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Abstract

Data from NASA’s Kepler space telescope, which searches for exoplanets via the transit
method, produced 1108 new planetary candidates in 2013 with a total of 91% being smaller
than Neptune in size. These were mostly super-Earths, terrestial planets between Earth
and Neptune in size, with orbits around 10 days.

In order for any theory of planet formation to be valid it must be able to account for
the existence of these super-Earths. Current models put the transition from planetesimal
to planet to be the result of planetesimal collisions. In only the past few years the theory
of pebble accretion onto planetesimals has emerged. It centers around the idea that the
accretion of pebbles onto planetesimals in the protoplanetary disk is a large part of planet
formation, able to rapidly speed the process up.

In this thesis we investigate whether the pebble accretion theory can account for the super-
Earths in Kepler’s data. This is done using a statistical code called PAOPAP. We simulate
the accretion of mm-cm sized pebbles onto already existing planetesimals and investigate
what effect different sized annuli and the amount of pebbles has on the final mass of the
planets produced in the code. We find that while wider annuli make no discernible pattern
in the final mass of the planets, increasing the amount of mass in pebbles for a 0.2 AU
annulus allows us to create planets with masses up to ~8 Mg or ~2 Rg. The reason the
annulus width does not determine mass is because the planets become isolated at a certain
point, having accreted all nearby pebbles, giving them an isolation mass. We also vary the
size of the pebbles being accreted to show that larger pebbles only brings about a faster
growth process but with the same final mass in a simulation. Lastly we show a selection of
the largest planetesimals in each simulation to give a demonstration of oligarchic growth
of planets over time. In the end, we are able to show that the large population of super-
Earths found by the Kepler satellite can be explained by the theory of pebble accretion.
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Popularvetenskaplig beskrivning

Sedan urminnes tider har man vetat om att det finns ljusa kroppar pa himlen som ror sig
ovanligt fort. Grekerna dopte dessa till vandrare, ett ord som pa grekiska uttalas valdigt
likt planet. Planeterna har studerats i arhundraden och bara de senaste tva decennierna
har vi okat fran vara egna atta planeter till flera tusen nya planeter kallade ezoplaneter,
planeter runt andra stjarnor a4n varan egen.

En naturlig fraga som foljer utav detta ar skapelsen av planeter. Pa 1700-talet argu-
menterade personer som Immanuel Kant och Pierre Simon de Laplace for en planetforma-
tionsteori. Man noterade da att de sex planeter man kande till rorde sig i ndstan perfekt
cirkuldra omloppsbanor samt rorde sig i ndstan exakt samma plan. Argumentet var da
att planeterna hade formats i en tillplattad skiva runt solen. Idén om en skiva runt solen
har levt vidare sedan dess. Pa 60-talet kom en sovjetisk astronom vid namnet Viktor
Safronov fram med sin nya hypotes, planetesimal-hypotesen. I den berattar Safronov om
hur planeter skapats av en lang serie héndelser i skivan, ursprungligen som mikroskopiska
dammkorn som krockar och klumpar ihop sig. De blir storre tills de bildar planetesimaler.
Dessa ar kroppar i storleksordningen nagra meter till 100 km. Planetesimalerna fortsatter
kollidera till nasta storleksordning, protoplaneter, och blir i slutandan planeter.

Under de senaste aren har en ny teori utvecklats som kallas for Pebble Accretion, vilket
betyder ungefar ansamling av gruskorn. I ledning av Anders Johansen utvecklades teorin
vid Lunds Universitet och den motsager sig inte Safronovs hypotes utan istallet sager att
under steget fran planetesimaler till planeter borde det ocksa finnas gruskorn i mm-cm
storlek i skivan som ansamlas pa planetesimalen. Pebble accretion har senare visat sig
kunna snabba upp planetformation med sa mycket som en faktor tusen, en stor ckning.
Detta ar valdigt eftertraktat da man vill skapa en planet innan skivans material forsvinner
pa grund av andra orsaker vilket tar ungefér 10 miljoner ar.

Pebble accretion utvecklas &nnu och med flera utmaningar kan den visa sig lovande. NASAs
rymdteleskop Kepler, som letar efter exoplaneter, presenterade 2013 resultat pa 1108 nya
planetkandidater, planeter som upptéckts en gang och man inte ar siker pa om det faktiskt
ar planeter. Mest markvérdigt var att utav de 1108 planeterna var sa manga som 91%
mindre &n Neptunus och nastan alla var storre an Jorden. Denna storleksordning kallas
super-Earths, planeter som férmodligen ar jordlika, men med storre massa édn Jorden.

Detta utgor ett perfekt test for pebble accretion. Om teorin ska halla borde man i simu-
lationer kunna skapa de planeter som Kepler har hittat. Det ar detta vi har gjort i denna
tes. Vi har skapat ett datorprogram som heter PAOPAP (Pebble Accretion Onto Planetes-
imals And Planets) vilket &r en statistisk kod for att simulera planetformation med pebble
accretion i ett cirkelsegment av skivan. Med denna kod tittar vi pa hur stora planeter
man kan bilda beroende pa storleken pa cirkelsegment och hur mycket massa som finns
tillgangligt i gruskornen.
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Chapter 1

Introduction

Of the NASA space telescope Kepler’s results in 2013 (Batalha et al. 2013), 1108 new
planetary candidates were unveiled. During 16 months of photometric observations, over
190, 000 stars were observed with 127,816 observed for the entire duration of observations.
Of these results a large amount of the planetary candidates are of super-Earth size, that is
terrestrial planets with a mass below 10My, and with short periods. Out of the 1108 new
planetary candidates the planet radii, R, distribution is: 202 with R, < 1.25Rg,, 422 with
1.25Rg < R, < 2Rg, 426 with 2Rg < R, < 6Rg, 40 with 6Rg < R, < 15Rg, and 15 with
R, > 15Rg. Putting the results into perspective, 91% of the candidates are of smaller size
than Neptune. So there exists a lot of planets between Earth and Neptune radii, yet none
of the solar system bodies have this size. It appears, given the existing data, that planets
are formed with these radii quite often and for a theory of planet formation to be valid, it
should be able to account for them.

To give a background of planet formation means spanning quite a few years back. The
earliest papers mentioned in a review by Lissauer (1993) go as far back as the 18th century
with Kant (1755) and Laplace (1796). Then the argument was that the nearly circular and
coplanar orbits of our Solar System planets is evidence suggesting planet formation taking
place in a flattened disk around the central star.

During the next two-hundred years there has been a lot of development. Failed mod-
els have helped narrow down the picture and successful ones have been improved upon. At
about two-hundred years later in 1969 is when Viktor Safronov came out with his plan-
etesimal hypothesis (Safronov 1972). While some different theories of planet formation
exist like gravitational instability (Boss 1997), Safronov’s model is currently very much in
favour. In it planet formation is a process with multiple steps. In the beginning, small
microscopic grains collide and grow by sticking to one another. They then grow to much
larger sizes and are known as pebbles at around mm to cm sizes. The next size step is
planetesimals with no strict definition on size. But at around 100 km to 1000 km we
begin to call the bodies planetary embryos or protoplanets. It has been generally thought
that planetesimals grow by collisions to form planets in previous models (Kokubo & Ida
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1998). This is generally a time-consuming process however and as found in Lambrechts &
Johansen (2012) the growth to planets can be rapidly sped up with the inclusion of pebble
accretion onto the planetesimals.

Chondrules are also necessary to mention. While the general nature of pebbles are aggre-
gates, meaning they can be thought of as clumps, chondrules are spherical silicate objects
usually slightly smaller than a mm. They have been heated up at some point, molten and
solidified into their current shape found inside so-called chondrites, a type of meteorite.
Chondrules are important to planet formation because they can be dated and found to
belong to the early solar system and imply some sort of heating process that must have
existed in the early solar system (Johansen et al. 2014).

In this thesis we simulate the formation of super-Earths in a code called PAOPAP (Peb-
ble Accretion Onto Planetesimals And Planets) to see whether current models of planet
formation by pebble accretion are able to account for their existence. A positive result
would both strengthen the model of pebble accretion for planet formation and offer an
explanation for the existence of super-Earths around so many stars.

There are several parameters that can affect planetesimal growth by accretion in our model
and several parameters are also changed over the course of time due to accretion. Among
the affected parameters are the eccentricity and inclination of the planetesimals. We in-
vestigate the result of changing: (1), The size of the annulus, Ar, that the accretion takes
place in and (2), the relative mass of pebbles in the protoplanetary gas, fyar, to the mass
of the gas, and briefly (3), the size of the pebbles. The result compared is the radius and,
through a constant density, the mass.

The layout of the thesis is as follows: In chapter 2 we explain the background physics
that play a part in pebble accretion theory starting with gas drag which then leads into
drift in the protoplanetary disk. Next we explain pebble accretion in the Bondi and Hill
regimes before moving into planetesimal accretion mechanics and oligarchic growth. In
chapter 3 we give a brief explanation of the code used for the simulations and explain
in detail how the code is evolved over time and how it includes planetesimal collisions.
Chapter 4 presents the different sets of results regarding the effect of annulus width, mass
fraction, and pebble size on the pebble accretion scenario as well as a demonstration of
oligarchic growth. In chapter 5 we discuss the implications of the results, present our con-
clusions from it and suggest further studies that can be done with the model. There exists
one appendix which explains some of the variables used in the work.



Chapter 2

Theory

2.1 Gas drag

The pebbles in the protoplanetary disk will couple to the gas surrounding them. This means
that unless the gas and the pebble move at the same velocity the pebble will experience
some sort of acceleration. In order to properly model the movements of pebbles, it is
important to understand their physics.

Drag force

The acceleration that the pebbles experience due to coupling to the gas can be expressed,

as in Weidenschilling (1977a),
1

v=——(v— 2.1

v - (v —u), (2.1)

where v is the pebble’s velocity and u the velocity of the surrounding gas. The friction

time, 7¢, is derived in Weidenschilling (1977a), which contains all the physics regarding

interactions between the particle and the gas flow. It can be divided into different regimes,

the first of which is called the Epstein drag regime. This regime is active when the particle

size is smaller than the mean free path, A (formally (9/4)\). The friction time in this
regime is defined as

_ Bp.

CsPyg

where R is the pebble radius, p, is the material density, ¢; the gas sound speed, and p, the
density of the gas.

Tt (2.2)

The next regime, the Stokes drag regime, enters when pebbles are larger than 9/4 times
the mean free path. Here, the friction time is expressed

Rpe4 R
Tr = ——.
f CsPg 9 A

(2.3)
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In this regime the friction time is proportional to the squared radius but independent of
the gas density as A is inversely proportional to gas density.

The following transitions are not determined by the size of the particle but rather the
Reynolds number defined as Re = (2Rév)/v where v is the kinematic viscosity, v =
(1/2)csA, and v = |v — u] is the speed of the particle relative to the gas. The Reynolds
number determines the transition to the next regimes which are non-linear. First when
it equals unity, an intermediate regime is entered with 7 oc (§v)~%4. After Re = 800 the
drag force becomes quadratic in relative velocity and the friction time can be defined

6Rpe
(5U)pg '

The transition between regimes is step-wise and occurs in the optically thin minimum
mass solar nebula (abbreviated MMSN)(Hayashi 1981) with a power-law index of —1.5 for
surface density (Weidenschilling 1977b) and 0.5 for temperature at the following list of
particle sizes

Tt = (2.4)

9\ ro\2.75
Ri=—=32cm (E) , (2.5)
v ro\25
800v r \25
s =55, =528 <AU> ’ (2.7)

where Epstein to Stokes is Ry, Stokes to non-linear is Ry, and non-linear to quadratic is Rj.

It is necessary for us now to define the Stokes number from the friction time,
St = QKTf, (28)

which is a dimensionless parameter. Here ()i is the Keplerian frequency at the given orbital
distance. Since the inverse Keplerian frequency is a natural reference time-scale for a mul-
titude of physical effects in the protoplanetary disk, the Stokes number determines several
things. Some of these will be described in detail in later sections. They are, i) turbulent
collision speeds, ii) sedimentation, iii) radial and azimuthal particle drift, iv) concentra-
tion in pressure bumps and vortices, and v) concentration by streaming instabilities. The
Stokes number clearly is an important parameter for the physics used.

Radial & azimuthal drift

In the center of the protoplanetary disk is the central star. Due to dust build-up near
the star, the density is increased and together with the heat from the star there is radial
pressure support pointing outwards. So the gas in the protoplanetary disk experiences an
outward pressure. With the gas pressure supported it moves around the star at a velocity
below what is normally required for stable orbits. This is called a sub-Keplerian speed,
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since Keplerian speed refers to the velocity needed without pressure support to remain at
a certain orbit. The Keplerian speed is defined as

GM
VK =\ — 2.9
K . (2.9)
where G is the gravitational constant, M is the mass of the star, and r is the distance from
the star. We can write the difference between the sub-Keplerian gas velocity, vy, and the
Keplerian speed as
AV = UK — Vgas. (2.10)

Another expression from Nakagawa et al. (1986) for this difference is

1 /H\*>0lnP
Av = —5 (7) Ilnr VK (211)

where P is pressure and H is the scale height. By looking at the forces at play we can
find an expression for the gas velocity. The three forces involved are gravity, the pressure
force, and the centripetal force.

Fo+F.=F, (2.12)
or )
Ugas M 10P 9 , TOP
— =G+ -— — = - 2.13
r r? * p Or Vgas = Uk T p or (2.13)
which then gives the expression
roP
Ugas = || Vi + oo (2.14)

By expressing pressure as density times speed of sound squared, P = ¢?p and the equation
for the scale height H/r = ¢;/vk we find

/ H? r OP
Ugas = 1+ ?EEUK (215)

Expressed as the difference we get

(2.16)

H?0In P
Av:vK—vgaS:<1— 1+ ! )

72 9lnr

which gives equation 2.11 through a Taylor expansion. Equation 2.11 is roughly constant
for the minimum mass solar nebula (Hayashi 1981) since H/r o r'/* and the pressure
gradient in the midplane is dln P/0Inr = —3.25. The value we get is Av ~ 50 m/s.
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Describing the drift speed of the particles in the gas in radial and azimuthal directions
respectively we find, as shown by Weidenschilling (1977a) and Whipple (1972),

2Av
==t 2.1
T TSty St (2.17)
Av
Vp = VK — m (218)

For the Epstein and Stokes regimes, these equations give the drift speed directly. The non-
linear and quadratic regimes can be solved for with an iterative method. As in Lambrechts
& Johansen (2012), these speeds can be combined to give the total relative velocity between
a particle and a planetesimal in pure Keplerian rotation. It follows as

VASt? +1

At = “em T

U (219)
where 7 is a measure of the pressure support. Indeed, our original Av is defined Av = nuk.

For particles of appropriately small size equation 2.19 is well approximated by equation
2.11.

2.2 Pebble accretion

Now that we have discussed the motion of the pebbles in the gas we will go through the
physics of their accretion onto the, comparatively, large planetesimals. We find that pebble
accretion also takes place in different regimes.

We start off with drift accretion, or Bondi accretion, where we can define an outer ra-
dius from which particles moving at the speed Av (where we now assume Av = Auv,q) are
significantly gravitationally deflected. We ignore stellar tidal field and Coriolis force here
and arrive at the Bondi radius

_ GM,

A2
where M, is the mass of the planetesimal. It is a valid approximation to ignore the stellar
tidal field while the mass of the planetesimal is sufficiently small.

Rg

(2.20)

This is before the mass of the planetesimal has grown to a point where the Bondi ra-
dius is as large as the Hill radius. The drift regime then moves over into the Hill accretion
regime. The Hill radius is the radius to the Hill sphere, which is the sphere of space where
the gravity of the planetesimal dominates over the tidal forces from the central star. The
mass at this transition can be written as

1 A3
M., =4/ = . 2.21
¢ \/;GQK (2.21)
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*\_ Hill Radius

Planetesimal
Pebble

Figure 2.1: This figure shows the effect of coupling to the gas drag for passing particles of
different sizes. The pebble (blue), coupled to the gas, is unable to escape accretion by the
central planetesimal as expressed in equation 2.22. The planetesimal (brown) is too large
to couple to the gas however and is gravitationally scattered instead.

This transition marks a boundary where the relative speed of the pebbles in the gas is first
determined by the headwind of the gas (i.e Av), and after the transition by the Hill speed
which is defined through the equation vy = Qk Ry.

Going back to drift accretion, whether or not a particle is accreted depends on the balance
between gravitational attraction and the drag force. A particle can be pulled from the
flow of the gas if enough energy is dissipated during deflection. If the time to cross the
Bondi radius, 75 = Rp/Awv, is similar to the friction time, 73, the drag force will cause
the particles to spiral inward from the Bondi radius. This leads to an effective accretion
radius. If 73 > 7¢ the pebbles are strongly coupled to the gas. Here, grazing particles,
particles that are deflected on time-scales shorter than the friction time are pulled out of
the flow. Denoting gravitational attraction by the acceleration g we can get the deflection
time, t,, and a criterion for accretion,

ty=— < 2.22
= (2.22)

Since this deflection time is given by (Av)r?/GM, = (r/rg)*ms we are able to use the
criterion in equation 2.22 to solve for an expression for the accretion radius. It becomes

~1/2
Bace _ (T—B) , (2.23)

Rgp 0
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which is for strongly coupled particles.

We can now express the accretion rate in the drift accretion regime.
My = np, R, Av (2.24)

where p,, is the pebble density. The expression is valid for when R, is smaller than the
pebble scale height H,. When they become comparable the expression changes to

Mg = 2R Xy Av, (2.25)
where ¥, is the pebble column density.

Next, we enter the Hill accretion regime mentioned earlier. The planetesimals mass grows
until the Bondi radius, Rg Mg, is comparable to its Hill radius, Ry o MS/ . It then
crosses the transition mass of equation 2.21. This brings about a change in the pebble
accretion mechanism. Once M, > M; the pebbles at the edge of the Hill sphere move
towards the planetesimal with the relative velocity vy. As before with the drift accretion
regime, only when the gravitational deflection time is comparable to the friction time will
enough energy be dissipated during approach to ensure the accretion of the pebbles. But
if it holds true, the pebbles accrete from the Hill sphere and we can express the accretion
rate as

My = 2Ry Yo o< M2/ (2.26)

2.3 Planetesimal accretion

The contribution of accreting planetesimals onto protoplanets is still a vital part of the
planet formation stage even thought it takes much longer to form planets without the
inclusion of pebble accretion. Both appear to carry an important role in planet formation
and we will see later on how one compares to the other. Collisions between planetesimals
operates under different physics from pebble accretion and gas drag.

Collisions and gravitational focusing

In the population of planetesimals collisions are an important part of the growth process.
Still many use it as the dominant means of terrestrial planet formation (Armitage 2010).
In Armitage’s book, they review the physics of planetesimal collisions and we will briefly
go over it here as it is still an integral part of the evolution of the terrestrial planets.

We consider two bodies approaching one another with relative velocities /2, masses m,
and radius R. They move on a trajectory with an impact parameter b. Without gravita-
tional focusing of the cross-section, they will only collide if b < 2R. That is to say their
cross-section would be I' = 47 R%. Gravity however, will change the trajectories and the
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ing from the left the sum of the radii, Ry, is larger than the closest approach. (Rs > R.).

This results in a collision as the bodies pass each other.

radius, R, closest separation, R, and collisional outcome three situations are shown. Start-
flyby will occur. In the right scenario, R;

Figure 2.2: To illustrate the relationship between two bodies at closest separation with

In the middle, Ry < R. and a

R. and a grazing collision will occur.

Gm?
R,

2

2

1

—mao

4
where the left side is the total kinetic energy at infinite separation and the right hand

locity vpmax. Conservation of energy between infinite separation and closest approach thus
side gives kinetic energy and gravitational potential at closest approach. At closest ap-

two bodies will move closer. The closest approach gives separation R, and maximum ve-
gives

(2.27)

MUpax —

proach there is no radial component of the velocity and together with angular momentum

conservation we get

(2.28)
(2.29)

This means that for By > R. a collision

b
4GmR,

1
2

We note that the sum of the two radii is Rs.
will occur and conversely for Ry < R, only a flyby will occur. Thus the largest value b for

collision is

_l’_
10

2
S

Umax

v =
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2

o. = 4Gm/Rs we can express equation 2.29 as

By using the escape velocity at contact v
2 2 Vs
Thus the cross-section is enhanced by gravity to become
2
[ = 47R? = nR? (1 + U—z) . (2.31)
o

This immediately tells us that dynamically cold disks with smaller random velocities will
have greater cross-sections and a greater rate of collisions.

Not all collisions contribute to growth however as too much energy during an impact
can lead to dispersal which means that the colliding objects are shattered and do not re-
accrete. Another possibility is fragmentation followed by re-accretion but this does not
leave a solid body. The only outcome that generates growth is accretion. We define the
specific energy (energy per unit mass) of the collision as
mu?
= oF (2.32)
where an impactor with mass m hits mass M at speed v. It is this specific energy, (), which
largely decides what outcome will result from the collision. We can define some boundaries.
Q5 as the minimum energy for dispersion into two or more pieces. (J§ as the minimum
energy for shattering, fragmentation with re-accretion. Of course @f, > Q)§. The former,
Qp, has two regimes as well. The strength dominated regime where small bodies require
large material strength to withstand impacts. In this regime @}, decreases with size due
to defects growing more commonplace. The other regime is the gravity dominated. In it
large bodies are held together by gravity and @)}, must exceed the specific binding energy
of the target. The binding energy is scaled with mass, M and radius, R, as
M
Qs x

This is not a good estimate of @}, but nevertheless ()}, increases with size.

(2.33)

In the code used, all collisions are treated as accretion scenarios however, meaning that
specific energy is not of importance to the simulations. For large planetesimals (>100 km),
it is well-known that they are strong enough to survive high-speed collisions (Bottke et al.
2005). Further motivation can be found in Johansen et al. (2015).

Oligarchic growth

From the work of Kokubo & Ida (1998) it has become evident that the stage of growth
including protoplanets undergoes a separation into an oligarchy of a few larger bodies ef-
fectively isolated from one another, resulting in an eventual isolation mass. We can see
this kind of behaviour in figure 2.3.

11
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There are two stages of growth to con-
sider with the first being runaway growth.

It has been found that during early ” Fsooo) 1T ETTEEEEEET
stages of accretion the larger planetes- ‘02:_ B
imals grow more rapidly, a behaviour C ]
we see in our results and which is due o1 - B
to the gravitational focusing derived ear- - .
lier in this section. This results in . - E
runaway growth of the largest planetes- -03_515000\/ .
imals. Interestingly however is that Coo ]
eventually, when entering the so-called 0z |- B
post-runaway accretion stage, the largest o iy ]
planetesimals, having become protoplan- 01 R
ets, experience a slowing down in growth
when they become large enough to affect SE T
the local velocity dispersion of planetesi- Cagoooy,T, LA ]
mals. L gt ]
.02 [ e -2
In the protoplanet stage orbital repulsion o1 i A
comes into play as well. The protoplanets B it o A ey e A
repel one another and expand their orbital . Z_*TL ‘l°, ﬁrl’ﬁ“i—dr—"’ _:

separation if the separation is smaller than
about 5Ry, where the Hill radius is given

94 96 98 1 102 104 106
alAU]

as
Figure 2.3: Figure 4 from Kokubo & Ida
My + M\ . . .
Ry = (—) a, (2.34) (1998) showing the growth into an oligarchy
3Me without any seed planetesimals.

where M; and M, are the protoplanet masses and M is the solar mass. a is the semi-
major axis. Expansion of orbital separation is a coupling effect from scattering of large
bodies and dynamical friction. If we have two protoplanets on circular orbits scattering
against one another they will increase both eccentricity and separation. The eccentricity
is returned to normal due to dynamical friction but the separation is not. Kokubo & Ida
(1998) find a typical orbital separation of 10Ry.

When combining the growth with the orbital separation, the protoplanets will retain a
5Ry during growth with separation scaled by the Hill radius. So orbital separation in-
creases with mass and semi-major axis of the protoplanets. Between the two protoplanets
the larger one grows more slowly, as is explained above. The growth of the protoplantets
will still be faster than the planetesimals however and the end result is an oligarchic growth
of the protoplanets as they sweep up the nearby planetesimals. It is also due to this oli-
garchic growth stage that planet formation is not faster since the moment they reach an
isolation mass, growth stops. The large oligarchs slowly perturb one another’s orbits so
that they cross. The protoplanets then grow in giant impacts.

12



Chapter 3
Method

3.1 PAOPAP

The code we have used for simulating the growth of the planetesimals and planets is called
PAOPAP - Pebble Accretion Onto Planetesimals and Planets. It was created for simu-
lating chondrule accretion onto planetesimals in Johansen et al. (2015). It is a numerical
code used to solve for the evolution of mass, eccentricity and inclination over time for a
set of planetesimal bodies. While our results focus on the size evolution, we will explain
the code in full.

PAOPAP operates with planetesimals as individual particles marked by their mass, ec-
centricity and inclination. The first is evolved through both pebble accretion onto the
planetesimal but also planetesimal collisions. The two latter properties are affected through
viscous stirring, dynamical friction of planetesimals and damping brought on by gas drag,
pebble accretion and scattering.

In an effort to conserve time, the code separates the particles into discrete size bins before
calculating the temporal evolutions mentioned but does so for the smallest and largest
planetesimals in every bin. By doing this the evolution of the other planetesimals can be
found through interpolation from the two anchors. There are 200 bins spaced logarithmi-
cally between 10 km and 10 000 km.

The density of the pebbles is brought in through a Gaussian stratification profile with
scale-height, H,,, for each bin set according to the diffusion-sedimentation expression.

H, «
H, VSt+a (3:1)

H, is the scale-height for the gas, St the Stokes number again and « the turbulent vis-
cosity. To better understand this equation we can look at the two limits of very small
and very large St. If St < « the scale height of the pebbles is the same as that of the

13
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surrounding gas. If on the other hand St > « the right side of the expression becomes
\/1/St which means the pebbles have a much larger density than the gas. The friction
time is familiar to us from the theory and varies depending on regime. We can get all the
disk parameters necessary in the calculation of the particle scale height from the MMSN
by setting a semi-major axis from the central star.

At the start of the simulation, a fraction of the mass of the gas, selected by us, is as-
signed to be pebbles. More pebbles are also created continuously over the first 3 million
years of the simulation. The motivation for this is that chondrules have been found with
ages varying between 0 to 3 million years.

The radii of the pebbles are set to be between 0.01 mm and 0.8 mm and they are di-
vided into 30 different bins that are separated logarithmically. Their number density has
a distribution of dn(a)/da o a=3®. The planetesimals are initially distributed between
sizes of 10 km and 150 km according to the distribution dN/dR o R~2%. Tt is however

4
truncated using a super-exponential term 67<%;‘P> with Rexp = 100 km. The total mass
assigned to the planetesimal seeds is determined by the size of the annulus with 0.04 Mg
for every 0.2 AU annulus width increase. The very small planetesimals will not show any
significant growth and instead are useful for the dynamical friction they offer, which can
reduce inclinations and eccentricities for other bodies of the simulation.

To get the pebble accretion rate for each planetesimal, interpolation in a look-up table
is done to produce the accretion radius for a grid of values of planetesimal size normalised
by Bondi radius, R/Rg, and friction time normalised by Bondi time, 7¢/75. The look-up
table is based on a large number of integrations of pebbles individual dynamics when pass-
ing a planetesimal with sub-Keplerian speed.

The column density of the gas is taken from the MMSN using a value of 3, = 1700g/cm 2.
The MMSN is constructed with a rather easy-to-follow logic. By calculating the smallest
amount of mass required in a disk to create the current solar system, Hayashi (1981) de-
rived the first MMSN model. Understandably it depletes over time as the central star
accretes mass and does this on an e-folding time-scale of 3 million years.

To handle oligarchic growth and the eventual isolation of a few large bodies that occur, the
large oligarchic particles are identified as ones that can fit their combined reach of 10Ry
into the width of the modelled annulus. The bodies which are within this range are not
allowed to accrete one another but as the planetesimals grow, there will not be room for
all the previous oligarchs and the smallest ones will be pushed out and possibly accreted
by one of the oligarchs. For the oligarchs, inclination perturbations and dynamical friction
in eccentricity is ignored.

14
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3.2 Euler’s method

To get the temporal evolution our three parameters, that is M, ¢, and i, we use a simple
Eulerian scheme. While it is familiar to most, we will briefly go through the basics of the
method here.

Assuming we have an initial value problem with ¢ = f(¢,y(t)) and y(ty) = yo. Intro-
ducing a time-step, dt which can be variable or fixed, we move in time with a step from ¢,
to t; = tg + h, or more generally ¢,,,; =, + h. We can then take a Eulerian step defined
as

which puts into context the approximative nature of the Eulerian method as the above
equation states that the value ¥, is equal to the previous function value, plus a linear
step with the derivative at the previous value. The Eulerian method is an approximative
solution to ODEs.

In our simulation, the time-step is determined so that M, e, and ¢ do not change by
more than 10%.

It might be argued that a higher order integration scheme should be used for the code.
While higher order schemes in general offer greater detail, the PAOPAP code is a statisti-
cal one and thus in a calculation either something transpires or does not. For that end a
simple Euler scheme is precise enough. As a result, the code saves computational time by
not having to calculate several derivatives. There would not be enough improvement in a
higher order integration scheme to justify the extra computational time.

3.3 Planetesimal collisions

Since planetesimal collisions are an important part of the formation they are included in
the code by a Monte Carlo method. The planetesimals are sorted into discrete size bins as
before and calculated for each bin is average inclination and eccentricity. This is so that a
collision rate matrix, r;;, can be calculated for all combinations. The rates of collisions are
calculated through a scheme described in the online supplement of Morbidelli et al. (2009).

The probability of collision, F;;, between two planetesimals from bin 7 and j can be cal-
culated from the time-step. If random number 7 is smaller than F;; the planetesimals are
collided and we assume perfect sticking, that is, accretion as described in the theory. The
mass of the smaller of the two particles is added to the larger one and the small is removed
from the simulation.
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3.3. PLANETESIMAL COLLISIONS CHAPTER 3. METHOD

In Johansen et al. (2015) they performed several tests of the scheme to investigate its
usability. The coagulation scheme was tested against an analytical equation with a con-
stant kernel. They had excellent agreement with the analytical expression implying a
correct implementation of the Monte Carlo collision scheme.

To test the collision rate calculation they tried to reproduce one of the plots from Morbidelli
et al. (2009) which shows damping of e and 7 due to mutual inelastic collisions. Specifically
the shape of the damping is used for comparison to determine the accuracy of the collision
rate. This also shows excellent agreement and thus the collision rate algorithm is properly

included in PAOPAP.

The last test performed was in regards to the cumulative size distribution of planetesi-
mals and was in good agreement with Morbidelli et al. (2009) despite the fact that the
comparison paper contained fragmentation and Johansen et al. (2015) did not. It shows
that fragmentation is not an important factor for coagulation of large planetesimals.
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Chapter 4

Results

With chapter 2’s theory and 3’s code, we are able to simulate the formation of planets with
the input parameters of our choice. In total, two sets of simulations were performed at
initial distance of 1 AU in both cases. The first set of simulations are focused on increasing
the width of the annulus, d,,,, around 1 AU in an effort to widen the region of accretion
and to bring in more material to be accreted onto the planets. The only parameter being
altered between simulations is the width of the annulus and it is changed between 0.2 AU
and 1 AU. The second set of simulations instead keep a constant and rather thin annulus
of 0.2 AU but alter instead a parameter called fp,,, which determines the amount of mass
that is given to the pebbles. In other words, it gives more pebbles to be accreted. Initially
a few simulations were done around moderate values of f,,, before much larger values were
tested. We also perform a simulation with larger pebble sizes to determine its effect and
lastly we look at planetesimal size distribution for one of the simulations.

4.1 Broadening the annulus

We have tried to broaden the annulus to include more pebbles and in doing so tried
to create larger planets by the end of the simulations. Five simulations were run with
dann = [0.2,0.4,0.6,0.8,1.0] AU. The input parameters set by us exist in a separate file.
For these simulations they are presented in table 4.1.

The result after 10 million years of accretion is presented in figure 4.1 where lack a pattern.
No correlation appears between the width of the annulus and the final mass of the largest
planetesimal. This is possibly related to the growth into oligarchs. Widening the annulus
is not going to have the desired effect if the planets end up with an isolation mass and are
unable to accrete further. Another explanation could be that a second largest planet has
formed with very similar mass. To study the evolution further we also plot the growth of
Myax against the time in years to gain a view of what transpires during the simulation.
The results are presented in figure 4.2 in regular form as well as with a logarithmic scale
for the mass to see if there are any major changes during the early stages of evolution.
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Figure 4.1: This figure shows the end results of the first set of simulations where the
width of the annulus was increased. The mass of the largest planetesimal at the end of the
simulation is plotted against the annulus width as crosses. Looking for any sort of structure
we find none. An annulus width of 0.8 AU creates the smallest of all the planets we see in
the plot. This is either a result of oligarchic growth giving the planets an isolation mass
or because there are multiple planets around similar mass by the end of the simulation.
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Figure 4.2: The temporal evolution of the mass of the largest planetesimal in the different
d.nn simulations seen in a regular plot on the left and with a logarithmic y-axis on the
right. Each simulation is colour-coded as in the legend. We can see how the end result can
be determined by single late events as with d,,, = 0.2 which would likely be the smallest
end mass if not for the giant collision at the end of its simulation.
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The plots show us that the evolution of the 1.0 AU and 0.6 AU annulus transpire almost
entirely through pebble accretion as there are no rapid jumps from planetesimal collision as
seen very visibly in the 0.2 AU simulation. Despite a widened annulus there is no increase
in the mass and the logarithmic plot proves that there are no surprising early events either
and only some small collisions transpiring.

Table 4.1: The input parameters used for the simulations with varying annulus width. The
name of the parameter is given along with its value and a brief description of it. The same
input parameters are used for the simulations with f,,. but then rorb1 and rorb2 are fixed
instead as 0.2 AU.

Parameter Value Description

rorbl Varied Inner annulus radius

rorb2 Varied Outer annulus radius

nr 1 Number of annuli

fgas 1.0 Fraction of MMSN mass in gas

fpar 0.8 Fraction of 1% of fgas

fmat 0.5 Fraction of fp,, created over time

fpla 0.1 Fraction of fp,, in planetesimals

cool 1.0 Temperature relative to the MMSN

apmin 0.001 cm Minimum pebble size

apmax 0.08 cm Maximum pebble size

gpeb 3.5 Exponent in number density of pebbles

tau mat 1.5- 106 e-folding timescale of dust turning into pebbles
tau_acc 3-10° e-folding time-scale of gas accretion

deltat 1.0-10* Turbulent diffusion coefficient

gammat 6.0-107° Viscous stirring parameter

Rmin 10.0 km Minimum size of initial planetesimals

Rmax 150.0 km Maximum size of initial planetesimals

Rexp 100 km Size at which planetesimal distribution is truncated
gexp 4.0 Power of super-exponential term when truncating
gast 2.8 Exponent in planetesimal size distribution
rhomat 3.5 g/cm? Material density

veccO 10.0 - 10% em/s  Velocity relative to the circular orbit v2 = e- vk
tmax 1.0-107 years  Total length of simulations

cdt 0.1 Constant in determining the time-step

dtsnap 1.0-10° years  Frequency of snapshots taken during simulation

4.2 Increasing fpa

To remind ourselves, fpar is the parameter that determines the amount of mass given to
the pebbles in the simulation. It is defined in such a way that it is the fraction of a single
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Figure 4.3: The end result of the first round of simulations in the second set where the
fraction of pebbles was increased. The mass of the largest planetesimal at the end of the
simulation is plotted against fp... We see the beginning of a rather clear linear pattern
emerging. Mass seems to increase with fp,,, in the results. There are no planets between
roughly 0.5 and 1 Earth masses either due to multiple planets forming as seen in figure
4.4.

percent of another parameter fy,s which is given in mass to the pebbles. The parameter
feas itself is a fraction of the MMSN that is given in mass to the gas. So if for example
fpar = 10, 0.1 of mass given to the gas in the simulation is instead given to the pebbles.
For all of our simulations, fsas has been set to unity, meaning we have assumed that the
MMSN mass is present in our simulations. In the second set of simulations, we will split
the presentation of results into two parts. This is because there were two rounds of the
same type of simulations performed. Initially with a few closely spaced small values of fpar
to compare results to the previous set of simulations and then afterwards with much larger
values which incorporates the former.

Small values of f,,

Since the previous simulations had a constant value of fp,, = 0.8 we decided to investigate
the effect a constant annulus width of 0.2 AU and changing the amount of pebbles within
the annulus instead. The same input parameters as 4.1 were used with rop; = 0.9 AU
and 742 = 1.1 AU and f,,, varied instead between 1 and 2 with a step of 0.125 between
simulations giving a total of 9 simulations. The end result of M., is seen in figure 4.3
where one sees the beginning of a small linear correlation. Because of the small overall
range in fpar it is hard to deduce large-scale correlation. There is a large gap between the
three earliest simulations and the rest with no masses appearing between ~ 0.5Mg and
~ 1Mg. To explain this, we extract the 10 largest bodies from the two fp,, simulations,

20



4.2. INCREASING Fpar CHAPTER 4. RESULTS
d,.,=0.2 AU, fpar =1.25 d,,=0.2AU, fpar =1.375
10T~ T T T T 10t L I R A A AL
10°1 i 100+ o © o O O O O
g 8 g 8 8 &8 8 o
107 O e 0 o 0 o O o 10" o b
8 o © & © o o
S O 0 0 0o O 0 0 S ©o ©
< 102+ % O O O O O O O O ) 102} © é O O O O O O o
e §oeessssss e §;gzzz°°
8 L © 8 8 8 &8 8 & 8] 3 3| g8 © i
s 10° = 10 S 9 8 LR
g 888882
o 0
10*+ B 10%+ B
105+ o - 10 -
0% 0 o 0 | 10°® Ll S R R R SR R
0 2 4 6 8 10 2 4 6 8 10
Time (Myr) Time (Myr)

Figure 4.4: Ten largest planetesimals for f,., = 1.25 and 1.375. The reason for the gap in
figure 4.3 is seen as the left figure has a planet of almost the same mass in its simulation.
In the right figure, a majority of the mass is kept in the largest planet.
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Figure 4.5: The temporal evolution of the mass of the largest planetesimal in the different
small fpar simulations seen in a regular plot on the left and with a logarithmic y-axis on
the right. We see the importance of giant impacts on these small planets. Some double
their size due to giant impacts. Overall we are unable to grow planets larger than around
1.5 Mg. The right figure shows that there are no major jumps in mass very early on either.
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Figure 4.6: The mass of the largest planet plotted against the corresponding value of fpar
in that simulation. A line is fitted (red) using linear regression along with the equation 4.1
to show the now very apparent correlation between mass and fp,,,. So while it is true that
there is a correlation between large values of the parameter and the mass it is possible the
behaviour at small values is non-linear. But super-Earth masses are attainable where the
correlation is valid.

1.25 and 1.375 and plot them at every million years. The result we find is presented in fig-
ure 4.4. Here we find the explanation for the gap in figure 4.3 as the f,,, = 1.25 simulation
has a planet of almost the same mass as the largest one. Since we extract the largest body
in figure 4.3, this second body is hidden from us. We see in the f,,, = 1.375 simulation
how no planets have similar mass as the largest one, explaining why it appears in figure
4.3 with a much larger mass.

Here as well we investigate the temporal evolution of all of the simulations to study the
growth in full detail. The results can be seen in figure 4.5. We see quite clearly how
important planetesimal collisions and giant impacts are for the final size of the planets as,
for example, the fpa, = 1.5 simulation almost doubles in mass with a collision.

The simulations show the ability for pebble accretion to create Earth mass type plan-
ets. But since we are interested in creating the super-Earths of Kepler’s data more massive
planets are desired.

Large values of f,,,

So to create even bigger planets we have used larger values of f,, ranging from 2.5 up
to 10, stepping with 1.25 for each new simulation. The input parameters are the same as
for the simulations with small f,,,. To allow for easier comparison between the small and

22



4.2. INCREASING Fpar CHAPTER 4. RESULTS

d,,,=0.2 AU d,,,=0.2 AU
0 L s S I S B I T 101 —— —— T T
10°+- .
10+ .
2 | 2 10?7 .
2 IS
= = 10°%) 2
) fa=200 —— ||
10 fr=250
fo=375 —
f reE
10°+ fo =750 n
fo =875
| fr=100 ——
; R RS N RS NN R R N 0% .
0 2010°  4¢10° 6¢10° 810° 1.10° 0 2010°  4¢10° 6¢10° 8¢10° 1.10°
Time (Years) Time (Years)

Figure 4.7: The temporal evolution of the mass of the largest planetesimal in the different
large fpar simulations seen in a regular plot on the left and with a logarithmic y-axis on
the right. We can see quite clearly here how the increasing fpa,, with equidistant stepping
produces planets with equidistant separation on the y-axis as well. We also see very
clearly how ten million years is quite enough to produce the final mass of the planets in
the simulations.

large fpar simulations we include the fy.. = 2 results from figure 4.5 in figure 4.7 and all
the points from figure 4.3 in figure 4.6.

We begin by looking at the results in figure 4.6. When comparing to figure 4.3 we can see
a much more evident linear correlation between the end masses. We have made a linear
regression to fit a line onto the data points. The linear equation we find between M.
and fpar is

Mnax = 0.91 fpa0r — 0.36. (4.1)

While the linear behaviour does not appear at values below fy., = 2, it is clear for larger
values.

The temporal evolution is found in figure 4.7 where the correlation previously spotted
in figure 4.6 is once more evident in the non-logarithmic figure. What we do see for large
values of f,ar is that the role of planetesimal collisions becomes restricted to earlier on.
With the increased amount of pebbles available for accretion, the growth is much quicker
for the largest planetesimal and it appears to accrete all nearby large planetesimals very
early on (except for the oligarchs). Despite the increased mass, all simulations appear to
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Figure 4.8: Temporal evolution of two simulations using f,., = 5 but differing in pebble
sizes. Small pebbles (0.001 cm to 0.08 cm) are given in black and large ones (0.1 cm
to 2.0 cm) are given in purple. Very little changes between the two simulations and the
only visible change is the time it takes to reach the final mass. Larger pebbles causes
the planetesimal to grow much faster in the beginning of the simulation but is eventually
caught up to by the small pebble simulation.

reach their final mass at roughly 7 million years in, suggesting perhaps that the pebble
accretion rate grows linearly with the amount of available pebbles.

4.3 Pebble sizes

While the usual and somewhat broad definition of pebbles is mm-cm, the values of appyi,
and apmax in table 4.1, used in every simulation, is set to strictly mm sizes, being 0.01 to
0.8 mm respectively. This is to correspond to typical sizes of chondrules which are small
spherical droplets of glass found in chondrites. They are believed to contain traces of the
building blocks of the planets in our solar system (Johansen et al. 2014) and it is for the
purpose of simulating accretion of chondrules that PAOPAP was written. However chon-
drules can be classified as pebbles and there is no material difference in the simulations
we have performed between a pebble and a chondrule. They are of the same material but
different sizes.

But in order to determine whether or not it was an error to retain chondrule sizes for

the pebbles we performed the f,,, = 5 simulation from figure 4.7 but with apy,m = 0.1 cm
and apmax = 2 cm. The result of the simulation can be seen in figure 4.8.
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Figure 4.9: The size distributions of the (left) 10 largest planetesimals and (right) 100
largest using the fp., = 6.25 simulation. The code handles the oligarchs by keeping the
ones able to fit 10Ry of their size within the modelled annulus. They are sorted in size as
well. We can see that as one of the planets grows to large enough size, it becomes the only
oligarch left to fit 10 Ry within 0.2 AU. The start of the simulation, ¢ = 0 yrs, has yet to
grow oligarchs and can only be seen in the right figure.

We see that the end mass ends up being almost the same for the largest planet. In-
stead, the main difference to note is how the simulation with larger pebbles grows with
incredible speed at the beginning of the simulation and thus does not show any large num-
ber of planetesimal collisions as none of the other planetesimals are likely to become large
enough to have a visible impact on the largest oligarch. By the time that the planetesimal
in the small pebble simulation has reached 1 Mg the large pebble simulation planetesimal
has reached a size almost four times as large. When looking at the logarithmic plot it
is even more evident how much faster accretion takes place as the large pebble curve lies
along the borders of the graph.

Since there is no real difference in the end mass though, we would only alter the size

of the pebbles if we wished to reduce the time it takes to form the planets. The benefit of
having used smaller pebbles in our simulations is that we see greater detail.
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4.4 Planetesimal size distribution

We decided to investigate the evolution of not just the most massive planetesimal but of
the oligarchs in one of the simulations. As is described in section 3.1, the code handles the
oligarchs by taking the planetesimals in order of size tries to fit 10 Ry per planetesimal into
the modelled annulus. The ones that fit inside are labelled oligarchs and are not allowed
to accrete one another and only interact gravitationally.

To model these planetesimals, we extract the 10 and 100 largest planetesimals in two
different plots. The simulation chosen for these plots is the f,a = 6.25 simulation from the
second set of simulations. The two results are found in figure 4.9. We can see that it mat-
ters very little whether we include 100 or 10 planetesimals as the majority of them simply
clump together around very similar mass at the bottom. Initially all the planetesimals are
located at below 10~° Mf because growth has yet to start. We quickly see how pebble
accretion creates a group of oligarchs and already at 2 Myrs into the simulation a very
clear oligarch is created. By 4 Myrs, only three other planetesimals remain even when we
sample the 100 largest. This means that only these planetesimals remain in our simulation.
To understand this result and where the other planetesimals have gone we perform a quick
calculation. At 4 Myrs the planet has a mass of about 5 Mg which corresponds to a Hill
radius at 1 AU of roughly 0.012 AU. Then 10Ry = 0.12 AU. Since the modelled annulus is
0.2 AU there is not a lot of room left to fit their 10Ry into the 0.2 AU distance. (Note that
this is still however just a device for labelling oligarchs and that the bodies are not lined
up dimensionally next to each other in the simulations). Only a few other small bodies
remain and even later at 5 Myrs and forwards, only the largest body remains. So we can
see how, towards the end of the simulation, the main body has become so large that it
allows for no other oligarchs to exist and it can potentially accrete any other body.
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Chapter 5

Conclusions

5.1 Isolation mass in increasing annulus width

One of the initial ideas was to somehow increase the amount of mass that could be ac-
cumulated by the planetesimals in the simulation and one of the two ways of doing this
that we thought of was to try and increase the width of the annulus. The results found in
figures 4.1 and 4.2 show us that there is no correlation when increasing the annulus as all
that will occur is that either the dominating planetesimal will sweep up what it can before
creating an empty annulus within our existing one, isolating itself, or we hide multiple
planet systems by extracting only the largest planet as was seen in figure 4.4. Or perhaps
both are present at the same time. Our planets never reached as far as one Earth mass.
Since we are interested in the formation of super-Earths another means of growing large
planets is required.

5.2 Growth with more pebbles

The most promising result for our purpose comes from simply increasing the amount of
mass dedicated to the pebbles through the parameter f,,,. We have successfully grown
planets with masses up to 8 Mg or 1.6Rg with Earth having its mean density of 5.514
g/cm3. An Earth in our density of 3.5 g/cm?® would mean we have formed up to 2 Rg
planets. The results from Kepler (Batalha et al. 2013) have shown a large fraction of
super-Earths within this size range which is very promising for our results. In the statis-
tical code of PAOPAP we have successfully created super-Earths reminiscent of Kepler’s
results. Pebble accretion is capable of reproducing some of the observations.

Another result to highlight from the second set of simulations is the correlation between
increasing f,.r and the final mass. While initially large-scale correlation was not visible, the
results found for oligarchic growth in figure 4.9 show us that only one large planetesimal or
planet remains at the end of the simulation. If that is the case, then adding more mass into
the system means it will be accreted onto this body and the mass added should correspond
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to the mass gained by the planet. Similar understand was used to explain the dispersion
in the largest mass found in the small f,,, simulations in figure 4.3, as the pebble mass is
sometimes spread across several oligarchs rather than just the one.

Our Kepler-sized planets are most likely all formed as single-planet systems. Figure 8
of Batalha et al. (2013) shows us that many of Kepler’s super-Earths are in multiple planet
systems. So in this regard, the results look less like Kepler’s results.

5.3 Future work

Work that is left to be continued would be further simulations, perhaps with increased
values of f,ar as well as with different annuli. If oligarchs were handled in some different
way PAOPAP might be used quite well for simulating the growth of even larger planets.

One of the things that the PAOPAP code does not do is to account for migration of
the planetesimals. In the disk, planets are capable of migration (Raymond et al. 2006)
both outwards and inwards. We initially created all of our planets at an annulus that was
centered around 1 AU. This is much further out than most of Kepler’s exoplanets. Some
of the longest periods of Kepler’s exoplanets were around 180 days while the majority were
concentrated at around 10 day orbits. Because of this, we have assumed that our planets
migrate inwards as this is certainly a possibility. To include migration and semi-major axis
into the simulations would produce interesting results to see whether or not the produced
planets look at all like the Kepler results. Including migration could explain the current
presence of Kepler super-Earths in such tight orbits.
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Appendix A

Variables

This appendix gives a list of variables used in the thesis with a description in a sentence
or two. For the input parameters and their description, see table 4.1.

Table A.1: A list of variables used in the thesis.

’ Variable H Description

Ar or dy,, || The size of the annulus.

Tt Friction time. The timescale on which the drag force operates.

Pe The material density.

Pg The volume density of the gas.

Cs Speed of sound in the gas.

A The mean free path.

Re The Reynolds number. It is the ratio of intertial forces to viscous forces.

ov Relative speed of particle and gas.

v Kinematic viscosity.

St The Stokes number. Definition in equation (2.8).

Qk The Keplerian frequency.

VK Keplerian speed.

Vgas Speed of gas.

H Scale height.

Fp The pressure force.

E. The centripetal force.

Fp Gravitational force.

Up Radial drift speed of particle in gas.

Vg Azimuthal drift speed of particle in gas.

AUl Relative velocity between a particle and a planetesimal in pure
Keplerian rotation.

Rgp Bondi radius, radius where particle are significantly deflected from
a larger body.
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Table A.2: Contd: list of variables used in the thesis.

’ Variable H Description

M; The mass at which Bondi/drift-accretion transitions to Hill accretion.
vy The hill velocity.
B The Bondi time. The time to cross the Bondi radius.
te Time-scale for deflection.
g Gravitational acceleration.
Rocc The effective accretion radius.
My Accretion rate in drift accretion.
Pp The pebble density.
p Surface density of the pebbles.
Ry The Hill radius. Radius of the Hill sphere.
o Random velocity of planetesimals.
b Impact parameter.
r Cross-section.
R. Closest approach separation during gravitational focusing.
Umax Velocity during closest approach.
Ry Sum of approaching bodies radii.
Vesc The escape speed. Speed required to escape gravity.
Q Specific energy of a collision. Energy per mass.
D Minimum energy for dispersion into two or more pieces..
3 Minimum energy for shattering, fragmentation and re-accretion.
5 The binding energy of the target in collision.
Q@ Turbulent viscosity.
g Gas surface density.
Tij Collision rate matrix.
P; Probability of collision.
M hax Largest mass in simulations.
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