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Abstract

In this thesis we show that the best forecast for near future yield curves are
performed with a full specification of our chosen model and for far future yield
curves the forecast is better with a partial specification of the model. We con-
clude that the driving factors for the banks’ yield curves are not as closely
related to Swedbank’s as amongst the other peers which show that Swedbank
stand out in terms of dynamics for the yield curve. We also show why we have
chosen a Nelson Siegel model with five driving factors by performing a PCA
and we illustrate how we have estimated the 47 free parameters in the model
with a Kalman filter and an optimization algorithm in matlab. If that was not
enough we also validate our model by simulating yields and checking that our
estimates correspond to the parameters used in the simulation.
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1. Introduction

1.1 Background

Since the financial crisis and the fall of Lehman Brothers credit risk and trea-
sury management has become hot topics in the financial industry. The need
of managing credit and counterparty risk has become clear and differences be-
tween how investors view different banks’ bonds has changed. This stress has
led to more regulations and a segmentation of what is truly risk free. Since
the onset of the GIIPS/Euro-crisis Sweden has been considered a safe haven for
investment but among the Swedish banks there are differences in the cost of
issuing bonds to finance the operations of the banks. These differences change
over time, especially in times of crisis. Many Swedish banks were helped by the
Swedish Riksbank to get out of the worst liquidity crunch. In the aftermath of
the crisis the cost was quite high for funding in the regular market. For this
reason Swedbank wants to investigate which factors make the credit spread dif-
fer among the Swedish banks, as indications show that the credit rating itself
can’t explain this difference in spread.

During the Summer of 2014 a database of historical issuances of bonds was
established at Swedbank (volumes, prices, spreads etc.). The result of the find-
ings were that some banks more than others still are carrying expensive funding
that was raised in the aftermath of the financial crisis. In discussions on the
topic why the costs of issuing bonds differ among Swedish banks, a problem
worthy exploring through a master thesis arose.

The environment for investors today is that a ”decent” yield in combination
with low risk is harder and harder to find. The reason for this is not evident, but
there are indications that this depends on factors such as Quantitative Easing
(QE) performed by central banks and that European banks has de-leveraged a
large part of their balance sheets. These factors cause the supply of bonds to
decrease while demand has not decreased in the same manner leaving investors
forced to accept lower and lower yields. This may imply that investors today
consider the actual credit spread in form of default intensity less and a stable
supply of bonds more. Investigating these dynamics will be the starting point
for this thesis.

1.2 Overview - A typical Balance Sheet

In order to get a grip on where our master thesis fits in the operations of a
ordinary bank we try to illustrate this with help of a typical balance sheet, in
this case Nordea’s. As can be seen in Figure 1.1 ”Debt securities in issue”, (red
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Figure 1.1: Balance Sheet, Nordea, as per 2014-12-31

box) is essentially as big as ”Deposits and borrowings from the public” (yellow
box) which represents accounts like yours and ours salary/savings account. We
can also see that these two roughly represent ”Loans to the public” (green box)
with an overshoot that can be found in ”Loans to central banks and other credit
institutions” and in ”Cash balances with central banks”. Our analysis is within
the ”Debt securities in issue” box. This represent all funding from the market
in forms of long term funding i.e. Covered bonds and senior unsecured bonds
and short term funding i.e. Commercial Papers and Certificates. Thus this is
the box where our analysis can give an input on the cost of this funding and
the development of it. As also can be seen the funding represent roughly 1/3 of
the total balance sheet which makes this valuable information in funding plans
and how to structure the funding.

1.3 Relevant Literature

On the topic of timing and amount of issued debt by financial institutions, ECB
has extended the two-part modelling framework presented by Cragg 1971 (ECB,
2014), which gives nice indications of correlations between amount of issued debt
by European financial institutions and incentive programs such as quantitative
easing. The paper presents a model where financial reputations factors (such as
rating) are modelled against timing and amount of issued debt.

A specific knowledge of several interest rate models and credit risk models
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that can model probability of default and default intensity can be attained by
reading Brigo & Mercurio (2006). The book gives an understanding of how
investors determine what yield to accept for different issuers depending on the
risk premium expected from the market and of course the expectations of the
interest rate. It is explained how these models can be used as an outside pre-
dictor for the markets view on the issued bonds. Typically these models use
CDSs and/or corporate bond yields as input. This book has a very quantita-
tive approach, and for someone who wants to get a somewhat more qualitative
understanding of credit risk, the book Duffie & Singleton (2012) is preferred.

A more general knowledge on risk-neutral valuation as well as arbitrage
theory, which is the foundation of the financial mathematics, can be gained by
reading Björk (2009).

Details on the Nelson Siegel modelling framework and estimation of its pa-
rameters can be attained by reading up on Christensen & Lopez (2012).

1.4 The purpose of the thesis

We aim to collect and model historic data for outstanding EUR senior unsecured
debt. Our goal is to draw conclusions and better understand the driving factors
for the credit spread amongst EUR senior unsecured bonds issued by Nordic
banks. Evaluating these parameters and forecast future yields form the main
purpose for this thesis.

1.5 Delimitations

This thesis is performed together with Swedbank’s Group Treasury. We are
thus naturally comparing funding costs for similar banks, i.e. SEB, SHB and
Nordea. We also aim to draw conclusions from credit spreads why we need to
delimit our thesis around instruments with enough depth so we can produce a
full yield curve for every time instance. In our analysis of the funding market
and the variation of credit spreads between the Swedish banks we have chosen
to only look at the most liquid market namely the EURO senior unsecured
market. Further explanation why the EURO senior market is the most liquid is
described in section 3.1.3.
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2. Theory

This chapter goes through the theory that form the foundation of this thesis.
Building blocks such as analysis on which model we chose, the actual model
and relevant theory we have used throughout this thesis make up the principal
parts.

2.1 Principal Component Analysis (PCA)

We start with a PCA in order to help us understand how we should model the
yield data. The PCA focus on what variables explain variation in data. By
looking at the eigenvectors and knowing that the first, second and third vector
correspond to the variables level, slope and curvature. This theory explains how
we can determine what explanatory power each variable have and demonstrate
how much variation we model by choosing a set of Level, Slope and curvature,
for further details see, Shlens (2014).

2.1.1 Computing PCA using the Covariance method

Definition 2.1. Given a n×m dataset matrix X where number of rows corre-
spond to number of observations and number of columns to number of variables.

µ(j) =
1

n

n∑
i=1

X(i, j) i = 1, . . . , n j = 1, . . . ,m (2.1)

B(i, j) =X(i, j)− µ(j) take away mean (2.2)

C =
1

n− 1
BTB calculate sample covariance (2.3)

V −1CV =D compute eigenvalues/eigenvectors D/V (2.4)

Sort D and V by descending value of diag(D) and sum diag(D)

g(j) =

j∑
k=1

D(k, k) (2.5)

Choose an overall explanatory level α and the number of principal components
L that satisfy 1 ≤ L ≤ m.

g(L)

g(m)
≥ α (2.6)

Adjust the number of principal components to fulfil the chosen α. Respective
principal component have its own explanatory level and can be illustrated by
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constructing a vector with elements

explained =

[
D(1, 1)

g(m)
, . . . ,

D(L,L)

g(m)

]
(2.7)

2.2 Default-free and defaultable bonds

2.2.1 Zero-Coupon Bonds and the Risk Free Short Rate

Definition 2.2. A zero-coupon bond is a contract which gives the holder a
payment of a nominal amount (most often 1) at maturity time T. If the contract
is bought at time t the price(value) of the bond is denoted by P(t,T) for t ≤ T.
At time t = T the value of the contract is (intuitively) 1.

Definition 2.3. The risk-free short rate at time t, rt, is the (arguably theoreti-
cal) interest rate at which a market participant can both borrow and lend money,
if there’s absence of arbitrage (Björk, 2009).

In the continuous world the relationship between the price of a default-free
bond and the short rate is:

P (t, T ) = EQ[e−
∫ T
t
rsds|Ft], (2.8)

where EQ is the expectation under the risk-neutral measure and Ft is the filtra-
tion at time t.
The price is easily calculated if the short rate is deterministic. Unfortunately,
in a real world application, the future short rate is not observable. However,
the prices of what are considered as risk-free (non-defaultable) bonds can be
observed. From that price one can calculate a risk-free rate.

2.2.2 Zero coupon curve

Using the theory in Section 2.2 on bonds with different maturities one finds
that the implied short rate is not constant over time, but varies depending on
maturity. This leads us to the concept of yield.

Definition 2.4. Y(t,T) is the constant rate at time t for the maturity T at which
an investment has to be made to produce an amount of one unit of currency at
maturity if the initial investment was P(t,T), when reinvesting the obtained
amounts once a year. This is also called the continuously-compounded spot
interest rate.

We have

e−Y (t,T )(T−t) = P (t, T )⇒ Y (t, T ) = − 1

T − t
logP (t, T ). (2.9)

Given the above equation, we can create a Zero-Coupon (or yield) curve, plotting
Y (t, T ) for different T given at time t. This is also called the term structure of
interest rates. An illustrative example can be seen in Figure 2.1.

7



Figure 2.1: ZCB curve for Swedish T-bills and T-bonds as per 2015-02-17
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2.2.3 Defaultable Zero Coupon Bonds

Similar to a default-free zero coupon bond, a defaultable zero coupon bond pays
a nominal amount at maturity time T. The difference from a risk-free bond lies
in that this asset type is not considered risk-free, as there is a risk that the issuer
of the bond might default before maturity, resulting in a potential loss for the
investor. The price P̄(t,T) of a defaultable zero-coupon bond is calculated as:

1{τ>t}P̄(t,T) = E [D(t, T )1τ>T |Ft] . (2.10)

D(t, T ) is the discount factor over the interval [t,T], often a risk-free zero coupon
bond. τ is the time of default. Ft is all the available information at time t.
Given that the probability of default and the discount rate are often considered
to be independent this can be rewritten as:

1{τ>t}P̄(t,T) = P (t, T )E [1τ>T |Ft] (2.11)

2.2.4 Default intensity

In the previous section(s) we’ve described the price of a defaultable bond as
dependent on the default time τ . This is convenient for basic comprehension of
how a defaultable bond is priced and behaves in continuous time. We now move
into the world of intensity models, where we rather than try to estimate a time
of default, we try to model the intensity of ”default”. The word default is within
quotation marks here as in a real world application, the expected probability
of default within a certain time, is not the only factor that affects the credit
spread (Definition 2.5) for a bond (Brigo & Mercurio, 2006).
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Definition 2.5. A credit spread is the difference in yield between a defaultable
bond and a risk-free bond of the same maturity.

The default time τ is now considered the first increment of a jump process.
In continuous time, the probability of jumping (i.e. defaulting) in the next time
increment dt is

Q (τ ∈ [t, t+ dt]|τ > t,Ft) = λ(t)dt (2.12)

λ is what we call default intensity or hazard rate. Brigo & Mercurio (2006)
show how this relation results in the expression

Q (τ > t) = e−
∫ t
0
λ(u)du (2.13)

If the default-free interest rate and probability of default are uncorrelated, the
price of a defaultable bond maturing at time T can be written as

1{τ>t}P̄(t,T) = E
[
e−

∫ T
t
λ(u)+r(u)du

]
(2.14)

or if there’s a recovery ratio REC

1{τ>t}P̄(t,T) = E
[
e−

∫ T
t
λ(u)(1−REC)+r(u)du

]
(2.15)

When dealing with credit spreads, one has to be careful with which conclusions
can be deducted from the value of it. As mentioned earlier, other factors than
the market expectation of probability of default (i.e. default intensity) affect
the credit spread. In discussions with people participating in the market, there
are theories of supply/demand (liquidity) and quantitative easings affecting the
credit spread. With this in mind, we will further consider λ as an intensity af-
fecting the credit spread rather than a default intensity. Due to this, Christensen
& Lopez (2012) suggest rewriting the expression as

1{τ>t}P̄(t,T) = E
[
e−

∫ T
t
s(u)+r(u)du

]
(2.16)

where s(u) is the instantaneous credit spread. As we are interested in investi-
gating the spread rather than the default probability, we can do this without
any loss of generality.

2.3 Deriving zero-coupon yield from coupon yield-
ing instruments

In order to determine a zero coupon yield curve when we have fixed coupon
bond data we need to begin with calculating the yield to maturity (Y TM)
for each bond. In some cases Newton’s method can be a necessary tool to do
this Y TM -calculation, i.e. when there is a large number of remaining coupons.
When Y TM has been calculated we want to derive corresponding zero coupon
yield.

2.3.1 Yield to maturity

The Y TM is the discount rate which yields the bond’s present value PV and
for a bond maturing in n periods with coupon c and a face value FV we have

PV =
c

(1 + Y TM)
+

c

(1 + Y TM)2
+ . . .+

c+ FV

(1 + Y TM)n
(2.17)
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2.3.2 Newton’s method

Newton’s method, also called Newton-Raphson method, is one of the most
well-known and powerful numerical methods for solving a root-finding prob-
lem (Atkinson, 1989). Newton’s method is initiated with a first guess x0 and
generates the sequence {xn}∞n=0 by

xn = xn−1 −
f(xn−1)

f ′(xn−1)
for n ≥ 1 (2.18)

Theorem 2.6 (Convergence of Newton’s Method). Let f ∈ C2[a, b] and con-
sider a x ∈ (a, b) such that f(x) = 0 and
f ′(x) 6= 0. Then there exist a δ > 0 such that Newton’s method generates a
sequence {xn}∞n=1, defined by

xn = xn−1 −
f(xn−1)

f ′(xn−1)
(2.19)

converging to x for an initial approximation

x0 ∈ [x− δ, x+ δ] (2.20)

Hence Newton’s method converges locally but not globally.

2.3.3 Zero coupon Yield curve

In a zero coupon yield curve each maturity has it’s unique discount rate and a
coupon bond’s price can be determined as

PV =
c

(1 + ZCY1)
+

c

(1 + ZCY2)2
+ . . .+

c+ FV

(1 + ZCYn)n
, (2.21)

where c is the coupon and FV is the final value.
This means that in order to derive the full zero coupon yield curve we need a
sufficiently large number of outstanding bonds to determine the ZCYi for each
maturity i = 1, . . . , n.

c+ FV

(1 + ZCY1)
= PV =

c+ FV

(1 + Y TM)
(2.22)

In 2.22 we can solve for ZCY1 since it is the only unknown variable. Putting
ZCY1 into the expression for a coupon bond maturing in two years we can solve
for ZCY2 and continuing solving ZCYi we can put together a zero coupon yield
curve for all maturities i = 1, . . . , n.

2.4 The Nelson-Siegel Model(s)

The Nelson-Siegel model we go through here comes from the family of models
usually described as affine term-structure models.
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2.4.1 The treasury model

The static Nelson-Siegel model fits the yield curve with the simple functional
form, Nelson & Siegel (1987),

y(τ) = β0 + β1

(
1− e−φτ

φτ

)
+ β2

(
1− e−φτ

φτ
− e−φτ

)
, (2.23)

where y(τ) is the zero-coupon yield with τ years to maturity, and β0, β1, β2, and
φ are model parameters.

This representation is often used by financial market practitioners to fit the
yield curve at a point in time. Even if this static representation may appear
useful for some purposes a dynamic model is needed in order to understand
the development of the bond market over time. Therefore Diebold & Li (2006)
reinterpret the β coefficients as time-varying factors Lt, St, and Ct, (which can
be interpreted as Level, Slope and Curvature) so

y(τ) = Lt + St

(
1− e−φτ

φτ

)
+ Ct

(
1− e−φτ

φτ
− e−φτ

)
, (2.24)

Empirically, the dynamic model is highly tractable and typically fits well. Theo-
retically, however, the model does not demand that the dynamic change of
yields blend such that arbitrage opportunities are omitted. Indeed, the results
of Filipovic (1999) imply that whatever stochastic dynamics are chosen for the
Dynamic Nelson-Siegel factors, it is impossible to rule out arbitrage at the bond
prices implied in the resulting Nelson-Siegel yield curve. Therefore Christensen
et al. (2011) developed the the Arbitrage-Free Nelson-Siegel Model (AFNS). In
the paper, several variations of the model are discussed. We will be focusing
on the non-correlated factor AFNS, as it is the most flexible and supposedly
produce the best forecast among the models (Christensen et al., 2011).

In the model, the short rate rt can be expressed as the sum of Lt and St.
Which can be shown by letting τ go to zero in equation 2.24.

rt = Lt + St (2.25)

Under the P-measure, the behaviour of the state-variables (Lt St Ct) are mod-
elled as dLtdSt

dCt

 = κ

θ1

θ2

θ3

−
LtSt
Ct

 dt+ σ

dWL,P
t

dWS,P
t

dWC,P
t

 , (2.26)

σ =

σLt 0 0
0 σSt 0
0 0 σCt

 (2.27)

κ is a parameter which is allowed to take different forms depending on what you
assume about the evolution of the mean, the most general specification is

Full κ matrix κ =

κP11 κP12 κP13

κP21 κP22 κP23

κP31 κP32 κP33

 (2.28)
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To derive yields for a given maturity T at time t, we have

yt(τ) = Lt + St
1

τ

1− e−φτ

φ
+ Ct

1

τ

(
1− e−φτ

φ
− τe−φτ

)
+ a(τ), (2.29)

a(τ) is the arbitrage-free yield adjustment term which has the quite long ex-
pression

a(τ) = −σ
2
1

6
τ2 − σ2

2

(
1

2φ2
− 1− e−φτ

φ3τ
+

1− e−2φτ

4φ3τ

)
−

σ2
3

(
1

2φ2
+

1

φ2
e−φτ − 1

4φ
τe−2φτ − 3

4φ2
e−2φτ − 2

φ3τ
1− e−φτ +

5

8φ3τ
1− e−2φτ

)
(2.30)

θ1, θ2, θ3 are the mean level reversions of the state variables Lt, St, Ct. σk is
the standard deviation for the state variable k with k ∈{Lt,St,Ct}. ρij is the
correlation coefficient for the state variables i and j with i, j ∈{Lt,St,Ct}. To
the reader who wants the full derivation of these expressions we refer to reading
both Christensen et al. (2011) and Krippner (2015). The latter uses a notation
more consistent with the one we have chosen. The earlier gives an in-depth
explanation of how these results are achieved by solving a system of ordinary
differential equations derived from the price of a zero-coupon bond expressed in
affine-form.

2.4.2 The Credit Spread Model

The credit spread model we have chosen to implement include the level, slope
and curvature factors from the risk-free short rate model as well as level and
slope factors for the credit spread in order to improve the explanatory decom-
position Christensen & Lopez (2012).

Definition 2.7. Continuously compounded credit spread can be expressed in
terms of continuously compounded yields

sit = yit(τ)− yTt (τ),
i ε {Swedbank, Nordea, SHB and SEB},
T ε {Treasury/Central Bank}. (2.31)

The instantaneous credit spread, sit is described as a function of the firm
specific level and slope factor. The curvature factor is omitted since the findings
of Christensen & Lopez (2012) show that adding a curvature factor to the credit
spread doesn’t give further explanation of the behaviour of the credit spread.
This is not a general result but rather an observation made by Christensen &
Lopez (2012) for modelling corporate bond yields. Firm specific level and slope
are denoted as LS(i) and SS(i) and from now on the risk-free short rate level,
slope and curvature are denoted as LT , ST and CT . The instantaneous credit
spread can be expressed as

sit = αi0 + αiLTL
T
t + αiST S

T
t + αiLL

S
t (i) + αiSS

S
t (i) (2.32)

Under the P-measure, the behaviour of the state-variables (LTt STt CTt LSt S
S
t )
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are modelled as


dLTt
dSTt
dCTt
dLSt (i)
dSSt (i)

 = κ




θP,i
LT

θP,i
ST

θP,i
CT

θP,i
LS

θP,i
SS

−

LTt
STt
CTt
LSt (i)
STt (i)


 dt+ σ


dWLT ,P

t

dWST ,P
t

dWCT ,P
t

dW
LS(i),P
t

dW
SS(i),P
t

 (2.33)

σ =


σLTt 0 0 0 0

0 σSTt 0 0 0

0 0 σCTt 0 0

0 0 0 σi
LSt

0

0 0 0 0 σi
SSt

 (2.34)

Full κ matrix κ =


κP,i11 κP,i12 κP,i13 κP,i14 κP,i15

κP,i21 κP,i22 κP,i23 κP,i24 κP,i25

κP,i31 κP,i32 κP,i33 κP,i34 κP,i35

κP,i41 κP,i42 κP,i43 κP,i44 κP,i45

κP,i51 κP,i52 κP,i53 κP,i54 κP,i55

 (2.35)

Diagonal κ matrix κ =


κP,i11

κP,i22

κP,i33

κP,i44

κP,i55

 (2.36)

We can calculate the yield at a given time t for a time to maturity τ and company
i as

yit(τ) = LTt +
1− e−φτ

φτ
STt +

[
1− e−φτ

φτ
− e−φτ

]
CTt + a1(τ)

+αiLTL
T
t + αiST

1− e−φτ

φτ
STt + αiST

[
1− e−φτ

φτ
− e−φτ

]
CTt + a2(τ)

+αi0 + αiLL
S
t (i) + αiS

1− e−φiτ

φiτ
SSt (i) + a3(τ)

(2.37)

The credit spread, sit , is calculated as sit = yit − yTt , where yTt is the treasury
yield and first specified in equation 2.29 and also found on the first row in eq.
2.37. This gives us

sit(τ) = αiLTL
T
t + αiST

1− e−φτ

φτ
STt + αiST

[
1− e−φτ

φτ
− e−φτ

]
CTt + a2(τ)

+αi0 + αiLSL
S
t (i) + αiSSS

S
t (i)

1− e−φiτ

φiτ
+ a3(τ)

(2.38)
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where

a2(τ) = −
σ2
LT (αiLT )2

6
τ2−

σ2
ST (αiST )2

(
1

2φ2
− 1− e−φτ

φ3τ
+

1− e−2φτ

4φ3τ

)
− σ2

CT (αiST )2

(
1

2φ2
+

1

φ2
e−φτ − 1

4φ
τe−2φτ

− 3

4φ2
e−2φτ − 2

φ3τ
1− e−φτ +

5

8φ3τ
1− e−2φτ

)
(2.39)

and

a3(τ) = −
(σiLS )2(αiLS )2

6
τ2 − (σiSS )2(αiSS )2

(
1

2φ2
− 1− e−φτ

φ3τ
+

1− e−2φτ

4φ3τ

)
(2.40)

a1(τ) is expressed similarly as in 2.30, a2(τ) and a3(τ) is expressed as in 2.39
and 2.40. As can be seen, the model takes into account that the credit spread
is possibly not only affected by it’s own corresponding state variables LSt (i)
and SSt (i), but also by the level, slope and curvature of the underlying treasury
curve.

2.4.3 Comparing specifications of models by Likelihood
ratio test

When different cases of for example κ matrices are considered the likelihood of
each specification is compared and evaluated as specified in a likelihood ratio
test.

Comment 2.1. Likelihood ratio test
A likelihood ratio test can only be performed on nested models i.e. where a more
complex model can be transformed into a simpler model with a set of constraints.

D = 2

(
ln(likelihood for alternative model)−ln(likelihood for null model)

)
∼ χ2(Degrees of freedom) (2.41)

Degrees of freedom is calculated as D.f. = (number of parameters in
alternative model)− (number of parameters in null model)

Now the probability of observing D in the χ2(D.f.) distribution can be calculated,
i.e. the p-value, if this probability is lower than a chosen level of significance
α the alternative model can be ruled out/rejected. If however p-value > α, the
alternative model can’t be rejected.

2.5 The Kalman filter

A Kalman filter is a method with which one can estimate hidden state variables
when observing a process which is a result of the hidden variables as well as
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some (Gaussian) noise. A linear operator is applied to the state to generate a
new state with some noise mixed in. Then another linear operator and more
noise is applied and generates the true (hidden) state. We use the Kalman filter
within a negative log-likelihood function which we minimize in order to estimate
the state variables (LTt , S

T
t , C

T
t , L

S
t , S

S
t ).

The following section explains how the Kalman filter was applied for both the
treasury model as well as for the credit model. For the reader not familiar with
the Kalman filter we recommend reading the original article (Kalman, 1960).

2.5.1 Applied to treasury rates

We have time series of zero coupon yields denoted R for maturities τ . We make
an estimate of the hidden state variables xt = (LTt , S

T
t , C

T
t , L

S
t , S

S
t ) via the

Kalman filter.

Definition 2.8. Initial estimates and calculations for filter equations as in Def-
inition 2.9

x0 = θ =

θ1

θ2

θ3

 , P0 =

∫ ∞
0

e−κsσσ′e−κ
′sds,

Q =

∫ dt

0

e−κsσσ′e−κ
′sds, F = e−κdt,

σ and κ are defined as in 2.27 and 2.28,

H =


1 1

τ1
1−e−φτ1

φ
1
τ1

(
1−e−φτ1

φ − τ1e−φτ1
)

...
...

...

1 1
τn

1−e−φτn
φ

1
τn

(
1−e−φτn

φ φ− τne−φτn
)


Ω =


σ2
εT (τ1) 0 . . . 0

0 σ2
εT (τ2)

... 0
...

...
. . .

...
0 0 . . . σ2

εT (τn)


Q is the state noise covariance, H is the observation matrix and Ω is the obser-
vation noise matrix.

Definition 2.9. Filter Equations

Prior state estimates

x̂t|t−1 = (I − F )θ + Fx̂t−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +Q
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Measurement update

η = R− a−Hx̂t|t−1 (2.42)

S = HPt|t−1H
′ + Ω

K = Pt|t−1H
′S−1

Posterior state Estimates

x̂t|t = x̂t|t−1 +Kη

Pt|t = (I −KH)Pt|t−1

a in 2.42 is the yield adjusting term, defined as in 2.30.

If you are interested in the derivation of the prior state estimates as well
as the measurement update you can find a full derivation in Christensen et al.
(2011).

2.5.2 Applied to the credit model

When estimating the parameters for the credit model, both treasury and single
name credit rates were used. This gives us the following filter equation system:

Definition 2.10. Initial estimates and calculations for filter equations as in
Definition 2.11

x0 = θ =


θ1

θ2

θ3

θ4

θ5

 , P0 =

∫ ∞
0

e−κsσσ′e−κ
′sds,

Q =

∫ dt

0

e−κsσσ′e−κ
′sds, F = e−κdt,

where σ and κ are defined as in 2.34 and 2.35,

H =



1 1
τ1

1−e−φτ1
φ

1
τ1

(
1−e−φτ1

φ − τ1e−φτ1
)

0 0

...
...

...
...

...

1 1
τn

1−e−φτn
φ

1
τn

(
1−e−φτn

φ − τne−φτn
)

0 0

αiLT αiST
1
τ1

1−e−φτ1
φ αiST

1
τ1

(
1−e−φτ1

φ − τ1e−φτ1
)

αiLS αiSS
1−e−φCτ1
φCτ1

...
...

...
...

...

αiLT αiST
1
τn

1−e−φτn
φ αiST

1
τn

(
1−e−φτn

φ − τne−φτn
)

αiLS αiSS
1−e−φCτn
φCτn


,
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Ω =



σ2
εT (τ1) 0 . . . . . . . . . 0

0
. . .

...
...

...
...

...
... σ2

εT (τn)
...

...
...

...
...

... σ2
εi

... 0

0
...

...
...

. . .
...

...
...

...
...

... σ2
εi


where i ∈ {SHB, SWD, SEB, NDA}

Definition 2.11. Filter Equations

x̂t|t−1 = (I − F )θ + Fx̂t−1|t−1 (2.43)

Pt|t−1 = FPt−1|t−1F
′ +Q (2.44)

Measurement update

η = [R, C]′ − a−Hx̂t|t−1 (2.45)

S = HPt|t−1H
′ + Ω

K = Pt|t−1H
′S−1

Posterior state Estimates

x̂t|t = x̂t|t−1 +Kη

Pt|t = (I −KH)Pt|t−1

a as in eq. 2.45 is the yield adjusting term, defined as a =

[
a1(τ)

a2(τ) + a3(τ)

]
where a1(τ), a2(τ) and a3(τ) are defined as in equation 2.30, 2.39 and 2.40.

2.6 Maximum Likelihood Estimation

When estimating the parameters we use Maximum Likelihood Estimation (MLE)
as presented in chapter 5 in Lindstrom et al. (2015)

θ̂MLE = argmax
θ∈Θ

L(θ) (2.46)

where

L(θ) =pθ(x0, . . . , xn) (2.47)

=

N∏
n=1

(
pθ(xn|xn−1, . . . , x0)

)
(pθ(x0)) (2.48)
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The argument maximization of L(θ) is not affected by a logarithmic transfor-
mation and thus a simpler optimization can be attained as

θ̂MLE = argmax
θ∈Θ

log pθ(x0) +

N∑
n=1

log pθ(xn|x0, . . . , xn−1) (2.49)

The MLE parameter estimate is consistent under rather general conditions.

2.7 Standard deviation, Fisher Information and
the Hessian

In order to determine the standard deviation for the parameters estimated with
maximum likelihood estimation (MLE), we need following results as presented
in chapter 32 in Cramér (1946)

Definition 2.12. The probability density function for X and also the log-likelihood
function for θ is denoted as pθ(X). Let θ be a N × 1 vector and the Fisher In-
formation (FIM) Ii,j(θ) will take the form of an N × N matrix with elements
as

Ii,j(θ) = EX
[(

∂

∂θi
log pθ(X)

)(
∂

∂θj
log pθ(X)

)∣∣∣∣θ]. (2.50)

Under certain regularity conditions, the FIM may also be written as

Ii,j(θ) = −EX
[

∂2

∂θi∂θj
log pθ(X)

∣∣∣∣θ] = −EX [Hi,j(θ)|θ] (2.51)

Where Hi,j(θ) denote the Hessian matrix.

Since we minimize the negative log-likelihood instead of maximizing the positive
log-likelihood we get the FIM by calculating the Hessian of the negative log-
likelihood straight off. Having the FIM we can calculate the standard deviations.

Definition 2.13. Let θ̂MLE be the N × 1 vector of MLE parameters then

V ar(θ̂MLE) = [Ii,j(θ̂MLE)]−1 (2.52)

For the asymptotic distribution of θ̂MLE we can write

θ̂MLE
a∼ N

(
θ0,
[
Ii,j(θ̂MLE)

]−1)
(2.53)

where θ0 are the true parameters. The standard deviation is finally

SD(θ̂MLE) =

√
[Ii,j(θ̂MLE)]−1 =

√
[−EX [Hi,j(θ̂MLE)|θ̂MLE ]]−1 (2.54)

2.7.1 Numerical calculation of the Hessian matrix

Since we are dependent on an optimization algorithm to produce a Hessian for
our minimization we want to verify this Hessian by numerical approximation.
We use the same approximation as on page 202 in Nocedal & Wright (2006).

δ2f

δxiδxj
(x) =

f(x+ εei + εej)− f(x+ εei)− f(x+ εej) + f(x)

ε2
+O(ε) (2.55)

where O(ε) is the measurement error.
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2.8 Root mean squared error RMSE

Given a sample of out-of-sample forecasts h days ahead of t, with a N number
of τi we can compute the RMSE.

RMSEm(τi) =

√√√√ 1

N

N∑
i=1

(
ŷ

(τi)
t+h|m − y

(τi)
t+h

)2

(2.56)
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3. Methodology

This chapter will go through data, models and the application of the theory
described in the previous chapter and describe how these have been implemented
in our thesis. All discussion referred to rating are from the S&P rating-scale.

3.1 Terms for Analysis

3.1.1 Segmentation of Swedish Wholesale Funding

We define the Swedish wholesale funding market as the wholesale funding issued
by SHB, SWD, SEB and Nordea.

Table 3.1: Percentage of Long Swedish Wholesale Funding
Long Swedish Wholesale Funding EUR USD SEK Total
Covered Bonds 17% 5% 52% 73%
Senior Unsecured Bonds 15% 9% 2% 27%
Total per Currency 32% 14% 54%

Source: Bloomberg and Issuer per Q2 2014 (CAST profile and IR reports)

As can be seen we have the highest portion in SEK covered, but since we are not
interested in covered bonds, our best choice is, as can be seen, the EUR senior
unsecured market, representing 15 % of the Swedish Long Wholesale Funding
market.
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3.1.2 Finding a suitable estimation method

The most obvious approach for modelling the credit risk of corporate bonds
from single-names (i.e. not from a bulk of companies in a certain sector) is by
using the implied default probability derived from credit default swaps (CDS).
Brigo & Mercurio (2006) give an in-depth explanation of how this is done. For
the companies we are interested in modelling there exists CDS for all of them,
and they are all publicly traded. However, after discussions with our supervisor
at Swedbank, we came to the conclusion that the traded CDS were far to illiquid
and misleading to give an implication of the credit risk for these companies.

Figure 3.1: 5y CDS spread (bps) for Swedish Banks
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As can be seen in figure 3.1 the CDS spreads May-2015 imply that SHB and
Nordea who are AA-rated cost more to insure than SEB and Swedbank who
are A+-rated. We can only speculate but the reason for this may lie in an
increased demand for the SHB and Nordea CDSs. This demand could have
been driven by SHB becoming a constituent of the latest series of the ITRAXX
European Senior Financials index and possibly the market has overreacted on
Nordea’s exposure to Russia. Even if we can’t isolate and prove the reason
for this abnormality we can conclude that the CDSs are misleading in an
evaluation of single name credit risk.

The natural choice was therefore modelling the credit risk from the out-
standing debt that the companies have issued. All four companies are reliant
on funding by issuing bonds and have issued bonds with relevant maturities
for the scope. The main problem with this approach is that it is not as
well discussed within the field as the CDS approach. Therefore a lot of time
was spent reading relevant literature to find which model choice best fit our
needs. We ended up using a modification of the Nelson-Siegel model. Further
explanation of why this was a relevant model can be found in subsection 3.2.2.
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3.1.3 The choice of EUR senior market

The Euro-denominated senior-debt market is the best alternative among the
available markets to perform the analysis for two main reasons.

Firstly the senior unsecured market (i.e. unsecured unsubordinated debt)
was chosen since the difference in credit spread across the banks better reflects
the markets perception of the level of risk in investing in the banks. The banks
also issue a significant amount of covered bonds, which are collaterized. These
bonds have a structured security mass (cover pool). This cover pool usually
consists of assets in the form mortgage loans to the private sector. The covered
bonds issued from these pools all have AAA-rating for all of the banks which
we are interested in looking at. Due to this fact, we decided that looking at the
covered bond market was less relevant for our purpose, even though a substantial
amount of all of the banks total funding is by issuance of covered bonds.

Secondly, the choice of currency was a choice among the major funding
markets; EUR, USD and SEK, the markets in which the banks are most active.
Initially we had the ambition to model all of these markets simultaneously, but
after contemplation we realized that this would make the problem far more
complex without necessarily giving a better explanation of the yield curves of
the banks.

The SEK senior market was ruled out due to the issuance of senior debt in
this market being relatively small. Most of the funding in SEK for the banks
we are investigating is done by issuance covered bonds.

In the USD market there are documentational differences (144A vs 3(a)2 vs
SecReg) and peculiarities that affect especially non-us domestic issuers and es-
pecially the banks in scope. This affects the prices of the bonds in the secondary
and primary market and consequently the market’s perceived risk of investing
in the bond is not fully captured by a USD senior market analysis. I.e. the
Swedish banks issue their debt under different programs, where 144A reaches
more investors, making the bonds more liquid.

The EUR senior market however, is a market where the banks in scope issue
a significant amount of bonds under the same conditions, regardless of bank.
These bonds are also liquid as there are many investors in this market.

3.1.4 Restrictions in data

We operate in an environment where data is available only if banks have chosen
to fund themselves via debt securities in a structured way. Before the financial
crisis the majority of debt was taken up with maturity of 1-2 years. This was
done mainly by issuing certificates and commercial papers for debt maturing in
the coming year and as senior for debt up to two years. During the crisis in
2008 and 2009 the investors became reluctant to make new investments, making
the market illiquid. This made it difficult to issue new debt at reasonable rates.
Gradually, after the crisis, the banks were able to issue new debt, but mostly
in the form as covered bonds but some in senior as well even if the cost was
very high. It was not until 2010-2011 that the banks of interest started issuing
relevant amounts of senior debt with maturities longer than 2 years. This means
that EUR senior data for nodes further out on a banks yield curve are very
scarce for dates before 2011. A sober variety of maturities can first be seen at
2012-2013. This market summary is the main reason for missing data but there
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are other reasons too. Even if our analysis has led us to believe that the EUR
senior market is the most suitable for our purposes to compare funding costs
the choice of market is still up to each bank and they all have different views on
when, for how long and in which currency the bank should issue bonds. These
decisions are quite similar across the banks and thus have less of a effect but
nonetheless it compromises the period which we can use in the analysis. For
example Nordea has maturities spanning from 10 years to 3 months, SHB from
15 years to 3 months, SEB from 7 years to 3 months and Swedbank from 7 years
to 3 months. These observations has led us to use data for maturities ranging
from 3 months-7 years and from dates after mid 2013 up until April this year
(2015).
The German treasury rates were never a restriction in the analysis. The rates
very easily retrieved for the relevant maturities and times for our analysis, as
Bloomberg has data for these yields for a very long time. The choice of Germany
for treasury rates in EUR was due the general view that Germany is the most
stable economy in the Eurozone and therefore has the lowest yields, i.e. being
closest to what can be considered risk-free.

3.1.5 Estimating Zero coupon yields (ZCY) from yields to
maturity (YTM)

We wanted to perform the analysis solely with zero coupon yields as Gurkaynak
et al. (2007) did with the treasury yield curve and also Christensen & Lopez
(2012) in their paper on credit risk modelling. This way we keep the absence of
arbitrage in the model. Thus we face the problem that we want to estimate zero
coupon yields while we have yields to maturities as input data from respective
bank. This is due to the fact that the bonds we are interested in are coupon
bonds. In order to estimate zero coupon yields from coupon bearing instruments
we use the theory as described in section 2.3. Results from the estimation is
illustrated in figure B.9.

3.1.6 Filling missing data by fitting Nelson Siegel

Since not every bank has issued a full spectrum of bonds with yields Y and we
only have a number i of available bonds, there will be missing data. Now if we
want to estimate the whole yield curve we need to fit a Nelson Siegel model.
One of the alternatives would be to linearly interpolate and extrapolate. The
problem with this methodology is that data can at some points be scarce and
the linear model does not represent the typical form of a yield curve well, which
leads to inconsistent values. Hence we fit a Nelson Siegel as specified in 2.23
and visualized in B.1.4. We fit parameters by minimizing the square difference
between the data points and a Nelson Siegel curve. The matlab function used
performing the minimization of squared differences is lsqnonlin().

3.1.7 Excluding bonds with a floating coupon

The type of bond data we take as input is commonly referred to as fixed coupon
bonds. This means that the bond has a fixed coupon opposed to a floating
coupon. The reason for excluding floating coupon bonds is that their YTM
cannot be determined with certainty. YTM for floaters change after each fixing
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in the underlying rate. The investor can approximate the YTM via a forward
curve or a swap curve but he can never be sure it will be the final YTM if he
decides to keep the bond until maturity. Since this estimation impose more
uncertainty and the fact that issuance of floating coupon bonds is less frequent
than issuance in the form of fixed coupon bonds, we exclude them from this
analysis.

3.1.8 Data becomes irrelevant very close to maturity

A debt investor is often interested in holding a fixed income asset in order to
receive coupon or a discount at issuance. The incentives of posting correct prices
for the bonds decrease the closer the bonds get to maturity. These different
periods for the bond are referred to as being ”on the run” and ”off the run”.
In our case we found data far from correct just prior to maturity for some
bonds which lead us to adjust these values manually as no clear pattern could
be identified across the banks. This correction was done for bonds maturing
within 1-5 days.

3.1.9 Weekends and Non Trading days

We have left out weekends and Non Trading days leaving us with 260 work days
per year and a constant dt = 1/260 over all data. In French (1980) and Asai
& McAleer (2007) the consequences of this is discussed. Simply put there are
statistical significance in weekend and non trading day data but any straight-
forward way of for example estimate values as last known or as a mean would
not resolve the bias and could even infer new complication. Knowing what we
have introduced and the gain in computation time we feel comfortable with this
choice.

3.1.10 Back-testing model and choice of window

When we control that the model can produce decent forecast we run a back-
test to evaluate the performance of the model in terms of RMSE from the true
model as described in section 2.8. We have chosen to forecast one week, one
month, two months, three months and six months. The estimation window is
set between 03-Jun-2013 until 03-Jun-2014.

3.2 Choice of model

3.2.1 PCA analysis

PCA analysis help us determine to what extent a component explains variation
in the data. As can be seen in Tables 3.2 - 3.6 the degree of explanation for
first, second and third component can be retrieved by studying the bottom line.
The first, second and third component are the level, slope and curvature factors
Christensen & Lopez (2012).
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Table 3.2: Eigenvectors GER

Maturity First Second Third
3M -0.10 0.60 -0.18
6M -0.10 0.55 -0.12
1Y -0.12 0.46 0.09
2Y -0.17 0.24 0.57
3Y -0.24 -0.00 0.48
4Y -0.33 -0.07 0.31
5Y -0.43 -0.20 0.16
6Y -0.50 -0.13 -0.16
7Y -0.57 -0.07 -0.49
Explain 98.39 1.15 0.33

Table 3.3: Eigenvectors SHB

Maturity First Second Third
3M -0.07 -0.74 -0.04
6M -0.02 -0.56 0.07
1Y 0.07 -0.32 0.31
2Y 0.22 -0.05 0.59
3Y 0.33 0.09 0.46
4Y 0.39 0.08 0.19
5Y 0.44 0.01 -0.04
6Y 0.48 -0.05 -0.26
7Y 0.51 -0.13 -0.48
Explain 98.27 1.26 0.43

Table 3.4: Eigenvectors SWD

Maturity First Second Third
3M -0.05 0.63 0.29
6M -0.06 0.48 0.31
1Y -0.10 0.23 0.41
2Y -0.18 -0.15 0.38
3Y -0.26 -0.31 0.38
4Y -0.34 -0.30 0.27
5Y -0.42 -0.16 0.09
6Y -0.50 0.04 -0.17
7Y -0.58 0.30 -0.50
Explain 96.85 2.22 0.81

Table 3.5: Eigenvectors SEB

Maturity First Second Third
3M -0.01 -0.70 -0.15
6M -0.03 -0.46 -0.33
1Y -0.09 -0.12 -0.55
2Y -0.23 0.17 -0.54
3Y -0.34 0.26 -0.33
4Y -0.42 0.22 -0.03
5Y -0.45 0.07 0.10
6Y -0.47 -0.12 0.25
7Y -0.46 -0.36 0.31
Explain 97.37 1.79 0.48

The PCA analysis has been performed individually for each bank’s data. The
analysis supports the framework to exclude curvature in the estimation without
losing much explanatory energy.
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Table 3.6: Eigenvectors NDA
Maturity First Second Third
3M -0.14 0.75 0.08
6M -0.08 0.56 -0.09
1Y 0.03 0.29 -0.37
2Y 0.19 0.03 -0.61
3Y 0.30 -0.05 -0.50
4Y 0.38 -0.03 -0.17
5Y 0.43 0.05 0.09
6Y 0.48 0.11 0.25
7Y 0.53 0.16 0.36
Explain 91.97 7.34 0.58

We can conclude that the explanatory level are quite similar for German Gov-
ernment and SHB. Usually a PCA analysis would tell us that the explanatory
levels for SHB are as for SWD and SEB but it seams SHB have similar dy-
namics as German government and thus have high explanatory energy in the
Level variable. SEB and Swedbank have explanatory levels around the same
as found for the banks in Christensen & Lopez (2012). Nordea stand out with
lower explanatory power in the Level variable and this may be due to the fact
that Nordea has more outstanding senior bonds in EUR compared to the other
banks. Nordea has more outstanding senior bonds in EUR because they are
an active EUR bank and thus their need in EUR is larger than for the others.
With less data as in the case for SWD, SEB and SHB the Nelson Siegel filling
smoothens the curve so that the level explains more than it does for the not as
smooth curve from Nordea.

3.2.2 Nelson Siegel

Based on the findings in Krishnan et al. (2007) which is coherent with our
own PCA analysis we have decided to use a five-factor credit spread model to
explain the treasury and credit spread over time. The five factors are: level,
slope and curvature for treasury and: level and slope for each bank. These
state variables are parametrized as in a Nelson-Siegel model and we present the
details in section 2.4 and subsection 2.4.2. The only alteration to the theory
presented is that we fix values for the α-parameters in the actual estimation.

3.2.3 Alternative approach - Merton’s model

As described in A.1 we could estimate the value of a firm’s debt via the Black
and Scholes pricing formula but since this approach imply so many assumptions
that take away the essence of the micro structure in the credit spread we will
not approach the problem via Merton’s model. However it is a simplified view
to get a quick estimate of what an investor could expect of the yield for a firms
outstanding bonds.
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3.3 Verification of model estimation by simula-
tion

Verification that parameters in a model are correctly estimated is paramount
when evaluating dynamics and driving factors. Zero coupon yields is the under-
lying data and the only way to evaluate the optimization is to simulate synthetic
zero coupon yields and take note of which parameters we use in the simulation
and see how they compare to parameters suggested by the full estimation via
the kalman filter. The simulation is quite straightforward and it follows the
following equations.(

LTt STt CTt LSt SSt
)

= (I5 − F )θ + FXt−1 +Qεt (3.1)

where εt ∼ N (0, 1)

Y Tt (τ) =
(
LTt STt CTt

)
1

1
τ

1−e−φτ
φ

1
τ

(
1−e−φτ

φ − τe−φτ
)
+ a(τ) + σ2

εT (τ)ηt, (3.2)

where ηt ∼ N (0, 1)

Y St (τ) =
(
LTt STt CTt

)
1 + αLT

(1 + αST ) 1−e−φτ
φτ

(1 + αST )

[
1−e−φτ
φτ − e−φτ

]
+

(
LSt SSt

)( αiL
αiS

1−e−φiτ
φiτ

)
+ α0 + a1(τ) + a2(τ) + a3(τ) + σ2

ε νt (3.3)

where νt ∼ N (0, 1)

As can be seen these are the equations from the theory namely equations 2.37
and 2.29 with the additional noise terms. The method in Matlab to produce
εt, ηt and νt is randn().

With the simulated data and the true parameters we can evaluate the perfor-
mance of the estimation algorithm. We started off by evaluating the estimation
with a generic start-vector, to save place we put the Tables in the appendix
section B.1.5. As can be seen the algorithm was quite sensitive for the ini-
tial guess which we could mitigate with multiple runs and successively altering
the generic start vector and thus avoid local minimums. The parameters in
the kappa matrix and the fourth and fifth theta parameters were very sensitive
when we ran the optimization with a generic start-vector. This lead us to be-
lieve that local minimums are possible with alterations of the kappa matrix and
the theta parameters. With this knowledge we exclude any analysis of kappa
and theta parameters individually. A more powerful and proven accurate way
is to analyse the state variables and their correlations. We also look at forecasts
of yield curves and see how they perform for a variation of forecasting periods.
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3.3.1 Convergence towards the true parameters

In order to check that our optimization algorithm converges to the true parame-
ters eventually we created a synthetic start-vector and put it into the optimiza-
tion algorithm. We produced the new start-vector by taking the vector with
true parameters and then we added individual noise terms εi ∼ N (0, 0.0001)
for each parameter i in the true parameter-vector. This mimic the start-vector
that we end up with, after we have altered the start-vector and then reran the
optimization. We found that the model estimated parameters with a better
loglikelihood score and as we expected the parameters converge to their true
value. Results from this exercise are shown below.

Table 3.7: Comparison of loglikelihood scores for different start-vectors
(Negative) loglikelihood

Generic start-vector 27 181
True parameters + εi 27 223

As can be seen in Table 3.7 we improve the likelihood and thus the fit of the
yield-curve with the close to true start-vector as we expected.

Table 3.8: Estimated parameters and standard deviations

Parameter φ θ1 θ2 θ3 θ4 θ5 φC
Upper 0.7347 0.0367 0.0075 0.0605 0.0570 0.0188 0.7367
Estimate 0.4926 0.0202 -0.0274 0.0268 0.0361 -0.0174 0.5034
Lower 0.2505 0.0036 -0.0623 -0.0070 0.0152 -0.0536 0.2702
True 0.5000 0.0200 -0.0250 0.0270 0.0350 -0.0200 0.5000

Table 3.9: Estimated noise parameters and standard deviations
Parameters σ1 σ2 σ3 σ4 σ5

Upper 0.0169 0.0161 0.0096 0.0545 0.0097
Estimate 0.0004 0.0004 0.0004 0.0003 0.0004
Lower -0.0161 -0.0152 -0.0088 -0.0538 -0.0089
True 0.0004 0.0005 0.0006 0.0007 0.0008

As can be seen in Table 3.9 we have a negative lower bound for the σ-values.
This is due to the fact that we numerically calculate the hessian with a quite
large delta making the intervals for these σ-values too wide, the lower bound
should be greater or equal to zero.
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Table 3.10: Estimated noise parameters and standard deviations
Parameters σεT (τ1) σεT (τ2) σεT (τ3) σεT (τ4) σεT (τ5)
Upper 0.0012 0.0015 0.0013 0.0011 0.0010
Estimate 0.0006 0.0008 0.0007 0.0006 0.0005
Lower 0.0000 0.0001 0.0001 0.0000 0.0000
True 0.0006 0.0008 0.0007 0.0006 0.0005

Table 3.11: Estimated noise parameters and standard deviations
. . . σεT (τ6) σεT (τ7) σεT (τ8) σεT (τ9) σεSimCredit
. . . 0.0008 0.0006 0.0008 0.0009 0.0012
. . . 0.0004 0.0003 0.0004 0.0005 0.0010
. . . 0.0000 0.0000 0.0000 0.0000 0.0007
. . . 0.0004 0.0003 0.0004 0.0005 0.0008

Table 3.12: Estimated Kappa matrix and standard deviations
Parameters κ11 κ12 κ13 κ14 κ15 . . .
Upper 4.0473 1.4020 3.5179 2.2125 1.0147 . . .
Estimate 1.1029 0.4974 0.5856 0.4449 0.5853 . . .
Lower -1.8414 -0.4073 -2.3467 -1.3228 0.1560 . . .
True 1.0000 0.5000 0.5000 0.5000 0.5000 . . .

Table 3.13: Estimated Kappa matrix and standard deviations
. . . κ21 κ22 κ23 κ24 κ25 . . .
. . . 4.7315 1.4089 3.4772 3.6512 0.8687 . . .
. . . 0.4738 1.1124 0.2906 0.5653 0.4880 . . .
. . . -3.7838 0.8159 -2.8961 -2.5206 0.1072 . . .
. . . 0.5000 1.0000 0.5000 0.5000 0.5000 . . .
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Table 3.14: Estimated Kappa matrix and standard deviations
. . . κ31 κ32 κ33 κ34 κ35 . . .
. . . 1.9349 1.3632 2.6046 1.2506 1.0620 . . .
. . . 0.5389 0.5318 0.9377 0.4798 0.5257 . . .
. . . -0.8571 -0.2995 -0.7291 -0.2910 -0.0106 . . .
. . . 0.5000 0.5000 1.0000 0.5000 0.5000 . . .

Table 3.15: Estimated Kappa matrix and standard deviations
. . . κ41 κ42 κ43 κ44 κ45 . . .
. . . 1.6297 3.9049 3.1692 2.6468 2.2060 . . .
. . . 0.5300 0.6232 0.4693 1.1104 0.5977 . . .
. . . -0.5696 -2.6586 -2.2306 -0.4260 -1.0105 . . .
. . . 0.5000 0.5000 0.5000 1.0000 0.5000 . . .

Table 3.16: Estimated Kappa matrix and standard deviations
. . . κ51 κ52 κ53 κ54 κ55

. . . 1.7173 1.5517 3.6637 5.2724 6.4862

. . . 0.5690 0.5425 0.5973 0.5375 1.1147

. . . -0.5794 -0.4667 -2.4691 -4.1975 -4.2569

. . . 0.5000 0.5000 0.5000 0.5000 1.0000
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All 47 free parameters their estimates, upper bound, lower bound and true
values have been presented in the Tables above and we can conclude that our
model comes very close to the true parameters even if the confidence interval is
quite wide we see that the estimates are almost spot on. With this verification
of the model we can conclude that the estimation algorithm converge toward
the true parameters which was the intention of this exercise.

Table 3.17: True Exponential Kappa Matrix: e−κTruedt

0.9962 -0.0019 -0.0019 -0.0019 -0.0019
-0.0019 0.9962 -0.0019 -0.0019 -0.0019
-0.0019 -0.0019 0.9962 -0.0019 -0.0019
-0.0019 -0.0019 -0.0019 0.9962 -0.0019
-0.0019 -0.0019 -0.0019 -0.0019 0.9962

Table 3.18: Estimated Kappa Matrix: e−κEstdt

0.9958 -0.0019 -0.0022 -0.0017 -0.0022
-0.0018 0.9958 -0.0011 -0.0021 -0.0018
-0.0020 -0.0020 0.9964 -0.0018 -0.0020
-0.0020 -0.0024 -0.0018 0.9958 -0.0023
-0.0022 -0.0021 -0.0023 -0.0020 0.9958

Table 3.19: Descriptive Statistics for true vs estimated State Variables
LT ST CT LS SS

True Mean 0.0199 -0.0254 0.0276 0.0353 -0.0197
Estimated Mean 0.0200 -0.0255 0.0276 0.0351 -0.0192
MSE 0.0000 0.0000 0.0000 0.0000 0.0000

3.4 Forecast Yield Curves

We forecast future yield curves through a combination of previously mentioned
theory and methodology. The forecast periods considered are 1 week, 1 month,
2 months, 3 months and 6 months. We use estimated parameters where we
evaluate both cases of the kappa matrix i.e. full and diagonal, as in definition
2.35 and 2.36. We put the estimated parameters and adjust (T − t)/dt in
equation 2.43 which yields the predicted state variables. The predicted state
variables are then used in equations 2.37 and 2.29 for each τ to produce the full
yield-curve. For convenience the forecasting scheme is summarized below.
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Where fc is future time of forecast and t is latest date in sample.

Predict state variables

x̂fc|t = (I − F )θ + Fx̂t|t

Calculate Treasury’s forecasted yield curve

yfc(τ) = Lfc + Sfc
1

τ

1− e−φτ

φ
+ Cfc

1

τ

(
1− e−φτ

φ
− τe−φτ

)
+ a(τ),

Calculate Bank’s forecasted yield curve

yifc(τ) = LTfc +
1− e−φτ

φτ
STfc +

[
1− e−φτ

φτ
− e−φτ

]
CTfc + a1(τ)

+ αiLTL
T
fc + αiST

1− e−φτ

φτ
STfc + αiST

[
1− e−φτ

φτ
− e−φτ

]
CTfc + a2(τ)

+ αi0 + αiLL
S
t (i) + αiS

1− e−φiτ

φiτ
SSt (i) + a3(τ)

(3.4)

3.5 Macro data

The macro data we chose to look at was European central bank balance sheet,
ECB BS, German Financial Institutions Balance Sheets, GER FI BS and Euro
zone GDP, EUR GDP. We gathered the data for the available dates which
covered our time period of interest namely the sample period of 2013-Jun to
2014-Jun. Since the macro data was available less frequent than our bond
data we performed a linear interpolation for data in between dates. This was
necessary since we later want to look at correlations between the state variables
estimated by the model and each macro data time series. The interpolated and
original time series are visualized in the appendix B.1.2.
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4. Results and Analysis

4.1 Estimation Results

This sections gives the results from estimation of the chosen time series by
the mentioned models in previous sections. The purpose is to give a better
understanding of the parameters and how they interact, essentially giving a
better knowledge of how treasury and credit yields change in time.

4.1.1 The Treasury Model

Firstly estimation was performed solely on the treasury curve to give initial
estimates of parameters that were used in the full estimation with of both the
treasury as well as the corporate bond curve. This way, our first estimation
works as a benchmark against all the later performed estimations. The esti-
mated κ and θ for the German treasury zero-coupon yields be found in Table
4.1. The maximized log-likelihood was 18225.82 and φ was estimated to 0.2331.
We chose to estimate a full κ matrix to give full flexibility.

Table 4.1: κ and θ for the Treasury Model
κ θ

8.9567 -5.5072 0.3103 0.0323
4.4632 18.4197 -0.0330 -0.0317
2.8691 20.2816 1.9785 -0.0379

4.1.2 The Credit Spread Model

The estimation was performed for all the banks individually, with the German
government bond yield curve as the underlying treasury curve. For each bank
we estimated two cases, the full κ-matrix as well as the diagonal κ-matrix, as
stated in equation 2.35 and 2.36. In Table 4.2 the maximized log-likelihood
for all banks and both κ-matrices are shown. In the rightmost column the
likelihood-ratio between the models is shown, which clearly rejects the diagonal
κ-matrix for all banks, as the χ2-quantile with for a difference of 20 degrees of
freedom is:

χ2
0.005(20) ∼= 40
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Table 4.2: Max LLH and LR for the Credit Spread model
Banks Full κ Diagonal κ LR
Nordea 32403.45 32134.70 537.48
Svenska Handelsbanken 35039.52 34083.66 1911.72
SEB 32960.75 32288.72 1344.07
Swedbank 31727.47 31526.11 402.71

The estimated full κ-matrices can be seen in Tables 4.3, 4.4, 4.5 and 4.6.

Table 4.3: κFullSHB

14.4589 12.8798 0.5445 -7.1709 -4.2528
-0.0876 -0.9591 1.1527 4.7835 4.2115
4.9877 0.4516 3.3675 13.5102 11.5590
2.2581 1.5126 0.2219 0.5324 0.1210
5.6390 5.0393 0.5710 1.0252 2.0454

Table 4.4: κFullNDA

28.8761 0.0904 6.9796 8.0051 -0.0639
0.0756 -0.0061 2.8003 5.7115 7.8296
1.7287 0.5655 5.3472 7.7111 13.2335
7.0871 -1.6546 1.0613 8.9710 0.0024
-0.0395 0.6204 1.5440 0.0627 3.6839
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Table 4.5: κFullSEB

19.1726 16.5129 0.6589 -3.6594 -2.1898
0.0065 -0.0936 1.6574 5.1186 5.3201
4.5659 2.0613 3.9435 18.8496 16.8504
2.2852 1.3025 0.0722 2.9098 -0.0000
1.2963 1.2908 0.6121 0.3140 3.7969

Table 4.6: κFullSWD

20.8799 0.8133 7.7767 -3.5199 0.0045
0.2684 -0.0009 3.3156 6.6465 6.8532
1.7120 -0.0388 5.5246 11.7964 10.8298
4.9768 0.0161 1.4560 2.2227 -0.0046
-0.1429 0.0990 1.1580 0.1818 2.0699

There are some similarities which can be observed for the mean reversion
matrices. For example κ1,1 is the most dominant factor for the mean reversion
rate in all estimations, however we do not perform any deeper analysis for
individual kappa values.

4.1.3 Correlations between state variables

Below you will find the estimated state parameters for the period (shown in
Graph 4.1, 4.2, 4.3 and 4.4)as well as a number of correlation matrices, describ-
ing correlations for state variables both for the banks individually as well as for
the Level and Slope for the credit spread between the banks. This is all from
the estimation with the full κ-matrix, as this fits the data for the estimation
period best.

Table 4.7: NDA state variable correlation
LTt STt CTt LSt SSt

LTt 1 0.1159 -0.7055 0.2434 0.2645
STt 1 -0.6981 0.0738 0.5550
CTt 1 0.0553 -0.7224
LSt 1 -0.6847
SSt 1

These 4 Tables (Tables 4.7, 4.8, 4.9 and 4.10) show the correlation coefficients
for the four banks. There are some shared properties throughout which should
be noted. LTt and LSt shows positive correlation in all cases, implying that a
shock in the level component of the underlying treasury curve is likely to increase
the credit spread. Same thing goes for STt and SSt , where the correlation is even
stronger. As the slope component has a bigger impact for the shorter maturities,
while the level component affects the whole yield curve in the same way, there
seems to be evidence of the credit spread being more affected by shocks in the
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Table 4.8: SHB state variable correlation
LTt STt CTt LSt SSt

LTt 1 0.4854 -0.7278 0.3635 0.1964
STt 1 -0.8078 0.3856 0.5121
CTt 1 -0.0519 -0.6949
LSt 1 -0.5777
SSt 1

Table 4.9: SEB state variable correlation
LTt STt CTt LSt SSt

LTt 1 0.1691 -0.7014 0.3789 0.2547
STt 1 -0.7262 0.1132 0.6907
CTt 1 -0.0512 -0.7663
LSt 1 -0.5141
SSt 1

lower end of the yield curve than for longer maturities. This is coherent with the
general view that bonds with shorter time to maturity are more volatile than
those with longer time to maturities in terms of percentage returns. Another
conclusion which can be drawn is that pairwise behaviour between the state
variables LTt and STt is significantly different from LSt and SSt . The latter shows
strong negative correlation while the earlier shows weak positive correlation.
While a shock to the treasury level LTt might not affect the treasury slope STt
significantly, it seems that a shock to the credit spread level LSt will impact the
credit spread slope SSt negatively, resulting in shorter maturities less affected
than longer maturities. This implies that an event causing the credit spread
level to increase (such as a rating reduction, default event or even an under-
performing quarterly report) has a bigger impact for longer maturities. Our
interpretation is that the market perceives that the risk for investing in bonds
issued by the bank with a shock to the level component of the credit spread
level is bigger for longer maturities than shorter, as the uncertainty increases
with time. The curvature component CTt has strong negative correlation with
all other components except for LSt . A shock to any of the three components
LTt , S

T
t , S

S
t decreases the curvature, resulting in a flattening or convexity of

the underlying treasury curve. It is especially interesting to notice the strong
negative correlation between CTt and SSt . This could imply that a change in
the curvature component of the treasury curve is counteracted to some extent
by the slope component of the credit spread. It seems as if local curvature of
the German government yields doesn’t fully carry on to the yields of the bonds
issued by the banks.
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Table 4.10: SWD state variable correlation
LTt STt CTt LSt SSt

LTt 1 0.2216 -0.7370 0.6122 -0.0379
STt 1 -0.7581 -0.1936 0.8341
CTt 1 -0.1228 -0.5461
LSt 1 -0.6485
SSt 1

Table 4.11: Intrabank state LSt and SSt correlation

LS,SHBt LS,NDAt LS,SEBt LS,SWD
t SS,SHBt SS,NDAt SS,SEBt SS,SWD

t

LS,SHBt 1 0.9341 0.9343 0.6740 -0.5777 -0.4686 -0.3534 -0.2411

LS,NDAt 1 0.9466 0.6603 -0.6913 -0.6846 -0.5753 -0.3401

LS,SEBt 1 0.6852 -0.6081 -0.5650 -0.5141 -0.3284

LS,SWD
t 1 -0.5765 -0.4741 -0.4681 -0.8060

SS,SHBt 1 0.9411 0.9107 0.6840

SS,NDAt 1 0.9660 0.6322

SS,SEBt 1 0.7039

SS,SWD
t 1

Table 4.11 shows the correlation coefficients for the level and slope com-
ponents of the credit spreads for all the banks. There is a strong correlation
between all of the level components, even though the level component of the
credit spread for Swedbank stands out as the one with the weakest correlation
to the other ones. The same behaviour can be seen from looking at the correla-
tions between the slope components. This is possibly misleading, as Swedbank
was the last of the banks to issue major senior benchmark bonds denominated
in EUR, resulting in fewer bonds to estimate the full yield curve from. All
the individual level components are negatively correlated with all the individual
slope components, which coincides with the analysis performed earlier in this
section.

Figures 4.1, 4.2, 4.3 and 4.4 show the estimated state variables for the es-
timation period. They coincide pretty well, with Swedbank as the odd one
out, having significantly higher credit spread level component, but at the same
time a smaller slope component, indicating Swedbank higher credit spreads for
Swedbank for longer maturities.

37



Figure 4.1: NDA estimated state variables for the period
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Figure 4.2: SHB estimated state variables for the period
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Figure 4.3: SEB estimated state variables for the period
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Figure 4.4: SWD estimated state variables for the period
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4.1.4 Out of Sample Fit

To estimate the performance of the model in a new environment, out of sample
fit was performed for the estimated parameters for all banks for a period of 6
months after the estimation period. The results can be seen in Table 4.12.

Table 4.12: Out of sample LLH and RMSE

κNDAFull κSHBFull κSEBFull κSWD
Full κNDADiag κSHBDiag κSEBDiag κSWD

Diag

LLH -13740 -21779 -21272 -25644 -26123 -22836 -24942 -25570
RMSE 1.472E-03 3.279E-04 5.385E-04 4.225E-04 4.863E-04 3.364E-03 3.389E-03 3.361E-03

4.2 Forecast results

As described in 3.4 we can forecast future yield curves. Since we have chosen the
estimation window as June 2013 to June 2014 we can also verify their accuracy.
We evaluate their performance by looking at the real sample data and calculate
the RMSE as defined in section 2.8.

Table 4.13: RMSE (%) Full Kappa Matrix
Bank 1 Week 1 Month 2 Months 3 Months 6 Months
SHB 0.0116 0.0775 0.1597 0.2746 0.4756
SWD 0.1053 0.2885 0.4257 0.5687 0.7951
SEB 0.0756 0.1151 0.2469 0.3705 0.5547
NDA 0.3011 0.5737 0.6633 0.7387 0.8074
GER 0.1751 0.1801 0.1752 0.1879 0.2028

Table 4.14: RMSE (%) Diagonal Kappa Matrix
Bank 1 Week 1 Month 2 Months 3 Months 6 Months
SHB 0.2092 0.1963 0.1993 0.2428 0.3949
SWD 0.2149 0.1646 0.1444 0.1695 0.3523
SEB 0.2267 0.1751 0.1732 0.2119 0.3511
NDA 0.1001 0.1258 0.2207 0.3269 0.4496
GER 0.2168 0.2058 0.2039 0.2036 0.2089

Studying the RMSE we can conclude that in general the diagonal kappa matrix
outperform the full kappa matrix. As one could expect based on the findings
from Christensen & Lopez (2012) the full kappa matrix performs better then
the diagonal for forecast periods close in time i.e. 1 week and 1 month. This is
natural since the full kappa matrix capture most of today’s dynamics and it is
quite probable that these are still valid in the 1 week and 1 month forecast. For
SHB and German Government however we get better forecast for both 1 and 2
months with the full kappa matrix and if we only look at German Government
we have a better performance over all periods.
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This result suggest that SHB and German government change less than the
other peers and thus their dynamics stays the same for a longer period of time
giving the full kappa matrix an edge toward the diagonal kappa matrix. In order
to illustrate the forecast performance better we visualize the best-performing
forecasts (GER and SHB with Full Kappa matrix) in the figures below.

Figure 4.5: 1 week forecast for GER - Full Kappa Matrix
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Figure 4.6: 1 month forecast for GER - Full Kappa Matrix
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Figure 4.7: 3 months forecast for GER - Full Kappa Matrix
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Figure 4.8: 6 months forecast for GER - Full Kappa Matrix
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Figure 4.9: 1 week forecast for SHB - Full Kappa Matrix
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Figure 4.10: 1 month forecast for SHB - Full Kappa Matrix
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Figure 4.11: 2 months forecast for SHB - Full Kappa Matrix
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Figure 4.12: 3 months forecast for SHB - Full Kappa Matrix
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As can be seen in the graphs for SHB the forecast is above the actual yield. This
is the case for the other banks as well. The probable reason for this outcome is
that the model predicts a similar dynamics as during the estimated period and
the actual dynamics at this time shift the yield curve further down compared to
what the model does. This can be mitigated by elaborating with the number of
parameters estimated. Either way forecasts for shorter periods such as 1 week
and 1 month are rather spot on so for this reason the model works quite well.
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4.3 Macro factor correlation with state variables

We denote European Central Bank Balance Sheet as ECB BS, German Finan-
cial Institutions Balance Sheet as GER FI BS and Euro zone Gross Domestic
Product as EUR GDP. Correlations are calculated on the sample period 03-
Jun-2013 until 03-Jun-2014. Visualization of macro data can be found under
appendix B.1.2. Comments of the correlations follow each Table.

Table 4.15: Correlations German Government State Variables

LT ST CT ECB BS GER FI BS EU GDP
LT 1.000 -0.986 -0.642 -0.271 -0.317 0.093
ST 1.000 0.538 0.157 0.211 0.044
CT 1.000 0.517 0.402 -0.512
ECB BS 1.000 0.947 -0.948
GER FI BS 1.000 -0.890
EU GDP 1.000

Treasury Level move against ECB BS and it seams that the effects of quanti-
tative easing show in this correlation Table. We expect lower rates with larger
ECB BS due to QEs. Treasury Level move against GER FI BS which is unex-
pected. This may be since a senior bond is not comparable with a government
bond. It make sense that the level is not so dependent of the supply of bonds
in the senior market or even move against it as this Table suggest.

Table 4.16: Correlations SHB State Variables

LSHB SSHB ECB BS GER FI BS EU GDP
LSHB 1.000 -0.983 0.582 0.428 -0.754
SSHB 1.000 -0.604 -0.448 0.758
ECB BS 1.000 0.947 -0.948
GER FI BS 1.000 -0.890
EU GDP 1.000

SHB level moves with ECB BS this is counterintuitive but our hypothesis is
that this is a lag-effect. Rates continue to move down from previous QEs even if
ECB BS has come down during the last year the effect from before was stronger.
SHB Level also move with GER FI BS which supports the statement that the
level move down with less supply of bonds on the EUR senior market. These
conclusions can not proofed in any wider sense but the hypothesis is at least
supported.
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Table 4.17: Correlations Swedbank State Variables

LSWD SSWD ECB BS GER FI BS EU GDP
LSWD 1.000 -0.819 0.148 0.039 -0.377
SSWD 1.000 0.047 0.131 0.166
ECB BS 1.000 0.947 -0.948
GER FI BS 1.000 -0.890
EU GDP 1.000

SWD show same direction as SHB but but with somewhat weaker correlations.

Table 4.18: Correlations SEB State Variables

LSEB SSEB ECB BS GER FI BS EU GDP
LSEB 1.000 -0.979 0.517 0.391 -0.701
SSEB 1.000 -0.584 -0.467 0.759
ECB BS 1.000 0.947 -0.948
GER FI BS 1.000 -0.890
EU GDP 1.000

SEB’s Table has same directions as SHB’s and similar magnitude of correlations.

Table 4.19: Correlations Nordea State Variables

LNDA SNDA ECB BS GER FI BS EU GDP
LNDA 1.000 -0.707 0.723 0.613 -0.859
SNDA 1.000 -0.586 -0.489 0.713
ECB BS 1.000 0.947 -0.948
GER FI BS 1.000 -0.890
EU GDP 1.000

NDA’s Table also has same directions as SHB’s but with somewhat stronger
correlations.
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5. Conclusion and suggestions for further

research

5.1 Conclusion

In this thesis we have researched the possibilities to model the behaviour of
bonds issued by Swedish banks. After evaluating different possible models as in
section 3.2.3, we implemented the arbitrage free Nelson-Siegel model to identify
the dynamics of the yield curve and forecasting performance for EUR senior
unsecured bonds issued by Swedish banks. We show that in-sample-fit not nec-
essarily indicates good out-of-sample fit and forecasting performance for periods
longer into the future. However, the specifications giving better in-sample-fit
give significantly better forecasting performance not too far in the future. We
can show some support for our hypothesises around correlations with macro-
data and between treasury and the banks. We have also concluded that there
are possibilities to do a lot of minor alterations and modifications to the model,
which is discussed in the section 5.2. All in all we can say that we have fulfilled
the purpose outlined in section 1.4.

5.2 Further Research

To take this thesis further we recommend to further investigate improvements
of the model by altering some of the specifications of it and check for better
in sample fit as well as improving forecasting performance and out of sample
fit. The most straightforward ways of doing this are to alter the kappa matrix
and/or try a different sampling frequency. Since we chose a daily frequency we
think the risk of capturing non important dynamics might be higher than if
we would for example have tried with a less frequent sampling. The choice of
daily sampling was based on the fact that data was scarce and we were under
the impression we needed more data points than what a weekly or monthly
sampling would have given us. However from today going forward more useful
data is becoming available which make a less frequent sampling approach more
viable. Another suggestion and a natural step in this field would be to confirm
the results we have gotten from the model based on the EUR senior market and
look at USD senior market. Even if there are different jurisdiction between the
banks it would be interesting to perform the analysis nonetheless. The model we
used in this thesis is a so called mean-reversion model, where the state variables
revert to a mean level. As there was a downwards trend in the rates for the
estimation period (see subsection B.1.1), further research could be conducted to

47



investigate other types of models (we believe that a trending model would be a
suitable choice). Last but not least we see that an implementation, integration
and automation of the model would be the next step to take this model from
being a prototype to be a powerful quantitative analysis tool in the daily work
on the funding desk.
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A. Appendix A

A.1 Merton’s model

Merton (1974) uses the results of Black & Scholes (1973) option pricing model
in order to value corporate liabilities. This approach is heavily simplified and
assumptions of capital structure, interest rate and default intensity are made.
Capital structure of the firm at time t is assumed to consist of equity of value Et
and a zero-coupon bond with a value of z(t, T ), face value of D and a maturity
T . The firm’t asset value is denoted as Vt. At maturity if Vt > D the firm does
not default and vice versa. Other assumptions Merton (1974) does is that there
are no transaction cost, bankruptcy cost, taxes or problems with indivisibilities
of assets. Remaining assumptions are that there is; continuous time trading,
unrestricted borrowing ad lending at a constant interest rate r, no restrictions
on the short selling of the assets, the value of the firm is invariant under changes
in its capital structure and that the firm’s asset value follows a diffusion process.
The diffusion process under the risk neutral measure is specified as

dVt = rVtdt+ σV VtdWt (A.1)

where σV denote the assets volatility and Wt is a Brownian motion. Equity-
holders and bond-holders can expect following pay-off depending how VT has
evolved.

ET = max{VT −D, 0}, (A.2)

z(T, T ) = VT − ET (A.3)

Applying Black Scholes pricing formula, the value of Equity is hence

Et(Vt, σV , T − t) = e−r(T−t)[er(T−t)VtΦ(d1)−DΦ(d2)] (A.4)

d1 =
ln( e

r(T−t)Vt

D ) + 1
2σ

2
V (T − t)

σV
√
T − t

(A.5)

d2 = d1 − σV
√
T − t (A.6)

Probability of default would hence be

Q[VT < D] = Φ(−d2) (A.7)

And finally the value of debt is z(t, T ) = Vt − Et.
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A.2 Monte Carlo methods - Sample Paths

In order to sample a path for a given SDE we use Monte Carlo methods. For
example if we consider the evolution of the stock price in the standard Black-
Scholes model given as

dSt = µStdt+ σdWt. (A.8)

In order to sample this path from time 0 to T we make a partition and we end
up with δt = T

M where M is the number of simulations. The stock price will
then evolve as

S(k, δt) = S(0)e
∑k
i=1[(µ−σ22 )δt+σεi

√
δt] (A.9)

for each k between 1 and M and each εi is a draw from a standard normal
distribution, εi ∼ N (0, 1).

A.3 Discretization with Euler and Maruyama

In order to approximate a numerical solution to a continous SDE we will use a
discretization scheme named after Leonard Euler and Gisiro Maruyama (Kloe-
den & Platen, 1992). Consider the SDE

dXt = a(Xt)dt+ b(Xt)dWt (A.10)

With initial condition X0 = x0 and again Wt is a wiener process. Discretization
then follows as

0 = τ0 < τ1 < . . . < τN = T and ∆t = T
N ; set Y0 = x0

Yn+1 = Yn + a(Yn)∆t+ b(Yn)∆Wn, (A.11)

where ∆Wn = Wτn+1
−Wτn
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B. Appendix B

B.1 Data

B.1.1 Visualization of yield data

Figure B.1: German Government Bonds zero coupon yield Euro
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Figure B.2: Nordea senior unsecured zero coupon yield Euro
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Figure B.3: SHB senior unsecured zero coupon yield Euro
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Figure B.4: SEB senior unsecured zero coupon yield Euro
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Figure B.5: Swedbank senior unsecured zero coupon yield Euro
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B.1.2 Visualization of Macro data

Figure B.6: ECB BS in Billion EUR
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Figure B.7: EU GDP in Billion EUR

Dates
Apr13 Jun13 Aug13 Sep13 Nov13 Jan14 Feb14 Apr14 May14 Jul14

G
D

P
 in

 B
ill

io
ns

 E
U

R

2465

2470

2475

2480

2485

2490

2495

2500

2505

2510

2515
Filling missing EU GDP data with linear interpolation/Extrapolation

Actual EU GDP
Fitted Linear interpolation/extrapolation

Figure B.8: German Financial Institutions BS in Billion EUR
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B.1.3 Descriptive Statistics

Table B.1: Descriptive Statistics GER
Maturity Mean Std Kurtosis Skewness
3M 0.00 0.05 3.05 -0.73
6M 0.00 0.05 3.02 -0.75
1Y 0.01 0.05 2.71 -0.69
2Y 0.02 0.07 2.35 -0.39
3Y 0.07 0.10 2.03 -0.23
4Y 0.14 0.13 1.86 -0.17
5Y 0.23 0.17 1.81 -0.16
6Y 0.32 0.20 1.81 -0.27
7Y 0.41 0.23 1.83 -0.35

Table B.2: Descriptive Statistics NDA
Maturity Mean Std Kurtosis Skewness
3M 0.28 0.16 2.39 0.05
6M 0.31 0.12 2.29 0.08
1Y 0.38 0.10 2.37 -0.37
2Y 0.56 0.19 1.54 -0.20
3Y 0.78 0.28 1.45 -0.12
4Y 1.01 0.36 1.47 -0.14
5Y 1.25 0.43 1.50 -0.21
6Y 1.48 0.49 1.55 -0.28
7Y 1.69 0.55 1.60 -0.36
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Table B.3: Descriptive Statistics SEB
Maturity Mean Std Kurtosis Skewness
3M 0.20 0.09 1.61 -0.01
6M 0.23 0.09 2.04 -0.24
1Y 0.32 0.12 1.92 -0.53
2Y 0.52 0.22 1.52 -0.25
3Y 0.75 0.32 1.42 -0.16
4Y 0.97 0.41 1.43 -0.15
5Y 1.20 0.47 1.47 -0.17
6Y 1.41 0.51 1.54 -0.22
7Y 1.62 0.53 1.63 -0.31

Table B.4: Descriptive Statistics SHB
Maturity Mean Std Kurtosis Skewness
3M 0.12 0.08 2.34 0.19
6M 0.18 0.07 3.77 -0.64
1Y 0.30 0.11 2.44 -0.55
2Y 0.53 0.22 1.50 -0.19
3Y 0.75 0.32 1.44 -0.15
4Y 0.97 0.41 1.46 -0.16
5Y 1.17 0.48 1.51 -0.19
6Y 1.37 0.53 1.55 -0.23
7Y 1.54 0.58 1.61 -0.27

Table B.5: Descriptive Statistics SWD
Maturity Mean Std Kurtosis Skewness
3M 0.24 0.11 2.91 0.82
6M 0.28 0.11 2.35 0.55
1Y 0.37 0.14 1.89 0.08
2Y 0.56 0.21 1.48 -0.19
3Y 0.77 0.31 1.45 -0.17
4Y 0.99 0.41 1.47 -0.15
5Y 1.21 0.50 1.50 -0.14
6Y 1.43 0.60 1.56 -0.12
7Y 1.65 0.69 1.63 -0.10
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B.1.4 Visualization of filling missing data with NS-curve
fitting

Figure B.9: SHB filling missing data with NS-curve fitting 17-Jun-2013
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Figure B.10: SWD filling missing data with NS-curve fitting 17-Jun-2013
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Figure B.11: SEB filling missing data with NS-curve fitting 17-Jun-2013

Tenors
0 1 2 3 4 5 6 7 8 9 10

Z
er

o 
co

up
on

 y
ie

ld
s 

in
 %

0

1

1.5

2

2.5

3

3.5
SEB filling missing data with NS-curve fitting 17-Jun-2013

Actual Yield To Maturity
Estimated Zero Coupon Yield
NS-fitted curve for ZCY

Figure B.12: NDA filling missing data with NS-curve fitting 17-Jun-2013

Tenors
0 1 2 3 4 5 6 7 8 9 10

Z
er

o 
co

up
on

 y
ie

ld
s 

in
 %

0

1

1.5

2

2.5

3

3.5
NDA filling missing data with NS-curve fitting 17-Jun-2013

Actual Yield To Maturity
Estimated Zero Coupon Yield
NS-fitted curve for ZCY

62



B.1.5 Estimation data for generic start vector

Figure B.13: Evaluation of State Variables - Simulated vs. Estimated
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Figure B.14: Descriptive Statistics for true vs estimated State Variables
LT ST CT LS SS

True Mean 0.019905 -0.025412 0.027553 0.035349 -0.019700
Estimated Mean 0.020606 -0.026164 0.025827 0.035309 -0.019497
MSE 0.000001 0.000001 0.000003 0.000000 0.000000
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Table B.6: Estimated parameters and standard deviations

Parameter φ θ1 θ2 θ3 θ4 θ5 φC
Upper 0.509157 0.069589 -0.021437 0.032079 0.002043 0.226371 0.501897
Estimate 0.509063 0.040117 -0.050857 0.000628 0.000619 0.219265 0.501689
Lower 0.508969 0.010645 -0.080278 -0.030824 -0.000805 0.212158 0.501481
True 0.500000 0.020000 -0.025000 0.027000 0.035000 -0.020000 0.500000

Table B.7: True one day mean rev. matrix: e−κTruedt

0.996198 -0.001896 -0.001896 -0.001896 -0.001896
-0.001896 0.996198 -0.001896 -0.001896 -0.001896
-0.001896 -0.001896 0.996198 -0.001896 -0.001896
-0.001896 -0.001896 -0.001896 0.996198 -0.001896
-0.001896 -0.001896 -0.001896 -0.001896 0.996198

Table B.8: Estimated one day mean rev. matrix: e−κEstdt

0.975880 0.008394 -0.013705 -0.008896 0.000108
-0.002700 0.989299 -0.002211 0.007972 0.000030
-0.005026 0.024849 0.969866 -0.000250 -0.000249
-0.074396 0.006945 -0.052389 0.984784 -0.000966
0.021079 -0.001880 -0.008110 -0.042071 0.990939
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