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Thermoelectric elements have long been anticipated to challenge conventional solutions
for converting heat to electricity. However, the revolution has been stalled due to the
inability to reach efficiencies comparable to their conventional counterparts, while re-
taining a high output power. In this work we will model a thermoelectric element based
on nanowires embedded with a quantum dot superlattice using a transport model de-
pendent on coherent transport of electrons, and show that it is theoretically possible
to both increase the output power as well as reach an efficiency close to the theoretical

maximum limit.
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Chapter 1

Introduction

In the year 1821, Thomas Johann Seebeck discovered that when externally short-circuiting
two coupled dissimilar metals whose junctions are at different temperature, and holding
a compass needle over it, the needle will deflect [1, 2]. The reason for this was later
discovered to be the occurrence of a magnetic field induced by a current through the
metal interface as a result of the temperature difference between the junctions. More
specifically, the temperature difference gives rise to a voltage difference, something that
is today known as the Seebeck effect. This voltage difference can in turn be used to
drive a current. Ever since then, there have been attempts to construct thermoelectric
elements that make use of this effect, in order to extract energy from a temperature
difference. Conventionally, many of these thermoelectric elements are combined into
a thermocouple consisting of n-type and p-type semiconductors. These are connected

electrically in series and thermally in parallel, in order to increase the operating voltage

3].

The potential advantages of using thermoelectric elements over conventional electrical
generators are many. For one thing, such a system consists of no moving parts, meaning
less risk of it breaking. It could also enable energy conversion using heat that would

otherwise be to no use, such as the waste heat produced by a combustion engine.

Instead of using the thermoelectric element as a heat engine it is also possible to do the
opposite by driving a current through the element, and use it as a cooling element to
further increase a temperature difference. This is known as the Peltier effect and could

be used for local cooling in electronic devices, or even in biological tissue [4].

However, thermoelectric element based heat converters have yet to challenge their con-
ventional counterparts, due to an inability to reach a comparable output power and

efficiency. A parameter related to the efficiency of a thermoelectric device that is often
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used is the so called figure of merit ZT and much effort has been made to increase
this, e.g. by increasing the open circuit voltage called the thermopower, increasing the

electrical conductivity, or decreasing the thermal conductivity. .

This work will be dedicated to modelling thermoelectric elements based on nanowires
embedded with a quantum dot superlattice, in order to theoretically investigate the

possibility to enhance both the output power as well as the efficiency.

But let’s start at the beginning, by describing some of the physics behind thermoelec-
tricity, as well as motivating why these superlattice structures are of interest in the first

place.

1.1 The Seebeck effect

Consider Figure 1.1. The electrons in a solid material with a finite temperature will
have a certain energy spread and the higher the temperature, the larger the spread.
This energy distribution follows the so called Fermi distribution f(F) and can in the
figure be seen for two different temperatures. The Fermi level, that is the energy level
with a 50% probability of being occupied by an electron, is marked with a dashed line,

and is the same in both temperature cases.

In 3D, the density of states (DOS) for the electrons in the material increases with the
square root of the energy, meaning there are more energy levels at higher energies, as

can be seen in the centre of the figure.

Worth mentioning is that electrons with higher energy will also have a higher veloc-
ity, leading to more electrical current being transmitted through electrons with higher

energy.

E AFE AFE

-

=

f(E) DOS F(E)

FIGURE 1.1: Schematic illustrating the thermoelectric effect in 3D.
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Now let’s consider the two Fermi distributions in the figure describing the electron energy
spread in the two ends of the same conductor. If we keep the system out of thermal
equilibrium and maintain the temperature difference between the two ends, e.g. by
connecting them to different heat sinks, we will have a net diffusion current of electrons
moving from the hot to the cold end. If open circuited, this will lead to an accumulation
of electrons at the cold end which will give rise to a voltage difference, and this is
commonly known as the Seebeck effect. This voltage difference can in turn be used to

extract energy from the system.

1.2 Room for improvement

From an energy harvesting point of view, there are a few obvious drawbacks to the

system described in the previous section.

One is that all electrons with an energy below the Fermi level give rise to a current
going in the wrong direction, illustrated in Figure 1.1 with the small arrow of current,
which will decrease the net current and hence also the possible power output from such

a device.

Another disadvantage has to do with the high energy electrons that carry current. All
electrons carry the same amount of electrical current, due to the electron elementary
charge being quantized. But electrons with higher energy carry a larger heat current, as
they have an energy further from the Fermi energy. Hence high energy electrons that

are part of the transport will lead to a decrease in the device efficiency.

Optimally we therefore want no electron transmission below the Fermi level, and the
current above the Fermi level to be carried by electrons as close to the Fermi energy as

possible.

1.3 Lowering the dimensions

By making the conductor between the two heat sinks radially very thin, we lower the
dimensions of the conductor from 3D to 1D. This has been anticipated to significantly

increase the figure of merit ZT [5, 6].

In 1D, the density of states is proportional to one over the square root of energy, hence
there are more electrons with lower energy. As mentioned in the previous section this
is advantageous, since it will lower the amount of higher energy electrons that carry

current.
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But this does not change the fact that we still have electron transmission below the
Fermi level, carrying current in the wrong direction. For this we need a way to selectively
choose what the electron energy must be in order for the electron to be allowed to be

transmitted through the device.

1.4 Using quantum dot embedded nanowires

Nanowires (NWs) are thin elongated semiconductor cylinders!. Since the diameter of

the NW is so small (20-200 nm) it can be seen as having only one dimension, hence we
fulfil the requirements described in the previous section of having a density of states in

1D.

NWs are conventionally grown using the bottom-up approach in its axial direction, and
it is possible to make abrupt changes in the semiconductor material during growth [7].
This makes it possible to embed quantum dots (QDs) inside the nanowire [8]. Due to
resonant tunnelling through the QDs they act as energy filters, allowing only electrons

of specific energies to be transmitted through the structure.

By engineering a QD embedded NW, and doping or gating the leads on either side of the
QD structure to place the Fermi level at an appropriate position, it is possible to force
the structure to only transmit electrons with energies above the Fermi level in a very
well defined interval. By only allowing transport close to the Fermi level it is possible

to achieve quite high efficiencies, since the electrons carry very little heat.

The problem with this is that, because the QD gives rise to a very narrow energy
interval in which the electrons are allowed to be transmitted through the structure, the
current and hence also the power output from such a device is very small. Also, the
transmission peaks resulting from the resonant tunnelling through a single QD follow
the smooth shape of a Lorentzian distribution, which is not optimal for achieving a high

efficiency.

1.5 Combining QDs into a superlattice

It has been shown that in order to maximize the efficiency of a thermoelectric element
given a certain power output, the transmission function describing the probability of

transmission for electrons as a function of energy, needs to have a rectangular shape [9)].

'Nanowires do not necessarily have be cylindrical, but this will be neglected since we in this project
will disregard the shape and dimension of the nanowire cross-section.
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This means that in a certain energy interval, all electrons will be transmitted through

the structure. Outside this interval, no electrons will be transmitted.

A suggestion of how to realize this transmission function is to connect several QDs in
series to form a so called superlattice. Similar to when atoms are clustered together
and their discrete energy levels split into energy bands, the peaks in the transmission
function related to the energy levels of a single QD split into several adjacent peaks

when connected in series.

This approach seems promising in order to engineer the rectangular transmission func-
tion needed to maximize the efficiency of such a thermoelectric device and has also been
tested experimentally [10]. Several methods exist for calculating the heat and charge
currents, including using Non-Equilibrium Green’s Functions [11], master equations [12],

and Boltzmann equations [13].

In this work, we will utilize the power of T-matrices, that relies on coherent elastic
scattering in a potential structure consisting of potential barriers with finite dimensions,
in order to calculate the transmission function used when calculating the currents [14,

p. 153-162].

1.6 Goals

The main goal of this project is to theoretically investigate the thermoeletric properties
of a NW embedded with a superlattice of QDs. In particular it is of interest to compare
these results to those of a NW embedded with a single QD. The hope is to be able to

show that the output power will increase while still retaining a high efficiency.

To achieve this goal, much effort will be put into engineering a rectangular transmission
function, calculated using T-matrices, by optimizing different parameters of the NW’s

conduction band potential structure.



Chapter 2

Theory

2.1 Model

A schematic of the device that will be modelled is shown in Figure 2.1, and is an

illustrative representation of a NW contacted at both ends.

Contact Contact
Lead Obstacle Lead

FI1GURE 2.1: Schematic of the theoretical setup of the device that is modelled.

The model and the methods used in the project will be summarized in this section and

described in greater detail later in this chapter.

2.1.1 Scattering

The NW contains an embedded structure in its centre called an obstacle which is the only
scattering centre for electrons travelling through the device. Hence there is no scattering
in the interface between the leads and the contacts. This obstacle can be e.g. an energy
barrier or a QD, and will be modelled as a specified potential structure representing
the lower conduction band edge. Depending on what this potential structure looks
like, it will selectively reflect and transmit electrons depending of their energy. The
transmission probability for a certain electron energy will be given by the transmission

function, which is calculated using T-matrices. We deal only with elastic scattering

6
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events, and throughout the obstacle and its contactation to the leads, the electrons have

constant energy.

2.1.2 Potential structure

The potential structure of the lower conduction band edge will be modelled as alternating
layers of indium arsenide (InAs) and indium arsenide phosphide (InAs;<Py). Varying
the amount of phosphorus will in turn vary the structure potential and make it possible
to construct energy barriers of different heights. A change in material composition will

also result in a different effective electron mass in that segment of the NW.

2.1.3 Dimensionality

The electron wave function is, due to the small radial dimension of the NW, approxi-
mated to having only 1 dimension, hence the electron energy is only dependent on the

wave vector k in the axial direction.

2.1.4 Temperature

A temperature difference is set between the two leads on either side of the obstacle, and

results in a smearing of the two Fermi distributions.

We will consider one low and one high temperature regime: 4 K — 10 K and 250 K — 300
K for the cold — hot lead respectively. The low temperature regime is chosen because it
is a common temperature for doing experimental testing on nano sized thermoelectric
elements. The high temperature regime is chosen because it is around room temperature,

and hence relevant for energy harvesting in practice.

2.1.5 Heat transport
When calculating the heat loss, we limit ourselves to the heat carried by the electrons,

and neglect all other sorts of heat transfer such as phonon transport or heat lost to the

surroundings.

2.1.6 Current

Both electrical current and heat current is calculated using Landauer formalism.



Chapter 2. Theory 8

2.1.7 Voltage bias

The voltage bias we put over the NW in order to model the power extraction is modelled

as a shifting of the Fermi levels in the leads.

2.2 Electron wave function

In this project, we will look at the electron as a propagating wave, described by a wave
function. The wave function is obtained by solving the time-independent Schrédinger

equation for the two leads on either side of the obstacle mentioned in Section 2.1.

Because we work with NWs, that are thin elongated cylinders, the medium in which the
electrons travel can be seen as having only 1 dimension: along the z-axis of the NW. In
the other two dimensions the electron is confined due to the small radius of the NW.

The solution to the Schrodinger equation for a free electron in the NW lead will then be

U, (2, )0 (2) = U, (z,y) (Ae=? + Be =), (2.1)
where
k. = m(Eh_VO) =k, (2.2)

is the electron wave number along the NW axis, I the electron energy, Vj the potential,
and m the effective mass of the electron, which depends on the material it is travelling

in.

As can be seen in Eq. (2.1), ¥(z) consist of two partial waves travelling in opposite
directions along the NW axis. It can also be seen that the total wave function will have
a term W, (z,y) which will be standing waves dependent on the dimensions of the NW
cross-section. Since we neglect the dimensions of the cross-section, and because there is
transport only in the z-direction along the NW, we will ignore these terms. The eigen
energies of these terms will however result in different sub-bands, and will lead to an
energy shift of the lower edge of the conduction band. We will only look at the sub-
band with the lowest energy, and define the lower edge of the conduction band in the

leads to be at zero potential.
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2.3 Transmission function

The transmission function T(E) gives the probability for an electron of energy E to be
transmitted through a specified potential structure, and we will now go through how to

calculate it.

As can be seen in Eq. (2.1) the solution to the Schrodinger equation will depend on the
wave vector k of the electron, and Eq. (2.2) shows that k is dependent on the effective
electron mass as well as its kinetic energy. A change in material along the NW will
change both of these parameters, meaning the electron wave functions on either side of

such a material interface must be different. We will henceforth call this interface a step.

2.3.1 Modelling the transition through a step

Shown in Fig. 2.2 is an illustration of a potential step inside the structure along the
NW axis.

Aeiklz > CeikQZ >
E <« Be—iklz < De—ikgz

% >
20 z

FIGURE 2.2: Illustration of the potential structure for a single step, e.g. an interface
between two different materials.

Because the potentials on either side of the obstacle differs from each other, the wave
vectors k of the wave functions of electrons on either side of the obstacle must also
differ, which requires two separate solutions to the Schrédinger equation according to
Eq. (2.1):

Uy (2) = Ae?1? 4 Be712 5 < 2,

V(z) = | |
Uy(z) = Cetk2? 4 De~ 2z 5 > 2.

We want the total wave function across the structure to be continuous, meaning their

value must match at the interface, which yields the first boundary condition:

\111(2:0) = \112(2:0).
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Furthermore, it is necessary to have current conservation for transport through the
obstacle, giving a second boundary condition [14, p. 195]:

Ld\lfl(z) id\lfz(z)

my dz|,_ my dz |,_

Inserting the wave function from Eq. (2.1) into these two boundary conditions gives

ik —ik ik —ik
Ae'1%0 4 BemM120 = (250 4 DeT M0

E(Ae’ik‘lzo _ Be—ilﬁzo) ﬁ

_ (Cezk’on _ De_ZkQZO),
mi ma

and combining them yields

ka | k1 ka _ ki
ok m m ok m m —ik
Cletk220 — m2 M1 AetR1Zz0 + m2 M1 p,—i 1z07
9k 9 k2
ma ma2
ky _ k1 ka2 | k1
De*ik‘gZo — ma2 mi Aeiklzo + ma2 mi Be*iklzo
9 ka2 9 k2 ’
mo m2

These two equations can be written in matrix form, and after some rearrangements we

get

C _ e tk220 0 1 komi + kimo  kamq — kimo etk1zo 0
D 0 etk2z0 | 2komy komq — kimso  komi + k1mo 0 e~ k170

I
=
5

~/

where M;(2p) is denoted the step transfer matriz, and connects the amplitude of the
wave functions on either side of the potential step at position z = 2y in the potential
structure. Note that Ms(z9) can, depending on the matrix parameters, represent both

a step up and a step down in potential.

2.3.2 Combining transfer matrices

To model a more complex structure, such as that of a double barrier QD shown in Fig
2.3, we need to combine multiple step transfer matrices, or T-matrices, described in the
previous section. Since the outgoing wave from one step is the ingoing wave to the next,

this is done by simply multiplying the T-matrices for different steps in the right order.
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Aeik‘z_) Ceik‘z _)
EA < Be** < De '

— — >
Z1 <9 Z3 Z4 z

Ficure 2.3: Illustration of the potential structure for a double barrier QD.

For the structure shown in Fig. 2.3 we multiply the ingoing wave amplitudes with

T-matrices in the following order:

<1C)> = M (24)Msy (23) My (22) My (21) (2)
(5
M )

B

where M, (z) and M,_(z) represent a step up and a step down in potential, respectively,

and M is the total transfer matrix of the potential structure.

If we approximate all material transitions in the NW to be represented as abrupt shifts
in the potential structure, we can use combined T-matrices to model the electron trans-

mission through an arbitrary structure.

2.3.3 Wave amplitude and transmission flux

Consider the functions in Fig. 2.2 or 2.3 and an electron hitting the obstacle from the
left. Because of this impact direction we define the right going wave on the left side to
have an amplitude equal to 1, hence A = 1. For the same reason we have no left going
wave from the right, so D = 0. The right going wave on the right is the one that has
been transmitted through the structure and we therefore denote its amplitude C' = t.
Lastly, the left going wave on the left is what is being reflected back from the structure,

so we denote its amplitude B = r.
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We are only interested in what is being transmitted through the structure, and we get

the amplitude of the transmitted wave using
C A t My Mg\ (1 My + Maar
= M 5 = == - )
D B 0 My M) \r Ma1 + Maar

t = M1 + Mior N My May — Mya Moy
0= Mgl + MQQT 7 M22

Hence we can calculate the amplitude of the transmitted wave by only using the elements

of the total T-matrix.

So far we have been looking on the transmission of the wave amplitudes. But what we

are really interested in is the transmission flux T of the potential structure.

A wave Ae'*® carries a number current density %k |A|?. The flux transmission through an
obstacle is calculated by taking the ratio between the transmitted and incident current

density.

Combining these facts with the amplitude coefficients previously retrieved in this section,

we get the transmission flux

hko 2
t k
T(E) = m2’ | = 2m1’ ’2

By |12 kymy
mi

When the material in the two leads are the same, this expression simplifies to
T(E) = |t

This is our transmission function, which will depend on the energy E of the electron as

well as the properties of the potential structure.

2.4 Material composition

As mentioned in Sec. 2.1, the effective electron mass will depend on which material the
electron is travelling in. All sections of the structure with zero potential will be modelled
as InAs, and the electrons in these sections to have the corresponding effective electron

mass.
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To make a structure with non-zero potential we model a composition of InAs; Py.

Changing the amount of phosphorus will in turn change the structure potential.

Assuming that the effective electron mass m(x) for InAs; Py is linearly dependent on
the amount x of phosphorus in the composition, with m(0) = mmpmas and m(1) = mpyp,

we can calculate the effective electron mass

MinAs;_ Py = MinAs + X(MmP — MinAs),

0<x<1.

Changing the amount x of phosphor will also change the conduction band edge and
hence the structure potential. If we assume that the difference in potential AE between
two materials is equal to the difference between the corresponding electron affinity in
the materials, and that the electron affinity y(x) for InAs; <Py is linearly dependent on
the amount of phosphor x in the composition, with x(0) = xmas and x(1) = xmp, we

can calculate the structure potential:

AE = x(XInAs - XInP)7

0<z<1.

2.5 Fermi distribution

As mentioned in Sec. 1.1, the Fermi distribution describes the energy spread of the

electrons in the leads, and is calculated using the expression

1
- 1 +6(E—#)/kBT’

f(E, 1)
with kp being Boltzmann’s constant, p the Fermi level and T the temperature in the
lead.

More precisely, the Fermi distribution describes the probability that an energy level
at energy FE is being occupied by an electron, and the Fermi distribution for different

temperatures can be seen in Fig. 2.4.

It is clear that a higher temperature leads to a higher spread of electron energies. The
reason for this is that electrons with lower energy can get thermally excited to a higher

energy level.
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FIGURE 2.4: Fermi distributions for different temperatures with the Fermi level set to
0.15 eV.

As mentioned in Sec. 2.1, a voltage difference between the leads will be modelled by a
shifting of the Fermi levels in the leads. More precisely, we decide that a voltage Vpiqs,
which will be described in Sec. 2.7, leads to a shift

e%ias

Au =
H 5

up in the cold lead and down in the hot lead.

In Sec. 2.6 we will go through how to calculate the current through the device. As
can be seen in Eq. (2.3), the current is dependent on the difference between the Fermi
distributions in the two leads. This difference for different bias voltages in the two

different temperature regimes is shown in Fig. 2.5.

= =

2 2

- -t

S~ S~

| \

= "2

= 3

<) S) oV

S~ — 3mVv
6 mV

0 2 4 6 8 10 12 14 0 100 200 300 400 500
E [meV] E [meV]
(A) 4 K and 10 K. (B) 250 K and 300 K.

FIGURE 2.5: The difference between the Fermi distributions in (A) the cold and (B)
hot temperature regime, at different bias voltages.

Without bias, the Fermi level is set to the middle of the graphs. When a bias is applied,

the Fermi energies will shift as previously described.
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The graph can be seen as an indication of how many electrons at a specific energy will
be transported from the hot to the cold lead, due to a higher concentration of electrons
at this energy in the hot lead. Hence at energies for which the graph is above zero there
will be a net electron current going from hot to cold, which is what we want. The part
of the graph that lies below zero will as mentioned in 1.2 lead to a current in the wrong
direction, from cold to hot. We see that as we increase the bias, this part of the graph

will become more significant.

As will be seen in Eq. (2.3), the difference between the leads’ Fermi functions is mul-
tiplied with the transmission function in order to get the current. By engineering a
selective transmission function in the form of a rectangle, we can in theory completely

remove the influence of the parts of the graphs in Fig. 2.5 where they go below zero.

2.6 Electrical current

Because we deal with electronics, we need a method for calculating the current through
our device. The way we chose to do the modelling described in Section 2.1 enables us

to calculate the current using Landauer formalism.

The expression for calculating the current in 1D will then be [14, p. 164]

2 [

I
h JEe,

(f(E; pe) = (B, )T (E)AE, (2.3)

where f(F,p) is the Fermi distribution for the two leads described in the previous
section, e is the elemental charge of one electron to change the expression from particle
current to charge current, the 2 is to account for spin, h is Planck’s constant and T(E)
is the transmission function of the obstacle described in Sec. 2.3. We perform the

integration from the bottom edge of the conduction band in the cold lead to infinity.

Generally the current will also depend on the velocity of the electrons as well as the
density of states. In 1D however, the density of states precisely cancels out the energy

dependence of the velocity.

In 3D however, the electron density of states has to be taken into account. Because
we now deal with more than 1 dimension, we need to instead use an expression for

calculating the current density J using [14, p. 166]

y=? /E °° (nap(E. o) — nap(E, u))T(E)dE, (2.4)
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where
mk BT _
nap(E, p) = 2 In(1 + e E)/kT)v
wh
is the density of electrons in the two-dimensional zy-plane, with kinetic energy E = h; T’f

due to motion in the z-direction. Eq. (2.4) will only be used to be able to compare the
1D and 3D case.

2.7 Power

In order to extract power from the device we need to connect both ends over a load
resistance. This will give rise to a voltage drop over the load which multiplied with the

current through the load gives the output power as shown in Figure 2.6A.

P=1V =1V
Load I I
_ n -
Iy V A Ia Vbias 4
T(E) T(E)
(A) How the power extraction works. (B) How we model the power extraction.

FIGURE 2.6: Schematic (A) of how we extract power from the device, and (B) how we
model it.

To model this we simply calculate the I-V characteristics of the device by applying a
voltage over the device in the same direction the voltage drop over the load would be,

as shown in Figure 2.6B, and the power output will then be

P=-1IV.

The minus sign is there because the direction in which we define the current to be

positive, according to Figure 2.6B.

If we find a bias voltage that gives a desired output power, we can then simply calculate
which load resistance gives that voltage drop, and put that into the circuit of our real

device.
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2.8 Efficiency and heat current

Apart from the power output we also want to be able to calculate the efficiency of the
device, and for that we need to know the energy lost due to heat transport called the heat
current. The heat current @) is defined as the net heat energy per second leaving the hot
lead of the device due to electron transport. We hence neglect all other contributions to

@, such as phonon transport.

Each electron that contributes to the electrical current will carry some amount of heat
energy equal to the difference between the electron energy and the Fermi energy in
the hot lead. This energy transport summed over all electrons that contributes to the

electrical current gives the total heat current, and is calculated using

Q=7 [ (Em) ~ B TE)E — pn)dE.

Be,
The only difference when calculating the heat current compared to electrical current is
that we divide the result by e and let (E — py,) be part of the integral, in order to get a

current of energy instead of charge.

Now when we have the power output P of the device as well as the energy loss per
second () due to heat transport, we can calculate the efficiency n by simply dividing the

two:

_P
77 Q'
2.8.1 The Carnot limit

There is a theoretical maximum limit to the efficiency when extracting energy using a

temperature difference, called the Carnot limit, that is

T,
=1-—. 2.5
ne T (2.5)

We will compare our calculated efficiencies to this maximum limit to get a better measure

of how efficient the device really is.



Chapter 3

Results & Discussion

3.1 Interdependence between potential structure and trans-

mission function

We now want to investigate what the transmission function looks like for different po-
tential structures. We will calculate the transmission function for QD and superlattice
structures while varying one parameter at the time, in order so see just how the trans-

mission function depends on the different potential structure parameters.

3.1.1 Transmission function of basic structures

We begin by calculating the transmission function for different types of basic structures.

3.1.1.1 Potential step

1 . .
0.8f
= o6f Step parameters
Ea\ P P
= ot | Height (meV) | 300 |
0.2 Transmission |
— — — Step energy

0 I I | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E [eV]

F1GURE 3.1.1: Transmission function of a 300 meV high potential step.

Seen in Fig. 3.1.1 is the transmission function of a potential step. All electrons that

have an energy lower than that of the step are reflected back by the structure. Electrons

18
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with an energy higher than the step have a chance to be transmitted. The probability

of transmission increases with energy.

3.1.1.2 Potential barrier
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FIGURE 3.1.2: Transmission function of a 300 meV high and 10 nm wide potential
barrier.

Seen in Fig. 3.1.2 is the transmission function of a single potential barrier. The impor-

tant thing to notice is that a chance exists for an electron to be transmitted through the

structure even though its energy is lower than that of the barrier. This effect is known

as tunnelling and plays a crucial part in nanoelectronics. At energies above the barrier

height the transmission function oscillates, due to resonance between the two steps in

the barrier.

3.1.1.3 Double barrier (QD)
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FIGURE 3.1.3: Transmission function of an 15 nm wide QD with barriers 300 meV
high and 3 nm wide.

Seen in Fig. 3.1.3 is the transmission function in a double barrier QD, consisting of two

barriers 3 nm wide and 300 meV high that are separated by 15 nm. The important

feature of a QD that we will make use of in this project is the fact that, for symmetric

barriers, the transmission probability reaches unity for discrete energies below the barrier

height, due to resonances between the barriers. This extraordinary result is why QDs
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can be used as very effective energy filters to control the energy of electrons that can be

transmitted through he device.

3.1.1.4 Superlattice

I ' ' ' ~
0.8 : T Barrier parameters
= os} : , Height (meV) | 300
@ 04l : | Width (nm) | 3
&~ U [ _ Distance (nm) | 15
02 L : - g;:?::;gy i Barrier count | 4

0 01 02 03 04 05 06 07 08 09 1
E [eV]

FIGURE 3.1.4: Transmission function of three 15 nm wide QDs with barriers 300 meV
high and 3 nm wide.

Seen in Fig. 3.1.4 is the transmission function of a 4 barrier structure. This can be seen
as a 3 QD superlattice. If we compare this graph to Fig. 3.1.3, which have barriers
of the same height and dimensions, we see that each transmission peak splits up into

several different peaks close to each other.

3.1.2 Influence of structure parameters on the transmission function
of a QD

If we change the parameters of the potential structure, such as the height or width of

the barriers, this will also change the properties of the transmission function.

We will now study how the transmission function of a QD depends on different param-
eters of the potential structure. Note that the scale for the transmission probability in

this section is logarithmic.

3.1.2.1 Barrier height

Fig. 3.1.5 shows transmission functions for single QDs with varying barrier heights. We
see that increasing the barrier height leads to a shift in the position of the transmission
peak, as well as a narrowing of the peak. This narrowing of the peak makes sense since
we increase the size of the obstacle the electron has to tunnel through when we increase
the barrier height. The shift in peak position is a result of changing the resonances of

the structure when changing the barrier height.
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F1cURE 3.1.5: Transmission function of QDs with different barrier heights.

3.1.2.2 Barrier width
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FIGURE 3.1.6: Transmission function of QDs with different barrier widths.

Fig. 3.1.6 shows transmission functions for QDs with varying barrier widths. We see

that below the barrier energy, increasing the barrier width leads to a narrowing of the

peaks. Above the barrier energy increasing the barrier width leads to a visible shift in

the position of the transmission peak. This narrowing of the peak makes sense since we

increase the length the electron has to tunnel through the barrier when we increase the

barrier width. The shift in peak position is a result of changing the resonances of the

structure.

3.1.2.3 Distance between barriers
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F1cure 3.1.7: Transmission function of QDs with different distance between the bar-

riers.
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Fig. 3.1.7 shows transmission functions for QDs with varying distance between the
barriers. We see that increasing the distance between the barriers leads to a shift in the
position of the transmission peaks, both below and above the barrier energy. This makes
sense because changing the distance between the barriers leads to a change in resonance
inside the QD. At larger distances between the barriers, the transmission peaks move

close to each other.

3.1.2.4 Number of barriers

10°
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FicUure 3.1.8: Transmission functions of structures with different number of QDs
connected in series.

Fig. 3.1.8 shows transmission functions for varying number of QDs connected in series,
while keeping all other parameters constant. As shown before, an increase in the number
of QDs connected in series leads to a splitting of the transmission peaks. Additional
QDs leads to even further splitting, and the number of transmission peaks is always

equal to the number of QDs in the structure.

When adding more and more QDs into the superlattice, we see the appearance of some-
thing that looks like energy bands. Furthermore, when introducing more QDs into the
structure, we also make the edges on either side of the occurring energy bands steeper.
We will make great use of both of these features, as it allows us to produce a very well

defined energy window in which electrons can travel.

3.1.3 Influence of structure parameters on the transmission function

of a superlattice

In Sec. 3.1.2.4 we saw that adding QDs in series to form a superlattice gives rise to energy
bands in the transmission function. Electrons that have an energy inside such a band
have a much larger probability to be transmitted through the structure than electrons
with an energy outside the band. Important to keep in mind is that the transmission

probability, depending on the obstacle, can still oscillate greatly inside the energy band.
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We will now investigate how the different parameters of the superlattice influence the

properties of these bands. Note that, just like in the previous section, the scale for the

transmission probability is logarithmic.

3.1.3.1 Barrier height
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FIGURE 3.1.9: Transmission functions of superlattices with different barriers heights.

Fig. 3.1.9 shows transmission functions for superlattices with varying barrier heights.
We see that increasing the barrier height gives a higher filtration of electron energies,
shown in a diminishing band width as well as sharper peaks. This gives us a possibility
to engineer a more well defined energy window in which electrons can flow. But it
also reduces the number of electrons that can flow in the window, as sharper and more
oscillating energy peaks reduce the area under the transmission function used when
calculating the current as shown in Eq. (2.3). From the graph it is also clear that the

bands move to higher energies when increasing the barrier height.

Important to notice is that the transmission probability stays close to unity in a larger

energy interval for transmission bands above the barrier energy.

3.1.3.2 Barrier width
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FIGURE 3.1.10: Transmission functions of superlattices with different barriers widths.
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Fig. 3.1.10 shows transmission bands below the barrier energy for superlattices with
varying barrier widths. We see that wider barriers gives rise to diminishing band width

as well as sharper peaks, while the band positions remain unchanged.

Note that, for such thin barriers, we only need to make a tiny adjustment to the width

in order to yield a great difference in the transmission function.

3.1.3.3 Distance between barriers
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FIGURE 3.1.11: Transmission functions of superlattices with different distance between
the barriers.

Fig. 3.1.11 shows transmission functions for superlattices with different distance between
the barriers. We see that the bands shifts to higher energies as the distance between
the barriers decrease. This is expected, as the same thing happens for the transmission

peaks of a single QD as shown in Fig. 3.1.7.

The widening of the bands at higher energies is due to the electron energies being closer
to the barrier height, and not an effect of changing the barrier distance parameter. Hence
changing the distance between the barriers seems to be an effective way of shifting the
positioning of the energy bands to different energies, without changing anything else

about the transmission function.

3.1.3.4 Number of barriers

Fig. 3.1.12 shows transmission bands for superlattices with different number of barriers
in the structure. We see that as we add more barriers into the structure, the band width
increases up to a certain point. The bands also become more well defined, without
becoming more unstable (unstable meaning the transmission function oscillating down
to lower values) inside the band, as it did when changing the height and width of the
barriers as seen in Fig. 3.1.9 and 3.1.10.
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F1GURE 3.1.12: Transmission functions of superlattices with different number of bar-
riers.

3.2 Optimizing the transmission function

As mentioned in Sec. 1.5 one of the main things to focus on is to engineer a transmission
function with a rectangular shape, as shown in Fig. 3.2.1, and to try to accomplish this

using a NW embedded with a QD superlattice.

0.8
0.6

04r

T(E) [1]

Electron energy FE

FIGURE 3.2.1: Optimal rectangular transmission function with variable width.

The low-energy side of the rectangular transmission function should as mentioned in Sec.
1.4 be positioned above the Fermi level, in order to prohibit electron transport from the
cold to the hot lead. However, this feature has not only to do with the transmission
function, but is accomplished by doping and/or gating the leads in order to put the

Fermi level at the desired energy.

In order to maximize the power output, the rectangular transmission function should
have an infinite width. That way, all electrons above the Fermi energy contribute to
the current. However, as mentioned in Sec. 1.2, this also means much of the current is
carried through high energy electrons, additionally leading to a high heat current and

hence a diminishing efficiency.

From an efficiency point of view, the optimal transmission function is rectangular with
an infinitesimal width positioned above the Fermi energy [15]. In this case, all electrons

that are part of the transport will carry close to no heat current. An obvious drawback to
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this is that, because the electrical current depends on the integral under the transmission

function, the power output from such a device would be negligible.

The best thing would be to have a way to engineer a relatively wide rectangular trans-

mission function, with the possibility to make it narrower if a higher efficiency is desired.

In Fig. 2.5 it is clear that a transmission band with a width of approximately 4 meV in
the cold and 150 meV in the hot temperature regime is sufficient to enable transmission
of a majority of the electrons above the Fermi level, and hence maximize the power
output. These widths could then be made narrower in order to increase the efficiency,

at the cost of a decreased power output.

But more important than lining up the transmission band with the positive parts in Fig.
2.5, is to make sure the negative parts are not inside the next transmission band below
it in energy, since that would lead to electron transport in the wrong direction. From
Fig. 2.5 we see that the widths of the negative parts are approximately 8 meV and 250
meV in the cold and hot regime respectively, so this should also be the minimum allowed

distance to the transmission band below the one we choose for transmission.

By utilizing what was shown in the precious section, about how we are able to modify
the transmission function by changing the structure parameters, we will now construct

two different types of transmission functions.

We want both types to have rectangular shapes, but one type we want to contain a wide
transmission band in order to maximize the output power, and the other type we want

to have a very narrow transmission band in order to maximize the efficiency.

Work flow When obtaining the transmission functions in the following sections, the
knowledge gained from the previous sections on how different parameters affect the
transmission function was utilized along a trial and error process, in order to retrieve the
desired transmission functions. The output power and efficiency of these transmission
functions was calculated, and optimized by tweaking the potential structure parameters

and recalculating the transmission functions.

3.2.1 Transmission above the barriers for maximum power output

In order to get a large current, it is necessary for the transmission function to remain
close to unity in a larger interval. The only time this seems to happen is when the

transmission band lies above the barrier height, as can be seen in Fig. 3.1.9.
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We will in the following paragraphs try to accomplish transmission functions with a
rectangular transmission band above the barrier height suitable both for the cold and

hot temperature regime.

3.2.1.1 Cold temperature regime

By using appropriate parameters for the potential structure, we generate the transmis-

sion function shown in Fig. 3.2.2A.
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FIGURE 3.2.2: (A) The transmission function for transport above the barrier height in
the cold temperature regime. (B) The magnified transmission band used for transport.
(C) The magnified transmission peaks below the transmission band. (D) The potential
structure the transmission function is calculated from. (E) The structure dimensions.

Fig. 3.2.2B shows a magnification of the second lowest transmission band: the one
that will be used for electron transport. The shape of the band is much like that of a
rectangle, and it is wide enough to enable transport of all electrons from the hot to the
cold lead, as mentioned in the introduction to Sec. 3.2, hence the power output will be

maximized.

The distance between the transmission band and the band below it is also sufficiently

large to prevent a back flow of electrons from the cold to the hot lead. Even if these
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bands would have been closer to each other, the back flow would still be very small since
the lowest transmission band in the transmission function is very peaked and hence has

a very small area under it, as can be seen in Fig. 3.2.2C.

The potential structure used to calculate the transmission function is shown in Fig.

3.2.2D and the barrier dimensions are given in Tbl. 3.2.2E.

This superlattice does not work as in conventional applications, where the desired trans-
mission band is at an energy below the barrier energy. In this case, we make use of the
resonances in the superlattice in another way. Instead of splitting a transmission peak
below the barrier energy, that is made possible by tunnelling, we deliberately diminish
all transmission below the barrier energy by making the barriers very thick, in order to
prohibit back flow of electrons. The resonances in the structures reflect certain energies
above the barriers, up until the transmission band begins. Inside the transmission band,
constructive interference results in the transmission retaining a high value throughout

the band.

This is an innovative way to engineer a rectangular transmission function, but it is very
difficult to make the transmission band narrow, which is needed to increase the efficiency.

But if a maximum power output is desired, this approach seems promising.

3.2.1.2 Hot temperature regime

We generate a transmission function adapted to give a high power output in the hot

temperature regime, shown in 3.2.3A.

Compared to the transmission function in the cold regime there are a few differences,

even though they look very similar.

Most importantly the physical dimensions of the structure need be decreased as can be
seen in Thl. 3.2.3E, in order to form wide and well defined transmission bands on a
larger energy scale. The barrier height must in turn be increased in order to place the

transmission band between the two lowest bands in the transmission function.

As can be seen in Fig. 3.2.3B, the transmission band is not wide enough to allow
transmission for all electrons above the Fermi level. This would require the structural
dimensions to be decreased even further, which would be a difficult structure to realize
in practice. The result of this is that the power output will not be truly maximized, but

close to it.

For the same reason, the energy gap between the two lowest bands is not sufficient to

completely block the back flow of electrons. The back flow is suppressed by the fact that



Chapter 3. Results € Discussion 29

1 T Ilml T T T T T \) 1
Transmission 08
0.9 | — — — Barrier energy ) ’
! 0.6
0.8 | T
| 0.4
07t ' 1
| 0.2
0.6 I 7
=, : 320 360 400 440 480
-~
051 7
S : ®
041 | b 1
|
03f I - 0.8
|
ozl | i 0.6
| 0.4
0.1F | 4
I
0 L L | L L L L
0 100 200 300 400 500 600 0 150 160 170 180
E [meV] ()
(A)

Width (nm) | 8

E
Distance (nm) | 3
_lrrururururured i Height (meV) | 250

z Barrier count | 10

(D) (E)

FIGURE 3.2.3: (A) The transmission function for transport above the barrier height in
the hot temperature regime. (B) The magnified transmission band used for transport.
(C) The magnified transmission peaks below the transmission band. (D) The potential
structure the transmission function is calculated from. (E) The structure dimensions.

the lowest transmission band is very peaked, as can be seen in Fig. 3.2.3C. This band
will still decrease the efficiency though, as it will carry very low energy electrons to the

hot lead, being so far from the Fermi level.

3.2.2 Maximize the efficiency with antireflection coating

A way of making the transmission function smoother is to put so called antireflection
coating on either side of the obstacle [16]. This is in practice done by making the barriers
to the outermost left and right of the superlattice half the width compared to the rest

of the barriers.

Utilizing this technique it is possible to give the first transmission band, at a position
below the barrier energy, a rectangular shape. Because it is the first transmission band
in the transmission function, it is easy to modify its width using techniques described in
Sec. 3.1.3, without having to worry about another transmission band at a lower energy

allowing transport in the wrong direction.
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We will now show that by using antireflection coating it is possible to obtain very narrow
transmission bands, both in the cold and hot temperature regime, in order to maximize
the efficiency. As mentioned before, this will lead to a very small power output. But
contrary to the transmission functions in Sec. 3.2.1 where it was difficult to decrease
the band width in order to increase the efficiency, it is in this case easy to broaden the
bands in order to increase the power output. This is done using techniques described in

Sec. 3.1.3 by either decreasing the barrier height or width.

3.2.2.1 Cold temperature regime

Shown in Fig. 3.2.4A is the transmission function and Fig. 3.2.4B shows the magnified
transmission band used for transport. The transmission function is calculated from the

potential structure shown in Fig. 3.2.4C and its dimensions can be seen in Thl. 3.2.4D.
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FIGURE 3.2.4: (A) The transmission function when using antireflection coating in

the cold regime. (B) The magnified transmission band used for transport. (C) The

potential structure the transmission function is calculated from. (D) The structure
dimensions.

We see that the transmission band below the barrier energy, that in previous calculations

became very peaked as shown in Fig. 3.2.2C and 3.2.3C, obtain a rectangular shape
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when using antireflection coating. The width of the band is very small, which should
yield a high efficiency, at the cost of a greatly reduced output power. But the power
output can as mentioned before quite easily be increased by decreasing either the barrier

height or width, which would also decrease the efficiency.

3.2.2.2 Hot temperature regime

Shown in Fig. 3.2.5A is the transmission function and Fig. 3.2.5B shows the magnified
transmission band used for transport. The transmission function is calculated from the

potential structure shown in Fig. 3.2.5C and its dimensions can be seen in Tbl. 3.2.5D.
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FIGURE 3.2.5: (A) The transmission function when using antireflection coating in the
hot regime. (B) The magnified transmission band used for transport. (C) The potential
structure the transmission function is calculated from (D) The structure dimensions.

Similarly to Sec. 3.1.3, smaller barrier dimensions are required in the hot temperature

regime.

The reason for the width having to be small is to ensure the transmission band has some

width whatsoever.
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The distance between the barriers is required to be small in order to be able to match
the transmission band to the positive peak in the Fermi distributions subtracted from
each other, as shown in Fig. 2.5A. An alternative to this would be to put the Fermi

energy inside the band gap by less heavy doping.

3.3 Power and efficiency

Now that we have done a thorough investigation of how to optimize the transmission
function, it is time to calculate what power output and efficiency we get from the devices

engineered in Sec. 3.2.1 and 3.2.2.

We want to compare the results obtained from those transmission functions, to those
obtained from a single QD. The transmission function of a QD can be approximated to

a Lorentzian distribution, like the one in Fig. 3.3.1.

1

0.5

Electron energy F
FIGURE 3.3.1: A Lorentzian distribution with width I".

Both the output power and efficiency will depend on the position of the Fermi levels in
the leads as well as the bias voltage over the structure. We will perform the comparison
at a point where the output power is at its maximum, in order to have some consistency
in our comparisons. The width of the Lorentzian will be set so that the efficiency at
maximum output power calculated using the Lorentzian as the transmission function
is the same as the efficiency at maximum output power calculated from our optimized
transmission function. We will then compare the maximum output power obtained
when using the Lorentzian to the maximum output power when using the optimized

transmission function, to see if there is any improvement.

3.3.1 Transport above the barrier energy

We begin by calculating the output power and efficiency for transport above the barriers,

using the transmission function calculated in Sec. 3.2.1.
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3.3.1.1 Cold temperature regime

The output power and efficiency for transport above the barrier energy in the cold
temperature regime calculated using the transmission function in Fig. 3.2.2A is shown
in Fig. 3.3.2.
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FIGURE 3.3.2: (A) Output power and (B) efficiency, using the transmission function
for transport above the barrier energy in the cold regime, as shown in Fig. 3.2.2A.

If we compare the graphs to the transmission function in Fig. 3.2.2A, we see that maxi-
mum output power is achieved by placing the Fermi level slightly below the transmission
band, as expected. The highlighted reference point shows the point of maximum output

power.

If we compare the calculated efficiency at maximum output power with the maximum
theoretical Carnot efficiency that for these temperatures is 60%, see Eq. (2.5), we see
that n = 0.43nc. This can be increased however, by increasing the bias voltage and

lowering the average Fermi level in the leads, to the cost of a reduced output power.

To compare the maximum output power to that of a single QD with the same effi-
ciency at maximum output power, we perform the same calculations using a Lorentzian

distribution as the transmission function. The results can be seen in Fig. 3.3.3.

We see that, at the reference points chosen, the output power using the optimized trans-
mission function yields an output power 4.1 times higher than when using a Lorentzian

distribution as the transmission function.

3.3.1.2 Hot temperature regime

The output power and efficiency for transport above the barrier energy in the hot tem-
perature regime calculated using the transmission function in Fig. 3.2.3A is shown in
Fig. 3.3.4.
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FIGURE 3.3.3: (A) Output power and (B) efficiency in the cold regime, using a
Lorentzian distribution centred at 50 meV as the transmission function.
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FIGURE 3.3.4: (A) Output power and (B) efficiency, using the transmission function
for transport above the barrier energy in the hot regime, as shown in Fig. 3.2.3A.

Compared to the cold temperature regime, the output power in the hot temperature
regime is much higher. This is because there is a larger temperature difference between

the leads.
The Carnot efficiency is in this temperature regime 16.7%, which means that n = 0.397c¢.

Output power and efficiency using a Lorentzian distribution with a width set to yield

the same efficiency at maximum output power can be seen in Fig. 3.3.5.

We see that by using the optimized transmission function the output power improves

by a factor of 4.5.

3.3.2 Using antireflection coating

We will now calculate the output power and efficiency for the transmission functions cal-
culated in Sec. 3.2.2, where a structure with antireflection coating was used to calculate

the transmission function.
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FIGURE 3.3.5: (A) Output power and (B) efficiency in the hot regime, using a
Lorentzian distribution centred at 500 meV as the transmission function.

3.3.2.1 Cold temperature regime

Output power and efficiency calculated using the transmission function in Fig. 3.2.4A

is shown in Fig. 3.3.6.
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FIGURE 3.3.6: (A) Output power and (B) efficiency, using the transmission function
calculated from a barrier structure with antireflection coating in the cold regime, as
shown in Fig. 3.2.4A.

It is clear that this type of structure yields a much higher efficiency, and it is theoretically
possible to come very close to the Carnot limit at 60%. At maximum output power, the
efficiency n = 0.63nc. But as mentioned before, this improvement comes at the cost of

a much decreased output power, due to the very narrow transmission band.

It will now be very interesting to compare this result to the output power we get from

a simulated QD with the same efficiency, shown in Fig. 3.3.7.

An improvement in the output power by a factor of 41.6 can be seen when using the
optimized transmission function with antireflection coating. The reason for this great
improvement is that the Lorentzian shape of the transmission peak of a QD is intrinsi-

cally bad if a high efficiency is desired. This is because there will always be a tail leading
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FIGURE 3.3.7: (A) Output power and (B) efficiency in the cold regime, using a
Lorentzian distribution centred at 50 meV as the transmission function.

up to the peak that will allow transport of electrons in the wrong direction, as can be

seen in Fig. 3.3.1. This means that the Lorentzian has to be made very narrow in order

to reach a high efficiency, which will in turn decrease the output power.

3.3.2.2 Hot temperature regime

Output power and efficiency calculated using the transmission function in Fig. 3.2.5A

is shown in Fig. 3.3.8.
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FIGURE 3.3.8: (A) Output power and (B) efficiency, using the transmission function
calculated from a barrier structure with antireflection coating in the hot regime, as

shown in Fig. 3.2.5A.

As in the cold regime, it is possible to come very close to the Carnot efficiency which is

16.7%, to the cost of a reduced output power.

We can compare this result to when using a Lorentzian as the transmission function,

shown in Fig. 3.3.9.
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FIGURE 3.3.9: (A) Output power and (B) efficiency in the hot regime, using a
Lorentzian distribution centred at 500 meV as the transmission function.

Here we see an increase by a factor of 15.5 in the maximum output power, for the same
reasons mentioned previously. This factor would probably increase even further if the

transmission band in the optimized transmission function was made even narrower.

3.4 Output power and efficiency dependence on the num-

ber of barriers

The previous section verifies that it is possible to increase the output power without
decreasing the efficiency, by using a QD superlattice instead of a single QD. In all
calculations when calculating the output power and efficiency in Sec. 3.3, 10 barriers

were used when calculating the transmission function.

We will now investigate how the maximum output power and the efficiency at maximum
output power depends on the number of barriers in the potential structure. This will
be done by modifying the structures used in Sec. 3.2.1 and 3.2.2 to consist of different
number of barriers, and use these potential structures to calculate their respective trans-
mission function. The maximum output power and the efficiency at maximum output
power will then be calculated using these transmission functions, and the results plotted

against the number of barriers used in each respective structure.

3.4.1 Transport above the barrier energy

Initially we consider the structures used in Sec. 3.2.1, where the transmission band used

for transport lies above the barrier height, in order to maximize the output power.
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3.4.1.1 Cold temperature regime

The maximum output power and efficiency at maximum output power as a function of

the number of barriers in the potential structure can be seen in Fig. 3.4.1.

P [pW]

[=2]

o
fﬁ
/

25

20

n [%]

45/ 1/
4l|5 15
2

2 3 4 5 6 7 B 9 10
Number of barriers

3 4 5 6 7 B 9 10
Number of barriers

(A) Maximum output power. (B) Efficiency.

FIGURE 3.4.1: (A) Maximum power output and (B) efficiency at maximum output
power when changing the number of barriers when calculating the transmission function
in Fig. 3.2.2A.

We see that both the maximum output power as well as the efficiency at maximum
output power increases up until 4 barriers. Increasing the size of the superlattice beyond
that by adding more barriers into the structure change neither the maximum output

power nor the efficiency at maximum output power.

This result can be understood when studying the rightmost transmission peaks in Fig.
3.1.8. Keep in mind that the transmission band is very wide relative to the electron
distribution, so the increase in band width by increasing the number of barriers leads
to a relatively small increase in output power. Much of the increase in output power
when adding more barriers comes instead from making the lower transmission band edge
sharper, preventing transport in the wrong direction. But already after adding a few
extra barriers, this edge is is sharp enough to stop the majority of electron transport in

the wrong direction, so little is gained from adding more barriers beyond that.

3.4.1.2 Hot temperature regime

The maximum output power and efficiency at maximum output power as a function of

the number of barriers in the potential structure can be seen in Fig. 3.4.2.

Again, we conclude that extending the structure beyond 4 barriers does little to improve

the performance in terms of output power and efficiency.
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FIGURE 3.4.2: (A) Maximum power output and (B) efficiency at maximum output
power when changing the number of barriers when calculating the transmission function
in Fig. 3.2.3A.

3.4.2 Using antireflection coating

We do the same thing for the structures with antireflection coating calculated in Sec.

3.2.2 where we tried to maximize the efficiency.

3.4.2.1 Cold temperature regime

The maximum output power and efficiency at maximum output power as a function of

the number of barriers in the potential structure can be seen in Fig. 3.4.3.
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FIGURE 3.4.3: (A) Maximum power output and (B) efficiency at maximum output
power when changing the number of barriers when calculating the transmission function
in Fig. 3.2.4A.

At first glance the first data point for 2 barriers, representing a single QD, seems to

yield quite good results, with a much higher output power and only a slightly decreased

efficiency compared to the other data points. But when using antireflection coating we

focus on getting a high efficiency, and if the QD in question were to be modified to have

an efficiency equal to those of the rest of the data points, the maximum output power
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would drop below those of the rest of the data points. This tells us that we lose a lot of

output power if a very high efficiency is desired.

Because we use a structure with antireflection coating, where the two outermost barriers
are thinner than the rest, the cases with 2 and 3 barriers in the structure are a bit
different and not really comparable to the rest of the data points, and will hence be

disregarded.

The case with 4 barriers can be seen as a single QD with added antireflection coating,
and we see that there is improvement neither with respect to the output power nor
the efficiency when adding more barriers. The reason is that 4 barriers are enough to
make the transmission band edges sufficiently sharp, and adding more barriers does not

change the overall looks of the transmission function to any large extent.

3.4.2.2 Hot temperature regime

The maximum output power and efficiency at maximum output power as a function of

the number of barriers in the potential structure can be seen in Fig. 3.4.4.
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FIGURE 3.4.4: (A) Maximum power output and (B) efficiency at maximum output
power when changing the number of barriers when calculating the transmission function

in Fig. 3.2.5A.

The result is the same as in the cold regime, and there is nothing to be gained in terms

of output power and efficiency from having more than 3 barriers in the structure.

3.5 Asymmetric barrier dimensions

In order do extract a decent amount of power from a NW based thermoelectric device
in practice, it is of course necessary to use many NWs in the same element. One way to

do this would be to connect many NWs in parallel, as in Fig. 3.5.1.
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F1cURE 3.5.1: Illustration of a NW array with many NWs conneted in parallel between
two heat sinks.

The total output power would then equal the output power from one NW, times the
number of NWs.

But most likely, the NWs’ potential structures would not be as perfect as the ones
we have been modelling, but the structure dimensions such as the barrier widths and
the distances between the barriers would differ from each other slightly. Since the
transmission function is dependent on resonances in the potential structure, altering its
dimensions to make it less symmetric could have a great impact on the transmission

function.

To get a feeling for how sensitive the transmission function is to an asymmetric potential
structure, we will calculate many (10 000) transmission functions with barrier widths
and distances that are randomly generated from a normal distribution centred around
the desired length. We then show the average transmission function T,,(E) where the
transmission probability for a certain energy is the average transmission probability for

that energy from all N transmission functions:
1
Tav(E) - NZTn(E) (31)

We will do this for the transmission band for transport above the barriers, as previously
shown in Fig. 3.2.2B and 3.2.3B. We do it both in the cold and hot temperature
regime because the structure dimensions in the hot regime are much smaller than in the
cold, and we want to be able to compare these two cases. We will do the calculations
both using 10 barriers, because that is what we have used in most calculations, and 4
barriers, because it was in Sec. 3.4 shown that neither the maximum output power nor

the efficiency improves beyond this point.

The barrier widths and distances used in the calculations for one of the cases, 4 barriers

in the cold temperature regime, are shown in Fig.
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FIGURE 3.5.2: Length distributions of barrier width and distance between barriers.

The barrier widths and distances are randomly generated from normal distributions
centred around 50 nm and 10 nm respectively. The standard deviation used in both

cases is 1 nm.

The average transmission functions for all cases can be seen in Fig. 3.5.3.
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FIGURE 3.5.3: Average transmission functions of symmetric (green) and asymmetric
(blue) potential structures.

We see that an asymmetric structure has a smoothing effect on the otherwise oscillating
transmission band. It also lowers the transmission function, so that it no longer reaches

unity.
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As expected, the transmission function in the hot regime is, due to its smaller dimensions,
more sensitive to an asymmetric potential structure. This can be seen when comparing

Fig. 3.5.3A to Fig. 3.5.3C or Fig. 3.5.3B to Fig. 3.5.3D.

It is also clear that the transmission function becomes more sensitive to an asymmetric
structure if the number of barriers is increased, as can be seen when comparing Fig.
3.5.3A to Fig. 3.5.3B or Fig. 3.5.3C to Fig. 3.5.3D.

If we want to calculate the average current for each NW in a NW array with N NWs

such as the one in Fig. 3.5.1 we can use a modified version of Eq. (2.3):

1 X2e [
o = N0 [ )~ SE T ()
% [ 1
= ﬁ Ecc(f(Enuc)_f(Evuh))an::lTn(E)dE
31 2e [

h (f(Ev .Uc) - f(Ea /‘h))Tav(E)dE
Eec.

I(T(E) = Toy(E)).

We see that the average current is calculated using the same formula as previously, but
replacing the transmission function with the average transmission function that we just

calculated.

3.5.1 Impact of asymmetry on output power and efficiency

The output power and efficiency using the transmission functions in Fig. 3.5.3 has been
calculated, but the plots are not shown in this report due to the results being quite
intuitive. In the hot temperature regime, with relatively small barrier dimensions, both
the output power and the efficiency was very much degraded. In the cold regime, with
relatively large barrier dimensions, there was not much difference regarding neither the

output power nor the efficiency.

To understand these results we need to remember the important features of the trans-
mission band: having a sharp lower band edge and a large total area where the maximum

transmission value reaches unity.

In the cold regime, both of these features stay true when making the barrier dimensions
asymmetric. Even though the transmission function no longer follow the former peaks
reaching unity, the area inside those peaks is relatively small, so the impact on the

performance is also small. In the hot regime however, the lower transmission band edge
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very much looses its sharpness, and the maximum transmission value also reaches far

from unity leading to a smaller total area.

3.6 1D and 3D output power comparison

Finally, we will calculate the output power in the 3D case and compare it to the 1D case.
In practice, this can be realized by placing very thin semiconductor sheets on top of each

other and connect the top and bottom sheet to heat sinks with different temperatures
[17].

As described in Sec. 2.6 we will use the current density J in the calculations, which will
give the output power per unit area. In order to be able to compare the results to the 1D
case, the 3D current density as well as the 3D output power density will be normalized
so that the current density at maximum output power density in the 3D case equals the
current at maximum output power in the 1D case. We will then compare the maximum
output power in the 1D and 3D case. This normalization can seem a bit arbitrary, but
will give some indication if there is anything to be gained using thermoelectric elements
based on 1D structures such as NWs, instead of conventional bulk structures. We will
only do this using the transmission functions for transport above the barriers, both in

the cold and hot temperature regime, calculated in Sec. 3.2.1.

3.6.1 Transport above the barriers - cold temperature regime

Fig. 3.6.1 shows the output power calculated before in Sec. 3.3.1 as well as the current,
for the 1D case.

% V =06 mV 35 V =0.6 mV
4.5 Ej = 33.6 meV 4.5 E; =33.6 meV M.,
— 4 P =6.09 pW — I=10.2nA
= s = 335 n s
E B oz =R
Yy 325 oYy 325 0~
32 32 .
2
315 315
0.5 1 15 2 0.5 1 15 2 ’
V [mV] V [mV]
(A) Output power. (B) Current.

FIGURE 3.6.1: 1D output power (A) and current at maximum output power (B) for
transport above the barriers in the cold regime.
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If we now calculate the output power density and current density in 3D, and normalize
the results so the current at maximum output power is the same as the current at

maximum output power in the 1D case, we get the graphs in Fig. 3.6.2.
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FIGURE 3.6.2: Normalized 3D output power (A) and current at maximum output
power (B) for transport above the barriers in the cold regime.

We see that, in order to reach the maximum output power in the 3D case, the Fermi

level needs to be higher than in the 1D case.

We also see that the maximum output power is a factor 1.33 larger in the 1D case,
so it seems indeed like there is something to be gained from using 1D structures in
thermoelectric elements. Furthermore, due to additional degrees of freedom for the
electrons, the heat current ) should in 3D be larger than in 1D, decreasing the efficiency

of the device.

3.6.2 Transport above the barriers - hot temperature regime

We do the same thing in the hot temperature regime, and yield the graphs in Fig. 3.6.3
and 3.6.4.
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FIGURE 3.6.3: 1D output power (A) and current at maximum output power (B) for
transport above the barriers in the cold regime.
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FIGURE 3.6.4: Normalized 3D output power (A) and current at maximum output
power (B) for transport above the barriers in the cold regime.

The results are the same, and we get the same improvement by a factor of 1.33 in the

maximum output power.
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Conclusion

4.1 Transport above the barrier energy

After having investigated how different parameters of the potential structure impacts
the transmission function in Sec. 3.1.3, we in Sec. 3.2.1 showed that by using a QD
superlattice it is possible to engineer a rectangular transmission band that is wide enough
to allow transport of all available electrons from the hot to the cold lead, in order to
maximize the output power. The use of a superlattice also enhances the efficiency due

to a sharpening of the lower transmission band edge.

When comparing to a single QD yielding the same efficiency, in Sec. 3.3.1, the super-

lattice structure improves the maximum output power by a factor of 4-4.5.

As shown in Sec. 3.4.1, there is improvement both in maximum output power and
efficiency up until a 4 barrier superlattice, after which the output power and efficiency

does not change significantly.

4.2 Using antireflection coating

By calculating the transmission function from a QD superlattice structure using an-
tireflection coating, it was in Sec. 3.2.2 showed that it is possible to engineer a very
narrow transmission band below the barrier energy, which is expected to maximize the

efficiency.

As shown in Sec. 3.3.2 the maximum output power of a superlattice using antireflection
coating compared to a single QD with the same efficiency increases by a factor of 40 in

the cold regime and 15 in the hot regime. By placing the Fermi level at an appropriate

47
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position and having the proper bias voltage, it is possible to come very close to the

maximum Carnot efficiency.

It was also in Sec. 3.4.2 shown that the results do not improve beyond a 4 barrier

structure, equivalent to one QD with antireflection coating.

4.3 Asymmetric potential structure

In Sec. 3.5 we showed that transmission functions calculated from potential structures
with smaller dimensions are more sensitive to an asymmetric structure. Also, the sensi-

tivity increases as more barriers are added to structure.

4.4 Model limitations

The model we use to calculate the transmission is totally dependent on coherent trans-
port through the obstacle, where all scattering events are elastic. Studies have shown
that electrons at temperatures similar to the cold temperature regime we have been
using, in similar semiconductor materials, have a coherence length in the hundreds of
nanometres [18]. This is also the length of the nanowires modelled in this work, so it
is hard to say if the transport in the structures used will remain coherent. Coherence
at this temperature is shown to be limited by interface roughness, which is not part of
our model. The coherence length decreases with temperature, but a larger temperature
also requires smaller superlattice dimensions, so results in the hot temperature regime
are also hard to foretell. Since the device performance remains relatively constant when
using structures with more than 4 barriers, the type of structures modelled could in fact
enable experimental testing of the limits of coherence, since a loss of coherence would

lead to a degrading performance.

Models using energy level tunnel couplings and Coulomb interactions are frequently
used. These take into account electron-electron interaction and predicts results that have
been confirmed experimentally [19]. The model used in this work neglects interactions

between electrons, and would also be very hard to implement into the model.

The model lacks a way of calculating the phonon transport, which accounts for a large
part of the heat loss. The results for efficiency should for this reason be considered as
maximum values. But the result that superlattices have the potential to beat single
quantum dots in terms of efficiency still holds. If anything the improvements should in
practice be even greater, as a higher number of barriers increases the phonon scattering

[20], preventing some of the heat loss.
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We choose to limit ourselves to the lowest sub-band. This approximation only holds if
the nanowires are extremely thin or the temperatures very low. Adding more sub-bands
into the model would certainly have an impact on the results, but it is hard to say in

what way.

4.5 Outlook

There are many things, such as phonon transport, contact reflectance and more sub-
bands, that could be added to the model in order to make it more realistic. We have
only looked at these devices as heat engines, and it would be interesting to model them
also as refrigerators. Since systems dependent on quantum mechanics seem to work
best at very low temperatures, where thermal effects are small, maybe this would have
more relevance from a device point of view. But what would be really interesting is to
fabricate an actual device and experimentally test its thermoelectric properties, in order

to see to what extent the used model predicts the results.

I am certain thermoelectrics will play its role in the future, one way or the other. If low

dimensional superlattices is the way to go remains to be seen.
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