
JOURNAL ARTICLE, JUNE 2015 1

Dynamic path planning of initially unknown
environments using an RGB-D camera

Sara Gustafzelius

Abstract—In this paper an RGB-D camera was used with the
goal to perform dynamic path planning in an initially unknown
environment. Depth data from an RGB-D camera together with
a discretizising algorithm is continuously used for maintaining an
obstacle map of the environment which within the path planning
algorithm D* Lite [S. Koening, 2005] is performed on the flight.

Experiments were conducted on a Gantry Tau robot at the
Robot Lab of the Department of Automatic Control, LTH. For
discretization purposes we compare the use of Box Approximation
and Signed Distance Function (SDF) for creating the obstacle
map.

Keywords—Dynamic path planning, D*Lite, RGB-D camera,
discretization, Box Approximation, obstacle map, SDF, re-planning.

I. INTRODUCTION

There are currently many fields of applications where
traversing non human friendly environments with unmanned
vehicles can be highly useful. Further, as the use of, for
example, Unmanned Aerial Vehicles (UAVs) increases it is
not hard to see the benefit of not only unmanned but also
automated unmanned vehicles.

In this article we demonstrate how path-planning and auto-
matic re-planning can be performed using an RGB-D camera.
We compare two different approches, Signed Distance Func-
tion (SDF) and Box Approximation, to efficiently discretisize
depth data. Depth data from an RGB-D camera is used
to create and continuously update an obstacle map of the
environment. The obstacle map contains information of which
coordinates can be traveled and not traveled. When a new
obstacle is detected by the RGB-D camera the location of
the obstacle is calculated and marked as untraversable in the
obstacle map. The path planning algorithm is initially given
a start and goal position and a first path is calculated using
the obstacle map. When a new obstacle occurs on the obstacle
map the path planning algorithm dynamically re-plans the local
path part affected by the obstacle. The system flow can be seen
in Figure 1.

We choose to use the path-planning algorithm D* Lite
[S. Koening, 2005] that builds on Lifelong planning A* (LPA*)
[S. Koening, 2002]. D* Lite plans the same path as the
more complex algorithm Focused Dynamic A* (D*) [Stentz,
1995] by Stentz but is algorithmically different and easier

A. Robertsson is with the Department of Automatic Control, LTH, Lund,
Sweden.

E. Bylow is with Department of Mathematics, LTH, Sweden.
S. Yngve at Combine Control Systems AB, Lund, Sweden.
M. Stenmark is with the Department of Computer Science, LTH, Lund,

Sweden.

Fig. 1. Flowchart over the system blocks.

to overview. The main idea of D* Lite is to do an initial
search identical to the A* [P. E. Hart, 1968] algoritm and to
start move along the calculated path. When an obstacle that
affects the planned route is detected the subsequent search uses
information from the previous searches to locally re-plan the
path. D* Lite uses a priority heap to sort the vertices with
decreasing travel cost.

II. UPDATING THE OBSTACLE MAP

The main idea of the obstacle map is to avoid building a
graph for the path planning and instead use a structure that both
the discretization algorithms and the path planning algorithm
can use. The obstacle map will be represented as a three-
dimensional binary matrix.

In Figure 2 we see an environment in two dimensions seen
from above. The environment contains two obstacles. We apply
a grid in order to discretize the environment. The result can be
seen in Figure 3 where every square in the grid is an index in
the obstacle map and will be referred to as nodes in the path
planning.

If a square contains an obstacle the corresponding index in
the matrix will be set to one. This means that this node will
be untraversable when applying the path planning algorithm.
If a square is free from obstacles the corresponding index will
be set to zero. For the path planning algorithm this means that
this node will be traversable. The result of this an obstacle
map filled with ones and zeros as in Figure 4.

JOURNAL ARTICLE, JUNE 2015 2

Fig. 2. An environment in two dimensions seen from above.

Fig. 3. The environment seen in Figure 2 when a grid is applied.

Fig. 4. The obstacle map corresponding to the environment in Figure 2.

A. Transforming depth data into global coordinates

The depth image data received by the RGB-D camera is
transformed into local coordinates using the pinhole camera
model.

X = (x, y, z)T = (
(i− cx)z

fx
,
(j − cy)z

fy
, z)T ,

where (i, j) ∈ Id, z = Id(i, j) and fx, fy , cx and cy are
intrinsic camera parameters.

To be able to use data from different camera positions we
need to transform the local coordinates into global coordinates.
We use,

XG = C ·XL,

where XL are the local coordinates, XG are the global
coordinates, and C is the camera matrix i.e., the position and
rotation of the camera.

B. Discretization methods
1) Signed Distance Function: SDF is a function which gives

the signed distance d between a point X ∈ R3 and the closest
point Xs on a surface S. For two dimensions this can be
illustrated as in Figure 5.

Fig. 5. SDF example in two dimensions.

We will use a voxel grid (see Figure 6) to symbolize the
signed distances we get from the SDF. We want to try to project
each voxel in the voxel grid onto the image plane using,

Id(i, j) = (
fxx

z
+ cx,

fyy

z
+ cy),

where fx, fy, cx and cy are intrinsic camera parameters.
If the signed distance is more than or equal to 0 it means

that there is a surface on or between the global voxel and the
camera, and therefore we set the value of the global voxel to
1 [Bylow, 2012, p. 17]. If the signed distance is less than 0 it
mean that there are no surfaces on or between the camera and
the global voxel, and therefore we set the global vertex to 0
[Bylow, 2012, p. 17].

2) Box Approximation: In our other approach we will use
a box grid (see Figure 7) to symbolize if a space in the room
is free or not. If D(i, j) i.e., the local z value is greater than
zero, this means that the local 3D coordinate XL is located in
front of the image plane. We want to try to project each pixel
in the image with D(i, j) > 0 into the box grid using,

X = (x, y, z) = (
(i− cx)z

fx
,
(j − cy)z

fy
, z)T ,

where (i, j) ∈ Id, z = Id and fx, fy, cx and cy are intrinsic
camera parameters. Then we have to calculate in which box

JOURNAL ARTICLE, JUNE 2015 3

Fig. 6. Example of how a voxel grid can look like where each red dot is a
voxel.

the 3D coordinate is located. Since we know the resolution
and the size of the space in all dimensions we also know the
exact boundaries of each box so that the box grid can be easily
indexed to find the correct box using the global 3D coordinates.
Finally, we just need to mark the correct box as occupied.

Fig. 7. Example of a box grid where every filled box is occupied and every
empty box is free.

C. Path planning using the obstacle map
We implemented the D* Lite algorithm in three dimensions

using an obstacle map.
Every index in the matrix represents a global coordinate and

is considered a node. If a node is blocked and untraversable it
has the value 1 and if it is free and traversable it has the value
0. If a node is blocked there is no edges to or from that node.
If a node is free if got edges to all surrounding free nodes, at
most eight edges.

Since every node represents a global coordinate the weight
of the edges are only effected by how many dimensions it
covers, this is showed in Figure 8. The cost of an edge
along one dimension is 1. The cost of traveling in two
dimensions is the cost of traveling along the hypotenuse i.e√
2 ≈ 1.41. Finally the cost of traveling in three dimensions

is the euclidean distance between the nodes
√
3 ≈ 1.73. For

simplicity reasons we choose to scale the cost and use the
values 10 for one dimension, 14 for two dimensions and 17
for three dimensions.

Fig. 8. This figure shows the edge costs for traveling from the black node
to its neighbors. The cost of traveling from black to green is 1, black to blue
are

√
2 and from black to red are

√
3

III. EXPERIMENTAL SETUP

A. Overview
The Asus Xtion Pro Live RGB-D camera was mounted on

the Gantry-Tau robot, as can be seen in Figure 10, and con-
nected to a stationary computer running the Simulink model.
A new labcomm module, making the communication between
our stationary computer and the Gantry-Tau robot possible,
was implemented and wrapped to work with our Simulink
model, this is shown in Figure 9. When the model enters
the moving phase it sends the global coordinates (x, y, z)
relative to the initial position along with the four quaternion
elements q1, q2, q3, q4 to the robot using the labcomm module.
The quaternion elements will for simplicity never be changed
letting the robot keep the same rotation matrix along the
experiment.

Fig. 9. Simulink to robot communication flow

B. Labcomm
Labcomm is a binary protocol developed at LTH. Labcomm

only requires one way communication and keeps the communi-
cation to a minimum. It consists of a protocol specification and
a compiler that generates C or Java code for needed methods
such as encode/decode [Labcomm 2014].

The Labcomm module sets up a TCP IP socket to the
robot computer. The stationary computer running the Simulink
model is server and the robot is the client. After the server is
started the client can connect to the server. The Labcomm
module also initializes and registers a reader and a writer that
will handle the stream input/output on the server side.

The method used by the server side in the moving phase
can be seen in Listing 1.

JOURNAL ARTICLE, JUNE 2015 4

Listing 1. Server side method.
f l o a t s e t T a r g e t (f l o a t x , f l o a t y , f l o a t z ,

f l o a t q1 , f l o a t q2 , f l o a t q3 , f l o a t
q4)

It encodes and sends the robot target and then calls the
decoder that locks execution until an acknowledgement is sent
from the client application. The client code that controls the
robot is written in ABB’s robot programming language RAPID
[Berlin, 2012].

C. Gantry Tau
The Gantry Tau structure was invented by Torgny Broghårdh

and developed in the SMErobot [SMErobot 2009] and MON-
ROE [MONROE 2012] projects. In 2000 a new family of
parallel kinematic 3 DOF robots developed at ABB was
presented by Broghårdh where the six carbon fiber links where
clustered in a 3-2-1 configuration [Dressler, 2012]. The robot
has three prismatic joints implemented as carts on linear guide
ways connected to the end-effector plate [Dressler, 2012].

Fig. 10. L2 Gantry Tao Robot with mounted Xtion Asus Pro Live RGB-D
camera.

In this experiment we tested the system’s overall perfor-
mance as well as the path planning implementation. The
Gantry-Tau robot was set into a well suited starting position
with a goal position in front of it. Then an obstacle was
placed between the Gantry-Tau robot and the goal position.
The system starts with an empty obstacle map. After the
first iteration the obstacle map starts filling with what the
camera sees. After some iterations when the Gantry-Tau robot
approaches the obstacle it appears on the camera and is marked
in the obstacle map. The obstacle will then be located on the
planned path and the algorithm is forced to re-plan and travel
around the obstacle.

IV. RESULTS

A. Updating the Obstacle map
In Figure 11 we see the execution time of discretization

using SDF, Box Approximation using every pixel and Box

Approximation using every fifth row and every fifth column
(every 25th pixel). Notice that the CPU time measured can only
be used for relative time performance between the different
discretization algorithms. The time measurements are done
on the freiburg1 teddy sequence [Freiburg1 Teddy sequence
2011]. The statistics are presented in Table I.

Fig. 11. Executions time for discretization using SDF, Box Approximation
using every pixel and Box Approximation using every fifth pixel over 1400
samples.

CPU time SDF / s Box 1.1 / s Box 5.5 /s
Mean 1.51 1.307 5.29 ×10−2

Median 1.50 1.305 5.28 ×10−2

Max 2.28 2.002 8.40 ×10−2

Min 1.39 1.127 4.53 ×10−2

Std 8.92 ×10−2 6.78 ×10−2 0.30 ×10−2

TABLE I. EXECUTIONS TIME FOR DISCRETIZATION USING SDF, BOX
APPROXIMATION USING EVERY PIXEL AND BOX APPROXIMATION USING

EVERY FIFTH PIXEL OVER 1000 SAMPLES.

B. Path planning
In this experiment a paper cylinder was placed about 30cm

in front of and about 40cm under the robot (since the camera is
pointed downwards). The start position of the robot is the upper
blue dot marked in Figure 12. Then the robot was commanded
to move to a position behind the cylinder, marked as the lower
yellow dot in Figure 12. The shortest path from the start to
the goal position would be straight through the cylinder but as
the discrete map is created the path planning needs to re-plan
to avoid the obstacle resulting in a path traveling around the
cylinder. The environment can be seen in Figure 12 where the
discrete map of each camera is painted with the same color
as the camera dot. We clearly see how more and more of the
environment is discovered as the robot moves.

JOURNAL ARTICLE, JUNE 2015 5

Fig. 12. This figure shows camera position (circles) and obstacle map while
running path planning. The left blue camera is the start position and the lower
right yellow camera is the goal position.

V. CONCLUSIONS

A. Updating the Obstacle map
Results show that Box Approximation using every pixel is

faster than SDF and that Box Approximation using every fifth
pixel is much faster than SDF. Performance wise SDF is better
suited for image reconstruction with a higher need of precision
but for graph generation Box Approximation is to prefer. SDF
expects the area behind known objects to be untraversable until
it is proven to be clear of obstacles and Box Approximation
expects all areas to be traversable until an obstacle is spotted
making it more compatible with the D* Lite algorithm which
expects all paths to be free until proven otherwise. The main
motivation for using Box Approximation in this application
is that since SDF operates on the voxels a small object, for
example a thin pole or hanging string, may lie in between
two voxels and will not be represented in the discretization.
Box Approximation on the other hand that operates on the
pixels will instead fill the box even if just a small item is
located there. This can of course lead the algorithm to believe
that areas that could in fact be traveled are untraversable.
Considering the nature of the application a rather diminished
area avaliable for travel is better than a larger area with hidden
and unrepresented obstacles.

B. Path planning
The D* Lite performs well. When a new obstacle occurs it

re-plans the path and manages to avoid the obstacle.

ACKNOWLEDGMENT

First of all I want to thank my company supervisor Simon
Yngve who has guided and supported me all through my
thesis. I also want to thank my university supervisor Prof.
Anders Robertsson from the Department of Automatic Control

as well as my second university supervisor Erik Bylow from
the Department of Mathematics for all help they have given
me.

I also want to thank Maj Stenmark from the Department
of Computer Science for her help with the Labcomm robot
communication setup as well as her help with RobotStudio.

Finally I want to thank my family.

REFERENCES

Berlin, H., Program Manager (2012). Text based
robot programming made easy. Accessed 22 May 2015.
RobotStudio. URL: http : / /www.abb.com/blog/gad00540/
1DDE6.aspx?tag=RAPID%20programming.

Bylow, E. (2012). “Camera Tracking using a Dence 3D
Model”. Master’s Thesis. Lund University, Faculty of
Engineering, Center for Mathematical Sciences,
Mathematics, Lund , Sweden.

Dressler, I. (2012). “Modeling and Control of Stiff Robots
for Flexible Manufacturing”. PhD thesis. Department of
Automatic Control, Lund University, Sweden.

Freiburg1 Teddy sequence (2011). Last modified: 30 Sep 2011,
15:16. TUM. URL: http: / /vision. in. tum.de/data/datasets/
rgbd-dataset/download#freiburg1 teddy.

Labcomm (2014). URL: http://wiki.cs.lth.se/moin/LabComm.

MONROE (2012). Accessed 7 May 2015. Hyper-Modular
Open Networked RObot systems with Excellent
performance. URL: http://www.echord.info/wikis/website/
monroe.

P. E. Hart N. J. Nilsson, B. R. (1968). “A Formal Basis
for the Heuristic Determination of Minimum Cost Paths”.
IEEE Transactions on Systems Science and Cybernetics 4,
pp. 100–107.

S. Koening, M. L. (2002). “Incremental A*”. In: Advances
in Neural Information Processing Systems (NIPS). Georgia
Institute of Technology, College of Computing, Atlanta,
pp. 1539–1546.

– (2005). “Fast replanning for navigation in unknown terrain”.
Transactions on Robotics 21:3, pp. 354–363.

SMErobot (2009). Accessed 7 May 2015. The European Robot
Initiative for Strengthening the Competitiveness of SMEs in
Manufacturing. URL: http://www.smerobot.org/.

Stentz, A. (1995). “The Focussed D* Algorithm for Real-Time
Replanning”. In: In Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 1652–1659.

http://www.abb.com/blog/gad00540/1DDE6.aspx?tag=RAPID%20programming
http://www.abb.com/blog/gad00540/1DDE6.aspx?tag=RAPID%20programming
http://vision.in.tum.de/data/datasets/rgbd-dataset/dow nload#freiburg1_teddy
http://vision.in.tum.de/data/datasets/rgbd-dataset/dow nload#freiburg1_teddy
http://wiki.cs.lth.se/moin/LabComm
http://www.echord.info/wikis/website/monroe
http://www.echord.info/wikis/website/monroe
http://www.smerobot.org/

	Introduction
	Updating the obstacle map
	Transforming depth data into global coordinates
	Discretization methods
	Signed Distance Function
	Box Approximation

	Path planning using the obstacle map

	Experimental setup
	Overview
	Labcomm
	Gantry Tau

	Results
	Updating the Obstacle map
	Path planning

	Conclusions
	Updating the Obstacle map
	Path planning

