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“We dance round in a ring and suppose, but the secret sits in the middle and knows.”

Robert Frost
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This thesis investigates numerically the out of equilibrium properties of quantum rings

with magnetic impurities, using the periodic Anderson model (PAM). The model is a

simple template for the discussion of the physics of regular arrays of rare-earth impu-

rities in metallic hosts. The system considered is a quantum ring consisting of up to

six sites, each of whom are connected to an Anderson impurity site. The dynamical

properties of this system are investigated numerically using exact diagonalization and

Lanczos adapted time evolution. Two different schemes are used to perturb the system:

a magnetic field piercing the ring and a local Zeeman interaction at one of the conduc-

tion sites. Comparisons are made with a ring without impurities, and it is shown that

for very strong onsite interaction and/or very weak hybridization between the conduc-

tion sites and the impurity sites, the physics of a ring without impurities is recovered.

Furthermore, a Doniach-type phase diagram in the presence of persistent currents, is

provided where it is shown that the Kondo regime is reached for smaller values of the hy-

bridization parameter when a magnetic field piercing the ring is present. The Doniach

phase diagram is discussed in connection with persistent currents and entanglement.

Preliminary results for the Zeeman field suggests a non trivial interplay between charge

and spin currents, and RKKY and Kondo-like couplings.
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Chapter 1

Introduction

The past 50 years have seen increasingly rapid advances in computer technology. The

increases in computational power have really been exponential, elegantly highlighted by

Moore’s Law [1]. In 1965 Moore made the prediction that the number of transistors

in dense integrated circuits would double every two years, and his prediction has held

true until today. However, the breakdown of Moore’s law is inevitable as the decrease

of transistor sizes cannot go on indefinitely. This breakdown is expected to occur in the

near future [2], and as a consequence a lot of effort has been put into research of alter-

native methods of increasing computational power. One of the more spectacular areas

of research in those matters is quantum computing. Quantum computers are in short

like regular computers, except that they make use of quantum mechanical phenomena,

such as superposition and entanglement, to speed up certain computations. Quantum

computers are expected to be much faster at performing specific tasks, for example the

factorization of large numbers [3], but the experimental realization of a quantum com-

puter is far away. Another emerging field, which also proposes a revolutionary approach

to regular electronics, is spintronics (or magnonics). It suggests that instead of electron

density waves, electron spin waves could be used as means of transporting information.

Spintronics would have several advantages over regular electronics. It is for example

expected that spintronic devices would generate much less heat than regular electronic

devices [4]. Another argument that is put forth is that spin waves have much shorter

wavelength which would allow for smaller devices. Furthermore, since the properties

of spin waves are different from those of density waves, it could be possible to create

devices that are impossible in regular electronics. Spintronics is a relatively young field

and the full potential of spin dependent devices is far from fathomed. The appearance

of spintronics, along with the progress in the controlled manufacturing of nanodevices,

1



Chapter 1. Introduction 2

has brought a renewed interest to a much older phenomenon, namely the Kondo effect

[5].

This thesis will examine the Kondo effect and magnetization dynamics in quantum

rings. The system considered is a quantum ring consisting of six sites, each connected to

a magnetic orbital which is described by an Anderson impurity site (see Fig. 1.1). The

groundstate properties of this system have been investigated in previous studies [6–8],

but nothing has been done for the dynamical aspects, and that is what this project

is about. The study is numerical, and the computer program that was used for the

simulation of the system was build as part of the project.

The program was developed in Python, and was tested using a time-dependent Den-

sity Matrix Renormalization Group (t-DMRG) program (source code from [9]). The

t-DMRG program was interfaced in Python for easy use in Hubbard/Anderson type of

systems. Furthermore, the interfaced t-DMRG code was used as a benchmark for a novel

many-body approximation method developed in a different, larger scale project. Our

collaboration and co-authorship in that project (a paper will be submitted in the next

few weeks) was provided during the thesis work and can be seen as an additional, but

secondary, subproject of the thesis. Consequently, we find it appropriate and informative

to present some results on the topic here.

Figure 1.1: Schematic figure of the system considered in this thesis. The blue sites
represent the conduction sites. They are connected to each other through a hopping
term which can be altered by a magnetic field piercing the ring. The red sites correspond

to the Anderson impurity sites with which the conduction electrons can interact.

The thesis is composed of four chapters. Chapter 1 (this chapter) gives an introduction

to the field of Kondo physics, spin interactions and quantum rings. It will also provide



Chapter 1. Introduction 3

a short overview of the computational methods connected to the thesis project. The

second chapter (2) explains the numerical method of the developed computer program

and the observables used to analyze the systems investigated. The third chapter (3) is

concerned with the results. It starts with a comparison between exact diagonalization

(used in the developed computer program), time dependent density matrix renormaliza-

tion group, two commonly used many-body approximation (MBA) methods, and a new

MBA method. Then results for regular 1D rings (without magnetic impurities) will be

presented, followed by results for periodic Anderson model rings. The final chapter (4)

concludes the thesis, and provides an outlook for further studies.

1.1 The Kondo effect

The Kondo effect was discovered in the 1930s when de Haas et al. [10] made the mind-

boggling discovery that for some metals, as the temperature is lowered, the resistance

reaches a minimum and increases logarithmically as T → 0. It was known at that time

that the resistance in a material was affected by the scattering of conduction electrons

against static impurities, lattice imperfections, and vibrations (phonons). According to

the theory at that time, if temperature is lowered, the lattice vibrations will diminish

and the resistance should saturate at a specific value, depending on the amount of impu-

rities and lattice imperfections. The findings of de Haas et al. contradicted this picture

and made it clear that there were missing pieces in the theory of resistance.

In the beginning of the 60’s it was recognized that this effect was related to the level

of magnetic impurities in the metal, and in 1964 Jun Kondo was able to show that the

effect was due to spin exchange interactions between conduction electrons and unpaired

electrons in magnetic orbitals [11]. The Hamiltonian that Kondo used was composed of

two parts, a regular Bloch Hamiltonian describing the electron sea, and an interaction

Hamiltonian

HK = J ~S · ~s(~r). (1.1)

Here ~S refers to the spin of the impurity and ~s(~r) to the spin of the conduction elec-

trons at the impurity site ~r. Using third order perturbation theory, Kondo was able to

reproduce the logarithmic behavior of the resistance seen in experiments (see Fig. 1.2).

In the Kondo Hamiltonian J is a positive constant which implies that the coupling be-

tween the impurity and the conduction electrons is anti-ferromagnetic. The physical

reason for the positive J has to do with the nature of the spin-flip processes that cause

the effect. Kondo himself used it as a parameter because it was necessary to reproduce
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Figure 1.2: Figure from Kondos original paper in 1964 [11], showing the agreement in
resistance between experimental results (points) and the expected values using Kondos

model, for gold with different densities of iron impurities.

the logarithmic behavior from experimental results. [12] This reason is easier to under-

stand in another model for a magnetic impurity inside a conducting metal, namely the

Anderson model [13].

1.1.1 The Anderson model

The Anderson model describes a magnetic impurity as a single electron level εf accom-

panied by an on-site interaction U (which, if positive, reduces the probability of double

occupancy). The electron level interacts with the conduction electrons through a

hybridization parameter V . For a tight-binding Hamiltonian (similar to the one used in
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this project) the Anderson model can be written as

HA =−
∑
〈i,j〉,σ

ti,j

(
c†i,σcj,σ + h.c.

)
+ V

∑
σ

(
c†k,σfσ + h.c.

)
+ Uf †↑f

†
↓f↓f↑ + εf

∑
σ

f †σfσ,
(1.2)

with c†i (ci) being the creation (annihilation) operator of a conduction electron at site i,

and f † (f) being the creation (annihilation) operator of an electron at the impurity site.

In this case, the Anderson impurity only interacts with conductions electrons at site k,

but it can, in a more general description, also interact with electrons at other sites. To

imitate the behavior of a magnetic orbital, the on-site energy εf is below the Fermi level

EF and the on-site interaction U is such that εf + U > EF . This configuration ensures

that the impurity site is occupied and at the same time resists double occupation, giving

the site a magnetic moment.

In the situation of εf < EF and εf + U > EF with a single electron occupying the

impurity site, it is classically forbidden for the electron to escape the impurity, or for

another electron to enter the impurity site, as these processes violate the conservation

of energy. In quantum mechanics however, this violation is permitted as long as the

total energy of the system is restored within the time frame allowed by the uncertainty

principle. This allows for two spin flip processes:

1. The electron in the impurity tunnels out of the impurity and an electron of opposite

spin enters.

2. An electron of opposite spin tunnels into the impurity and the first electron leaves.

The electron at the impurity site is, through these two processes, able to share its

potential with electrons around it. The first process is completely blind to spin because

an electron of the same spin is as likely to enter the impurity while it is empty as an

electron of opposite spin. The second process however, is only possible for electrons of

opposite spins due to the Pauli principle, and this is what causes the anti-ferromagnetic

coupling that Kondo used in his calculations. A more explicit derivation of the anti-

ferromagnetic coupling can be seen in the Schrieffer-Wolff transformation [14], where it

is shown that the Anderson model for highly localized spins is equivalent to the Kondo

model with anti-ferromagnetic spin coupling.

The spin-flip processes of the impurity atoms creates a sharp peak in the density of

states at the Fermi energy, called the Kondo resonance. Scattering against the states of

the Kondo resonance is what causes the temperature dependence in the resistance seen
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in experiments. This is because the conduction electrons are, at low temperatures, closer

to the Fermi energy and consequently also closer to the resonance levels. This means

that the scattering probability increases, and thereby also the resistance. However, the

logarithmic dependence of temperature Kondo found in his calculations makes the faulty

prediction that the resistance will become infinite as T → 0. The temperature at which

Kondo’s perturbation theory calculation breaks down is called the Kondo temperature,

TK :

kBTK = D exp

(
− 1

2Jρ0

)
, (1.3)

with D being the width of the band and ρ0 the density of states at the Fermi level.

The task to solve the temperature dependence of resistance for T < TK became known

as the Kondo problem and it became a popular subject for theoreticians in the 60’s

and 70’s. The conclusion was made that, at low temperatures, the magnetic moments

of impurities would be increasingly screened by close-by electrons (Kondo screening)

causing a saturation of the resistance as T → 0. At T = 0 the impurity electrons

would be completely screened and together with the surrounding electrons form a singlet

state, a Kondo singlet. This picture was confirmed in 1975 by Wilson [15], who used

a numerical renormalization group method to prove that the groundstate of the Kondo

system in fact is a singlet. Later studies provided further insight into the problem, for

example, Nozieres showed in a paper from 1974 [16] that at T � TK the electrons could

be treated as a Fermi liquid using Landau Fermi liquid theory. Substantial progress has

also been made on the experimental side, and today experimentalist are, for example,

able to tune the Kondo effect in artificial atoms (i.e. quantum dots) by altering on-site

energy and gate voltage of the dots [17]. The precursor behavior to the Kondo effect

has also been studied experimentally in few electron quantum rings, [18] which is the

kind of system considered in this thesis.

1.2 Quantum rings

The controlled manufacturing of nanorings has seen a vast progress during the last

decades, and experimentalists are today able to create nanorings containing only a few

electrons [19]. The ring topology allows interesting interactions with magnetic fields,

and the Aharonov Bohm effect [20] has, for instance, been observed experimentally in

quantum rings [21]. Furthermore, a recent study in the field of ultra-cold atoms by

Jimenez-Garcia et al., shows how Peierls substitution (see 1.2.1) can be realized on op-

tical engineered lattices [22]. This study, along with many others, has made quantum

rings a popular system in which one can investigate core aspects of quantum mechanics



Chapter 1. Introduction 7

experimentally. The theoretical interest in ring systems has increased with the exper-

imental advances and much of the theoretical work with nanorings is concerning rings

pierced by a magnetic field. Such fields are often chosen to be zero at the perimeter of

the ring (i.e. Aharonov-Bohm flux). Small rings subjected to these kind of magnetic

fields generate what is called persistent currents, which are currents that do not diminish

even if the ring contains impurities that in general would scatter the electrons.

1.2.1 Peierls substitution

The reason why a ring electron can feel a magnetic field piercing the ring without actually

being in the field, is because the vector potential ~A is non-zero. The Hamiltonian of an

electron in a magnetic field directly depends on ~A, that is,

Hmag =

(
~p + e ~A

)2

2me
+ geµB ~S · ~B. (1.4)

The last term accounts for the Zeeman effect, which for an Aharonov-Bohm flux is 0.

The substitution ~p 7→ ~p + e ~A works well for the continuous limit, but the inclusion into

a tight binding Hamiltonian, which is done through Peierls substitution requires further

considerations.

For simplicity, lets consider the case of one electron in a constant vector potential ~A.

The canonical momentum operator, ~p + e ~A, can then be rewritten using the unitary

transformation

~p + e ~A = exp
(
−ie ~A · ~r/~

)
~p exp

(
ie ~A · ~r/~

)
. (1.5)

For a tight binding Hamiltonian

Ht = −t
∑
〈i,j〉

(
c†icj + h.c.

)
+
∑
i

εic
†
ici, (1.6)

the vector field can be introduced using the same transformation:

H̃t = exp
(
−ie ~A · ~r/~

)
Ht exp

(
ie ~A · ~r/~

)
. (1.7)

The matrix elements in the site basis then becomes

〈i|H̃t|j〉 =


exp

(
−ie ~A · ~ri/~

)
εi exp

(
ie ~A · ~rj/~

)
= εi if i = j

−t exp
(
−ie ~A · ~ri/~

)
exp

(
ie ~A · ~rj/~

)
=

−t exp
(
ie ~A · (~rj − ~ri)/~

)
if i = j ± 1.

(1.8)
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In the case of a non-constant vector potential ~A(~r) the off-diagonal matrix elements

connecting adjacent sites are given by

〈i+ 1|H̃t|i〉 = −t exp

(
ie/~

∫ ri+1

ri

~A(~r) · d~r
)
. (1.9)

A magnetic field piercing a ring in the z-direction such that it is zero at the perimeter

of the ring, can be modeled by the following vector potential (in cylindrical coordinates)

[23]:

~A = (Ar, Az, Aϕ), Ar = Az = 0, Aϕ =


B0r

2 if r ≤ rc
B0r2c

2r = φ
2πr if r > rc,

(1.10)

which gives a total flux φ = πrcB0 penetrating the ring. An electron moving a full

circle around the magnetic field, in the positive direction, at the perimeter would hence

acquire the following phase,

C2π = exp

(
irc · e/~

∫ 2π

0
Aϕ · dϕ

)
= exp (iφ · e/~) = exp (i2πφ/φ0) , (1.11)

where φ0 = h/e is the flux quantum. In a ring with L equally-spaced sites at the

perimeter of the ring an electron hopping between neighboring sites would acquire the

phase C = exp (i2πφ/(φ0 · L)) in the positive direction and C∗ in the negative direction.

1.2.2 Quantum rings in the periodic Anderson model

Nanorings with dense magnetic impurities display intriguing spin properties as the

Kondo effect and other spin-interactions can compete. Important features of such sys-

tems are, for example, highlighted by the Doniach phase diagram [24] which displays

the competition between the formation of Kondo singlets and Ruderman-Kittle-Kasuya-

Yoshida (RKKY) spin ordering [25–27]. RKKY spin ordering is, in short, an ordering of

separate magnetic moments due to interaction through indirect exchange of conduction

electrons. Although RKKY interaction is a more general concept, referring to any mag-

netic moments (e.g. the magnetic moments of nuclei), here in this thesis, it only refers

to the magnetic impurities of the Anderson model.

A relevant model for studying nanostructures with dense magnetic impurities is the

Periodic Anderson Model (PAM), in which all of the conduction sites are connected to

one Anderson impurity site each. The PAM has been studied extensively in connection to

heavy fermion physics, non-Fermi liquid behavior, etc. [28][29]. In this thesis we consider

a quantum ring, consisting of six sites, in the PAM. Groundstate aspects of this system
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have been investigated in previous work [6–8], but to the best of our knowledge, nothing

has been done on the dynamical side. The main focus is to study how the system is

affected by a magnetic field piercing the ring. The effect of local Zeeman interaction is,

however, also investigated. We make the assumption that the impurity sites are located

such that the hopping path from and to the impurities are perpendicular to the vector

potential of the magnetic field. This means that the electrons hopping to and from the

impurity sites do not acquire any phase factor, even for non-zero magnetic fields. Peierls

substitution is thus only needed for the hopping terms in the conduction band, and the

system Hamiltonian can be written as

H(τ) =− t
∑
i,σ

(
c†i,σci+1,σe

iφ̃(τ) + h.c.
)

+ V
∑
i,σ

(
c†i,σfi,σ + h.c.

)
+ U

∑
i

f †i,↑f
†
i,↓fi,↓fi,↑ + εf

∑
i,σ

f †i,σfi,σ

φ̃(τ) =
2πφ(τ)

φ0L
.

(1.12)

Here c†i,σ (ci,σ) refers to the creation (annihilation) of an electron of spin σ at the con-

duction site i, and f †i,σ (fi,σ) refers to the creation (annihilation) of an electron of spin

σ at the impurity site i. For most parts of the thesis, t is used as the unit of energy

and is therefore kept at 1. For the cases of t 6= 1, another energy unit (t0) will used.

Furthermore, the on-site interaction for the impurity sites is always chosen U = 6 and

εf = −U/2 = 3 which implies particle-hole symmetry. The hybridization parameter V

is varied in the range (0, 1.5]. For some calculations we also add a local Zeeman term

(HZ) for a specific site (k) to the Hamiltonian, for a B-field that is always assumed to

be zero in the x and y directions, to one of the conduction sites,

HZ(τ) = gµBBz(τ)Sz (1.13)

The Schrödinger equation is solved numerically for this Hamiltonian using Exact Diag-

onalization.

1.3 Computational considerations

A large part of the thesis project consisted of building a program utilizing the Exact

Diagonalization (ED) technique, a numerical method used to solve eigenvalue problems

Ax = λx. This method is useful for the stationary eigenvalue Schrödinger equation

Hψn = Enψn. (1.14)
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in a finite-basis situation (for example, to find the groundstate). The technique can also

be utilized for solving the time-dependent Schödinger equation (see Section 2.3 in the

Methods chapter), but then the procedure is not as straightforward. The advantages of

the ED lies in the versatility of the technique (i.e., it can be used for a variety of systems),

as well as the fact that it is exact and only carries the approximations inherent in the

model. These traits make it very useful as a benchmark for approximative methods.

However, ED is not very useful for large systems as it is computationally very expensive.

If we, for example, consider the case of an Ising chain where every electron site has two

possible configurations |↑〉 and |↓〉, such a system would have a Hilbert space dimension

of 2n with n being the number of sites in the chain. A chain of just 40 sites would

already have more than 1 trillion basis states, which is way beyond what is possible to

handle computationally.

For one-dimensional systems, such as the the Ising chain, there exists however another

exact technique called Density Matrix Renormalization Group (DMRG), which was used

in this thesis as a test of the ED program for 1D systems. DMRG was introduced by

White in 1992 [30, 31] and has since become a very popular method in the field of

condensed matter physics. The idea behind DMRG is similar to the renormalization

group (RG) which Wilson used for the Kondo problem. Several extensions to the DMRG

method have been made, for instance, the extensions to two dimensions [32], and time-

evolution procedures for the 1D case (t-DMRG). [33–35]

A time-evolution DMRG program (source code from [9]) was interfaced in python for

easy use in Hubbard/Anderson type of systems, and then used in this thesis for testing

the ED program. Since the method of t-DMRG is complicated and because the program

was mainly used as a blackbox for calculations, no in-depth explanation will be provided

here. Instead, in the result chapter (3), we will briefly discuss how DMRG results depend

on a proper choice of the parameters. Furthermore, in a different, larger-scale project

the DMRG code was used to benchmark a novel method which combines adiabatic local

exchange-correlations potentials from time dependent density functional theory with the

Second-Born non-equilibrium Green’s function self-energy in a protocol aimed to avoid

double-counting of interactions.



Chapter 2

Method

This chapter will explain the main aspects of the computer program that was built as

part of the thesis, and used to produce most of the results (chap. 3). The different parts

will be explained in the same order as they are executed in the program: firstly, the

initialization of the calculation (i.e. the choice of basis, assembly of the Hamiltonian,

groundstate calculation etc.), then the time evolution procedure, followed by calculation

of expectation values and lastly post processing of results.

The program is written in Python and is built as an extension to an existing quan-

tum computing module for Python, called Quantum Toolbox in Python (QuTiP). The

QuTiP package provides classes for handling quantum objects such as state vectors and

operators, a handful of solvers for time dependent calculations as well as many other

features (see Fig. 2.1). It uses the modules Numpy and Scipy as a base, which means

that all of the heavier calculations, such as matrix multiplication, diagonalization etc.,

are actually run in compiled Fortran- and C-code. Furthermore, the fact that QuTiP

uses the very popular Numpy and Scipy packages makes it simple to write extensions for

anyone with experience in scientific Python. Although QuTiP has worked as a frame-

work for the program, it is mostly used for the more simple routines, such as calculating

expectation values, whereas the main features (including the initialization of the prob-

lem and the time evolution routine) are essentially independent of QuTiP. Nevertheless,

working within the QuTiP framework provides a good overall structure to the program

and it makes the inclusion of more QuTiP features simple. The inclusion of such extra

features (e.g. quantum optimal control theory) is, however, beyond the scope of this

thesis.

11
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Figure 2.1: QuTiP tree-diagram of user accessible functions and classes. [36]

2.1 Defining the system

When initializing a calculation, the program reads input parameters defined by the user

and then constructs a basis in which the Hamiltonian H(t) is assembled. The basis set

used is

H =
{
|a1, a2, ..., an↑〉 × |b1, b2, ..., bn↓〉 | ∀ i < j : ai < aj ≤ N ∧ bi < bj ≤ N

}
(2.1)

with N , n↑ and n↓ being the total number of sites, number of spin up electrons and

number of spin down electrons respectively. It is possible to imagine other choices of

bases, but one great advantage for choosing this basis set is that it makes expressing the

Hamiltonian as well as operators simple.



Chapter 2. Method 13

The total number of basis states, i.e. the Hilbert space dimension, only depends on

these parameters and can be expressed as

dimH = dimH↑ · dimH↓ =

(
N

n↑

)
·
(
N

n↓

)
. (2.2)

In fact, it is also true that

H = H↑ ×H↓, (2.3)

which is how the basis set is assembled in the program. This saves computational time,

especially when n↑ = n↓ since then the total basis is equal the spin up basis times itself.

With the basis set known it is possible to construct the Hamiltonian.

At a specific time, the Hamiltonian is always represented by a complex Hermitian matrix,

but since the Hamiltonian in general is time dependent, it is stored differently. The most

general form of the Hamiltonian, that the program can handle, is

H(t) =
∑
〈i,j〉,σ

(Ci,j,σ(t)c†i,σcj,σ + h.c.) +
∑
i

Ci(t)ni,σni,σ′ +
∑
i,σ

Ci,σ(t)ni,σ, (2.4)

but can in general be re-expressed as

H(t) =

n∑
i

fi(t) ·Hi, (2.5)

with n being a small number usually well below 10. Because of this, the Hamiltonian is

stored as a list of tuples, each containing a matrix of the same dimensionality as the whole

Hamiltonian (Hi), together with a weight function (fi(t)), and instead of rebuilding

the whole Hamiltonian at every time-step, the different parts of the Hamiltonian are

multiplied with their respective weight function and then summed (as in eq. 2.5). To save

computation time, the Hamiltonian is re-evaluated only if any of the weight functions

have changed.

All of the matrices are stored in sparse format, which means only the non-zero elements

of the matrix are stored. If all the elements in a 1M × 1M matrix were stored as

double precision floats, it would sum up to 8 · 1012Bytes = 8TB which is about as large

as the biggest commercially available hard drives on the market (2015). A typical

sparse matrix of the same dimension for the systems considered in this thesis would

instead only take up about 1GB, which means that it can be stored in the much faster

working memory. Sparse matrix storage also has a great advantage when it comes to

computation, which is that the zero parts of the matrix never need to be considered

when performing for instance a matrix-multiplication.
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2.2 Groundstate calculation

If no initial state is set by the user, the program will assume that the system is in its

groundstate at t = 0, which means that H(0) needs to be diagonalized. The eigenvector

corresponding to the lowest eigenvalue is the groundstate which is then set as the seed

state for the time evolution procedure. If the groundstate is degenerate it can be a

bit tricky to choose which linear combination of the lowest eigenstates to use as seed

state for the time evolution, but the concept of groundstate calculation is pretty much

straightforward. However, even with a non-degenerate groundstate, performing a full or

as in most cases partial diagonalization on a large matrix, remains a formidable task.

The program uses three different methods for calculating the groundstate. The first one

is a full diagonalization of the system, this is only used for systems with n < 3000. The

two other methods are both iterative, one is the implicitly restarted Lanczos method

originally from ARPACK but wrapped for python in the Scipy module, the other one

is the Jacobi-Davidson method from another Python module called Pysparse. In most

cases Jacobi-Davidson performs better, but it has the downside that it only works (in

the current implementation of Pysparse) for real symmetric matrices, while the Lanczos

method works for Hermitian matrices as well. There are plans of implementing yet an-

other routine for groundstate calculation that uses the Jacobi-conjugate preconditioned

gradients method which is expected to perform better than the Lanczos method for

Hermitian matrices when the eigenvalues are close to each other.

2.3 Time evolution

The time evolution of the system is calculated through solving the time-dependent

Schrödinger equation,

i~
∂ |ψ(t)〉
∂t

= H(t) |ψ(t)〉 . (2.6)

By discretizing the time and assuming that the Hamiltonian is constant within each

time-step the general solution of the Schrödinger equation can be expressed as

|ψ(t+ ∆t)〉 = e−iH(t)∆t |ψ(t)〉 , 0 ≤ ∆t ≤ ht (2.7)

with ht being the time-step. By substituting H(t) with Z(t)D(t)Z†(t) we get the expres-

sion

|ψ(t+ ∆t)〉 = e−iZ(t)D(t)Z†(t)∆t |ψ(t)〉

= Z(t)e−iD(t)∆tZ†(t) · |ψ(t)〉 ,
(2.8)
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which can be evaluated numerically, but with the downside that it requires a full diago-

nalization at every time-step. This is not an option for large matrices. However, it turns

out that, as in the case of the groundstate calculation only a partial diagonalization is

needed.

The method for time evolution used in the program is called Lanczos-adapted time evo-

lution [37], and it uses the Lanczos algorithm to find a small subspace in which the

Hamiltonian is diagonalized. It is an iterative method that, through repeated multipli-

cation of the Hamiltonian with the state vector |ψ(t)〉 and together with an orthogonal-

ization procedure expresses the Hamiltonian as a tridiagonal matrix within a subspace

around |ψ(t)〉. By exactly diagonalizing the Hamiltonian matrix within a small subspace

of the Hilbert space, computational time is significantly reduced with hardly any loss of

accuracy.

Lanczos time evolution uses the fact that the state vector |ψ(t+ ∆t)〉 movement in the

Hilbert space is confined within a specific subspace for small values of ∆t (illustrated in

Fig. 2.2). This space is called the Krylov subspace and, for |ψ(t)〉 and iteration order r,

is expressed as:

Kr(H, |ψ(t)〉) = span{|ψ(t)〉 ,H |ψ(t)〉 ,H2 |ψ(t)〉 , ...,Hr−1 |ψ(t)〉}. (2.9)

By comparing the right hand side of eq. 2.9 to the Schrödinger equation (eq. 2.6) we

see that Kr(H, |ψ(t0)〉) is actually the space spanned by the time derivatives of |ψ(t0)〉
up to order r − 1. The typical value of r used in the time evolution algorithm is 10 but

can be adjusted depending on situation, e.g. if the Hamiltonian changes very slowly,

a larger time-step can be used and this can be compensated by a larger order of the

Krylov space or vice versa.

For the Hamiltonian to be diagonalized within the Krylov subspace, a basis has to be

chosen. The first choice that may come to mind is the vectors in the right hand side of

eq. 2.9, but for several numerical reasons it is better to find another basis. For instance,

there is no guarantee that the Hi |ψ(t0)〉 vectors are unique; it may very well be that

|ψ(t0)〉 is actually an eigenstate of Ĥ in which case all of the vectors are the same. The

set of basis vectors for the Krylov subspace used in the computer program made in this

thesis are the Lanczos vectors, which are orthonormal.

To find the Lanczos vectors one starts with a seed state which can be chosen arbitrarily,

and this is the first of the Lanczos vectors. For the time evolution procedure this vector

is the current state vector. |ψ(t)〉 = |Q1〉. By applying the Hamiltonian to this vector

we get another vector |v〉, which can be described as a linear combination of the first
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Figure 2.2: Illustrative picture of the state movement in the Hilbert space.

and the second Lanczos vectors.

H |Q1〉 = |v〉 = α1 |Q1〉+ β2 |Q2〉 (2.10)

The value of α1 can be found by performing the scalar product 〈Q1|H |v〉 and β2 |Q2〉 is

simply |v〉 − α1 |Q1〉. It is also worth noting that

β2 = 〈Q2|v〉 = 〈Q2|H|Q1〉 . (2.11)

By multiplying the Hamiltonian with the newest Lanczos vector |Q2〉 we get yet another

vector |w〉 which can be written as a linear combination of a vector in the (|Q1〉 , |Q2〉)
plane as well as a vector |Q3〉 (the third Lanczos vector) perpendicular to (|Q1〉 , |Q2〉),

H |Q2〉 = |w〉 = γ |Q1〉+ α2 |Q2〉+ β3 |Q3〉 , (2.12)

and by taking the scalar products 〈Qi|w〉 , i = 1, 2, 3 we get

〈Q1|H|Q2〉 = γ, 〈Q2|H|Q2〉 = α2, 〈Q3|H|Q2〉 = β3. (2.13)

Moreover, through comparison with eq. 2.11, and due to the hermicity of the Hamilto-

nian operator, we also get that γ = β2.

In the next step of the procedure we get

H |Q3〉 = |s〉 = δ |Q1〉+ ε |Q2〉+ α3 |Q3〉+ β3 |Q4〉 , (2.14)

(2.15)
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and if we now perform the scalar products 〈Qi|s〉 , i = 1, 2, 3, 4 we get

〈Q1|H|Q3〉 = (α1 〈Q1|+ β2 〈Q2|) |Q3〉 = 0, 〈Q2|H|Q3〉 = ε = β3.

〈Q3|H|Q3〉 = α3, 〈Q4|H|Q3〉 = β4

(2.16)

In fact, 〈Qi|H|Qj〉 = 0 for all i− j ≥ 2, and by continuing the procedure we get

〈Qi|H|Qi〉 = αi, 〈Qi|H|Qi+1〉 = 〈Qi+1|H|Qi〉 = βi+1, (2.17)

which means that we can express the Hamiltonian matrix in the basis of the Lanczos

vectors:

〈Qi|H|Qj〉 = H̃=̂



α1 β2 0 0 · · ·
β2 α2 β3 0 · · ·
0 β3 α3 β4 · · ·
0 0 β4 α4 · · ·
...

...
...

...
. . .


. (2.18)

If |Q1〉 would be an eigenvector of the Hamiltonian, then all the elements of eq. 2.18

would be zero except α1 which would have the eigenvalue corresponding to |Q1〉, which

is perfectly fine when treating everything analytic. However, when numerically treating

these vectors we only have a finite accuracy and if any |Qi〉 happen to be close to an

eigenvector of the Hamiltonian then we have that

H |Qi〉 ≈ αi |Qi〉+ βi+1 |Qi+1〉 , βi+1 ∼ 0. (2.19)

Hence, if βi+1 is a very small quantity, then the subtraction βi+1 |Qi+1〉 = H |Qi〉−αi |Qi〉
becomes a very numerical unstable process, which means the resulting vector |Qi+1〉 can

end up anywhere in the Hilbert space. This is avoided by adding a stopping condition

to the Lanczos iteration, i.e. if βi < βmin then the procedure is stopped. The typical

stopping value used is βmin = 10−12 and if the condition βi < βmin is not reached, then

the procedure is stopped when the maximum order of the Krylov space is reached.

Eq. 2.8 is solved within the Krylov subspace by just performing a simple basis change

from the regular basis vectors (eq. 2.1) to the Lanczos vectors, and following the pro-

cedure of 2.8 within the subspace and then change the basis back the regular basis (eq.

2.1):

|ψ(t+ ∆t)〉 = QZ̃(t)e−iD̃(t)∆tZ̃
†
(t)Q† |ψ(t)〉 (2.20)
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with

Q =


| | · · · |
Q1 Q2 · · · Qkmax

| | · · · |

 . (2.21)

The Lanczos adapted time evolution dramatically increases the dimension of viable

systems, easily up to a few million, without compromising with accuracy (given small

enough time-step and large enough Krylov space dimension). As a final remark, in the

time evolution the Hamiltonian is evaluated at time t + ∆t/2 instead of t resulting in

an extra order of accuracy with respect to ∆t.

2.4 Operators

Although the state vector contains all of the information about the system it is by itself

useless in most cases, especially in higher Hilbert space dimensions as it is then very

hard to interpret. To make sense of all the information contained in the state vector

we calculate expectation values for various operators for observables of interest. In the

program the operators are all expressed in terms of sparse matrices and the routine

which calculates the expectation value simply calculates

〈 ˆO(t)〉 = 〈ψ(t)|Ô|ψ(t)〉 . (2.22)

The operators Ô can correspond to concrete observables like charge density, currents

etc., but also to more abstract concepts like spin correlations and entanglement. When

treating time dependent Hamiltonians it can be (as we will see in the case of the current

operator) that the operator also is time dependent which may become a bit complicated

numerically, but otherwise the procedure is straight forward.

2.4.1 Current

The current operator for the Hamiltonian in equation 1.12 can be derived from the

continuity equation and the Heisenberg equation of motion,

∂ni
∂t

= i [H, ni] = ∇J = Ji − Ji+1 − Jf , (2.23)

with the direction of Ji, Ji+1, Jf defined as in Figure 2.3.
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Figure 2.3: Currents affecting the electron density at site i. In this configurations the
divergence of J at site i is ∇J = Ji − Ji+1 − Jf .

Most of the terms in the Hamiltonian commute with ni and can be left out when per-

forming the commutator between n and the Hamiltonian,

[H, ni] =
[
−t
(
c†i+1ci · e

iφ + c†ici+1 · e−iφ + c†ici−1 · eiφ + c†i−1ci · e
−iφ
)
, ni

]
+
[
V
(
c†icf + c†fci

)
, ni

]
. (2.24)

Calculating the first part of eq. 2.24 gives,

[
−t
(
c†i+1ci · e

iφ + c†ici+1 · e−iφ + c†ici−1 · eiφ + c†i−1ci · e
−iφ
)
, ni

]
= −t

(
(c†ici−1 · eiφ − c†i−1ci · e

−iφ)− (c†i+1ci · e
iφ − c†ici+1 · e−iφ)

)
, (2.25)

where Ji and Ji+1 can be identified as

Ji = −it
(
c†ici−1 · eiφ − c†i−1ci · e−iφ

)
= −2itc†ici−1 · eiφ, (2.26)

Ji+1 = −it
(
c†i+1ci · eiφ − c

†
ici+1 · e−iφ

)
= −2itc†i+1ci · eiφ. (2.27)

The current operator Jf is found by calculating the second part of eq. 2.24 which yields

Jf = −2itf †ci. (2.28)

This operator is however never used in the code because for the system we consider, the

information it provides can be accessed by simply taking the time derivative of 〈nf 〉.
The currents Ji and Jf are density both currents. To get the charge current, which is

the quantity used in the results, one has to multiply with the electron charge which is

−e = −1.
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2.4.2 Spin correlations

Spin-spin correlations are very useful observables to look at as they give a lot of in-

formation about the magnetic state of the system. The program has implemented

two types of spin-spin correlation operators. One for the z-component of the spin,

〈ψ(t)|S(i)
z S

(j)
z |ψ(t)〉, and the other one for the full S-vector, 〈ψ(t)|S(i) · S(j)|ψ(t)〉. The

z-component of the spin is easy to calculate as the system basis is expressed in the

z-projection of the spin, which means that the z-component of the spin operator can be

written as

S(i)
z =

1

2
(ni,↑ − ni,↓) , (2.29)

and the spin-spin correlation operator is simply

S(i)
z S(j)

z =
1

4
(ni,↑ − ni,↓) (nj,↑ − nj,↓) =

1

4
(ni,↑nj,↑ + ni,↓nj,↓ − ni,↑nj,↓ − ni,↓nj,↑)

(2.30)

In the definition of spin-spin correlations used in the results the factor 1
4 is removed. By

removing this factor, we end up with a quantity that ranges from -1 to 1, with -1 corre-

sponding to a perfect anti-ferromagnetic configuration, and 1 to a perfect ferromagnetic.

To define the total spin operator we make use of the spin ladder operators S
(i)
+ and S

(i)
−

which are defined asS
(i)
+ = S

(i)
x + iS

(i)
y

S
(i)
− = S

(i)
x − iS(i)

y

=⇒

S
(i)
x =

S
(i)
+ +S

(i)
−

2

S
(i)
y =

S
(i)
+ −S

(i)
−

2i

. (2.31)

The total spin-spin correlation operator then becomes,

S(i)S(j) = S(i)
x S(j)

x + S(i)
y S(j)

y + S(i)
z S(j)

z

=
1

4

(
(S

(i)
+ + S

(i)
− )(S

(j)
+ + S

(j)
− )− (S

(i)
+ − S

(i)
− )(S

(j)
+ − S

(j)
− )
)

+ S(i)
z S(j)

z

=
1

2

(
S

(i)
+ S

(j)
− + S

(i)
− S

(j)
+

)
+ S(i)

z S(j)
z

=
1

2

(
c†i,↑ci,↓c

†
j,↓cj,↑ + c†i,↓ci,↑c

†
j,↑cj,↓

)
+ S(i)

z S(j)
z

(2.32)

At the last step we made use of the fact that S
(i)
+ and S

(i)
− correspond to spin flips that

can be expressed in electron creation and annihilation operators, e.g. S
(i)
+ = c†i,↑ci,↓.
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2.5 Entanglement and concurrence

Entanglement is one of the more perplexing consequences of quantum mechanics. The

fact that the measurements made on one particle A can affect the state of another

particle B is quite strange, to say the least. To understand the concept of entanglement

better, one has to abandon the thought of two distinct objects and instead see them as

one composite system. If, when considering all of the possible outcomes of this system,

the probability of finding particle A in a specific state is dependent on the state of

particle B, then the particles are entangled. This is just a conditional probability, which

is very common even in the classical world.

A common approach to quantify entanglement is through concurrence, which is a mea-

sure of the entanglement of a two-qubit system. A qubit state is the quantum mechanical

analog of a classical bit, and it can, instead of just being either 0 or 1, also be in a su-

perposition state:

|ψ〉 = α |0〉+ β |1〉 . (2.33)

In this thesis we consider a model in which every occupied site can be seen as a qubit

spin state. To calculate the concurrence between two sites, the density matrix of the

two spin qubit system is constructed using the basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}. Due to the

choice of basis for the whole system (eq. 2.1), the total spin is conserved and the density

matrix, for the sites i and j, in general becomes

ρi,j =


a 0 0 0

0 b c 0

0 c b̃ 0

0 0 0 ã

 , (2.34)

with a = ã and b = b̃ for cases that are symmetric in respect to spin up and spin down

electrons.

The concurrence of site i and j is given by

Ci,j = max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4) (2.35)

with λ1 > λ2 > λ3 > λ4 being the eigenvalues of the matrix ρi,j ρ̃ where

ρ̃ = (σy ⊗ σy)ρi,j(σy ⊗ σy). (2.36)
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The maximum value of the concurrence C = 1 is reached for a singlet spin state,

1√
2

(|↑↓〉 − |↓↑〉) . (2.37)
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Results

This chapter presents the results of the thesis, and it is divided into three sections. The

first section is concerned with the computational aspects of the work, and it contains a

comparison between the exact diagonalization program developed in the thesis project, a

t-DMRG program, two common many-body approximation (MBA) techniques (Second

Born and BALDA), and a novel method we will denote as Hybrid, that combines the

strengths of Second Born and BALDA. The section also includes a figure that explains

the most important convergence parameters of the t-DMRG technique. In the second

section, results for pure, 1D quantum rings are presented. The third section is con-

cerned with quantum rings in the periodic Anderson model. It will be divided into two

subsections: the first contains results on persistent currents in connection to spin-spin

correlations and entropy, and the second subsection presents results for when the ring

is disturbed by a local magnetic field at one of the conduction sites.

3.1 Comparison of computational techniques

The system considered in this section is a linear chain of eight sites at half filling, with

four spin up electrons and four spin down electrons. The fifth site (from the left) is

an Anderson impurity site with U = 4. The system can be seen as a miniature of two

leads connected to a quantum dot, which is a common experimental setup as well as a

popular system for theoretical studies. However, it should be emphasized that since this

system consists of only eight sites, it is far from sufficient in size to draw any conclusions

that extends to the behavior of larger systems. Nevertheless, the size of the system is

sufficient for the purpose of comparison between different computational techniques.

The procedure for every technique is as follows: Firstly, the groundstate is calculated,

then the system is disturbed by an external field and the time-evolution of the system is

23
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calculated. We use two different perturbations that are common for lead-dot-lead setups.

The first one is a sudden, asymmetric bias applied over the leads. In this case, it means

that the onsite energies of the four leftmost sited are lifted. The second perturbation

corresponds to a Gaussian pulse over the gate voltage, that is, the onsite energy of the

impurity site. We compare the results of the different techniques looking at the electron

density at the impurity site.

In figure 3.1 the electron density of the impurity site is shown after the system is dis-

turbed by the asymmetric lead bias

VBias = 0.5θ(τ). (3.1)

Figure 3.1: Electron density calculated with different computational techniques for
an eight site tight binding chain with the fifth site (from the left) being an Anderson
impurity site with U = 4. The system is perturbed by a step potential VBias = 0.5θ(τ)
on the four leftmost sites. The t-DMRG and Exact diagonalization results (cyan and

dashed black line) display the exact solution.

It is clear in figure 3.1 that the electron density calculated with two exact techniques,

t-DMRG and exact diagonalization, follow the same curve. Since two independent exact

programs utilizing different techniques produce the same results, we conclude that this in

fact is the exact result, and use these curves as benchmark for the the MBA techniques.

Out of the MBA techniques it is clear that the Hybrid method performs better in this
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setup. It is closer to the exact solution at most points, and it reproduces most of the

characteristics seen in the exact curve. BALDA reproduces the exact results as well as

the Hybrid in the beginning, but for longer times it becomes increasingly out of phase.

Second Born on the other hand performs well when it comes to the phase, but it is

systematically below the exact solution.

Figure 3.2 also displays the electron density at the impurity site, but this time for the

second type of perturbation, that is, the on-site energy of the impurity atom is changed

instead of adding a bias over the leads. The change in the gate voltage is a Gaussian

pulse of the form

VG = − exp(−(τ − 2.5)2/0.4). (3.2)

The exact methods are, as in figure 3.1, on top of each other and their common result is

interpreted as the exact solution. BALDA reproduces much of the behavior of the exact

solution at times τ < 6, but it is again out of phase at larger times, whereas second Born

and the Hybrid method perform much better. The Hybrid solution might be slightly

better at reproducing characteristics of the exact curve, but it is, aside from that fact,

hard to tell apart from the Second Born solution.

It should be noted that although the exact diagonalization technique is very effective

in this arena, it fails at larger systems, and is therefore not an option for realistic

investigations of lead-dot-lead systems.

In figure 3.3 we look at the same system and perturbation as we did in in figure 3.1. This

time, instead of looking at the actual solution we look at how much the t-DMRG solution

differs from the solution calculated in the exact diagonalization program depending on

the size of the renormalization matrix in the DMRG procedure. We will not go into

any detail on how this parameter really works in the DMRG method, and the interested

reader is referred to ”DMRG for dummies” [38], which is a review article on the subject.

The size, m, of the renormalization matrix is related to the truncation of the total

Hilbert space, and it is vital that any DMRG-calculation is checked on convergence in

m.

To illustrate the dependence of m in t-DMRG calculations, we plot the running mean

of the relative error for different values of m against time. The reason for using a

running mean instead of directly plotting the relative errors is because, in this case, the

different solutions frequently cross the exact solution which makes it harder to read and

understand the figure.
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Figure 3.2: Electron density calculated with different computational techniques for
an eight site tight binding chain with the fifth site (from the left) being an An-
derson impurity site with U = 4. The system is perturbed by a Gaussian pulse,
VG = −1 exp(−(τ − 2.5)2/0.4), on the on-site energy of the impurity site. The t-
DMRG and Exact diagagonalization results (cyan and dashed black line) display the

exact solution.

The running mean of the relative error is calculated using

Mx(τ, T ) =
1

T

∫ τ+T

τ

∣∣∣∣x(τ ′)− x0(τ ′)

x0(τ ′)

∣∣∣∣ dτ ′, (3.3)

with T being the time period in which the relative error is averaged (T = 1 in the fig

3.3).

It is clear in figure 3.3 that m ≤ 16 is not sufficient even for an accurate calculation

of either the groundstate, or the time evolution. For m ≥ 32 things however become

a bit more complicated, and m = 32 is, for example, high enough for the groundstate

calculation to converge. However, for longer times, the m = 32 curve diverges from the

correct solution. In this case the solution gradually diverges, but it is often the case that

there is a time, called the runaway time, after which the accuracy drastically drops.
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Figure 3.3: Running mean of relative error of the electron density calculated using
t-DMRG, using different sizes of the renormalization matrix, m. The system considered
is an eight site tight-binding chain, with the fifth site (from the left) being an Anderson
impurity site with U = 4 and a gate voltage of VG = 0.25. The system is perturbed by
a step potential of the form Vbias(τ) = 0.5 · θ(τ) on the four leftmost sites. The figure
shows the running mean (calculated using eq. 3.3 with T = 1) of the relative error for

calculations done using different m.

The runaway time depends on m, but also on the number of time steps the system has

been evolved. The time at which the solution starts to diverge can therefore be pushed

forward in time by either increasing m, or by increasing the time step. However, an

increase of the time step introduces another error because of the time discretization

which also needs to be taken into consideration. A more in-depth explanation of the

runaway time can be found in [39]. For the cases of m = 64 and m = 128, the results are

more or less converged, with respect to m, for the time frame of interest, but at longer

times the m = 64 solution would likely diverge earlier. Larger systems require a larger

m to converge, but the growth of m with respect to the size of the system is different

for each system. In general one can say that for more strongly correlated systems the

required value of m grows faster with respect to the system size.
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3.2 One-dimensional quantum rings

This section presents results that highlight some important concepts in the area of one

dimensional quantum rings without impurities. These results are not to be seen as

original work, and they are included for the purpose of discussion in connection with

the results for quantum rings in the PAM (section 3.3).

Figure 3.4: Steady state and time-evolution calculated energies and currents of a six
site ring containing one electron. The state of the time-evolved system, ψ(φ(τ)), is
independent of φ(τ ′) for τ ′ < τ . φ(τ) represents any ramping of the flux that is φ(τ) at
time τ . Note the difference in period of the current between the groundstate and time

evolution calculations.

In figure 3.4 the simple case of one electron in a 1D quantum ring consisting of six sites,

pierced by a magnetic field, is considered. The energy levels and persistent currents are

shown as a function of the magnetic flux, as well as the energy and current for a system

which is ramped from zero flux. Interestingly, even with adiabatic ramping, the system

ends up in a different energy state than the groundstate for 0.5φ0 < φ < 5.5φ. In fact,

the state of the system is independent of how the flux is ramped. Furthermore, when

the flux is ramped, the periodicity of the current changes from φ0, as is the case for the

groundstate calculations, to Lφ0, with L being the number of sites. It should be noted

that Lφ0 is exactly the periodicity of the Hamiltonian. Figure 3.4 only displays the case

of one electron in the ring, but the same qualitative behavior is observed for the case
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of more electrons in the ring, as long as the onsite interaction between the electrons is

kept at zero.

Figure 3.5 displays results for the case of a quantum ring with six sites this time with an

electron-electron onsite interaction of U/t = 3. The inclusion of the onsite interaction

separates the groundstate of the system from the other states. Furthermore, as a contrast

to figure 3.4, in this case the system remains in its groundstate for adiabatic ramping

of the flux. However, in the case of non-adiabatic ramping, the system goes into higher

excited states.

Figure 3.5: Steady state, and time-evolution calculated energies and currents of a six
site ring at half filling (N↑ = N↓ = 3). Note that the system follows the groundstate

calculation for adiabatic, but not for non-adiabatic ramping.

3.3 Quantum rings in the periodic Anderson model

This section presents the results for simulations of the periodic Anderson model. All

calculations of the PAM ring system considers a ring of six conduction sites and six

impurity sites. The number of electrons here is always 12 with six spin-up electrons and

six spin-down electrons.
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The first figure (Fig. 3.6) reproduces the spin-spin correlations from a study by Luo

et al. [7]. The figure illustrates a key aspect of the periodic Anderson model, namely

the competition between Kondo spin coupling and RKKY spin-ordering. At low values

of the Hybridization parameter V , the electrons in the conduction band are free and

able to work as links between the impurities, which means that the RKKY-interaction

becomes stronger. For higher values of V on the other hand, the Kondo spin coupling

becomes stronger and electrons are becoming more localized to the specific sites.

The competition between RKKY and Kondo is seen clearly in the spin-spin correlations

presented in figure 3.6; a high negative spin-spin correlation between a conduction site

and the connected impurity site implies strong Kondo spin coupling, and high nega-

tive spin-spin correlation between neighboring impurity sites implies a strong RKKY-

interaction. When the spin-spin correlations between conduction and impurity sites are

stronger than that of neighboring impurity sites, the system is said to be in the Kondo

regime or Kondo phase, and when the opposite is true, the RKKY regime or RKKY

phase.

Figure 3.6: Reproduced results from Luo et al. 2005 [7]. Circles are referring to
t = 1.2t0 and squares to t = 0.2t0 with t0 = 1 being the energy unit. U/t0 = 5 in both

cases.

The different phases of the system can depend on a number of parameters, and a diagram

displaying the phase depending on such parameters is called a Doniach phase diagram.
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One example of a Doniach phase diagram can be found the same paper by Luo et al. [7],

where a Doniach phase diagram is presented in the temperature-Hybridization plane. In

figure 3.7 a Doniach phase diagram in magnetic flux-Hybridization plane is presented.

We can see that for every value of φ, the same qualitative behavior of figure 3.6 is

reproduced, that is, Kondo correlations increase and RKKY correlations decrease with

increasing Hybridization. Furthermore, the crossover behavior where the system goes

from the RKKY- to the Kondo-regime can be observed. For the case of a magnetic field

piercing the ring, it is clear that the value of Hybridization where this crossover occurs

depends on the strength of the magnetic field, and a maximum of the Kondo correlations

can be seen at φ = 0.5φ0.

Figure 3.7: Doniach phase diagram in the (V, φ)-plane for a six site PAM ring. 〈i, j〉
is short notation for 〈Siz · S

j
z〉. Note how the Kondo correlations (〈Siz · S

j
z〉) are stronger

close to φ = 0.5 · φ0.

In figure 3.8 we see the persistent current of the same system as in figure 3.7. Note

that the values of V now extend to zero in the lower bound. The current displays a

clear dependence on the Hybridization parameter, and for large values of V the current

essentially dies out. This behavior can be explained by the formation of Kondo singlets,

that is, for large values of V , it is more energetically favorable for the electrons to stay

close to the impurities instead of spreading out over the ring. In contrast, for low values

of V , the electrons are more likely to spread out, and for the extreme case V = 0 the
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impurities are completely cut-off from the ring. The current for that case assumes the

same behavior as for the 1D-ring without impurities in figure 3.4. The same behavior

can be seen for U →∞, as the electrons of the impurities become highly localized, and

cut-off from the ring as well.

Figure 3.8: Groundstate persistent current of a six site PAM ring for different values
of the Hybridization, V , and the magnetic flux, φ. At V = 0 the impurity sites are
completely cut-off from the ring and the current becomes the same as in a pure six site

ring.

Figure 3.8 also shows a clear difference in the current dependence of V , for different

values of the magnetic flux. If, for instance, the case of φ = 0.2φ0 is compared to

φ = 0.4φ0, it is clearly seen that the current drops much faster and much earlier for the

higher flux. This behavior is in line with the earlier crossing from RKKY to the Kondo

regime, as was seen in figure 3.7. This crossover behavior can also be seen looking at

entanglement.

Figure 3.9 shows the concurrence between conduction and impurity-sites, and between

neighboring impurity sites. The concurrence between conduction and impurity sites

Ccf displays essentially the same behavior as the spin-spin correlations, that is, the

entanglement is maximized at φ = 0.5φ0. Since the concurrence is maximized for a

singlet state, we can interpret that the increase is due to formation of Kondo singlets.
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Figure 3.9: Entanglement, measured in terms of concurrence, between the conduction
and impurity sites, Ccf , and neighboring impurity sites, Cff . Notice how the entangle-
ment is, minimized at φ = 0.5 ·φ0 between neighboring impurity sites is, and maximized

between conduction and impurity sites.

The concurrence between neighboring impurity sites is also in line with the spin-spin

correlations in figure 3.7.

The reason why Kondo correlation effects are stronger near φ = 0.5φ0 is not clear, and

further investigations are ongoing.

3.3.1 Local magnetic field

Here we consider the same PAM ring as in the previous subsection, but with the addition

of a local magnetic field at one of the conduction sites. The field is assumed to be in

the z-direction, and it results in the following Zeeman term:

HZ(τ) = gµBBz(τ)Sz. (3.4)
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We consider the case of a strong magnetic pulse,

Bz(τ) =


0 if τ ≤ 0

2 if 0 < τ ≤ 1

0 if τ > 1

(3.5)

The magnetic field here is units of t0
µB

which means that if t0 is 1eV, the magnetic

field will be of order of ∼ 30kT which is far too strong for an experimental realization.

However, if t0 = 1meV instead, then the field required would be of the order of ∼ 30T

which would not require a small neutron star in the laboratory. The results presented

here are, however, very preliminary, and should therefore be seen more as a theoretical

exploration of the physics of the system instead of a suggestion for experimental work.

Figure 3.10: Spin-spin correlations after as sudden magnetic pulse on one of the
conduction sites in a PAM ring. Note that RKKY correlation remains unaffected by

the magnetic pulse for the case t = t0, φ = 0.4φ0.

In figure 3.10 the time-evolution of the spin-spin correlations is shown for two different

values of the hopping parameter, t = 0.05t0 and t = t0, and for zero and non-zero mag-

netic flux through the ring. The Kondo correlations are calculated for the Zeeman site

and its corresponding impurity, and the RKKY correlations are calculated between the

impurity that is linked to the Zeeman site and its neighboring impurity. In the case of
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t = 0.05t0 we see that the magnetic field is strong enough to break the Kondo singlet.

Even though the local magnetic field is only a short pulse, it affects the Kondo corre-

lations for long times, and the correlations do not seem to return to their groundstate

values. A likely explanation for this is that the spin-currents (see fig. 3.11) induced by

the magnetic pulse are continuing to bring ”disorder” to the system even after the the

magnetic field is removed.

For the case t = 0.05t0 there is little difference in the behavior of the system for different

values of φ. In this respect, t = t0 is much more interesting. Especially the behavior

of the RKKY correlations, where the φ = 0.4φ0, in contrast to φ = 0, remains more or

less unaffected by the field. We do not yet have a satisfactory explanation for this very

striking difference, and further investigations are ongoing.

Figure 3.11: Charge currents and spin-currents in a PAM ring after a sudden local
magnetic pulse. All currents are corresponding to the bond between the conduction
site, at which the magnetic field is applied, and the neighboring site. The spin current
here is simply the density current of spin up electrons subtracted by the density current

of the spin down electrons.

Figure 3.12 presents the Kondo and RKKY correlations, but in this case even for sites

further away from the site which is subjected to the local magnetic field. We can see

that the local disturbance in the correlations propagates through the ring. Both the

RKKY and Kondo correlations become weaker, at least at longer times. The Kondo
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and RKKY correlations seem to oscillate with the same periodicity as the spin current

(fig. 3.11). It is therefore most likely that the big changes in correlations are due to

the spin-current in the ring, and not to oscillations between the conduction sites and

their respective impurity. These oscillations is probably what is seen in the correlations

connected to the Zeeman site.

Figure 3.12: Spin-spin correlations after as sudden magnetic pulse on one of the con-
duction sites in a PAM ring. The notation 〈Sc

zS
f
z 〉n referres to the Kondo correlations

at site n with n = 0 being the site of the magnetic pulse. For the RKKY correlations
〈Sf

z S
f+1
z 〉n, n corresponds to the site of the first impurity.

It should be stressed that the results for the Zeeman perturbation are very prelimi-

nary, and that further investigations are needed to draw more general conclusions. An

interesting extention to this procedure would be to have a magnetic field in the (x, y)-

plane instead of in the z-direction. Such a field can however not be used in the current

impementation of the computer program, and further development will be needed.
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Conclusions and Outlook

The main objective of this thesis was to investigate magnetization dynamics in quantum

rings, in connection to electron-electron spin interactions. An important goal of the

thesis was to develop and test an exact diagonalization program. This testing was

done, partly using a t-DMRG program and partly using another already tested exact

diagonalization program. During the thesis work the same t-DMRG program was used

in another project. The collaboration in that project, which consisted of providing t-

DMRG results as benchmarks, has resulted in the co-authorship of a paper (that will be

submitted in the next few weeks) presenting a novel many-body approximation method.

The exact diagonalization program has, aside from being tested against the t-DMRG

program, also reproduced several results from the literature.

The program, written in Python, makes use of a popular package for quantum simula-

tions in Python, called QuTiP. The use of QuTiP has provided a good overall structure

to the program, and it opens up for the inclusion of many new features available in

QuTiP, for example: absorbing boundary conditions, quantum optimal control the-

ory and Quantum Monte Carlo simulations. The time-evolution procedure of the pro-

gram was written using two very commonly used packages for scientific Python, namely

Numpy and Scipy. Although written in Python, the time-evolution procedure is as fast

as another implementation of the same algorithm written in Fortran. Both of these

procedures outperform the exact time-evolution procedure available in QuTiP when it

comes to large systems.

The thesis has, using the exact diagonalization program, shown how the persistent cur-

rents in a periodic Anderson model ring, change with respect to a piercing magnetic

flux φ and the hybridization V between the conduction and impurity sites. Along with

these results, a Doniach-type phase diagram in the (φ, V )-plane is provided. The results

37
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show that the Kondo correlations and RKKY spin-ordering are dependent on the mag-

netic flux piercing the ring. Kondo correlations are strongest for a flux close to the half

flux quantum. Looking at concurrence, a measure of entanglement, a similar picture is

reached; the entanglement between conduction and impurity sites reaches a maximum

at φ = 0.5φ0. Furthermore, a preliminary investigation is provided was made of how

the magnetic state of a PAM ring is affected by a local magnetic pulse on one of the

conduction sites.

Despite its exploratory nature, this study offers some insight into the effects of electronic

spin interactions in connection to quantum rings. The thesis has shown the behavior of

the systems investigated from many different angles, using a variety of observables and

quantities (e.g. charge currents, spin-currents, spin-spin correlations and entanglement).

Although lacking direct implications for society, this study adds to the collective knowl-

edge of spin-interactions, Kondo physics and quantum rings. These fields are becoming

increasingly important, partly because of the prospects of spintronic devices.

There are many possibilities for further investigations. One aspect that could be of inter-

est is the inclusion of spin-orbit coupling in the Hamiltonian. Another possibility could

be to extend the Hilbert space, such that the total Sz does not need to be conserved.

Through this extention it would be possible to include a Zeeman term that does not

restrict the magnetic field to the z-direction.

In conclusion, this thesis studied the persistent currents from quantum rings, together

with the Kondo effect and RKKY-interact in the periodic Anderson model. The study

has revealed some new interesting results, and it has opened up for many possible further

investigations in these very interesting matters.
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