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Abstract

Tendons connect muscles to bones enabling efficient locomotion.
This study focuses on the Achilles tendon, which is the strongest ten-
don in the body and fundamental for activities like walking, running
and jumping. The Achilles tendon is the most frequently subjected
tendon when it comes to injuries and ruptures. The best treatment is
still debated, because the biomechanics of the tendons is not yet well
understood.

Tendons consist of a complex structure of highly organized collagen
fibers embedded in a hydrated matrix. Various material models have
tried to represent the viscoelastic and highly non-linear behaviour of
tendons. By using accurate material models, computer simulations can
be used to predict the behaviour of materials under different loading
conditions and to provide extensive information about the mechanical
response.

This study further develops an existing two-dimensional fiber- rein-
forced poroviscoelastic model of the Achilles tendon. The model consid-
ered that the tendon was a material consisting of collagen fibers, a non
fibrillar matrix and fluid flow. All three components were contributing
to the total stresses in the tendon. The existing model gave good rep-
resentations of the stresses, but did not predict physiological direction
of the fluid flow. Moreover, for an accurate analysis of the stresses and
the fluid flow inside the tendon, the model should be able to be applied
to the realistic three-dimensional geometry of the Achilles tendon.

Therefore, this study aimed to modify the existing model to make it
suitable for three-dimensional geometries and to substitute the isotropic
constitutive model of the fibrillar matrix with an orthotropic constitu-
tive model to predict a physiological direction of the fluid flow. The new
model was validated against experimental data from rat Achilles ten-
dons subjected to cyclic tensile loading tests by optimizing the material
parameters of the model.

Comparing the developed model with the previous one, the results
showed that the three-dimensional finite element formulation generally
behaves very similarly to the two-dimensional model. However, it pre-
dicts slightly lower hydrostatic pressure, but higher fluid flux. The
introduction of an orthotropic matrix influenced the predictions more
significantly. The stresses were higher, especially in the matrix, and the
prediction of the direction of fluid flow resembled physiological flow.
Hence, the flux and the hydrostatic pressure also assumed a physiolog-
ical behaviour. The ability of the new model to fit the experimental
data remained nearly unchanged.

Therefore, the ability of the model to provide information about
the mechanics of the Achilles tendon under cyclic loading has been
improved. Future work could improve also the mechanics of the fibrillar
part and model the interaction between the different components.
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1 Introduction

Tendons connect muscles to bones and are responsible for transmitting the
force generated by muscular fiber contractions to the bony attachments re-
sulting in locomotion and enhancement of joint stability [1,2]. To accomplish
their function, tendons must be able to withstand large forces. This study
focuses on the Achilles tendon, which is located in the lower leg connecting
the gastrocnemious (i.e calf muscle) and the calcaneous (i.e heel bone), see
Fig.1. The Achilles tendon is the largest and strongest tendon of the human
body, as it needs to withstand forces that allow locomotion of the entire body
weight (i.e walking, running, jumping) [3].

Injuries of the Achilles tendon result in significant limitations in per-
forming common daily activities and have an even greater impact on sport
activities. Workers and athletes that expose their tendons to continuous and
prolonged over-demanding forces are at high risk of developing tendinopathies
causing pain and reduced functional efficiency, which can ultimately lead to
ruptures [2]. Also, an increased incidence of Achilles tendon ruptures has
been reported for professional athletes and middle-aged and older people
playing sports occasionally [4].

Figure 1: Anatomical posterior view of lower leg [10].

Like other muscoloskeletal tissues, tendons maintain their structural home-
ostasis by proper external mechanical loading. Mechanical stimuli influence
properties of the tendons both in healthy state and during healing [5, 6].
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Studies show that active treatments involving controlled loading are able to
restore the functionality of the tendon at a higher degree and with shorter re-
habilitation times compared to passive healing through immobilization [7–9].
Although, the real efficiency of these clinical routines is not well established,
mainly because the biomechanical behaviour of tendons is not yet well un-
derstood [2].

To better understand the biomechanics of the tendons and thus to estab-
lish proper treatment routines for healing, a precise knowledge of the material
behaviour under loading is required. Computational modeling has the ability
to simulate the behaviour of a material model under different loading situa-
tions and to provide extensive information about the mechanical response.

Various biomechanical models of tendons have been developed. Mainly
the tissue has been modeled either at a macroscopic level, as a continuum,
or at a microscopic level as a multi-structural material. The latter approach
describes the overall behaviour of the tissue as the result of the contribution
of different constituents and their mechanical interaction. A better under-
standing of the mechanical role of the constituents in healthy tendons can be
a good starting point for further development aiming to predict failure and
later on to model the healing process.

In the biomechanics research group, where this study has been con-
ducted, a 2D non-linear isotropic poroviscoelastic fiber-reinforced model of
the Achilles tendon has been previously developed [11] based on an existing
model of the cartilage [12, 13]. This is a structural material model of the
tissue consisting of a fluid phase and a solid phase divided into a fibrillar and
a non-fibrillar part. These represent the three main components of tendons
respectively: water, collagen fibers and proteoglycan matrix. Although the
model was able to successfully simulate the mechanical behaviour, simplifica-
tions were introduced leaving room for further developments. Since the long
term aim of the project is to simulate real human Achilles tendon, eventually
the model needs to be applied to a real geometry without introducing coarse
approximations. Moreover, it was observed that the model simulated inward
fluid flow during tension due to the mechanical properties of the non-fibrillar
part. Although, experimental studies have shown that tensile loading causes
extrusion of water form the inside of the tendon [14], suggesting outward flow.
A correct simulation of the direction of the fluid is an essential property of a
realistic tendon model. In fact, the fluid behaviour is recognized to be a key
factor for the correct modelling of the viscous behaviour of tendons [15,16].
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1.1 Aim of study

The aim of this study is to improve the existing model in two aspects: the
geometry and the constitutive model of the non-fibrillar part. First the com-
putational model is developed to simulate cyclic loading on a 3D geometry to
allow a more realistic representation of the Achilles tendon geometry. Then
the proteoglycan matrix is modeled as an orthotropic hyperelastic material,
which is expected to provide mechanical properties capable of simulating a
physiological direction of the fluid phase. Both models are validated against
experimental data from tensile testing of tendons of rats [17]. Finally, the
effects from the developments on the behaviour of the model are evaluated
by comparisons with results obtained using the existing 2D axisymmetric
tendon model [11].
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2 Background

2.1 Tendon composition, structure and function

Tendons are fibrous connective tissue consisting of collagen, elastin, proteo-
glycans, glycoproteins, cells and water. The dominant cell type are the fibrob-
lasts (tenoblasts and tenocytes), which are responsible for the synthetisation
of the extracellular matrix (ECM) proteins, the organization of the collagen
matrix and also the remodeling phase of the healing process.

Figure 2: A schematic of a multi-unit hierarchical structure of the tendon [1].

Tendons are rich in collagen accounting for approximately 70% of the dry
mass (mainly type I) [3]. Collagen is the main component of the multi-unit
hierarchical structure characterizing the tendons (see Fig.2). The fibril is the
smallest tendon unit structure mostly built up by tropocollagen triple-helices
packed together. The fibrils form fibers that are bundled together in fascicles
bond together with blood vessels, lymphatics and nerves by the endotenon,
a thin layer of connective tissue. Collections of fascicles are enclosed by the
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epitenon, which is a loose connective tissue sheath. The hierarchical structure
aligns the bundles of fibers along the longitudinal axis of the tendon providing
great strength in that direction. Although, at rest the single fibers assume
a ’crimp pattern’, which gradually disappears as the tendon is increasingly
stretched [1]. The properties of the collagen and the organized structure
enable the tendon to withstand large forces and also greatly influence the
overall behaviour in tension.

The other components constitute the ground substance of the ECM sur-
rounding the collagen. The proteoglycans content varies between 0.2% and
3.5% depending on the mechanical function of the tendon and its role is to
attract water and keep the tendon hydrated [1]. Elastin is found in small
quantities with the role of recovering the crimped configuration and glyco-
proteins contributing to the mechanical stability of the tendon [1,18]. Water
accounts for approximately 70% of tendon’s total weight [18]. The interac-
tion between the water and some of the components of the ECM, particularly
glycoproteins, influences the viscoelastic behaviour of the tissue. In addition,
water provides lubrication reducing inter-fascicular friction and also acts as
medium carrying nutrients to the fibroblasts and taking waste substances out
of the tendon [19].

2.2 Mechanical properties of tendons

Tendons undergo dynamic loading in vivo that together with the complex
structure and interaction between the components yield a characteristic non-
linear mechanical response. A tensile load yields the typical stress-strain
curve shown in Fig.3. From a rest configuration until 2% stretch the stiff-
ness gradually increases; this initial behaviour is commonly attributed to the
gradual recruitment of the fibrils that from the ’crimp pattern’ are re-oriented
in the direction of the load. This interval is called the ’toe’ region. Once the
fibers are straighten-up, the tendon reaches its characteristic stiffness, which
remains constant within the ’linear’ region. If the tendon is stretched further,
microscopic failures of the collagen fibers occurs (i.e. ruptures). Further on,
macroscopic failures occur resulting in a general softening up until 8-10%
when the tendon reaches complete rupture [1].
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Figure 3: Tendon stress-strain curve under loading along longitudinal axis [1].

In a tensile test, even if the load applied is maintained within the ’toe’
region, the tendon does not behave merely elastically. The collagen fibers and
the matrix components, indeed, have been demonstrated to posses viscous
properties. Thus, tendons show time-dependent behaviour such as creep,
stress-relaxation and mechanical hysteresis [20].

The creep behaviour is shown by the variation through time of defor-
mation when a constant force is applied. In tensile tests the elongation in-
creases non-linearly until it reaches a steady-state (Fig.4a). Similarly, stress-
relaxation means that the stress required to maintain a constant applied
elongation decreases over time until a steady-state is reached (Fig.4b). The
mechanical hysteresis, instead, is shown when the response of a tendon to the
loading phase of a test follows a different path than a subsequent unloading
phase. In a stress-strain curve the hysteresis is the area enclosed between the
loading and the unloading curve, which represents the energy lost as heat by
the viscous components of the tendon (Fig.4c) [20].

(a) Creep. (b) Stress-relaxation. (c) Mechanical hysteresis.

Figure 4: Viscous behaviours.
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2.3 Constitutive models for biological soft tissues

The complex mechanical behaviour of tendons and biological soft tissues in
general have been modeled with a considerable number of different constitu-
tive models. The tissues have been modeled mainly by two types of models:
continuum models and structural models. The continuum models consider
the tissue as a homogeneous material with the same properties throughout.
In the structural models, instead, the tissue is seen as a combination of
components with different properties, which together determine the overall
mechanical behaviour.

The simplest continuum constitutive model is Hooke’s linear elastic model
for solid materials. This model assumes a linear relationship between stresses
and strain, which can be isotropic, orthotropic or anisotropic. This type of
model is only valid for describing the material behaviour in the case of small
deformations, while the soft tissues normally undergo large deformations in
vivo, which result in non-linear behaviour [21].

A class of models able to describe non-linearities are the hyperelastic
material models. Several theories have been presented of which the most
commonly used are neo-Hookean, St.Venant, Arruda-Boyce, Mooney-Rivlin
and Ogden [21]. However, these models lack time-dependent components
and are unable to describe the characteristic property of soft tissue that is
viscoelasticity, expressed by creep, stress relaxation and hysteresis.

Three classic models of this type are Maxwell, Kelvin-Voigt and the Stan-
dard Linear Solid (SLS). These are simple one-dimensional models differently
composed by combinations of springs as the elastic component and dash pots
as the viscous component; hence, viscoelastic models.

A large variety of viscoelastic models have been developed using the
quasi-linear viscoelastic theory (QLV) formulated by Fung [22]. In the one-
dimensional case, the stress is given by the convolution integral function of
time (t) and strain (ε)

σ(t, ε) =

∫ t

0
G(t− τ)

∂σe

∂ε

∂ε

∂τ
dτ (1)

where G(t-τ) is the relaxation function and σe is the time-independent elastic
response [23–25]. Although it has been used successfully to describe the
tendon mechanical behaviour [23], it was proven to have limitations in stress-
relaxation and creep tests since the dependency of time and strain or stress
are separated [26].

In the earliest structural models, collagenous tissue consisted of elastin
fibers and undulated collagen fiber altogether interconnected to form an ar-
ticulated network structure. Both types of fibers were assumed to be linear
elastic, but the non-uniform structure resulted in a non-linear response [27].
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In later developments the tissue was modelled including also the contribu-
tion to the stresses of a fluid matrix embedding the fibers as hydrostatic
pressure [28].

A more recently developed type of structural model are the fiber-reinforced
models. This type of models has been used successfully to describe articular
cartilage [12,13,29]. In these studies the solid matrix (σs) consisted of a fib-
rillar part (σfib), representing the collagen network and a non-fibrillar part
(σnonfib), the ground substances, which were treated separately but both
contributing to the total stress.

σs = σfib + σnonfib (2)

In addition a fluid phase was considered as hydostatic pressure (p) giving the
total stress (σtot)in the cartilage as

σtot = σfib + σnonfib − pI (3)

An interesting aspect of this type of models is that the main components
of soft tissues can be represented separately, so their function in the over-
all structure can be investigated. This could be a considerable advantage
for models aiming to simulate more complex behaviours such as failure and
healing.

So far limited number of studies have developed models specifically for
tendons [30–32] and most of them described the mechanical behaviour only
considering the fibrillar part.

The existing model of the Achilles tendon, which this study further de-
velops, was based on a biphasic fiber-reinforced structural model proposed
by Wilson and Julkunen for articular cartilage [12, 13]. The model was ob-
tained by modifying the collagen network to resemble the Achilles tendon
structure [11].

2.3.1 The biphasic fiber-reinforced structural model

In the studies used as main reference for the formulation of the model for the
tendon material [33,34], the material was modeled as a fibril-reinforced poro-
viscoelastic material assumed as biphasic, consisting then of a solid matrix
saturated with water [13].

The fibrillar part of the solid phase was composed by a combination of
large primary collagen fibrils and smaller secondary fibrils [12, 34]. The first
were disposed in an arcade manner, while the second randomly distributed
throughout the model [12]. The deformation for each fibril was evaluated
with the logarithmic strain as [34]:

εf = log(λ) (4)
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where λ is the elongation defined as

λ =
‖ F · ef,0 ‖
‖ ef,0 ‖

=
‖ ef ‖
‖ ef,0 ‖

(5)

where ef,0 and ef are the initial and current fibril length vector respectively
and F the deformation tensor. After deformation the orientation fibril vector
was computed as:

~εf =
F · ef,0
‖ F · ef,0 ‖

(6)

Then, the fibril stress tensor was given by [35]

σf =
λ

J
Pf~ef~ef (7)

where J is the determinant of the deformation tensor and Pf is the first
Piola-Kirchhoff fibril stress [35]. The viscoelastic behaviour of the fibrils was
represented using the Standard linear solid model (SLS). That is composed
by a spring in parallel (E1) with another spring (E2) in series with a dash
pot (η), see Fig.5. The mechanical behaviour of the springs was described
by two-parameter exponential stress-strain relationships [35]:

P1 =

{
E1(ek1εf − 1) for εf > 0

0 for εf ≤ 0

and

P2 =

{
E2(ek2εe − 1) for εe > 0

0 for εe ≤ 0

where εf and εe are the strains in the two springs, E1, E2, k1 and k2 are
positive material constants. Note that the fibrils were assumed to resist only
tension.
The total stress in the fibril is then

Pf = P1 + P2. (8)

Figure 5: Schematic of the Standard Linear Solid model (SLS).
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The non-fibrillar part was described as a compressible neo-Hookean ma-
terial. The constitutive equations were derived from the energy function [33]:

Wneo =
Km

2

(
1

2
(J2 − 1)− ln(J)

)
+

1

2
Gm (tr(C)− 3det(C)) (9)

where the C is the left Cauchy-Green deformation tensor (FFT ), the bulk
modulus is defined as

Km =
Em

3(1− 2νm)
(10)

and the shear modulus

Gm =
Em

3(1 + νm)
(11)

where Em is the Young’s modulus and νm the Poisson ratio of the matrix.
The Cauchy stresses in the matrix were given by

σneo =
1

2
Km

(
J − 1

J

)
I +

Gm
J

(B− J2/3I) (12)

where B is the right Cauchy-Green deformation tensor (FTF).
The contribution of the fluid phase to the total stresses was accounted as

hydrostatic pressure as in equation (3). Physically, it expresses the frictional
drag caused by the fluid flow, which is believed to be the main cause of the
viscoelastic behaviour [36]. Darcy’s law is commonly used to describe the
fluid flow (Q) given by

Q = Ak
∆p

h
(13)

states that it is directly proportional to the cross-section area A, the per-
meability k, the difference in pressure ∆p and inversely proportional to the
thickness h. The permeability was assumed to depend on the void rations in
the tissue [37]:

k = k0

(
1 + e

1 + e0

)Mk

(14)

where e and e0 are respectively the current and initial void ratios and Mk a
positive constant [37]. The void ratios are defined as

e =
nf
ns

(15)

where ns and nf is the total water volume fraction given by

nf =
ρsnf,m

1− nf,m + nf,mρs
(16)

in which nf,m is the water mass fraction and ρs the solid tissue density [34].
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2.3.2 St.Venant-Kirchhoff orthotropic hyperelastic material model

In contrast to an isotropic material, which can be defined only by two con-
stants, an orthotropic material requires the definition of 9 independent pa-
rameteres: 3 Young’s moduli (E1, E2, E3), 3 Poisson ratios (ν12, ν13, ν23)
and 3 shear moduli (G12 ,G13, G23) [38]. If a linear stress-strain relationship
is assumed, the Hooke’s law (σ = Dε) is valid and the stiffness tensor D can
be written in the matrix form referred to the principal material axes [39]:

D =



a11 a12 a13 0 0 0
a21 a22 a23 0 0 0
a31 a32 a33 0 0 0
0 0 0 2G12 0 0
0 0 0 0 2G13 0
0 0 0 0 0 2G23


where the components aij (i, j = 1, 2, 3) are given by:

aii = Ei
1− νjkνkj

∆
(no sum. over i) (17)

aij = Ei
νji − νkiνjk

∆
(i 6= j 6= k) (18)

with

∆ = 1− ν12ν21 − ν13ν31 − ν23ν32 − 2ν12ν23ν31 and νij = νji
Ei
Ej

(19)

In addition the following constraints have to be fulfilled [19]:

E1, E2, E3, G12, G13, G23 > 0 , ∆ > 0 and | νij |<
(
Ei
Ej

)1/2

(20)

The behaviour of an orthotropic hyperelastic material can be described
by the St.Venant-Kirchhoff strain energy function [39]

Wort =
1

2

3∑
i,j

aijtr(ELii)tr(ELjj) +
3∑

i,j 6=i
Gijtr(ELiiELjj). (21)

where E is the Green-Lagrange strain tensor

E =
1

2
(C− I) (22)

in which I is the second order identity matrix and C is the right Cauchy-
Green tensor defined as

C = FTF (23)
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and the tensor Lii is given by

Lii = li ⊗ li (i = 1, 2, 3) (24)

where li (i=1,2,3) is a set of orthogonal unit base.
The second Piola-Kirchooff stress tensor is then derived as

S =
∂W

∂E
=

3∑
i,j

aijtr(ELjj)Lii + 2

3∑
i,j 6=i

GijLiiELjj (25)

and the Cauchy stress tensor obtained with

σort = J−1FSFT . (26)

2.3.3 Transversely isotropic conditions

A special class of orthotropic materials are the transverse isotropic mate-
rials. These materials have same properties in one plane and different in
the direction normal to the plane (Fig 6). From the orthotropic case, the
corresponding stiffness tensor for transverse isotropic materials is obtained
imposing the following additional conditions:

E1 = E3 = Ep , E2 = En , ν13 = ν31 = νp , ν12 = ν32 = νpn (27)

ν21 = ν23 = νnp , G12 = G23 = Gpn and G13 =
Ep

2(1 + νp)
(28)

where direction 1 and 3 are defined as the ’in plane’ direction (p) and 2 the
normal direction (n). These conditions reduce the number of independent
parameters needed to define the material from 9 to 5.

Models with these properties are commonly used to model fiber-reinforced
materials in which the fibers lie along the same direction. Also tendons have
been modeled as transversely isotropic earlier by Yin et al. [36] obtaining a
satisfactory representation of the mechanical behaviour.

Figure 6: Schematic of a transversely isotropic material.
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2.4 Experimental tests and data

In order to validate and assess the ability of the model to simulate the be-
haviour of the Achilles tendon, experimental data are needed. For the pur-
poses of this project data were obtained from collaborators [17], who tested
Achilles tendons of rats under cyclic tensile loading. Measurements from the
control group of a tendon experiment consisting of 9 tendons from 16 weeks
old female Sprague-Dawley rats were used for this study.

For the experiment the tendons were dissected free from extraneous soft
tissue and harvested together with the calcaneal bone and part of the gas-
trocnemious and soleus muscle complex. During the tissue preparation and
mounting in the material testing machine, the tendons were kept moist using
gauze with physiological solution. For clamping, the muscle was scraped off
the tendon and the fibers were attached between fine sandpaper and fixed
in a metal clamp. In the other end of the tendon, the calcaneous bone was
fixed at 30o dorsiflexion relative to traction direction. The samples were set
in the material testing machine (100R, DDL, Eden Praine, MN) with the
tendon oriented vertically. The tests considered consisted of 20 cycles of ten-
sile pull between 1 and 20 N at a constant speed of 0.1 mm/s [17] (Fig.7).
The length and radius of the middle transverse section of each tendon were
measured. More details on the experiment and its results can be found in
the collaborators’ paper [17].

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

Time [s]

F
o

rc
e
 [

N
]

Figure 7: Measured force-time curves of first three cycles of control group tendons.
To demonstrate the variation in the experiment tendon 1272 (red line) and 1270 (blue
line) were highlighted. These curves correspond to the testes that took respectively
the longest and shortest time in the group. The dashed lines correspond to remaining
tendons.
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3 Methods

3.1 Constitutive models

The Achilles tendon is modeled as the combination of fibrillar, representing
the collagen fibers, and non-fibrillar part, the matrix surrounding the fibers.
The collagen fibers are assumed to be one-dimensional and to run parallel to
the longitudinal axis through the matrix. The viscoelastic behaviour of the
fiber is modeled with the standard linear solid model (SLS) with exponential
springs. The non-fibrillar matrix is modeled as a biphasic porous material
with the solid part fully saturated with water. In this thesis two constitutive
models of the matrix are investigated: a compressible isotropic neo-Hookean
material model and a St.Venant-Kirchhoff orthotropic material model with
transversely isotropic properties.

Modeling the matrix as an orthotropic material allows to investigate the
effect of Poisson ratios higher than 0.5, which is a constitutive limit for
isotropic materials [19]. This means that the model can simulate a decrease
in volume of the tendon under tensile loading instead of an increase. This
change is expected to impact the prediction of the fluid behaviour.

3.2 Finite element implementation

The finite element model was implemented in ABAQUS(v6.12-4, Dassault
System, France). The option nlgeom was used to account for large defor-
mations. Although for this type of deformations the update Lagrangian
formulation is preferable, with the option selected correct calculations were
obtained adopting the total Lagrangian formulation. This means that the
deformation gradient F is defined as

Fi =
∂xi
∂x0

(29)

where x0 is the position vector in the initial configuration and xi in the
current configuration at the ith iteration step. Same formulation was adopted
by Wilson and Julkunen as shown in equation (5) [12,13].
The total stresses in the tendon were calculated as suggested in the related
studies as

σtot = σs − pI (30)

While the hydrostatic pressure p was computed by ABAQUS using prede-
fined functions, the material models of the solid matrix σs were implemented
in the subroutine UMAT, which specifically is set for user-defined material
properties. For the calculations the software requires the determination of the
Jacobian (4C) with the subroutine. As derived by Wilson [33], the Jacobian
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is equal to

4C =
1

J

(
σs
∂J

∂F
+ J

∂σs
∂F

)
FT (31)

where F is the deformation gradient tensor, J the determinant of F and σ
the Cauchy stress tensor. The term ∂J

∂F is given by

∂J

∂F
=
∂det(F)

∂F
= JF−1. (32)

Therefore, the unknowns in equation (31) are σs(F) and ∂σs(F)
∂F , which de-

pend on the chosen material model. Thus, to investigate the model using a
neo-Hookean matrix the following needs to be determined:

σs = σf + σneo and
∂σs
∂F

=
∂σf
∂F

+
∂σneo
∂F

(33)

and similarly for the model with a orthotropic matrix:

σs = σf + σort and
∂σs
∂F

=
∂σf
∂F

+
∂σort
∂F

(34)

3.2.1 Fibrillar part

As described in section 2.3.1 the first Piola-Kirchhoff stresses in the springs
under tension are given by

P1 = E1(ek1εf − 1) (35)

P2 = E2(ek1εe − 1) = ηε̇v (36)

and the total stress
Pf = P1 + P2 (37)

For numerical implementation a solution of equation (37) is needed for every
time step. Using equations (35), (36) and (37) with Euler backward time
integration it can be derived that the total stresses are given by

P t+∆t
f = − b

2
+

1

2

√
b2 − 4c (38)

where
b = E2 − 2P1 − ηε̇f +

η

k2∆t
(39)

c = − η

k2∆t
P tf − (P1 + ηε̇f )(E2 − P1)− η

k2
Ṗ1 (40)

ε̇f =
εt+∆t − εtf

∆t
(41)
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and
Ṗ1 = E1k1e

k1εf ε̇f (42)

Complete derivations can be found in Gustafsson’s thesis [11].
The Cauchy stresses in the fibril implemented was obtained using equa-

tions (5), (6) and (38) into equation (7) giving

σf =
1

J

P t+∆t
f

λ︸ ︷︷ ︸
A

Fe0e
T
0 F︸ ︷︷ ︸

B

(43)

Hence the second unknown was derived as

∂σf
∂F

= B
∂A

∂F
+A

∂B

∂F
(44)

Further calculation of these derivatives are shown in the appendix.

3.2.2 Neo-Hookean material

For the implementation of the neo-hookean material, the Cauchy stresses is
given by equation (12) and its derivative with respect to the deformation
tensor was derived by Wilson [33] as

∂σneo
∂F

=

[
1

2
KmI

(
1 +

1

J2

)
−B

(
Gm
J2

)
+

Gm

3J4/3
I

]
JF−1 +

G

J
2[4IFT ] (45)

where 4I is the forth order symmetric identity matrix.

3.2.3 Orthotropic hyperelastic material

The Cauchy stresses in an orthotropic hyperelastic matrix were implemented
as shown in section 2.3.2 by equation (26). The derivation of the second term
needed to define the Jacobian is then obtained as follow:

∂σort
∂F

=
∂

∂F

(
J−1FSFT

)
= −FSFT

J2

∂J

∂F
+
∂F

∂F

SFT

J
+

F

J

∂S

∂F
FT (46)

where the first derivative of the right hand side is known (see equation (32))
and the second was defined as

∂F

∂F
= 4I (47)

The last derivative was derived using the chain rule yielding

∂S

∂F
=
∂S

∂E

∂E

∂F
(48)
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where the constant elastic tensor was derived by Itskov [39] to be

∂S

∂E
=

3∑
i,j

aijLii × Ljj + 2
3∑

i,j 6=i
GijLij × Lij (49)

which according to tensor calculation rules [39], it can be rewritten as

∂S

∂E
=

3∑
i,j

aijHijji +
1

2

3∑
i,j 6=i

Gij [Hiijj + Hjiji + Hijij + Hjjii] (50)

where we defined
Hijkl = li ⊗ lj ⊗ lk ⊗ ll (51)

The second term is here derived as

∂E

∂F
=

∂

∂F

[
1

2
(C− I)

]
=

1

2

(
2
∂F

∂F
FT

)
= 4IFT (52)

Hence, using equations (50) and (52), equation (48) written explicitly be-
comes

∂S

∂F
=

 3∑
i,j

aijHijji +
1

2

3∑
i,j 6=i

Gij [Hiijj + Hjiji + Hijij + Hjjii]

 : 4IFT

(53)
where ’:’ denotes the double inner product between the tensors. For the
implementation of equations (26) and (46), equations (25) and (50) were
written simplified in index notation:

Sij =

{∑3
j aijEjj for i = j

2GijEij for i 6= j

and(
∂S

∂E

)
klmn

=

{
akl if (k = n & l = m)
1
2Glm if (k = l&m = n& k 6= m) or (k = m& l = n& k 6= l)

where i, j, k, l,m, n = 1, 2, 3.
Note that in all derivations the deformation gradient F was assumed to be

symmetric. Although generally not true, in the loading case considered this
assumption is valid and makes the derivations and, thus, the implementation
easier.
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3.2.4 2D implementation of constitutive formulations

The derivations of the constitutive equations shown previously consider all
three dimensions and so they can be applied on the 3D geometry case. To
compare the 2D to the 3D geometry case plain strain condition had to be
applied. This condition assumes the strains in the out-of-plain direction to be
zero. In other words, this assumption allows to disregard certain components
of the stiffness matrix that are related to that direction. Therefore, the stiff-
ness matrix, which in the 3D has the same number of non-zero components
as in section 2.3.2, becomes

Dplain =



C1111 C1122 0 0 0 0
C2211 C2222 0 0 0 0
C3311 C3322 0 0 0 0

0 0 0 C1212 0 0
0 0 0 0 0 0
0 0 0 0 0 0


where Cijkl are components of the Jacobian 4C.

3.3 Average tendon

The tendons used in the experimental tests produced responses quite dif-
ferent between each other even though the same loading conditions were
applied (see Fig.7). Differences in the geometric properties of the tendons
influence the outcome, as well as the differences in the material properties be-
tween individuals that are easily encountered for such biological tissues [17].
Furthermore, inevitable experimental variability due to testing machine and
fixation may have influenced the outcome of the tests.

Due to the large variability in both geometry and mechanical response of
the tendons, it was of interest to create an average tendon representing the
entire population. It was not possible to obtain reasonable data by taking
the average because of the large variability cycles’ time length. Therefore,
each cycle of the data was separately scaled over a period of 2π, then average
values of the forces were calculated (Fig.8). At last each cycle of the average
curve was rescaled over periods of time calculated as average for each specific
cycle of the group. The dimensions of the average tendon were calculated as
the mean dimensions of the population. These calculations were implemented
and used earlier for the analysis of the existing two-dimensional model [11].

Since the optimization of the model parameters of one tendon required
more than a week to complete, only the parameters for the calculated average
tendon were optimized.
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Figure 8: Schematic of calculation of average tendon Force-time curve.
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Figure 9: Time-force curves of the calculated average tendon (red line) and of the
tendons of the control group (black dashed lines).

3.4 3D geometry, mesh and boundary conditions

The tendon is assumed to have a cylindrical shape. The finite element mesh
was created dividing the cylinder in 44 even layers along the height (i.e.
length of the tendon), each layer composed of 48 elements. Hence, the mesh
consisted of 2112 elements counting a total of 2565 nodes. The type of
element chosen was C3D8P, that is 8-node hexahedral poroelastic element.

Boundary conditions were imposed to represent the experiment. The
nodes at the bottom were constrained allowing no displacement in any direc-
tion and pore pressure set equal to zero on the lateral external surface.
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Figure 10: 3D mesh

The loading protocol in the experiment was mimicked by imposing con-
trolled displacement in the y-direction on the nodes at the top. Of the entire
set of cycles composing the experimental tests, only the data from the first
three cycles were used in the simulations. Figure 11 shows the time displace-
ment curve of the mechanical test. For the numerical calculations each cycle
was divided in a lengthening and a shortening step. In addition, a prestrain
step was added to obtain the initial conditions of the experiment. The time
of this step was calculated knowing the rate of displacement.

Figure 11: Time-displacement curve with step subdivision used for numerical anal-
ysis.
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3.5 2D geometry, mesh and boundary conditions

Given the geometry of the 3D case, it is possible to reduce it to a 2D ge-
ometry with appropriate approximations. Indeed, the cylindrical mesh can
be represented by a rectangular mesh with half the size of the middle sagit-
tal cross section of the cylinder (see Fig.12a). A complete revolution of the
rectangle around the longitudinal axis yields the initial cylinder. In the same
fashion, for the numerical calculations, the elements and nodes of the rect-
angular mesh represent integrations over 360o around the axis of symmetry.
Note that this imply the coordinate system to change from Cartesian to
cylindrical.

The mesh consisted of 255 nodes and 200 elements of same size ordered
in 50 rows of 4 elements each. The type of element chosen is CAX4P, that is
4-node quadratic, axisymmetric and poroelastic element [11].

The boundary conditions were set similarly to the 3D case with the dif-
ference that one lateral side became the axisymmetric boundary and on the
other the pore pressure was set to zero [11] (see Fig.12b).

(a) (b)

Figure 12: (a) 2D geometry and approximation. (b) Mesh and boundary conditions.

21



3.6 Porosity

The tendons used in the experimental study by Eliasson et al. [17] were
measured to have a mean dry weight of 24 mg and a water content of 71 mg,
which means 75% water mass fraction [17]. Using equation (16), the total
water volume fraction was calculated to be 0.834. The density of the dry
mass was calculated as ρs = 1.68g/ml knowing the fraction of dry weight
and the volume.

3.7 Optimization

Every simulation in ABAQUS took as inputs a set of parameters describing
the model and the time-displacement curve. It computed as output the
reaction forces generated at the bottom boundary over time. According to the
basic laws of mechanics, to have equilibrium in the system the reaction forces
produced by the tendon have to be the same as the external forces produces
by the machine, which were measured in the experiments. The mean squared
error between the simulated and the experimental reaction forces was the
objective function minimized by the optimization procedure [40]:

f =
1

6

6∑
i=1

1

ni

 ni∑
j=1

((Fmod)j − (Fexp)j)
2

 (54)

where Fmod and Fexp are respectively the simulated and the experimental
reaction forces and ni is the number of data points for the ith step. Note that
the prestrain was not included as it was not measured in the experimental
data.

Therefore, the material models were fitted to the experimental data by
optimizing the material model parameters. The model with a neo-Hookean
matrix had 9 parameters (E1, E2, k1, k2, η, k0, Mk, Em, νm), while with a
transversely isotropic matrix 12 parameters (E1, E2, k1, k2, η, k0, Mk, Ep,
En, νpn, νp, Gpn). Starting from an initial guess the set of parameters, a non-
linear unconstrained optimization algorithm (fminsearch) in MATLAB was
used to minimize equation (54). Convergence was considered to be reached
when an increase (or decrease) of the parameters values of 10−3 or lower
corresponded a variation smaller than 10−4 of the objective function f . A
schematic of the optimization procedure is shown in Fig. 13.

At last, the optimized curve was evaluated by the root mean square
(RMS):

RMS error =

√∑n
j=1((Fmod)j − (Fexp)j)2

n
(55)
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Figure 13: Schematic of the optimization process. For the first numerical simula-
tion the time-displacement curve measured in the experimental test and the initial
guessed set of parameters were given to ABAQUS to obtain the simulated reaction
forces to compare to the experimental reaction forces. Then the error is calculated
by the objective function f . The optimization algorithm continues launching new
simulations with new set of parameters until the terms of convergence are met.

Note that to obtain convergence in the single simulations and also for the
entire optimization process, the initial set of parameters needed to provide
already a decent fit to the experimental data. Furthermore, the several dif-
ferent initial sets have been tried to assess whether the actual optimal sets
for the models were obtained.
The range of the parameters values investigated was chosen to be in accor-
dance to those used with the previous work [11].
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4 Results

Both constitutive models investigated were able to capture the mechanical
behaviour of the average rat Achilles tendon under cyclic loading. The root
mean square (RMS) error of the 2D model with neo-hookean matrix (2D
neo), the 3D model with neo-hookean matrix (3D neo) and 3D model with
transversely isotropic matrix (3D tra) were 0.845, 0.849 and 0.961 respec-
tively. The predictions of the models were quite accurate in the range of
forces between 5 and 17 N, but outside this rage the reaction forces tended
to be overestimated (see Fig.14). The overestimation was the highest at the
peaks and at the end of the cycles (see Table 1, Fig.15b and Fig.15c).
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Figure 14: Reaction forces behaviour over time of the average tendon (experimental),
2D model with neo-hookean matrix (2D neo) and the 3D model with neo-hookean
matrix (3D neo).

1st peak End cycles

2D neo-Hookean 2.66 1.65
3D neo-Hookean 1.36 1.51

3D transversely iso. 1.39 1.68

Table 1: Overestimation in Newtons of the models at the first peak at the end of
the last cycle. These correspond to the highest overestimation of the experimental
reaction forces.
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(a) Beginning first cycle.
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(b) First peak.
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(c) End last cycle.

Figure 15: Parts of reaction forces over time.

Comparing only the models predictions, differences are mostly at the
beginning of the first cycle (Fig.15a) and at the first peak (Fig.15b). However
they differ by 1.30 N at the most. After the first peak the predictions are
almost identical.

The reaction force predictions showed in Fig. 14 were given by the sets of
parameters obtained by the optimization procedure giving the lowest RMS
error (see table 2). In light of the very similar prediction, it is interesting
to compare the parameters’ values between models. It can be noticed that
the parameters describing the fibrillar part (E1, E2, k1, k2 and η) are rela-
tively similar (see table 2), while the rest of the parameters describing the
permeability (k0 and Mk) and the matrix show large differences (see table
3).

RMS E1 [MPa] E2 [MPa] k1 k2 η [MPa· s]

2D neo 0.857 0.023 0.443 40.00 31.06 609.34
3D neo 0.849 0.023 0.517 40.27 30.40 642.28
3D tra 0.961 0.020 0.556 41.25 32.08 523.51

Table 2: Optimized sets: parameters describing fibrillar part of the 2D model with
neo-Hookean matrix (2D neo), the 3D model with neo-Hookean matrix (3D tra) and
3D model with transversely isotropic matrix.

k0 [mm/s] Mk Em [MPa] νm
2D neo 1.19 · 10−7 0.96 0.77 0.35 [11]
3D neo 0.91 · 10−9 0.76 0.73 0.41

k0 [mm/s] Mk Ep [MPa] En [MPa] νpn νp Gpn [MPa]

3D tra 1.26 · 10−9 0.38 0.31 2.58 0.14 0.35 0.29

Table 3: Optimized sets: parameters describing permeability and non-fibrillar part
of the 2D model with neo-Hookean matrix (2D neo), the 3D model with neo-Hookean
matrix (3D tra) and 3D model with transversely isotropic matrix
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4.1 Effects of 3D formulation

To investigate the effects of the change in formulation on the prediction of
the mechanical behaviours, the tendon was simulated by the 3D neo using
the optimal set of parameters for the 2D neo (see Tables 2 and 3) and the
results of these two simulations compared.
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Figure 16: Reaction forces of the average tendon (experimental), the 2D model with
neo-hookean matrix (2D neo), the 3D model with neo-hookean matrix (3D neo) and
the 3D model with transversely isotropic matrix (3D tra).

The resulting reaction forces is almost identical throughout the simulation
indeed the new RMS for the 3D neo was 0.921. The only noticeable difference
is on the peak of the first cycle of, where the 2D model predict a force
1.3 N higher (Fig.16). The reason of this difference was found comparing
the stresses inside the tendon which are slightly higher in 2D neo (Fig.17a).
Moreover, the difference is almost entirely given by the stresses on the fibrillar
part, while those on the non-fibrillar part are identical (see Fig.17b-17c).
Even more interesting is to notice the subdivision of the stresses in the solid
phase. At the peak of the first cycle the fibers support 99.2% of total stresses
in the tendon. Even smaller contribution to the total stress is given by the
hydrostatic pressure, which accounts for 0.07% of the total (Fig.17d). This is
probably the reason why a large variability of values describing permeability
and the matrix behaviour do not seem to influence the fit of the reaction
forces, while the parameters describing the fibrillar part seem closely related.
Also for the hydrostatic pressure the 2D neo estimates higher values than 3D
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neo.
Note that the stresses presented were calculate in one element on the edge

at mid height. However, the stresses were rather homogeneous throughout
the geometry and the cycles, so this behaviour can be considered valid for
the entire tendon.
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(a) Total stress.
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(b) Stress on fibers.
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(c) Stress on matrix.
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(d) Hydrostatic pressure.

Figure 17: Stresses calculated in an element on the edge at mid height for the first
cycle of the 2D model with neo-hookean matrix (2D neo) and the 3D model with
neo-hookean matrix (3D neo).

The fluid behaviour was investigated in terms of fluid velocity and flux.
The change in geometry had no effect on the fluid velocity (Fig.18a) and on
the flux only a slight increase is obtained but the behaviour is completely
analogous (Fig.18b).

Note that a positive flux means an inward fluid flow and a negative vice
versa.
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(a) Fluid velocity.
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(b) Flux.

Figure 18: Fluid behaviour on the edge at mid height for the first cycle of the
2D model with neo-hookean matrix (2D neo) and the 3D model with neo-hookean
matrix (3D neo).

4.2 Effects of different matrix models

The differences of mechanical behaviour between a model with neo-hookean
matrix (neo) and transversely isotropic matrix (tra) were also investigated.
The 3D models were chosen for the comparison with the results obtained
using the respective optimized sets of parameters shown in table 2.

In this case the differences between the models are more noticeable. The
total stress in the 3D tra is higher than the 3D neo (Fig.19a). The difference
is again mostly given by stress on the fiber, but the matrix has a relatively
higher contribution of 5.25% of the total stress at the peak of the first cycle
(Fig.19b-19c). Even more significant is the effect on the hydrostatic pressure
which, other than reaching 45 times higher values, gives an opposite contribu-
tion (Fig.19d). This reversed behaviour is seen in a negative flux that means
an outward fluid flow (Fig.20b). Another difference is the variation of fluid
behaviour over time, which during tensile load produces a linear variation
with the 3D tra instead of non-linear with the 3D neo.

These behavioural differences find an explanation in the differences in
parameters values between the two models. In the 3D tra the matrix in the
longitudinal direction (En) is more than 3 times stiffer than in the 2D neo
(Em)(see table.2), which partly explains the increase of stress taken by the
matrix. Moreover the difference between longitudinal (En) and ’in plane’
(Ep) stiffnesses yields a Poisson ratio of 1.16 relating the stresses in the
longitudinal direction and the strains in the lateral direction (νnp). In other
words it results in a decrease in volume in the loading phases generating
outward fluid flows.
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(a) Total stress.
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(b) Stress on fibers.
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(c) Stress on matrix.

0 5 10 15 20

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time [s]

H
y

d
ro

s
ta

ti
c

 p
re

s
s

u
re

 [
M

p
a

]

 

 

3D tra

3D neo

(d) Hydrostatic pressure.

Figure 19: Stresses calculated in an element on the edge at mid height for the
first cycle of the 3D model with neo-hookean matrix (3D neo) and 3D model with
transversely isotropic matrix (3D tra).
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(a) Fluid velocity.
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(b) Flux.

Figure 20: Fluid behaviour on the edge at mid height for the first cycle of the 3D
model with neo-hookean matrix (3D neo) and 3D model with transversely isotropic
matrix (3D tra).
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5 Discussion

This study has developed two aspects of a computational model of the Achilles
tendon. First the material model formulation has been modified from 2D to
3D to obtain a model that could be applied on a more realistic tendon ge-
ometry. Second the constitutive model of the non-fibrillar matrix has been
modified to be able to simulate a physiological direction of the fluid flow.
The results investigated the effects of the modifications of the model.

5.1 Comparison 2D vs 3D geometry

The comparison between the results of 2D neo and 3D neo showed almost
identical behaviour of the two models. Therefore, the modification imple-
mented did not influence the predictions of the material behaviour. Only few
small differences in the prediction of the reaction forces and the flux were
observed. These differences are most probably given by the numerical cal-
culations that distinguish the 2D from the 3D. Thus, also the geometrical
approximations introduced passing from 2D to 3D did not have a significant
influence on the predictions.

In this aspect the 2D is more advantageous than the 3D model because
the computational time is largely reduced. A simulation of loading case
studied applied on the 2D model was computed approximately 20 times faster
than on the 3D model. In terms of time it means going from taking less
than a minute to more than 15 minutes. Moreover, considering an entire
optimization routine, which requires from 600 to 1200 iterations in MATLAB,
the difference in computation time becomes a critical factor. However, this
advantage is relevant when idealized geometries, such as those of this study,
are used.

If we consider a real 3D geometry of an Achilles tendon, it is reasonable to
assume that a 2D approximation would introduce more significant differences
in the simulated material behaviours. In this situation the 3D model is more
proper to use than the 2D model, because it can be applied on any real
geometry without introducing further approximations. In fact, irregular (i.e.
real) shapes can significantly influence the distribution of stresses inside the
tendon. This agrees with a study published by Shim et al. [42], which showed
the importance of tendon geometry in determining rupture locations related
to cross-sectional areas.

5.2 Comparison isotropic vs transversely isotropic matrix

The fluid behaviour has been suggested to contribute considerably to the
viscoelasticity of tendons [36]. A disadvantage of the isotropic model was
the prediction of non-physiological fluid behaviour, primarily in terms of
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direction of flow. Han et al. [14] observed in experimental tensile loading
that water was extruded from the inside of the tendon. Instead, the existing
model was predicting an increasing inward fluid flow during tension and a
decreasing inward flow until outward flow during unloading. Although the
fluid behaviour has rather little influence on the overall mechanical behaviour
investigated with this model, having a model able to predict a physiological
fluid flow is thought to be a needed improvement for later developments.
Indeed the fluid flow may play an important role in the cell function and thus
indirectly influence the healing process [36]. This objective was successfully
fulfilled by substituting the isotropic matrix with a transversely isotropic
matrix. The results showed the ability of this model to capture an increasing
outward flow during tension and decreasing during unloading. However, the
magnitude of water exiting the tendon and its variation over time of the
fluid flow could not be confronted to experimental data, because none was
available.

Transversely isotropic models have been used before to describe the ten-
don mechanics. However, these models considered the tendon either as a
continuum [43] or as a biphasic material in which the solid phase was not
further subdivided [36]. In this study it is assumed that the anisotropic
behaviour of the Achilles tendon is given not only by the fibers along the
longitudinal direction, but also by the matrix properties. This assumption
could not be confirmed nor contradicted since the mechanical properties of
the matrix alone has not been clarified yet [44].

In any case, the use of a transversely isotropic matrix may be justified by
the simplifying assumption of having straight longitudinally aligned fibers.
Indeed in human Achilles tendons the fibers are rotated around each other
resulting in a spiraling shape [45]. This complex orientation of the fibers
may have an effect on the macroscopic behaviour of the tendon resulting in a
decrease of volume and in the characteristic fluid flow. Therefore, introducing
the transverse isotropic matrix may help in the shortcoming of the fibrillar
model.

5.3 The method

A common problem for models with a large number of parameters is the dif-
ficulty in associating a physical meaning to each parameter. The constants
of the models used in this study instead can easily be related to the specific
parts of the tendon modeled: water, collagen fibers and proteoglycan ma-
trix. However, the method implemented in this study only partially takes
advantage of these rather elaborated models. Indeed, the method is able to
validate precisely only the fibrillar part of the models with the experimental
data available. The experimental data described the reaction forces devel-
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oped by the tendons during the tensile tests, which can easily be related
only to stresses. As shown in the results the stresses were supported almost
entirely by the collagen fibers, so the other parts, giving a smaller contribu-
tion, receive a much less accurate validation. Certainly, incorporating in the
validation experimental data describing specifically the fluid behaviour and
mechanical properties of the matrix alone could help obtaining more reliable
validation. Though, it has to be pointed out that performing experiments to
measure such data requires rather complicated techniques and therefore are
rare, if any exists. However, the fact that the models were able to integrate
the main components of tendons and that the overall mechanical behaviour
could be related to the specific behaviour of each component is an essential
starting point for a thorough analysis of the mechanical behaviour of the
Achilles tendon.

More in general, given the RMS obtained, the ability of the method used
in this study including both the constitutive model and the optimization
procedure can be considered satisfactory representing cyclic loading of the
Achilles tendon. However under some aspect this method have shown limi-
tations and room for improvements.

For all three models the optimization procedure was tried starting with
different sets of initial parameters. In some cases it was observed that the
algorithm converged to RMS values (0.85 - 0.96) similar with each other and
also close to the best calculated, but resulting from different ”optimal” sets.
This means that the optimization is not able to provide a unique solution,
which is thought to be the consequence of two co-operating factors. First,
the optimization algorithm, the MATLAB function fminsearch, is very sen-
sitive to the initial values, meaning that it more likely converge to a local
minima rather than the global minimum. Second, the models are probably
described by an excessive number of parameters (9 and 12). For models of
this complexity validated only by measured reaction forces, a high number of
parameters can be a limitation in searching for the optimal set. Therefore,
a straight forward solution to obtain a better optimization could be to use
another algorithm. Another option could be to optimize fewer parameters
either by imposing fixed values to those influencing less significantly the op-
timization outcome (i.e. reaction forces), such as those defining fluid and
matrix behaviour.

Finally, a fundamental assumption made in this model is that the fibers
are longitudinally oriented. This is a reasonable assumption when the ten-
don is in the ’linear’ region, but it is incorrect in the ’toe’ region where the
fibers actually assume a ’crimp’ pattern. The transition between these two
configurations of the fibers is called fiber recruitment, which is mainly re-
sponsible for the non-linear behaviour of tendons when stretched from an
unloaded state. To represent this behaviour the fibers were assumed to have
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an exponential relationship between stresses and strains. With this assump-
tion the model is able to give good predictions, but it is a limiting factor
in cyclic loading because after the first cycles the tendon tends to remain
in the ’linear’ region. This is probably the reason of the overestimations of
the reaction forces observed in all the models. Therefore, incorporating fiber
recruitment would probably improve the predictions. This phenomenon has
been modeled before either by modelling a gradual straightening of the fibers
with randomly distributed orientations [41] or represented with probability
functions [30].

6 Conclusions

In this study an existing two-dimensional isotropic poroviscoelastic model
of the Achilles tendon has been further developed in the geometry and in
the constitutive model to obtain a three-dimensional transversely isotropic
poroviscoelastic model.

The results have shown that the model can be applied on a three-dimensional
geometry maintaining accurate representation of the mechanical behaviour of
the tendon under cyclic loading. Moreover, modeling the matrix with trans-
versely isotropic properties successfully captures the physiological direction
of the fluid flow.

7 Future developments

The ability of the present model to represent the Achilles tendon viscous be-
haviours could also be investigated with tests like creep and stress-relaxation.
Interesting would be to compare its predictions with those of the previous
model to see the effect of the new matrix properties on these behaviours.

Furthermore, the present model is described by a large number of vari-
ables that can potentially provide detailed information on the different com-
ponents. However, the available experimental data are suited to validate only
the fibrillar part of the tendon. Therefore, validating the model with exper-
imental test about the matrix and fluid behaviour could help define those
properties. In addition, the present model treats the components separately,
while most probably their behaviours influence each other. Hence, further
study could include the modelling of the interaction between the components.

Finally, including in the model the mechanics of gradual straightening of
the fibers (i.e. fiber recruitment) as the mean to capture the non linear be-
haviour in ’toe’ region could improve the overall representation of the tendon
under cyclic loading.
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A Determination of Jacobian for a single non-linear
viscoelastic fiber

The implementation of the Jacobian in the ABAQUS subroutine UMAT re-
quires the definition of the Cauchy stresses

σf =
1

J

P t+∆t
f

λ︸ ︷︷ ︸
A

Fe0e
T
0 FT︸ ︷︷ ︸

B

(56)

and the derivative with respect to the deformation tensor F

∂σf
∂F

= B
∂A

∂F
+A

∂B

∂F
(57)

While the equation (56) can be implemented as shown, equation (57) can be
expressed in known terms with further calculations. We repeat here useful
relationships:

P t+∆t
f = − b

2
+

1

2

√
b2 − 4c , (58)

λ =
‖ F · ef,0 ‖
‖ ef,0 ‖

=
‖ ef ‖
‖ ef,0 ‖

(59)

and
εn+1
f = log(λ) (60)

The term εn+1
f represents the fibril strain at the displacement increment n+1

(current strain), which corresponds to the time step t+ ∆t in the numerical
solution algorithm. The first derivative of the right side in equation (57) then
equals

∂A
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λJ
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f

∂F
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where using the chain rule
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f
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f
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The terms can now be expressed by known variables as
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and
∂λ

∂F
=

∂

∂F

(√
eT0 FTFe0

)
=

1

2

1√
eT0 FTFe0

2eT0 Fe0 =
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(65)

Note that in equation (65) the denominator of λ was disregarded since the
initial length of the fibril is assumed to equal 1. Then the last term in
equation (57) equals

∂B
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∂
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(
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T
0 FT

)
= 2(
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T
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Note also that F is assumed to be symmetric in all derivations.
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