volatility decreases.
When the market capitalisation had reached its peak however, things seem to
be in a negative spiral according to all metrics.
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Figure 8: Observed market capitalisa-
tion of Avon Products
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Figure 9: Implied equity volatility for
Avon Products
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Figure 10: Observed spreads of Avon Products’s 5 year CDS

Avon Products appear to have an unusual trajectory, according to the CDS.
Things are nice and clam at first, then in May 2012, there seems to be something
going on as the CDS rapidly increases. One year later however, the CDS is
back to previous levels, but at the very end of the period, the CDS once again
increases aggressively back to prior heights.
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Figure 11: Observed market capitalisa-
tion of Bombardier
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Figure 12: Implied equity volatility for
Bombardier
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Figure 13: Observed spreads of Bombardier’s 5 year CDS

Bombardier has a rapid increase in the CDS at the very beginning, which then
slowly decays to lower level. Though at the absolute end of the period, the CDS
appears to double in a matter of days, from 300 bps to 600 bps. This can also
be seen in the volatility, which appears to have a spike during the same period
of time.
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Figure 14: Observed market capitalisa-
tion of Peabody
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Figure 15: Implied equity volatility for
Peabody
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Figure 16: Observed spreads of Peabody’s 5 year CDS

Peabody Energy appears to be in an overall negative trend throughout the
period. The market capitalisation steadily decreases while the CDS looks to
increase during the whole period, with a couple of short period where the CDS
appears to be moving sideways.
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Figure 17: Observed market capitalisa-
tion of Advanced Micro Devices
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Figure 18: Implied equity volatility for
Advanced Micro Devices
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Figure 19: Observed spreads of Advanced Micro Devices’s 5 year CDS

Finally, Advanced Micro Devices seems to be very volatile in terms of all the
metrics. This is especially clear in the CDS-curve as the spreads appear to vary
quite aggressively throughout the period. The lows are around 300 bps while
the highs are larger than 1100 bps.
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Figure 20: 12 month LIBOR rate in USD

Figure 20 shows the risk free rate of return used, i.e. 12 month LIBOR for the
US dollar. During the entire period, interest rates have been very low, which
will lead to discounting having a minor effect.
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3 Implementation

3.1 The Merton Model

As presented, the Merton model is one of the first attempts of structural mod-
elling of a firm’s assets. The assumptions made in the model may not be very
realistic, for instance assuming all the company’s debt is a single zero coupon
bond, but the model offers other attractive features such as elegant closed form
solutions and the fact that the model is fairly simple to interpret.

Before digging into specifics regarding parameter estimation and how to chose
certain parameters, a rough scheme of how the implementation will be done is
presented.

3.1.1 Outline of implementation

As mentioned earlier, for each company, the reference 5 year CDS will be valued
at each day during the interval of analysis. So for every day, new data has
become available in terms of updated market capitalization, equity volatility,
risk free rate of return and so on. These updates in data will further imply
changes in variables derived from market data, namely Vt and σV . Essentially,
if one was to plot for instance σV over the interval to be analysed, one will
see that the parameter changes with time, most likely. This appears to be a
contradiction as the Merton model states that the variance of the assets does
not vary over time. However, this is actually not an issue since the model states
that the variance of the assets is the same over the period of analysis, so at each
point in time, the asset volatility calculated will be assumed to be true over the
length of maturity T . The next day, new data has become available, yielding a
new estimate of σV , which then will be assumed to be true over the maturity
T . The same goes for the debt K, given the level of debt K today, this value is
assumed true and constant over the modelling period T , but when valuing the
CDS the next day, new data on the debt K has become available, resulting in
a potentially new value of K.

Essentially, the following steps will be done during the implementation at each
point in time

1. Update latest values of Et, σE , r and K.
2. Estimate values of σV and Vt.
3. Use data to calculate probability of default according to equation (11).
4. Calculate 5 year CDS-spread.

After this has been done for each day during the time interval, a validation
procedure is done on the resulting CDS-spreads from the modelling.

However, a couple of points need further specification, namely how one chooses
T and K, how one estimates Vt and σV and in detail how one calculates CDS-
spreads given a probability of default on some time horizon T .
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3.1.2 Chosing T and K

The choice of maturity T and debt level K are not predetermined by Merton, so
before one can start modelling using the Merton model, one much first make an
assessment of these parameters. The debt level K is, according to the model,
the debt that is due at time T , i.e. at this time, the company assets must
exceed the debt level, otherwise the company is said to default. In order for
the implementation to be as realistic as possible, one should chose, for some
maturity T , the debt level that is due at this time according to what the company
presents. Of course, a company has payments due at many points in time
during, for instance, a year, so when choosing some T and a K connected to
that maturity, in terms of reality, that does not mean that all debt is due exactly
at time T . However, the Merton model interprets the input this way. So when
choosing these parameters, one should be aware that the exact interpretation of
the parameters are not the same in the model world and real life. Hence, one
must find a maturity and debt level that somehow balances this distinction.

The data related to debt that is available is the data presented in the balance
sheet plus the debt distribution of the company’s issued bonds and loans. The
balance sheet distinguishes between short-term liabilities and long-term debt.
Short-term meaning debt due within one year and long-term meaning any debt
with maturity of more than one year. The debt presented in the balance sheet
includes all the different debt types, ranging from debt raised from bond is-
suance, taxes, bank loans etc. The only drawback is that the maturity of debt
is not categorised more than short-term and long-term. Here, the debt distribu-
tion of bonds has an advantage as one can clearly see when in time the bonds are
due, making it possible to vary the maturity time T and get the exact amount
of debt due at that time. However, this detailed distinction of the debt is exclu-
sive to bonds and certain loans, hence completely leaving out other liabilities.
Moreover, since the implementation will be done on historic data, it appears
that historic debt distributions of bonds and loans are not as easily accessible
as the current. For simplicity, only the data related to debt provided in the
balance sheet will be used, although this means it is a bit more unclear how
the long term debt is distributed, one can atleast easily access historic balance
sheets, making this choice of debt source more attractive.

Two immediate choices of T andK are available. The first being simply choosing
T = 1 year and K equal to short term liabilities. This is a good choice since it
is known for a fact that the short term liabilities are due within one year. The
other choice is choosing K equal to long term debt + short term liabilities, i.e.
all the debt that the firm is said to have, and then choosing T as some fairly
long maturity when one assumes the majority of the long term debt to be due
within.

The long-term debt contains the bulk of the total debt of the firm usually,
therefore it is reasonable to include it. However, in doing so the choice of
maturity T is not obvious, since for some companies, T = 20 years may be
true, while for others T = 5 years is more appropriate. A quick screening in
Bloomberg for different companies indicate that T = 10 years is a reasonable
maturity on average.
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Figures 21 through 26 shows the market capitalisation, the short-term liabilities
and the total debt of the companies to be analysed, related to T = 1 and T = 10
years, respectively. Looking at the graphs, one can see that the overall trends in
the short-term debt and total debt usually follow each other, however for J.C.
Penney and Peabody, the long term debt makes a ”jump” during one point in
time where the short-term debt does not appear to follow the trend. Because
of differences like this, one would expect to get different end results, at least for
these two companies, since the long- and short-term debt data appears to give
different information at times.
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Figure 21: Market capitalisation, short-
term debt and total debt of US Steel
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Figure 22: Market capitalisation, short-
term debt and total debt of J.C. Penney
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Figure 23: Market capitalisation, short-
term debt and total debt of Avon Prod-
ucts
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Figure 24: Market capitalisation, short-
term debt and total debt of Bombardier
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Figure 25: Market capitalisation, short-
term debt and total debt of Peabody
Energy
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Figure 26: Market capitalisation, short-
term debt and total debt of Advanced
Micro Devices

3.1.3 Estimating Vt and σV

In the section presenting the Merton model, two vital relations are found used for
estimating Vt and σV , namely equation (6) and (10). In order to successfully
find values of asset and asset volatility, these equations must be restated so
that they can be solved numerically and simultaneously. The LHS (Left Hand
Side) in both equation (6) and (10) are known, so one has the possibility of
subtracting the LHS to the RHS (Right Hand Side) and setting both equations
equal to zero and solving for Vt and σV . However, empirical tests show that
the order of magnitude of equation (6) is significantly larger than equation (10).
A better choice is found to be simply to divide the RHS by the LHS in both
equations and solving for Vt and σV when both equations are set equal to 1.
Equationwise, this translates to

fV =
VtN(d1)− er(Tt)KN(d2)

Et
− 1

fσV =
N(d1)σV Vt
σEEt

− 1.

And solving for Vt and σV when fV = 0 and fσV = 0. In order to solve these
equations simultaneously, a new function is defined, merging the two functions
together, using the fact that the true value is found when both functions equal
zero. Empirical tests show that σV is more volatile than Vt, and that fσV is
much more dominant in deciding σV than fV . Hence, more weight is put on
solving fσV accurately. The following combined function has shown to achieve
good results

F = 100 · f2σV + f2V . (14)

In order to get as good results as possible, a fixed point iteration procedure
is first applied on F , just to get rough estimates of Vt and σV , since the true
values of Vt and σV are found when F = 0. Then, starting from the point found
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in the fixed point iteration, a minimisation routine is run on F . Obviously, the
smallest value possible for F to attain is zero, also the point where the true
parameter values are found. It is in this step the factor 100 becomes important,
otherwise, the minimisation routine focuses too much on fV and returns poor
values of σV .

The factor 100 was found through empirical tests. For a choice of factor, Vt and
σV were estimated. The resulting parameters were then plugged into |fV | and
|fσV | and then analysing the order of magnitude of the absolute error for the
respective functions. The choice of factor of 100 yielded the smallest errors as
well as the most balanced errors between the functions.

The following pseudo-code outlines the major points in finding the parameters:

1. At time t, retrieve latest values of Et, σE , r and K.
2. Define fV and fσV anew with up to date data, letting Vt and σV be free
variables.
3. Define F using fσV and fV , then apply a fixed point iteration on F in
order to find estimates V̂t and σ̂V .
4. Apply minimisation routine on F , starting in the point (V̂t, σ̂V ) to obtain
estimates (V ∗t , σ

∗
V ).

3.1.4 Calculating the CDS-spread

Although equation (1) gives a nice formula to calculate the CDS-spread, one
quickly realises that the probability of default at each point in time is required.
From the modelling stage, only the probability of default at time T is returned.
One needs to impose some scheme in order to transform a probability of default
at some time T for an arbitrary time t. Infinitely many such transformations
exist, which one to use depends on how one believes the probability of default
to be distributed over time.

One approach is to assume constant conditional default probabilities, i.e. the
probability of default during year one is the same as the probability of default
during year 2, given that there was no default during year one, etc. This of
course translates to all time-intervals. Formally, this can be represented the
following way (assuming T is denoted in years), letting pT be the default prob-
ability within T years, and pt be the default probability within t years, where
n · t = T .

1− pT = (1− pt)n → pt = 1− (1− pT )1/n (15)

From the modelling step, pT will be known so equation (15) provides a simple
relation between pt and pT . Moreover, equation (1) can be simplified. Note that
the factor (q(ti−1)−q(ti)) is the conditional probability of a default on the time
interval [ti−1, ti]. Since it is assumed that the conditional default probabilities
are constant, this factor simply becomes pt, where t is the length of the interval
[ti−1, ti]. In this case, t will be equal to 3 months, or 0.25 years.

As stated, many other transformations of the probability exist, but assuming
constant conditional default probabilities, given the information at hand at each
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point in time seems fairly reasonable as the debt level K is constant until ma-
turity T . Since this model-scheme does not impose any further specification of
how the default level is distributed until maturity, assuming constant conditional
default probabilities probably is the best guess.

The discount factor D(ti) is simply defined the following way, assuming contin-
uous discounting: D(ti) = e−r·ti , where r is the annual risk free rate of return.

3.2 The Black-Cox Model

3.2.1 Outline of implementation

The major difference between the Black-Cox model and the Merton model is
the fact that default is allowed to occur at any point. This is an advantage in
the sense that it may be considered a more real world-like feature. However,
the most obvious drawback with this property is that, unless one assigns certain
dynamics to the default threshold, closed-form solutions of the probability of
default is no longer possible. But also, the equations used to find values of Vt
and σV in the Merton model are no longer necessarily true.

Two different dynamics of the default threshold K will be tested. The first being
when one assumes the dynamics to be K(t) = K0e

kt, k ≥ 0, i.e. continuously
increasing over time by a factor k, and the second being when one assumes
the default threshold to be constant over time, hence making it possible to use
similar relations as for the Merton model. Note however that the case with
constant default threshold is just a special case of K(t) = K0e

kt with k = 0.

A possible interpretation of the continuously increasing default threshold can
be seen when one rearranges the payoff of equity holders, seen later in equation
(16). The process Xt can now be viewed as an asset process continuously having
some negative cash flow of a factor k, which can be thought of as a combination
of dividends of the stock, interest on loans etc which seems very reasonable.
This interpretation makes this choice of default threshold seem like a more
valid option.

Another issue emerges with this choice of default threshold. No companies are
identical to each other, some pay dividends, some do not. Hence, perhaps the
factor k should be unique for each company. Though, it is a little unclear how
one would go about estimating the value for each company. The dividend yield
is of course possible to obtain, but the average interest rates on loans and bonds
going back in time are not as easily obtainable. Moreover, it is neither obvious
if the value of k should vary from day to day, like the volatility. Since there
appears to be some issues with deciding the value of k, the easy route is chosen,
i.e. the same values of k will be used for the different companies, and will be
the same throughout the period of analysis. However, one can bear in mind the
interpretation mentioned above, so that one has some idea of what is going on.

For this choice of default threshold, it will still be possible to use closed form
solutions of the default probability according to equation (12), though the re-
lations connecting asset volatility and asset value that emerge when assuming
a continuously increasing default threshold are far from as short and simple as
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the equivalent relations of the Merton model. However, if one was to consider
using a stochastic default threshold, or another advanced dynamic for the de-
fault threshold, one is all but left with Monte Carlo simulation of the company
assets and the default threshold.

3.2.2 Estimating Vt and σV

First of all, in the case of assuming a default threshold following the dynamics
K(t) = K0e

kt, k ≥ 0, the payoff to equity holders can be stated the following
way

ET =

(VT −KT )+,min
s≤T

(Vs −Ks) ≥ 0

0,min
s≤T

(Vs −Ks) ≤ 0.

I.e., if no default has occurred, equity holders get what is left after the debt KT

has been paid. However, if a default occurs, equity holders get nothing.

This is exactly the payoff of a down-and-out European call-option with a time-
dependant barrier (constant in the case of k = 0) which at maturity is equal
to the strike of the option. This option is path-dependent, i.e. not only the
terminal value of the underlying security is of interest in terms of the cash
flows of the derivative, but also the route the underlying security takes is of
importance. Knowing this, the value of equity at time t can be calculated as

Et = EQ
[
ET |Ft

]
= e−r(T−t)EQ

[
(VT −KT )+I{min

s≤T
(Vs−Ks)≥0}|Ft

]
=

e−r(T−t)ekTEQ
[
(e−kTVT −K0)+I{min

s≤T
e−ksVs≥K0}|Ft

]
Here e−ktVt is set equal to Xt, where Xt is an adjusted value of assets. The
process Xt can now be viewed as an asset process continuously having some
negative cash flow of a factor k mentioned earlier. I.e., Xt has the following
dynamics

dXt = Xt(r − k)dt+XtσV dW
∗
t (16)

Hence, the value of equity at time t can be rewritten as

Et = ekT e−r(T−t)EQ
[
(XT −K0)+I{min

s≤T
Xs≥K0}|Ft

]
. (17)

The reason for rewriting the expression like this is simply because one then has
removed the time-variability of the default threshold, making it possible to find
closed form solutions to the expression, which can then be used in order to find
values of Vt and σV .

In order to find the closed-form solution of the down-and-out European call
option, first note the cash-flows of the down-and-in European call option denoted
CDIT . The underlying security needs to dip below a certain threshold during
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some point in time in order to not be worthless, as opposed to the down-and-
out call option. Let CDOT denote the payoff of the down-and-out European call
option and CT denote the payoff of a vanilla European call option.

CDIT =

0,min
s≤T

(Xs −K0) ≥ 0

(XT −K0)+,min
s≤T

(Xs −K0) ≤ 0.

CDOT =

(XT −K0)+,min
s≤T

(Xs −K0) ≥ 0

0,min
s≤T

(Xs −K0) ≤ 0.

If one was to combine the payoffs of the down barrier options, one would then
get the following payoff:

CDOT + CDIT = (XT −K0)+ = CT

This is exactly the payoff of a vanilla European call option. Hence, the combined
price at any given time t ≤ T of the down-and-out call option and the down-
and-in call option must equal the price of the vanilla call option due to identical
cash-flows, otherwise there would be an arbitrage one could take advantage of.
Therefore, the price of the down-and-out call option must be

CDOt = Ct − CDIt .

Where CDOt , CDIt and Ct denotes the prices of the down-and-out call option,
the down-and-in call option and the vanilla call option respectively at time t.

The price of the down-and-in call option with underlying security Xt, following
the dynamics of equation (16), with strike equal to K0 and barrier equal to K0

can be shown to be [10]

CDIt = Xte
−k(T−t)

(
K0

Xt

)2e1

N(e2)−K0e
−r(T−t)

(
K0

Xt

)2e1−2

N(e2 − σV
√
T − t)

(18)

with

e1 =
r − k +

σ2
V

2

σ2
V

e2 =
log
[
K0

Xt

]
σV
√
T − t

+ e1σV
√
T − t.

Moreover, using the same notation, the price of the vanilla call option can be
expressed as

Ct = Xte
−k(T−t)N(f1)−K0e

−r(T−t)N(f2) (19)
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with

f1 =
log
[
Xt
K0

]
+ (T − t)(r − k +

σ2
V

2 )

σV
√
T − t

f2 = f1 − σV
√
T − t.

Combining these expressions presented in equation (18) and (19), the price of
the down-and-out European call option at time t can be found as

CDOt = Ct − CDIt =

Xte
−k(T−t)N(f1)−K0e

−r(T−t)N(f2)−Xte
−k(T−t)

(
K0

Xt

)2e1

N(e2)+

+K0e
−r(T−t)

(
K0

Xt

)2e1−2

N(e2 − σV
√
T − t)

Tying it all together and returning to equation (17), the value of the company’s
equity at time t is

Et = ekT · CDOt (20)

where, as previously stated, Xt = e−ktVt.

Another relation can be found in the same way as for the Merton model. Using
the fact that equation (9) still holds true, one only needs to find ∂Et

∂Vt
to complete

the relation.

Let Et = g(Vt, t), then by Ito’s lemma, the term ∂Et
∂Vt

= ∂g
∂x (Vt, t), where one

simply substitutes Xt with e−ktVt. After calculating the differential (see section
9.1 in Appendix A), one can show that

∂Et
∂Vt

= N(f1) +

(
K0e

kt

Vt

)2e1[
e−(r−k)(T−t)(2− 2e1)

Vt
K0ekt

N(e2 − σV
√
T − t)−

N(e2)(1− 2e1)

]

By inserting this in equation (9), one has an additional relation between equity
and assets, which now also includes a relation between the asset volatility and
the equity volatility. This expression is far from as elegant as the equivalent
expression in the Merton model, but is just as important here.

Hence, one has two expressions for the equity of the firm, and thus a relation
between the assets and the asset volatility. Solving these equations like in the
case for the Merton model, one gets estimates for the assets Vt at time t = 0
and the asset volatility σV . However, since the choice of k plays a crucial part
in these expressions, one must first decide this value.

3.2.3 Chosing k

There is no straightforward academic methodology in choosing this value, it all
depends on how aggressive one wants the growth of the default threshold to be.
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Values to be used in this thesis will be k = 0, k = 0.01 and k = 0.05 for the
same maturities as for the Merton model. Here, the value of k = 0 is reasonable
since one then assumes a constant default threshold, which is a natural thing to
test. Moreover, the choice of k = 0.01 is around the same level as the risk-free
annual rate of return during the time period analysed in this thesis, see figure
20. One could argue that one then perhaps should chose k simply as the current
LIBOR-rate, but k = 0.01 is chosen to keep things simple. Finally, the choice
of k = 0.05 is chosen to have one case where the default threshold has a quite
aggressive increase over time.

3.3 Regression Model

3.3.1 Outline of implementation

The parameters in the regression model will be based on the first year of data
of the companies in the analysis, hence resulting in a set of parameters that
will be constant throughout the validation for each company. One can argue
that it would be better to use a regression model based on a rolling window
of which the model parameters are based on, re-estimated each day, using the
most recent information and discarding old and possibly irrelevant data. It
seems natural that such a scheme will yield better results than when using a fixed
time interval used to estimate the parameters on, the model is constantly fed the
most relevant data. However, in doing so, the describing variable (the equity
volatility in this case) becomes less important and needs not be a significant
regressor to still yield adequate results, this would be especially clear if using a
very short window-width.

Since the equity volatility intuitively seems to be negatively correlated with the
CDS-spreads, a fix time frame of one year of which the model parameters are
based should be sufficient to capture the relation, and hopefully result in an
adequate, simple model.
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4 Validation

There are a couple of issues that arise in the validation step. Firstly, as previ-
ously stated, the assets Vt are not observable, hence, it is impossible to directly
validate the chosen model against the assets. Secondly, one does not have a
distribution one can expect the resulting model implied CDS-spreads to follow,
making it difficult to assess residuals like one would do in regression analysis for
instance. Instead, one is forced to look into to other methods of validation.

Since the object of the thesis is to model CDS-spreads through the structural
models, assuming the market-spreads to be true, one would preferably want
the model-implied CDS-spreads to be in the range of the true spreads, not
diverging too much from the true spreads. Hence, one would preferably want
the residuals to be stationary, i.e. having the same mean and volatility over
time. However, since the volatility of debt or equity may not be the same
over time, one may perhaps need to adjust the residuals for the current level
of volatility before checking stationarity. In other words, during times when
the CDS-spreads are more volatile and trading at higher absolute levels, one
may expect also the absolute residual error to be larger than during calm times.
Therefore, by adjusting for the current level of volatility, one can perhaps end
up with stationary residuals.

Another point worth looking into is the fact that the spreads found through the
structural model may show to constantly understate or overstate the market
spreads. In this case, one would first need to check the average level of error the
model produces and adjust for this before digging into the residual analysis.

Analysing the autocorrelation of the residuals is of interest as well. After one
has adjusted for a potential constant error level, one would preferably want the
residuals to be uncorrelated for all time lags |τ | > 0. If one can show that that
the residuals in fact are uncorrelated for all lags, then one can argue that there
is no further structure in the market spreads that can be modelled, i.e. all of the
potential structure in spreads have been taken into account, and what remains
is purely noise.

Finally, the validation will be more or less model-independent, i.e. regardless of
model up for analysis, the validation methods will be the same.

As a final test, the generated model-spreads and their performance will be com-
pared with the performance of a very simple and näıve regression of the market
spreads, regressed against the equity volatility. As one can see in figures 2
through 19, presenting the data to be used in the analysis, one sees that the
equity volatility appears to correlate quite strongly with movements in the CDS-
spreads, further arguing in favour of the regression.

The regression will simply be based on the first year of data for each firm, and
then validated on the remainder of the data. The residuals can then be analysed,
and since one now also has an assumption on the distribution of the errors, one
can check if the residuals follow said distribution or not.
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5 Results

5.1 The Merton Model

5.1.1 T = 1 Year

With T = 1 year, the debt level is set equal to the short-term liabilities. Figure
27 through 32 shows the calculated asset values of all the companies analysed
along with the market capitalisation and the debt level.
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Figure 27: Asset value, market capital-
isation and short-term liabilities of US
Steel
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Figure 28: Asset value, market capital-
isation and short-term liabilities of J.C.
Penney
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Figure 29: Asset value, market capitali-
sation and short-term liabilities of Avon
Products
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Figure 30: Asset value, market capitali-
sation and short-term liabilities of Bom-
bardier
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Figure 31: Asset value, market capi-
talisation and short-term liabilities of
Peabody Energy
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Figure 32: Asset value, market capital-
isation and short-term liabilities of Ad-
vanced Micro Devices

A very rough estimate of the market value of assets when the maturity T is
small is the sum of book value of debt and market capitalisation. The reason
for this is simple. When the maturity is very small, there is also little room
for the assets to vary, since under the lognormal assumption, nothing to crazy
can happen during a short period of time. Hence, the value of the option today
roughly becomes the payoff of the option, i.e. Et ≈ Vt −K.

Figures 33 through 38 shows the estimated values of σV and σE for the compa-
nies to be analysed. One can clearly see that the values of σV tend to be much
small than the values of σE , implying that the volatility of the debt of the com-
pany is less volatile. Moreover, one can see that the asset volatility seems to be
following the same trend as the equity volatility, although it appears to be much
less volatile. This becomes evident for Bombardier, which can be seen in figure
36. The equity volatility varies up and down quite aggressively in the beginning,
with a distinct spike in volatility at the very end of the time period. The asset
volatility in this case however looks to be slowly decaying, with an upward turn
at the very end, though far from as major as for the equity volatility.
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Figure 33: Asset volatility and equity
volatility of US Steel
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Figure 34: Asset volatility and equity
volatility of J.C. Penney
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Figure 35: Asset volatility and equity
volatility of Avon Products
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Figure 36: Asset volatility and equity
volatility of Bombardier
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Figure 37: Asset volatility and equity
volatility of Peabody
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Figure 38: Asset volatility and equity
volatility of AMD
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The presented values of assets Vt and asset volatility σV are then used to calcu-
late the Distance-to-Default, which then in turn is used to calculate the one year
default probability. With the obtained default probabilities, the CDS-spreads
can be inferred. Figure 39 through 44 shows for each company the calculated
CDS-spreads versus the market spreads, the difference between the spreads,
the ratio between the spreads and finally the market spreads versus the model
spreads adjusted for the average error over the period.
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Figure 39: Results and CDS-spreads for US Steel
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Figure 40: Results and CDS-spreads for J.C. Penney
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Figure 41: Results and CDS-spreads for Avon Products
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Figure 42: Results and CDS-spreads for Bombardier
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Figure 43: Results and CDS-spreads for Peabody Energy
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Figure 44: Results and CDS-spreads for Advanced Micro Devices

Obviously, it goes without saying that the resulting model-spreads are very
poor. The absolute level of the model spreads are far below the market spreads.
Looking at the residuals, it is clear that they are far from stationary. One
could possibly argue that the residuals seen in figure 42 for Bombardier are
somewhat stationary, but the reason for this seems to be because the market
spreads themselves seem to be stationary in combination with the fact that the
model spreads are very close to zero. Moreover, looking at the adjusted model
spreads, one sees that the model spreads does a poor job in following movements
of the market spreads for all companies, only major movements in the market
spreads do the model spreads seem to follow.

Table 2 shows the average residual error and the standard deviation of the
residuals for each company. The metrics are calculated based on the residuals
shown in the top right chart of figures 39 through 44. Here Bombardier appears
to have the smallest standard deviation, which is due to the relative stationarity
of the residuals.
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Table 2: Average residual error and standard deviation of residuals for T = 1
year

Name Average Error (BPS) SD of Residuals (BPS)

United States Steel Corp -539.94 133.13
J.C. Penney Co -605.07 270.37

Avon Products Inc -298.40 137.87
Bombardier Inc -327.37 51.11

Peabody Energy Corp -375.21 98.32
Advanced Micro Devices -561.90 139.09

The bottom left chart in all figures show the ratio between model spreads and
market spreads. The time series for this metric does not look stationary for
any company. The biggest problem is the fact that the model spreads seem to
understate the CDS-spreads so much that they sometimes appear to be around
zero.

It is clear that the choice of maturity as one year and the default level as the
short-term liabilities generate very poor results when modelling CDS-spreads.
Further results can be presented, but since the overall performance of the model
spreads are so poor, there really is no point in doing so.

5.1.2 T = 10 Years

In this case with T = 10 years, the debt level is set equal to the short-term
liabilities plus the long-term debt. One can perhaps expect that the results
from this choice of maturity and default level should be better than for T = 1
year since more data specific to the company is taken into account.

Figure 45 through 50 shows the calculated asset values of the companies along
with the market capitalisation and the debt level. These figures can be compared
with figures 27 through 32 for the maturity T = 1 year. One can observe that
the overall trend of the asset values for T = 10 years are about the same as
for T = 1 year, but the absolute level of the asset values seem to have had an
overall increase. This is connected to the fact that the debt level is increased as
well.
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Figure 45: Asset value, market capital-
isation and short-term liabilities of US
Steel
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Figure 46: Asset value, market capital-
isation and short-term liabilities of J.C.
Penney
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Figure 47: Asset value, market capitali-
sation and short-term liabilities of Avon
Products
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Figure 48: Asset value, market capitali-
sation and short-term liabilities of Bom-
bardier

42



Date
11-Oct 12-May 12-Nov 13-Jun 14-Jan 14-Jul 15-Feb

M
 U

S
D

×10
4

0

0.5

1

1.5

2

2.5
Assets, Market cap and Debt level - Peabody Energy (T=10)

Assets
Market Capitalisation
Total Debt

Figure 49: Asset value, market capi-
talisation and short-term liabilities of
Peabody Energy
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Figure 50: Asset value, market capital-
isation and short-term liabilities of Ad-
vanced Micro Devices

Moreover, figure 51 through 56 shows the calculated asset volatility and the
equity volatility. The charts can be compared with figures 33 through 38 re-
spectively, which are the equivalent graphs but for T = 1 year. Here one can
see that the asset volatility has had an overall increase, although there are a
couple of period for certain companies where the asset volatility has decreased
compared with for T = 1 year. The asset volatility also seems to follow the
movements of the equity volatility better also.

Because of this increase in asset volatility, one can expect higher default proba-
bilities, since a higher volatility leads to larger movements in the assets, which
in turn yields higher probabilities of the assets falling below the default thresh-
old. Consequently, one can expect an overall increase in CDS-spreads, which,
considering the results for T = 1 year, would be an improvement.
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Figure 51: Asset volatility and equity
volatility of US Steel
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Figure 52: Asset volatility and equity
volatility of J.C. Penney
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Figure 53: Asset volatility and equity
volatility of Avon Products
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Figure 54: Asset volatility and equity
volatility of Bombardier
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Figure 55: Asset volatility and equity
volatility of Peabody
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Figure 56: Asset volatility and equity
volatility of AMD

Figures 57 through 62 shows the resulting CDS-spreads of the model along
with the market spreads, the difference between the spreads, the ratio between
the spreads and the market spreads versus the model spreads adjusted for the
average error over the period. As suspected, the spreads have now become
larger, although a little too large in many cases. Now however, one can see that
the model-spreads appear to follow the trend of the market-spreads quite nicely
in several cases.

Table 3 shows the average residual error and the standard deviation of the
residuals for the analysed companies. Only in the case of Avon Products is the
average residual error negative, it also happens to be the company where the
standard deviation is the smallest. Overall, the model does an acceptable job
in following the major trends in the market-spreads, although it fails to keep up
with all the movements in the market. The major trends are obviously followed
quite well, though the relative error is not perfectly stationary as seen in the
charts, but is still a great improvement over the equivalent charts for T = 1
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year.

Table 3: Average residual error and standard deviation of residuals for T = 10
years

Name Average Error (BPS) SD of Residuals (BPS)

United States Steel Corp 68.20 173.99
J.C. Penney Co 256.30 415.22

Avon Products Inc -92.86 111.87
Bombardier Inc 121.30 201.68

Peabody Energy Corp 134.33 202.71
Advanced Micro Devices 158.11 148.31
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Figure 57: Results and CDS-spreads for US Steel

For US Steel, the model overstates the CDS-spreads during many time periods,
but the overall market trend appears to be somewhat captured by the model.
However, neither the residuals nor the model spreads divided by the market
spreads appear to be particularly stationary.
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Figure 58: Results and CDS-spreads for J.C. Penney

As for US Steel, the model overstates the CDS-spreads on several occasions
for J.C. Penney, though the trends seems to be followed in an acceptable way.
Obviously, the residuals are far from stationary.
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Figure 59: Results and CDS-spreads for Avon Products

The results for Avon Products are fairly good, at least when having adjusted
for the average residual error. The overall trend is there, although the model
cannot quite capture the rise in the CDS-spreads in the middle of the period.
The model also appears to overstate the market at the very end of the period.
The residuals are not stationary in this case either though, however, one can
perhaps argue that the models spreads relative the market spreads, from May
2012 and forward show slight hints of stationarity.
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Figure 60: Results and CDS-spreads for Bombardier

The model-spreads in the case of Bombardier appears to be severely overstated
almost all the time. Also, the trends seem to be massively amplified. In this
case, it is also obvious that the residuals are not stationary as there seems to be
a negative trend in the residuals. The same goes for the model spreads relative
the market spreads.
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Figure 61: Results and CDS-spreads for Peabody Energy

Like for Bombardier, in the case of Peabody Energy, the model seems to mostly
overstate the CDS-spreads as well as amplify the trends in the market. However,
in this case, apart from the very end, the residuals look fairly stable, looking
somewhat stationary.
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Figure 62: Results and CDS-spreads for Advanced Micro Devices

The results for Advanced Micro Devices are quite nice. When adjusting for
average error level, the model spreads and the market spreads seem to move
together nicely. Also, the residuals look somewhat promising here, apart from a
dip in the residuals just before May 2012. Also, the model spreads relative the
market spreads seem to vary between 1.2 and 1.4 during most of the period.

In summary, the results from the Merton model when one is very strict about
how one chooses the maturity and debt level are rather unsatisfactory. At least
for T = 10 years, the model manages to capture the major trends in the market-
spreads, but does a poor job in following the market for minor changes. The
results are even more poor for T = 1 year, here only very extreme changes in
the market spreads are somewhat followed by the model. Due to the results
for the Merton model being very poor, no further tests on stationarity and
uncorrelated residuals is presented, the figures with the model-spreads versus
the market-spreads speak for themselves.

5.2 The Black-Cox Model

5.2.1 T = 1 Year

Just as for the Merton model, with the maturity chosen as T = 1 year, the debt
level is chosen as the short-term liabilities. Moreover, the default-threshold is
assumed to continuously increase over the period according to K(t) = K0e

kt, i.e.
at maturity, the default-threshold is equal to the short-term liabilities. Results
will be presented for k = [0, 0.01, 0.05].
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The results for this specific maturity and choices of k are very disappointing,
and are thus instead presented in the appendix. Section 9.2.1 through 9.2.3 in
Appendix B shows the resulting model-spreads, residual error and ratio between
the market and model-spreads for all companies analysed.

The results are very similar to those of the Merton model for the same maturity.
The only case where one achieves somewhat acceptable results is for Advanced
Micro Devices in the case of k = 0.05. Albeit, looking at the residuals, they are
not perfectly stationary as there is a big jump in the model spreads somewhere
around the winter of 2012-2013. However, if one overlooks this period, and then
looks at the bottom right chart, where the market-spreads are plotted against
the model-spreads adjusted for the average error over the period, one is left
with something that actually looks reasonably stationary and actually follows
the market-spreads quite nicely. However, the overall results for this choice of
parameters for the other companies are far too poor, hence, no further analysis
will be done for these results.

Since the Merton model showed increased performance when the maturity and
debt level increased, one can hope for similar results for the Black-Cox model.

5.2.2 T = 10 Years

As for the maturity T = 1 year, results for k = [0, 0.01, 0.05] will be presented.
The major difference between these two maturities for the Black-Cox model is
that the longer maturity will make the impact of the continuously increasing
default-threshold more greater. During a period of one year, the threshold will
only vary a factor e−k from the maximum value. However, during a period of
ten years, the factor will be e−10k, which will be much greater of an impact.

Tables 4 through 6 shows the average error of the residuals and the correspond-
ing estimated standard deviation of the residuals. One can very clearly see how
the value of k affects the size of the resulting model spreads. For a value of k
equal to zero, the average residual error is negative for all companies, implying
that the model spreads are too low. However, for a value of k = 0.05, the
opposite occurs. The average residual error instead becomes positive, meaning
that the model spreads are larger than the market spreads. However, the choice
of k = 0.01 seems to yield average residual errors close to zero, as half of the
companies have positive residual errors and half have negative residual error.

Moreover, looking at the estimated standard deviations of the residuals, it is
clear that the choice of k = 0.01 yields the best results as the standard deviation
of the residuals is smallest for all the companies in this case, except for US Steel,
which has the smallest standard error when k = 0.05.
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Table 4: Average residual error and standard deviation of residuals for Black-
Cox model, T = 10 years, k=0

Name Average Error (BPS) SD of Residuals (BPS)

United States Steel Corp -279.69 170.66
J.C. Penney Co -257.73 226.82

Avon Products Inc -104.61 101.50
Bombardier Inc -231.96 107.92

Peabody Energy Corp -49.68 184.33
Advanced Micro Devices -48.77 133.42

Table 5: Average residual error and standard deviation of residuals for Black-
Cox model, T = 10 years, k=0.01

Name Average Error (BPS) SD of Residuals (BPS)

United States Steel Corp -30.10 93.73
J.C. Penney Co -59.73 126.71

Avon Products Inc -54.85 101.41
Bombardier Inc 96.74 74.83

Peabody Energy Corp 108.72 94.14
Advanced Micro Devices 58.98 104.74

Table 6: Average residual error and standard deviation of residuals for Black-
Cox model, T = 10 years, k=0.05

Name Average Error (BPS) SD of Residuals (BPS)

United States Steel Corp 537.80 67.13
J.C. Penney Co 428.81 175.97

Avon Products Inc 219.00 105.91
Bombardier Inc 800.84 75.92

Peabody Energy Corp 529.17 163.77
Advanced Micro Devices 428.83 111.72

Table 2 and 3 are the corresponding tables for the Merton model for the maturity
T = 1 year and T = 10 years respectively. Comparing table 5 with these tables,
it is evident that the Black-Cox model, with a maturity of 10 years and k = 0.01
is better than the Merton model in terms of average residual error and standard
deviation of the residuals.

The resulting charts for k = 0 and k = 0.05 are presented in Appendix B,
section 9.2.4 and 9.2.5. Since the results were deemed most satisfactory in the
case of k = 0.01, these results will be presented and further analysed.

Figures 63 through 68 shows the resulting model-spreads, residual error and
ratio between the market and model-spreads for all companies analysed for
k = 0.01.

By looking at the figures, one can now see that the model spreads very nicely
follow the market spreads in a way the Merton model was nowhere close to do.
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There are surprisingly few cases where the model spreads and market spreads
diverge significantly, the most apparent ones are at the very beginning of J.C.
Penney, in the middle period for Avon Products and at the end for Peabody
Energy. Other than in those cases, the model fits the market quite nicely. Note
also that the average residual error is very small for all the companies, which can
be seen in table 5, meaning that the model spreads adjusted for average error
seen in the bottom right charts diverge little from the original model spreads.
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Figure 63: Results and CDS-spreads for US Steel
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Figure 64: Results and CDS-spreads for J.C. Penney
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Figure 65: Results and CDS-spreads for Avon Products
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Figure 66: Results and CDS-spreads for Bombardier
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Figure 67: Results and CDS-spreads for Peabody Energy
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Figure 68: Results and CDS-spreads for Advanced Micro Devices

Looking at the residuals for the companies, there appears to be a lot more sta-
tionarity than for the Merton model. Especially Peabody Energy and Advanced
Micro Devices show fairly nice properties. Also, Bombardier looks acceptable,
if one ignores the very beginning of the period. The same can be said about
J.C. Penney.

Moreover, looking at the ratio between the model spreads and the market
spreads, one can see that many of the companies show a fairly stationary time
series. As before, Advanced Micro Devices seems to perform best, followed by
Peabody Energy and Bombardier. Avon Products and J.C. Penney also look
promising, if one, like earlier, ignores the very beginning of the period. US Steel
also has an overall acceptable performance, but there appears to be a ”spike”
in the model spreads at the very end of the period which ruins the results a bit.

Since the residuals are not perfectly stationary, a further study is made by
simply taking the mean adjusted residuals and dividing them by the calculated
asset volatility at each point. The reason why this analysis may be relevant is
because one can potentially expect that higher residuals may be associated with
a higher volatility. If one can manage to obtain more stationary residuals when
adjusting for volatility, then one has managed to capture a very large part of
what determines the CDS-spreads.

Figure 69 shows the mean adjusted residuals divided by asset volatility for all
companies. Since the volatility is in units of percentage, the output shown in
the charts can be interpreted as number of basis points per percentage of asset
volatility.
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Figure 69: Mean adjusted residuals divided by corresponding asset volatility

These adjusted residuals do not look perfectly stationary either, there are how-
ever some differences between the original residuals shown in figures 63 through
68 and the ones presented here. For instance, some of the ”spikes” in the residu-
als for US Steel have been somewhat attenuated. However, there appears to still
be some sort of drift in the adjusted residuals, starting from the beginning of the
period to the middle of the period. The most improvement has probably been
in Peabody Energy. If one looks at the original residuals in this particular case,
one sees that these were very far from stationary as they showed different levels
of volatility throughout the period. Now, however, those changes in volatility
has been almost completely smothered, only the very end of the period shows
non-stationary features, but the rest of the data looks very nice.

Bombardier has also seen some improvement. In the original residuals, one sees
in the very beginning of the period that the residuals are significantly larger
than during other times. In the adjusted residuals, the same property is still
present, but it has been significantly lowered, while the rest of the period, apart
from the very end, looks quite nice in terms of stationarity.

Figure 70 shows auto-correlation plots of the volatility adjusted residuals for
the companies for up to 100 lags. Although one could suspect that the adjusted
residuals would not prove to be an uncorrelated sequence, the charts confirm
this. It can be worth to note that only Peabody Energy appears to have cor-
relations that stabilise at some point in time, from about lag 60-65. However,
the overall results from the auto-correlation charts are quite disappointing.
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Figure 70: SACF plot of mean adjusted residuals divided by corresponding asset
volatility

5.3 Regression Model

Table 7 shows the estimated parameters of the regressions for all companies as
well as the standard error of the residuals. A star (*) next to the parameter
means that it is significant on a 95% level. The resulting parameters confirm the
suspicion that a higher equity volatility would be associated with higher CDS-
spreads. This can be seen as all the slopes are positive, i.e. the parameters
that are multiplied by the current level of volatility. For instance, for US Steel,
the parameter value of the slope of about 15 means that for each percentage of
equity volatility, 15 bps are added to the CDS, which is offset by about −136
bps to begin with.

In almost all cases, the parameters are significant, only Avon Products and
Peabody Energy ”fail” in this sense, so the regression variable appear to make
sense.
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Table 7: Estimated parameters for equity volatility regressed against market
CDS-spreads

Name Constant Slope SE of Residuals

United States Steel Corp -135.87* 14.95* 118.32
J.C. Penney Co -195.07* 12.11* 95.15

Avon Products Inc 150.91* 1.66 96.06
Bombardier Inc -63.53* 9.38* 50.76

Peabody Energy Corp 3.77 5.98* 85.67
Advanced Micro Devices -184.08* 13.25* 164.33

Figures 71 through 76 shows the resulting regression spreads against the market
spreads along with the residuals, a normal probability plot of the residuals and
plot of the residuals versus the corresponding volatility. The assumption is that
the residuals should be Gaussian which the probability plot will assess, also, the
residuals should be uncorrelated with the input data, in this case the volatility,
which the bottom right charts in the figures will analyse.
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Figure 71: Regression results for US Steel

Starting with US Steel, one clearly sees that the assumptions of Gaussian errors
are violated as the data points in the tail diverge from the rest of the data in
the probability plot. Also, the regression does a rather poor job in modelling
the spreads as seen in the top left chart. However, the residuals seems to be
uncorrelated with the input, looking at the bottom right chart, as there seems
to be no clear structure in the scatter plot.
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Figure 72: Regression results for J.C. Penney

J.C. Penney on the other hand looks better in the sense that the residuals look
fairly stationary, there is no drift over time, although there appears to be some
increase in volatility in the middle of the period. The regression also does a
fairly good job at following major changes and shifts in market spreads, but
as for US Steel, the normality assumptions on the residuals do not hold true.
There also appears to be some negative correlation between residuals and input
volatility.
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Figure 73: Regression results for Avon Products

Moving on to Avon Products, it looks as if the regression-spreads can not follow
the market spreads at all. This is partly explained by the fact that the slope-
variable for Avon Products showed to be non-significant, meaning that in this
case, the equity volatility does not provide further information that helps deter-
mine the CDS-spreads. This can perhaps be seen even more clear in figure 9 and
10, where the original data of the equity volatility and CDS-spreads of Avon
Products are shown. There does not seem to be a clear correlation between
the two variables in this case, which might be the reason why the parameter
resulted in being insignificant. However, like for J.C. Penney, there seems to
be some negative correlation between residuals and input volatility. And finally
the normal probability plot looks nothing like a normal distribution at all.
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Figure 74: Regression results for Bombardier

The regression delivers acceptable results for Bombardier. The regression-
spreads look almost like a constant straight line over the period, but manages
to at least follow some movements in the market. The residuals look fairly
stationary, apart from at the very end of the period.
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Figure 75: Regression results for Peabody Energy

Peabody Energy on the other hand shows quite disappointing results as the
regression spreads continuously seem to understate the CDS-spreads. This is
probably due to the fact that the period used for estimating the parameters in
the regression, the volatility was fairly high, but the CDS-spreads low. After
the modelling period, the volatility decays, while the CDS increases. This mis-
match between volatility and CDS is most likely the cause for the look of the
figure above.
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Figure 76: Regression results for Advanced Micro Devices

Finally, Advanced Micro Devices present fairly good results, the regression re-
turns spreads in the correct order of magnitude, and follows the major trends
fairly well. However, it appears to be poor when it comes to large movements in
the market spreads, for instance when the increase rapidly over a short period
of time. One can also see that there appears to be a negative correlation be-
tween the residuals and the corresponding volatility, implying that this simple
regression is probably too simplistic to model the CDS-spreads in this case.
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6 Discussion

The results-section provided mixed results. Some models perform very poorly,
while especially the Black-Cox model proved to be surprisingly good at mod-
elling the CDS-spreads for a certain set of parameters. In this section, the
results are further analysed and potential points of improvement are discussed.

The Merton model showed rather poor results, regardless of maturity chosen,
although the results improved when a longer maturity was chosen. What made
the results poor was the fact that the model seemed unable to catch movements
in the CDS-spreads other than the absolute largest ones. However, in some cases,
the exact opposite occurred, i.e. the model significantly overstated movements
in the CDS-spreads. This resulted in rather unsatisfactory residuals, showing
little to no tendencies of stationarity. Although, for the case when the maturity
was set as T = 1 year, residuals for some companies such as Bombardier seemed
to be fairly stationary, but the only reason for this was due to the model-spreads
being close to zero while the market-spreads looked fairly stationary during those
times. As the model spreads in general followed the market-spreads very poorly,
no further assessment of the residuals was made as for the Merton model.

There are a couple of changes with the current implementation of the model that
one could do to potentially gain more favourable results. First is how the matu-
rity of debt and the debt level is chosen. In this implementation, the two have
been chosen to work well together theoretically, but in terms of performance,
this may not be the best choice of combination. Looking at the results from the
Merton model, it is clear that a maturity of one year is far too short, while a
maturity of ten years may be too long. One could perhaps through empirical
testing arrive at a better combination of the two variables, however, one has
then prioritised practical performance over theoretical correctness. However,
the latter can in a sense be considered to be violated from the very beginning
as the Merton model is far from realistic.

The problem one faces is that if one decides to decrease the maturity T , how
should one then adjust the default level? In the KMV model for instance, as
mentioned in the presentation of the models, the default point is put somewhere
between the short-term debt and total debt, with some appropriate maturity.
However, it is not further described how they go about choosing the default
point, other than its range. One potential choice is choosing T = 5 years
and K = Short term debt + 0.5·Long term debt, just to get the default point
somewhere in the middle with a maturity that should represent this. This
combination of parameters was tested on the companies analysed in this report,
but yielded no better results than the case with a ten year maturity. One could
potentially arrive at better results if one fine tuned the maturity and default
point even more, this was however not further investigated here.

The second point addresses more others findings of the Merton model. The
creators of the KMV model use the basis of the Merton model, but diverges
when it comes to calculation of the probability of default. Instead they have
taken another route, obviously being dissatisfied with the results of a Gaussian
assumption on the distance-to-default metric. Obviously, the data-base used is
proprietary to Moody’s so testing using that is not a possibility, but perhaps
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one could try to change the distribution that maps the distance-to-default to
the default probability. In doing so, one moves away from the classic Merton
approach, and it becomes an entirely new model. A distribution with wider tails
would probably be preferable as too much of the probability mass is centred
around the mean value in the Gaussian distribution, making the probability of
an extreme event highly improbable.

The Black-Cox model however, with the more world-like feature of allowing for
default at any point, as well as enabling a dynamic default threshold, proved to
be superior to the Merton model when modelling the CDS-spreads. Especially
in the case when choosing a maturity of ten years and compound factor of the
debt as k = 0.01, the results were satisfactory. The results were not perfect for
all companies, but what was important was the fact that the model spreads here
actually managed to follow the trends and movements of the market-spreads.
However, the residuals did not prove too be perfectly stationary other than for
a couple of companies during certain time periods. By correcting the residuals
for current level of asset volatility, the residuals were slightly improved in terms
of stationarity, however not perfect.

The volatility-adjusted residuals did not prove to be white-noise however, as
the auto-correlation plots showed clear positive correlation for many lags before
eventually decaying and approaching zero.

Implementation wise, the Black-Cox model enables a couple of features that were
not capitalised on in this report. Specifically, one has the option of choosing
the default-threshold in any way possible. In this particular implementation,
the default threshold was said to increase with a continuous compound rate
of k. What one could do is in a very delicate way assess how the debt of a
firm is distributed, including dividends and coupons of bonds etc, over time.
The debt structure would probably not be perfectly smooth, but rather have
more of a discrete look, moving up and down. One could then with this debt-
structure calculate exactly the default probability during a specific year and use
this information to value the CDS-contract in a more exact way, instead of like
in this implementation calculate only the probability of default by maturity,
and then assume constant conditional default probabilities year-by-year. It is
not evident that this would yield superior results, but would be an interesting
study. However, the task of trying to find historic debt structures would be
tedious. Moreover, the relations used in this report to link the assets and the
equity would no longer hold true. Hence, how one would determine the assets
Vt at each point in time is not straight forward.

In order to get the model-spreads to the right order of magnitude, the model-
spreads are corrected for the average residual error over the entire period. This
can impose a problem if one decides to use, for instance, the Black-Cox imple-
mentation for practical purposes, can one be sure that the average error level
is the same all the time? An interesting study to test this hypothesis would be
to take part of the data and calculate the average error, then use that average
error to correct future market spreads to see if the resulting modified model
spreads seem to map well with the market spreads. If it appears that the aver-
age error is not constant, one can accommodate this issue by perhaps correcting
the model-spreads using, for instance, one year trailing average error.
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As a comparison to the structural models, a very simple regression model was
done on the market-spreads, simply taking the equity volatility as input. The
first year of data for each company was used to build the regression. The results
from this regression were quite poor, but overall could be considered better than
the Merton model and the Black-Cox model with a one year maturity. Judging
from the results, the regression model also seemed to be quite unreliable in the
sense that in some cases, the model works fine, while in other cases, nothing
seems to work, which can be seen in the cases of Avon Products and Peabody
Energy. Although the regression manages to follow the market-spreads fairly
well on a couple of occasions, one runs the risk of the model not working at all,
which is not a feature one would want.

Obviously, the reason for assessing whether a regression produces any results
close to that of the structural models is because implementing a regression is
much, much, simpler. Consequently, if one manages to achieve comparable
results between a structural model and a regressive model, what is the point in
making things more advanced than necessary?

A possible expansion of the regression model could be to incorporate variables
generated from one of the structural models, for instance the Merton model
seeing as this is the easiest of the structural models to implement. Although
the Merton model proved to not perform great, certain metrics generated within
the model can still be of interest, for instance the distance-to-default. Remember
that the KMV model uses this metric, so apparently that metric contains some
information that may be of interest for a regression.

Something worth discussing that is of relevance for all the models is how the data
used is chosen. Specifically two points are worth pointing out. The first point
is the volatility. As argued, the implied volatility of a 90% OTM put option
with a one year maturity is used, as these options seemed to be the most liquid
ones when doing a quick analysis. However, one can question the use of implied
volatility as the demand for certain options vary over time, and as the demand
increases drastically of a certain option, one can expect the price of that option
to increase, and thus also the implied volatility, without any major movements
in the underlying stock needing to have occurred. One possibility to overcome
this issue could be to perhaps use a volatility measure that is simply the average
of several implied volatilities for different maturities and strike levels.

The second issue is the sampling rate of the data. This report has used daily
close data for all variables. But perhaps, using data sampled, say, once per week
would prove better. The advantage of using a lower sampling frequency would
be that a longer data range could be used without the computations taking too
long time. Plus, one would incorporate periods which perhaps showed different
trends and features that would challenge the models further. It would have
been interesting to use the last fifteen years to model on, as one then would
have included the 2007-2008 financial crisis, which created extreme distress for
many companies in a very short period of time. For instance, the 5-year CDS
of Advanced Micro Devices traded at above 5000 bps during a period in 2008,
which is an extremely high level.

Something that would make the results in the report more significant would be
to include more companies to analyse. In this report, six names were used, but
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all of the included companies operated in very diverging sectors, thus no further
companies were included. However, using more companies would of course only
be positive in terms of the significance of the results.

Moreover, one can perhaps question what companies were chosen. As it turns
out, all of the companies used in this report are included in the 24th series of
Markit’s High Yield CDS-Index. One would perhaps want to use also Investment
Grade companies as these firms have a higher credit rating, thus their respective
5-year CDS will generally trade at lower levels.

Generally, one can perhaps expect that Investment Grade companies are more
”stable”, making the prices of their respective bonds and CDS:s less volatile
compared with High Yield companies. Since this study was done on companies,
that for the moment, are High Yield, perhaps testing the best performing model
on an Investment Grade name would not yield any satisfactory results, due to
the smaller volatility, which may not be a feature that the Black-Cox model can
capture effectively. Perhaps the Merton model would prove better in this case.

Moreover, one can also argue that other external variables affect the CDS
spreads for certain Investment Grade companies more than relative increases
in equity volatility or decreases in market capitalisation. For instance, Invest-
ment Grade energy companies may not see their respective CDS-spreads vary
too much unless something drastic happens to the price of oil or gas. If this is in
fact the case, that macro-economic variables more affect the CDS-spreads than
anything else, one would potentially need sector-specific models to successfully
model the CDS-spreads.

Another point that would be interesting to test, and potentially incorporate in
the models, would be the impact on the CDS-spread after changes in credit
rating of the respective companies. A lowered credit rating could potentially
yield an increase in the CDS-spreads, and vice-versa when the credit rating is
improved. However, changes in credit rating does not happen too often, and
many times, the market is already aware of underlying reasons for a change
in credit rating before it happens, making the impact minimal. In some cases
however, the impact can be severe if the change in credit rating comes as a
surprise.
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7 Conclusion

The objective of this thesis was to try to replicate CDS-spreads by modelling
companies assets through structural models, then calculating key metrics such
as probability of default to value the corresponding 5-year CDS-contract. In a
sense, this was possible, depending on how much errors one allows the model-
implied CDS-spreads to have versus the market-spreads.

The Merton model is an overall disappointment and delivers very poor results
when used to model the assets for all maturities tested. The reason for this may
be because the normal distribution that maps the distance-to-default metric to
a default probability is a poor choice.

Better results are achieved with the Black-Cox model, especially for the maturity
of ten years. The Black-Cox model with the longer maturity manages to actually
follow the market-spreads quite well, although the residuals did not prove to be
perfectly stationary. The fact that the model enables default at any time, which
is a more world-like feature, may be an underlying reason for the improved
performance over the Merton model.

The Black-Cox model also performed better than a näıve regression model which
only used equity volatility as input, which means that there is an incentive to
use more advanced models to calculate the CDS-spreads, as a simple regression
did not seem to perform better.
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9 Appendix

9.1 Appendix A - Ito Calculation

This section provides the calculation of the differentiation of a down-and-out
European call option, used to obtain one further relation between equity and
assets.

Define the following variables

Et = ekT (Ct − CDIt )

f1 = Ct = Xte
−k(T−t)N(d1)−K0e

−r(T−t)N(d2)

f2 = CDIt = Xte
−k(T−t)

(
K0

Xt

)2e1

N(e2)−

K0e
−r(T−t)

(
K0

Xt

)2e1−2

N(e2 − σV
√
T − t).

Where Xt = e−ktVt. Inserting this yields

f1 = Ct = Vte
−kTN(d1)−K0e

−r(T−t)N(d2)

f2 = CDIt = Vte
−kT

(
K0e

kt

Vt

)2e1

N(e2)−

K0e
−r(T−t)

(
K0e

kt

Vt

)2e1−2

N(e2 − σV
√
T − t).

Then, set f(x, t) = Et, substituting Vt with x, hence f(x, t) = ekT (f1(x, t) −
f2(x, t))

Using this, one can calculate ∂f(x,t)
∂x = ekT (∂f1(x,t)∂x − ∂f2(x,t)

∂x ). The calculation
can thus be split into two calculations, one for f1 and one for f2. This results
in

∂f1(Vt, t)

∂x
= e−kTN(d1)

∂f2(Vt, t)

∂x
= e−kT

(
K0e

kt

Vt

)2e1

N(e2) + Vte
−kT (K0e

kt)2e1N(e2)(−2e1)

(
1

Vt

)2e1+1

−

K0e
−r(T−t)(K0e

kt)2e1−2N(e2 − σV
√
T − t)(−2e1 + 2)

(
1

Vt

)2e1−1

=

e−kTN(e2)

(
K0e

kt

Vt

)2e1

(1− 2e1)−

e−r(T−t)N(e2 − σV
√
T − t)

(
K0e

kt

Vt

)2e1−2(K0

Vt

)
(2− 2e1)
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Combining these two results, one then obtains the following relation

∂Et
∂Vt

=
∂f(Vt, t)

∂x
= ekT (

∂f1(Vt, t)

∂x
− ∂f2(Vt, t)

∂x
) =

N(d1) + ekT e−r(T−t)N(e2 − σV
√
T − t)

(
K0e

kt

Vt

)2e1−2(K0

Vt

)
(2− 2e1)−

N(e2)

(
K0e

kt

Vt

)2e1

(1− 2e1) =

N(d1) +

(
K0e

kt

Vt

)2e1[
e−(r−k)(T−t)N(e2 − σV

√
T − t)

(
Vt

K0ekt

)
(2− 2e1)−

N(e2)(1− 2e1)

]

9.2 Appendix B - Black-Cox Results

9.2.1 T = 1 Year, k = 0
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Figure 77: Results and CDS-spreads for US Steel
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Figure 78: Results and CDS-spreads for J.C. Penney
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Figure 79: Results and CDS-spreads for Avon Products
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Figure 80: Results and CDS-spreads for Bombardier
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Figure 81: Results and CDS-spreads for Peabody Energy
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Figure 82: Results and CDS-spreads for Advanced Micro Devices
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9.2.2 T = 1 Year, k = 0.01
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Figure 83: Results and CDS-spreads for US Steel
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Figure 84: Results and CDS-spreads for J.C. Penney
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Figure 85: Results and CDS-spreads for Avon Products
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Figure 86: Results and CDS-spreads for Bombardier
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Figure 87: Results and CDS-spreads for Peabody Energy
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Figure 88: Results and CDS-spreads for Advanced Micro Devices
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9.2.3 T = 1 Year, k = 0.05
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Figure 89: Results and CDS-spreads for US Steel
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Figure 90: Results and CDS-spreads for J.C. Penney
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Figure 91: Results and CDS-spreads for Avon Products
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Figure 92: Results and CDS-spreads for Bombardier
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Figure 93: Results and CDS-spreads for Peabody Energy
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Figure 94: Results and CDS-spreads for Advanced Micro Devices
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9.2.4 T = 10 Years, k = 0
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Figure 95: Results and CDS-spreads for US Steel
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Figure 96: Results and CDS-spreads for J.C. Penney
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Figure 97: Results and CDS-spreads for Avon Products
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Figure 98: Results and CDS-spreads for Bombardier
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Figure 99: Results and CDS-spreads for Peabody Energy
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Figure 100: Results and CDS-spreads for Advanced Micro Devices
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9.2.5 T = 10 Years, k = 0.05
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Figure 101: Results and CDS-spreads for US Steel
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Figure 102: Results and CDS-spreads for J.C. Penney
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Figure 103: Results and CDS-spreads for Avon Products
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Figure 104: Results and CDS-spreads for Bombardier
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Figure 105: Results and CDS-spreads for Peabody Energy
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Figure 106: Results and CDS-spreads for Advanced Micro Devices
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Valuing Credit Default Swaps with
a Structural Approach
Per Möller, Lund University, Faculty of Engineering

D
uring the 21st century, the market for
credit related financial instruments has
grown to one of the worlds largest.

The thesis addresses whether it is possible
to successfully determine the value of some
of these through mathematical formulas and
equations.

The financial instrument that is investigated in this
thesis is the so called credit default swap, often called
in short a CDS. The contract is also what one would
call a derivative, as its value is derived from an
underlying financial security, namely a bond. A bond
is basically an IOU which promises to pay back the
borrowed amount in the future, plus some interest.
What the CDS does is that it acts as insurance
against that a company, that has issued bonds, files
for bankruptcy, and thus cannot pay back the money
it borrowed through the bonds. The idea is that if
you own a bond, and also decide to buy insurance
on the bond through a CDS, you will be guaranteed
to get the money back on the bond, regardless of if
the company defaults on its debt or not. Of course,
buying insurance on the bond through a CDS costs
money. That cost is quoted in terms of a so called
spread, which is the number of basis points (bps),
where 100 basis points is one percentage, it would
cost to buy protection per year. The amount actually
paid each year is the spread multiplied by the total
insured amount, which usually ranges from $1MM to
$10MM. The CDS is only triggered if the company
becomes bankrupt, or anything related occurs to
the company. To determine what fair price (or fair
spread) of a CDS is, one must have some idea of how
likely it is that the company defaults.

In this thesis, structural models have been used to

determine the probability of default. Structural mod-
els is a family of models which assigns certain dy-
namics to the assets of the company and imposes
certain rules by which the company is said to default.
Through the models and the rules, one can calculate
the probability of default. The default probability is
then plugged into the valuation formula of the CDS,
which returns a fair value of the spread, according
to the models. Mainly two different models in this
thesis have been analysed; the Merton model and
the Black-Cox model. The Merton model is very
simple and states that the company defaults if the
assets of the company is below some default bar-
rier after a certain amount of time. The Black-Cox
model however also enables the possibility of default
at any time, as soon as the assets of the company
dips below the default barrier, the company defaults.
The Black-Cox model also makes it possible to use
default barriers which are time dependent.

At each day and for each model, the current proba-
bility of default is calculated and used to value the
CDS. The resulting CDS-spreads are then compared
with the spreads that are seen in the market to see
whether or not the model manages to replicate the
market spreads.

The Black-Cox model proved to be the best model
of the two. The spreads calculated from the model
appeared to follow the spreads given by the market
quite well, both in terms of major trends, but also
minor trends. Since the results were quite satisfying,
and the model used actually was fairly simple, one
may want to further analyse these types of models
and perhaps add more features that make the models
more realistic, in an attempt to even better model
the market spreads.
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