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Abstract

In this thesis a Moving Horizon Estimator (MHE) has been implemented for the
JModelica.org platform. JModelica.org is an open-source software platform for sim-
ulation and optimization of systems described in the modeling language Modelica.
MHE is an optimization-based strategy for state estimation where, at each time step,
a finite horizon optimization problem is solved to generate an estimate of the current
state values. The goal has been to implement an MHE that works with many already
existing Modelica models and that has an intuitive user interface. The performance
of the implemented MHE is evaluated using both linear and nonlinear systems in a
series of simulation examples. The results indicate that the MHE performs well.
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1
Introduction

For many physical systems it is impossible to get measurements of all the required
states. These systems therefore require the use of state estimators to provide an value
for the unmeasurable variables. Measurements taken in an environment under the
influence of high noise levels can also benefit from the use of a state estimator. For
linear, unconstrained systems with white Gaussian noise disturbances with known
distributions, the Kalman filter functions as the optimal estimator. However, in most
practical applications the systems being dealt with are not linear and can not directly
make use of the Kalman filter. For the sake of being able to use state estimators
in real applications, different methods for nonlinear systems have been developed
[Soroush, 1998].

A natural extension to the Kalman filter that makes it applicable to nonlinear
systems is the extended Kalman filter (EKF), which uses repeated local lineariza-
tion of the nonlinear system around the current estimate [Gelb, 1974]. Having the
system linearized around the current point means that the Kalman filter can then
be directly applied. EKF has been used successfully in several different applica-
tions and can be considered the standard method for state estimation of nonlinear
systems, even though very little can be proven about its stability [Liu, 2013]. The
use of linearization means that the nonlinear properties of the system are ignored,
which has been shown to result in the algorithm failing in specific cases [Wilson
et al., 1998]. EKF also does not have the ability to take into consideration con-
straints on the system states. This has been shown to, in some cases, result in poor
performance of the EKF algorithm [Rao et al., 2003].

Moving Horizon Estimation (MHE) uses an optimization-based approach to
perform state estimation. To get estimates of the states, a fixed-horizon optimization
problem is solved at each time step. MHE is in many respects similar to Model Pre-
dictive Control (MPC) and MHE started gaining interest as MPC rose in popularity.
The solution of the optimization problem requires more computational power than
that of the methods MHE is trying to replace, mainly EKF. However, the continuing
improvement of both hardware and the efficiency of the algorithms used in com-
puting has made it possible to use MHE in more and more applications [Rao et al.,
2003].
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Chapter 1. Introduction

One important advantage of MHE is that, unlike EKF, linearization is not used,
meaning that potentially important nonlinear dynamics are not lost. The main ad-
vantage of MHE is that since it uses optimization to perform state estimation it has
the ability to explicitly handle constraints on states and noise sources. Thus, physi-
cal properties of the system, such as concentration and pressure being non-negative,
and known properties of the disturbances can be utilized to make the model adhere
to the behavior of the process [Rao and Rawlings, 2002].

Modelica [Modelica and the Modelica Association] is a non-proprietary, object-
oriented language used for modeling dynamic systems. Models of components or
whole systems are described using differential, algebraic and discrete equations.
These components can then be reused and connected giving the user a convenient
way of expressing complex, large systems. Modelica works in real-time, meaning
that MHE can not be directly applied to Modelica models.

JModelica.org [JModelica.org] is an open-source, Modelica based platform for
performing simulation and optimization of Modelica models. The platform extends
the Modelica language with the Optimica extension, which provides the platform
with the ability to perform optimization based on Modelica models. JModelica.org
is maintained by the Swedish company Modelon AB [Modelon AB] in cooperation
with academia.

1.1 State of the Art

Recent development in the MHE field seems to consist of two main parts: finding
new, effective ways to solve the optimization problem and finding new ways to
summarize the information before the finite horizon over which the optimization is
performed.

To make the optimization more effective, [Zavala et al., 2008] presents a new
way of performing the optimization based on background optimization and nonlin-
ear programming (NLP) sensitivity concepts. This new structure allows a large part
of the computations to take place in between samples, allowing for quick estimation
when the new measurement data become available.

Several different ways of approximating the data outside of the finite horizon
window have been suggested. The classic way of doing it is by using the same co-
variance matrix update formula found in the EKF [Rao and Rawlings, 2002]. After
that, other alternatives have been suggested. In [Qu and Hahn, 2009], a way that uses
the unscented Kalman filter (UKF) to approximate the old data is suggested. This
approach avoids performing linearization and produces improved results for some
systems compared to that of using the EKF covariance update. It is also possible
to use particle filters for the estimation of the old data, as suggested in [Ungarala,
2009].

When it comes to available software for performing MHE on nonlinear systems,
there is not an overabundance of choices. There is, however, an implementation
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1.2 Aim of the Thesis and Contributions

written in Octave whose details are described in [Tenny and Rawlings, 2002]. That
implementation is a part of a larger toolbox for MPC called MPC tools [Rawlings
Group].

1.2 Aim of the Thesis and Contributions

The goal of this thesis is to implement a nonlinear MHE for the JModelica.org plat-
form. The implementation is created as a basis for a possible future MHE toolbox,
meaning that the implementation is made with the thought of it being easily expand-
able, if more features are desired later on. The goal is therefore not to implement
several ways of approximating the data outside of the optimization window or to
implement an abundance of features. The focus is instead on implementing the core
functionality of nonlinear MHE.

Another goal is that the implementation should work with as many as possible
of the already existing Modelica models, and that the interface to the user should
demand as little work as possible from the users side, that is, having few inputs that
are on an intuitive form.

Implementing this in the JModelica.org platform means that another open-
source software for MHE is made available. Since it is a part of the JModelica.org
platform it will be compatible with models written in the popular modeling language
Modelica.

1.3 Outline

In Chapters 2, 3 and 4 the background of the thesis is presented. Chapter 2 presents
the different methods of state estimation that relates to this thesis. Chapter 3 goes
on by introducing the tools used in the thesis. How the most critical components
of these tools are used are then explained in Chapter 4. This background is then
used to explain the structure of the implementation and the different design choices
in Chapter 5. Chapter 6 introduces the simulation examples used to evaluate the
performance of the estimator and presents the results of said examples. The report
is then rounded off in Chapter 7 by presenting the conclusions that can be drawn
and how the MHE platform can be further developed in the future.
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2
State Estimation

This chapter provides some background about the field of state estimation rele-
vant to this thesis. The Kalman filter and its nonlinear extension the EKF are pre-
sented, as they represent the traditional way of performing state estimation. Two
optimization-based estimators, the full information estimator and the MHE, are
presented. Different ways of approximating the data outside of the optimization
window of the MHE are presented.

2.1 The Kalman Filter

Since 1960 when Kalman wrote his influential article [Kalman, 1960] on a recur-
sive solution to the linear data filtering problem, much research has been done on
the Kalman filter. The filter itself is made up of a set of recursive equations and
for a linear, unconstrained system this set of equations provides an optimal esti-
mate [Brown, 1983].

Given a linear, time discrete system on the form

xk+1 = Akxk +Bkuk +Gkwk (2.1)

and observations given by
yk =Ckxk + vk (2.2)

where xk is the state vector, yk the measurement vector, the Ak matrix specifies the
dynamics of the linear system, the Bk matrix specifies how control inputs enter the
system, the Ck matrix gives how the measurements depends on the states, the Gk
matrix describes how the process noise enters the system, wk the process noise vec-
tor and vk the measurement noise vector. wk and vk are assumed to be uncorrelated,
zero mean, Gaussian variables with a covariance specified by the matrices Qk and
Rk respectively. It is also assumed that an a priori estimate of the state vector x̂−0
is available. Here the "hat" indicates an estimated variable and the "superminus"
notation indicates that it is the a priori estimate. The error covariance matrix for the
a priori estimate at the first time step P0 is also assumed to be known. Given the a
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2.1 The Kalman Filter

priori state estimate defined as x̂−k and the a posteriori state estimate defined as x̂k,
the a priori error and the a posteriori error are defined as

e−k ≡ xk− x̂−k

and
ek ≡ xk− x̂k

and their respective covariance matrices are defined as

P−k = E[e−k e−T
k ] (2.3)

and
Pk = E[ekeT

k ] (2.4)

The a posteriori state estimate computed from x̂− and y is the measurement
update

x̂k = x̂−k +Kk(yk−Ckx̂−k ) (2.5)

where Kk is called the Kalman gain or the blending factor [Bishop and Welch,
2001]. One usually refers to the difference (yk−Ckx̂−k ) as the measurement residual
or innovation and is a measure of the difference between the expected state val-
ues and the measured ones. A small measurement residual therefore corresponds to
having measurements which correspond well to the predicted values. The predicted
values are generated from the model using the time update, i.e.,

x̂−k+1 = Akx̂k +Bkuk (2.6)

where the process noise is removed since it is assumed to have a mean equal to zero
and the best estimation of it is therefore to have it removed.

Using the definition of the a priori error we have

e−k+1 = xk+1− x̂−k+1

= Akxk +Gkwk−Akx̂k

= Akek +Gkwk

(2.8)

Using this in (2.3), an expression for projecting the a priori error covariance
matrix forwards in time (time update) can be constructed

P−k+1 = E[e−k+1e−T
k+1]

= E[(Akek +Gkwk)(Akek +Gkwk)
T ]

= AkPkAT
k +GkQkGT

k

(2.10)
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Chapter 2. State Estimation

The Kalman gain defined as

Kk = P−k CT
k (CkP−k CT

k +Rk)
−1 (2.11)

is chosen so that it minimizes the a posteriori error covariance matrix. For details
see [Bishop and Welch, 2001] and the sources contained therein.

From the expression it is evident that a Pk of small magnitude results in a Kalman
gain of small magnitude, which in turn results in the residual being weighted less
heavily. This can be seen as trusting the measurement yk less and less as the magni-
tude of Pk grows smaller and putting more trust in the predicted value Ckx̂−k . On the
other hand a measurement covariance matrix Rk with small magnitude results in the
magnitude of the Kalman Gain being larger and therefore more faith is put in the
measurement compared to the prediction.

The update expression for the a posteriori error covariance matrix is given by

Pk = P−k −P−k CT
k (CkP−k CT

k +Rk)
−1CkP−k (2.12)

For more detail on the derivation of the expression, see for example [Brown, 1983].
Using these equations, the filter is constructed. The filter operation consists of

two major phases, a prediction phase and a correction phase. In the prediction phase,
the a priori state estimate and the error covariance are projected forwards in time
and in the correction phase the measurements are used to improve the state estimate
and the error covariance matrix. The estimator is initialized using the known P−0
and x̂−0 . In Figure 2.1 an overview of the estimator is presented.

The major tuning parameters of the filter are the noise covariance matrices Qk
and Rk. Since they are usually unknown they need to be estimated somehow before
using the Kalman filter.

2.2 Extended Kalman Filter

The Kalman filter is the optimal estimator for linear, unconstrained systems. Most
systems of interest are, however, not linear. This means that the Kalman filter can
not be applied in its unmodified state. One way to make the filter applicable to
nonlinear systems is to linearize the system around the current work point, and in
doing so it is possible to apply the Kalman filter on the obtained linear system. At
the cost of performing a linearization at every time point the Kalman filter can thus
be extended to be used on nonlinear systems. The method of linearizing a system
and applying the Kalman filter update to perform estimation is commonly referred
to as the Extended Kalman filter or EKF.

For a long time the EKF was the defacto standard estimator for nonlinear sys-
tems, even though very little can be proven concerning the stability properties of the
filter. This being the case the filter has still been successfully used in many different
applications [Soroush, 1998].
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2.2 Extended Kalman Filter

Figure 2.1 High-level diagram of the Kalman filter loop

The equations that make up an EKF are mostly the same as in the regular
Kalman filter. However, some of the equations need to modified to account for the
different system representation and the fact that linearization is performed. The dis-
crete, nonlinear system can be represented as

xk+1 = f (xk,uk,wk) (2.13)
yk = h(xk,vk)

where f (·) and h(·) can be nonlinear functions. f (·) specifies the dynamics and h(·)
describes the measurement equation.

Since the system is now on a different form and contains nonlinear functions the
time update is now given by

x̂−k+1 = f (x̂k,uk,0) (2.14)

where again the best approximation of the process noise wk is at its mean which is
assumed to be equal to zero.

The measurement update is changed to

x̂k = x̂−k +Kk(yk−h(x̂−k ,0)) (2.15)

15



Chapter 2. State Estimation

Figure 2.2 High-level diagram of the extended Kalman filter loop

to account for the nonlinear measurement dynamics. The measurement noise vk is
set to its mean, which is assumed to be equal to zero, as this is the best approxima-
tion.

The other equations remain unchanged but the matrices contained within have
been exchanged for the matrices of the linearized system. The linearized system is
given by

xk+1 = f (x̂k,uk,0)+Ak(xk− x̂k)+Gkwk (2.16a)

yk = h(x̂−k ,0)+Ck(xk− x̂−k )+ vk (2.16b)

where the matrices are given by

Ak :=
∂ f (xk,uk,0)

∂x

∣∣∣∣
x=x̂k

, Ck :=
∂h(x,0)

∂x

∣∣∣∣
x=x̂−k

, Gk :=
∂ f (x̂k,w)

∂w

∣∣∣∣
w=0

(2.17)

The new expressions for the time update and the measurement update of the
states results in an algorithm summarized in Figure 2.2. For more details on the
extended Kalman filter, see for instance [Bishop and Welch, 2001] and the sources
given therein.
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2.3 Full Information Estimation

2.3 Full Information Estimation

One of the major drawbacks of both the Kalman filter and the EKF is their inability
to explicitly handle constraints. Full information estimation (FIE) [Rawlings and Ji,
2012] is an optimization-based approach to perform state estimation. At every time
step an optimization problem is solved to generate an estimate which is optimal with
respect to a cost function. All the measurement data are used in the optimization,
hence the name.

The FIE formulation can be derived using a probability theory interpretation
of the state estimation problem. Assuming the same system as in the EKF case,
i.e., (2.13) and also assuming that the states and disturbances are subject to the
constraints

xk ∈ Xk, wk ∈Wk, vk ∈ Vk (2.18)

assuming for k≥ 0 that Xk ⊆Rn, Wk ⊆Rm and Vk ⊆Rp are closed sets with 0∈Wk
0 ∈Vk. n, m and p are integers specifying the different dimensions of the system. If
the system is also considered a discrete-time Markov process, i.e., the wk vectors are
independent, the goal can be expressed as finding the most probable state trajectory
given the measurements received from the system. If expressed using a maximum
a posteriori Bayesian (MAP) estimate [Sorenson, 1980], it results in the problem
formulation

{x̂0|T−1, x̂1|T−1, .., x̂T |T−1}= arg max
x0,x1,...,xT

p(x0,x1, ...,xT |y0, ...,yT−1) (2.19)

where x̂k|T−1 is the estimate of xk given measurements up to the time T −1.
Using Bayes rule and the Markov property, it is possible to rewrite this expres-

sion on the form

p(x0,x1, ...,xT |y0, ...,yT−1) ∝ px0(x0)
T−1

∏
k=0

pvk(yk−h(xk))p(xk+1|xk) (2.20)

with
p(xk+1|xk) = pwk(xk+1− f (xk,uk)) (2.21)

which holds if wk is assumed to be normally distributed, mutually independent and
the system in (2.13) can be rewritten as

xk+1 = f (xk,uk)+Gkwk (2.22)

For more details on the derivation above, see [Rao, 2000].
Combining this with the MAP estimate formulation we get the optimization

problem
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Chapter 2. State Estimation

arg max
x0,...,xT

p(x0, ...,xT |y0, ...,yT−1) =

arg max
x0,...,xT

px0(x0)
T−1

∏
k=0

pvk(yk−h(xk))pwk(xk+1− f (xk,uk)) =

arg max
x0,...,xT

log px0(x0)+
T−1

∑
k=0

log pvk(yk−h(xk))+ log pwk(xk+1− f (xk,uk)) =

arg min
x0,...,xT

T−1

∑
k=0
‖yk−h(xk)‖2

R−1
k

+‖xk+1− f (xk,uk)‖2
Q−1

k
+‖x0− x̄0‖2

P−1
o

=

arg min
x0,...,xT

T−1

∑
k=0
‖vk‖2

R−1
k

+‖wk‖2
Q−1

k
+‖x0− x̄0‖2

P−1
o

(2.23)

where x̄0 is the a priori estimate of the initial value of the state variables. The se-
quence x0, ...,xT can be generated using x0 and the sequence of process noise from
time k = 0 to T−1, {wk}T−1

k=0 . Knowing this, we can rewrite the problem formulation
in (2.23) as follows to make the notations more convenient

min
x0,{w}T−1

k=0

ΦT (x0,{wk}) (2.24)

with

ΦT (x0,{wk}) =
T−1

∑
k=0
‖vk‖2

R−1
k

+‖wk‖2
Q−1

k
+‖x0− x̄0‖2

P−1
0

(2.25)

The matrices Rk, Qk and P0 are the covariance matrices of vk, wk and x0 respectively.
They can also be seen as weighting matrices of the optimization problem. If viewed
as design variables rather than covariance matrices, the magnitude of the matrices
can be seen as the amount of confidence one has in the respective quantities. The
magnitude of Qk can be seen as the level of confidence held in the accuracy of the
model, Rk the confidence in the accuracy of the sensors and P0 the confidence held
in the knowledge of the initial state of the system, where a large value represent a
low level of confidence [Rao and Rawlings, 2002].

The full information formulation has many desirable properties. Robust global
asymptotic stability (RGAS) can be shown for the estimator given certain restric-
tions on the states and disturbances, for details see [Rawlings and Ji, 2012]. The full
information estimator is, however, not suited for any kind of online implementation.
This is because the size of the problem will not converge as T increases. Since this
is the case, it is better to view the FIE formulation as something that describes the
properties you want your optimization based estimator to have rather than to view
it as an actual estimation scheme.
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2.4 Moving Horizon Estimation

2.4 Moving Horizon Estimation

To transform the full information estimator into something that is applicable in a real
situation, the problem size has to be reduced. MHE does this by only considering
the measurements going N steps back and approximating the older information.
Consider

ΦT (x0,{wk}T−1
k=0 ) =

T−1

∑
k=T−N

‖vk‖2
R−1 +‖wk‖2

Q−1 +

T−N−1

∑
k=0

‖vk‖2
R−1 +‖wk‖2

Q−1 +‖x0− x̄0‖2
P−1

0
(2.26)

where the only difference from (2.25) is that the sum has been split into two inter-
vals, 0 ≤ k ≤ T −N− 1 and T −N ≤ k ≤ T . Since the system was modeled as a
Markov process the first sum in 2.26 only depends on data from within the window
stretching back N steps [Rao and Rawlings, 2002]. It can therefore be rewritten as

min
xT−N ,{wk}T−1

k=T−N

T−1

∑
k=T−N

‖vk‖2
R−1 +‖wk‖2

Q−1 +ZT−N(xT−N) (2.27)

with the arrival cost

ZT−N(xT−N) = min
x0,{wk}T−N−1

k=0

ΦT−N(x0,{wk}T−N−1
k=0 ) (2.28)

Solving (2.27) gives the optimal pair x̂T−N and {wk|T−1}T−1
T−N which can be used to

generate the sequence of optimal state estimates {x̂k|T−1}T
k=T−N .

The arrival cost ZT−N(xT−N) is used to summarizes the influence of the data out-
side of the window. To transform the MHE formulation into a problem of bounded
size as T grows, the arrival cost must be rewritten as either an algebraic expres-
sion or as some kind of approximation ẐT−N(xT−N) that can be written as an alge-
braic expression. It is possible in the case of an unconstrained, linear system with
quadratic objectives to write the arrival cost as such an expression without approx-
imating. This is done by setting the horizon length N to one and using the same
update of P that was used in the Kalman filter. In fact, doing this results in the MHE
becoming the standard Kalman filter [Rao et al., 2003].

2.4.1 Choice of Arrival Cost Approximation
Different choices for the approximation of the arrival cost have been proposed.
Since the choice of approximation influences the stability and performance of the
algorithm [Rao, 2000] the choice of arrival cost is an important design parameter
when constructing an MHE.

19



Chapter 2. State Estimation

2.4.1.1 Zero Prior Weighting The simplest solution would be to set Ẑτ(xτ) = 0.
This means that all prior information is discarded and that the states are estimated
using only the information contained in the estimation window. The main draw-
backs of this is that the system is required to be observable to be able to guarantee
convergence and that the horizon N has to be long enough in order to achieve perfor-
mance comparable to that of the full information estimator [Rawlings and Mayne,
2009].

2.4.1.2 EKF Approximation In [Rao and Rawlings, 2002] the arrival cost ap-
proximation is done by constructing a first order Taylor polynomial of the model
around the estimated trajectory. This results in using an equivalent of the covari-
ance update scheme used in EKF. The covariance update can be written as a single
equation by inserting (2.10) into (2.12). This results in

Pk+1 = GkQkGT
k +AkPkAT

k −AkPkCT
k (Rk +CkPkCT

k )
−1CkPkAT

k (2.29)

where the matrices Ak, Ck and Gk are the result of the same linearization performed
for the EKF, i.e., (2.17).

This results in an arrival cost approximation on the form

ẐT = ‖x̄T − x̂T‖2
P−1

T
(2.30)

where x̄T is the estimate of the states at time T given measurements up until time
T −1.

Stability for this scheme is, however, not guaranteed. For stability to be granted
one must satisfy some technical conditions stated in [Rao et al., 2003]. It is, how-
ever, possible to introduce a forgetting factor β ∈ [0,1]. The forgetting factor makes
sure that the prior data are not weighted too heavily by scaling the arrival scaling
the arrival cost approximation, i.e., β ẐT . Choosing the value of β to make sure this
is achieved involves, at every time step, first performing the optimization using zero
prior weighting. The interested reader is directed to [Rao et al., 2003] for details.
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3
Tools

This chapter briefly introduces the different tools used in the thesis to familiarize
the reader with them. How the most critical tools can be used are further explained
in chapter 4.

3.1 Modelica

Modelica is a high level, object-oriented, multi-domain modeling language that en-
ables component-based modeling of dynamic systems. The language is maintained
and developed by the non-profit association The Modelica Association [Modelica
and the Modelica Association], which also develops the free Modelica Standard
Library. The library contains a large amount of generic model components that de-
scribe the behavior of components used in many different applications.

A Modelica model can contain algorithmic statements similar to those found in
other programming languages but the main part of a Modelica model is the equa-
tions used to describe the dynamics of the model. The equations do not have to
be written on any specific form or order as they are manipulated symbolically by
the compiler. This means that the dynamics of a model written in Modelica can be
written in a very convenient way that reduces some of the burden from the user and
places it instead on the compiler, thus reducing the risk of human error.

3.2 Python

Python is an open-source, high level, general-purpose programming language. The
language was introduced in 1991 and is today used in a wide area of different
applications. The language includes a large standard library and a lot of different
third-party packages are freely available and add new types of functionality. Most
relevant to this thesis are the packages that enable scientific computing, namely
NumPy [NumPy] and SciPy [SciPy], and a package called matplotlib [matplotlib]
that provides plotting capabilities designed to closely resemble those found in the
numerical computing software MATLAB [MATLAB].
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Chapter 3. Tools

3.3 JModelica.org

JModelica.org is an open-source, Modelica-based platform for performing simula-
tion, analysis and optimization of large, complex dynamic systems. Python is used
to create a user-friendly way of interfacing the different parts of JModelica.org.
JModelica.org resulted from research done at the Department of Automatic Control
at Lund University and is today maintained by the Swedish company Modelon AB
in collaboration with academia. The platform was introduced in [Åkesson et al.,
2010].

Where most other Modelica compilers mainly aim to perform simulation, the
focus of JModelica.org is instead on optimization. The platform incorporates the
Modelica extension Optimica [Åkesson, 2008] which allows for optimization prob-
lems on Modelica models to be stated in a convenient fashion within the Modelica
framework. Using the included state-of-the-art numerical solvers the optimization
problems can then be solved. In this thesis, a CasADi-based [CasADi] tool chain is
used to solve the optimization problem. CasADi is a symbolic framework used to
perform automatic differentiation and numeric optimization.
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4
Using JModelica.org

Since many different features of the JModelica.org platform are being used in this
thesis, it is necessary to explain some of the key features more in depth. In this
section, some key terminology and features are therefore explained to make the
later chapter on the implementation easier to follow.

4.1 Modelica Models

Modelling a system for use in JModelica.org is done using Modelica. The problem
is, at its core, defined by the differential algebraic equations (DAE) that describes
the dynamics of the system. Different properties about the variables such as their
initial value or maximum and minimum value can also be specified. These prop-
erties are referred to as attributes. Listing 1 presents a simple example of a linear
time-invariant (LTI) system modeled in Modelica.

4.2 FMUModel

Having built a model in Modelica, JModelica.org offers capabilities to compile
the model into a Functional Mock-up Unit (FMU). An FMU is a compressed file
that contains a description of the model. The description used follows a convention
called the Functional Mock-up Interface (FMI) [The FMI standard], detailing how
equations, variables, and different properties are represented in the file. The FMI
standard is used so that different software can access the same models, enabling
easier exchange of models.

The FMU-compiler in JModelica.org can be given a large number of different
options. In this thesis only two non-default option for the compiler are utilized.
The options are described in Table 4.1. See the JModelica.org user guide [JModel-
ica.org] for more details on the compilation process and the other options.

The compiler option inline_functions is used to indicate to the compiler
how much inlining of functions is to be performed. Inlining functions means to
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model LTI

parameter Real A = -1;

parameter Real B = 1;

parameter Real C = 1;

Real x(start = 4, fixed = true);

Real y;

input Real u;

input Real w;

equation

der(x) = A*x + B*u + w;

y = C*x;

end LTI;

Listing 1: Example of a very simple LTI system defined in Modelica. The fixed at-
tribute is a Boolean that determines whether the value of the attribute start should
be considered an initial value (fixed = true) or simply an initial guess for the
solver (fixed = false).

Table 4.1 Non-default compiler options used in this thesis

state_initial_equations Boolean that, if set to True, indicates that
all initial equations are removed and replaced
with an initial equation for each of the states.
A parameter for each of the initial values is
created. Default: False

inline_functions Option indicating if function inlining should
be performed. Default: trivial

replace a function call with a copy of the function being called. This is done to im-
prove the speed and is done at the cost of space. If too much inlining is performed it
can, however, have a negative impact on the speed [Chen et al., 1993]. The available
levels for the option are none, trivial and all.

The equations of a model in Modelica are given as DAEs. The FMI standard
only support ordinary differential equations (ODE). The DAEs are therefore con-
verted to ODEs during the compilation process.

From a compiled FMU, a FMUModel object can be created in JModelica.org.
This type of object is used to perform simulation of the model. In this thesis, the
FMUModel objects are used to produce artificial measurement data which in turn
is used when evaluating the performance of the estimator. It would be possible to
use data from some real process, but using artificial data means that it is easier to
analyze the performance and robustness of the estimator since the source of the data
is well defined.
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4.2 FMUModel

The FMUModel object has a number of different methods for checking the
different properties of the model as well as methods for getting and setting
values of the parameters. These can be used, for instance, to set the values
of the newly created parameters for the initial values of the states, given that
state_initial_equations was set to True. The main feature of the FMUModel

object is, however, the simulate function which simulates the model. The function
is called using a function call on the form

res = model.simulate(start_time = 0.,final_time = 10.,

input = 0, options = {})

where model is the FMUModel object, start_time and final_time define the
time interval of the simulation, input defines the value of the model input signals
and options specifies the options. The call above specifies that the inputs are to
be set to zero; for details on how more complicated inputs are specified, see the
JModelica.org user guide [JModelica.org]. The returned res is a result object which
contains the trajectories of all the different variables in the model. It is important
to note that it is not possible to have the variables adhere to constraints. Since the
simulations are used to create artificial measurement data it is important to make
sure that the data produced do not violate any imposed constraints later on in the
optimization part of the estimation.

The options in the example above are given as an empty dictionary object
resulting in the defaults options being used. The non-default options used are given
in Table 4.2.

Table 4.2 Non-default options for the simulation of an FMUModel used in this the-
sis.

ncp Number of communication points used. If cho-
sen as 0 the solver will return the internal steps
taken. Default: 0

Changing the number of communication points is done to make sure that the
simulation results contain data for the desired time points. Setting the number of
communication points to one less than the number of data points wished to be gen-
erated ensures that data are generated for the correct time points.

The simulation itself is performed using Assimulo [Assimulo]. Assimulo is a
simulation tool used to solve ODEs. The tool itself is not a solver, but instead serves
as a high-level interface that allows for the use of many different solvers written in
different programming languages.
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4.3 Optimica

Optimica allows optimization problems to be defined within the Modelica frame-
work. This is done by introducing a number of new features to Modelica. Chief
among these is the new kind of class called optimization. The class functions
similarly to the usual model class, in that it is possible to define a model by speci-
fying the DAEs that control the dynamics. But in addition to this cost functions and
constraints are introduced, as well as a number of new attributes. Listing 2 presents
a simple example of an optimization class.

The cost function in Optimica consists of two different parts: the objective

and the objectiveIntegrand part and together they make up the cost function of
the problem. The expression in the objectiveIntegrand is integrated over time
and is therefore used to account for the cost of time-varying quantities such as the
value of states or inputs. The objective part is used to house time-invariant quan-
tities such as parameters or the value of a time-varying variable at a certain point
in time. Expressed next to the cost function are the two new attributes startTime
and finalTime, which define the time interval over which the optimization is per-
formed.

Constraints for the optimization are expressed in the constraint section. The
constraints are separated into two different categories, path constraints and point
constraints. Point constraints are constraints at single points in time such as

s(z(t0))≤ 0 or
s(z(t0)) = 0 (4.1)

where s(·) is some arbitrary function, z the constrained variables and t0 the time
at which the constraint applies. Path constraints on the other hand are constraints
imposed for every point in time such as

s(z)≤ 0 or
s(z) = 0 (4.2)

The possibility to access the value of a parameter at a certain time point is intro-
duced in Optimica. This can be utilized both in point constraints as well as in the
objective part of the cost function, which can contain the value of variables at a
certain time point.

The new free attribute is used to specify which variables are free in the opti-
mization, all non-parameter variables are by default set as free variables. To provide
the solver with an initial guess for a variable the initialGuess attribute is used.

4.4 OptimizationProblem

To perform optimization using CasADi within the JModelica.org platform, an op-
timization problem formulation in Optimica is used to create an Optimization-
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optimization OptimalControlLTI(objectiveIntegrand =

(x1 - x1_ref)^2 + (x2 - x2_ref)^2,

startTime = 0, finalTime = 10)

extends LTI(u1(free = true, initialGuess = 0),

u2(free = true, initialGuess = 0));

parameter Real x1_ref = 3;

parameter Real x2_ref = 5;

constraint

u1 >= -1;

u1 <= 1;

x1(finalTime) = 3;

end OptimalControlLTI;

Listing 2: Example of a simple optimal control problem defined in Optimica. The
LTI system in Listing 1 is extended, so that the optimization problem includes all
the variables, parameters and DAEs of that system. Some of the inputs from the LTI
system are set as free variables and given initial guesses. New parameters defining
reference values for the states are added and path and point constraints are added.
The cost function punishes deviations of the states from their reference values.

Problem object in the Python environment. The OptimizationProblem object
does not currently have a corresponding file format but is instead transferred directly
from the compiler. The process is similar to that of the compiling and loading pro-
cess of the FMUModel, but is performed in one step. The same compiler options as
for the FMU are available, i.e., those in Table 4.1. It is also possible for the compiler
to take a Modelica model and transfer it to an OptimizationProblem object. This
option is specified in the function call. In this case, the OptimizationProblem is
created with the optimization parts empty, i.e., no constraints and a cost function
simply set to zero.

When an OptimizationProblem object is created, the DAEs are handled sym-
bolically. If two variables are found to be equal, one of the variables will be replaced
with the other to reduce the number of variables in the model. The replaced variable
will be set as the alias of the variable used in the model.

It is possible to manipulate the OptimizationProblem object in a number of
ways. There are functions for modifying the model by, for instance, adding new
parameters, variables, DAEs, and initial equations. The various attributes for the
variables and parameters can be changed. The formulation for the optimization can
also be altered. It is possible to change the cost function, redefine the constraints
and set the time interval for the optimization. Also the attributes associated with
the optimization, free variables, and initial guesses can be changed. Hence, the
OptimizationProblem object is very flexible to work with. It is entirely possi-
ble to start with an empty problem and build up the desired problem formulation
using the interface to the OptimizationProblem object.
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Optimization is performed using the optimize function. When called, CasADi
uses automatic differentiation to symbolically calculate the first and second order
derivatives of the DAEs and then a solver, either IPOPT [Wächter and Biegler,
2006] or WORHP, is used to solve the resulting nonlinear programming (NLP)
problem.

Direct collocation is used to transfer the problem from an infinite dimensional
one to a NLP. The time horizon, the time interval of the optimization, is first sepa-
rated into elements. Each variable is then approximated as a polynomial within each
element. This polynomial is referred to as the collocation polynomial, and the order
of the polynomial is one below the number of points used as interpolation points.
These points are called collocation points. It is possible to place the collocation
points in a number of ways. The default for the OptimizationProblem is called
Radau collocation, where one point is placed on the boundary of the element to en-
sure that stability property of the continuous system is kept for the discrete system.
The other collocation points are placed for maximum accuracy. The number of col-
location points chosen is equivalent to the stage order the of implicit Runge-Kutta
method used to perform the discretization. For instance if set to one, implicit Euler
is used as the discretization method. For more details see the JModelica.org user
guide [JModelica.org].

The function call is on the form

res = op.optimize(options={})

where op is the OptimizationProblem object and res the options object. When
the results are given as an empty dictionary, as in the example above, the default op-
tions are used. In Table 4.3 the non-default options used in this thesis are presented.

Table 4.3 Non-default options for the optimization of an OptimizationProblem

object used in this thesis.

n_e The number of finite elements. Default: 50
n_cp The number of collocation points in each ele-

ment. Default: 3
blocking_factors Used to enforce piece-wise constant inputs.

Values can only change at element boundaries.
Specified as a list of over how many elements
each input is constant. Default: None

external_data Used to specify data used to eliminate, con-
strain or penalize certain time varying vari-
ables. Default: None

The blocking factors can be specified by, for instance, a list on the form

blocking_factors = [2, 2, 1]
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where each integer specifies the number of elements the corresponding input signal
is constant over. The example list above would result in an input signal on the form

u = (u1,u1,u2,u2,u3)

It is important to note that the sum of the items in the list used to specify the blocking
factors must equal the number of elements n_e. If no blocking factors are specified,
then the collocation polynomials are used to describe the input signal wave form.

In this thesis, blocking factors are only used to make the inputs discrete, since in
many real applications it is much more natural to assume that the inputs are discrete
rather than continuous. It is not possible to use discrete input signals in the simula-
tions performed using an FMUModel. This means that if measurement data created
from an FMUModel object is used for the MHE, there will be a mismatch between
the two. Simulation using an OptimizationProblem object is not a supported fea-
ture, but it is possible to optimize using no free variables and a zero cost function.
This results in a "simulation" where it is possible to specify blocking factors and
thus having discrete inputs in the simulation as well. Using this method also allows
the measurement data to be generated using the same discretization that is later used
in the estimator.

The external_data option can be used to eliminate input signals from the
optimization, that is, to provide values for them so that they are not considered as
optimization variables. Thus the inputs used for injecting process noise into the
system are not eliminated since they should be free to be estimated.
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Implementation

This section explains the structure and functionality of the implemented Moving
Horizon Estimator. First the types of systems considered and the limitations put
on said systems are explained. Then the general structure of the implementation in
terms of the structure of classes and modules is explained. Each class is then in turn
explained in terms of how they are initialized and their public methods. This chapter
then ends by illustrating how the implementation can be utilized using an example.

5.1 Scope of the Implementation

The type of system considered in this implementation can be represented on the
form

F(ẋ,x,y, t) = 0

where F(·) is a nonlinear function, x the state vector, y the algebraic variables and t
the time variable. This DAE-formulation is natural since this is the form on which
equations are specified in Modelica. Using index reduction the system can be con-
verted to the form used in Chapter 2, that is

ẋ = f (x,u,w)

y = h(x,v)

where f (·) and h(·) are nonlinear functions, x the state vector, y the measurement
vector, u the input vector and w, v are the process noise and measurement noise
vectors. The systems considered can also have constraints on the form

s(x,w)≤ 0
s(x,w) = 0
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where s(·) is some arbitrary function. This formulation is in continuous time, while
an MHE works in discrete time and with measurements available at discrete time
points. The continuous time formulation of the system is necessary since Mod-
elica works in continuous time, and therefore all systems described as Modelica
models are continuous time systems. The optimization tool chain in JModelica.org
discretizes the system using direct collocation, but neither the generated functions
that represent the difference equations nor the quadrature scheme used by the dis-
cretization are currently exposed. Not having access to the quadrature scheme cre-
ates problems when approximating the cost function unless a specific discretiztion
is chosen. The decision to use backward Euler was made since it makes the cost
function approximation manageable to do by hand. In Sections 5.4.3 and 5.4.4 how
the cost function is approximated is further explained.

After being discretized using backward Euler, the system can be expressed as

xk+1 = fd(xk,uk+1,wk+1)

yk = hd(xk,vk)

where fd(·) and hd(·) are nonlinear functions of the discretized system, xk the state
vector, yk the measurement vector, uk the input vector, wk and vk are the process
noise and measurement noise vectors respectively and k is the time index. The con-
straints are given by

s(xk,wk)≤ 0
s(xk,wk) = 0

To discretize the measurement noise covariance matrix, it is simply divided by
the sample time h, that is Rd = Rc/h, where the d subscript indicates discrete and
the c subscript indicates continuous time. For the process noise covariance matrix it
is more complicated. If the process noise is simply added to the process and is not
affected by the dynamics of the system it can be discretized as Qd = hQc. If the noise
is affected by the system dynamics, the distribution of the noise can be warped, but
if the sampling time is small compared to that of the system’s time constants, the
speed of the system dynamics, the same discretization is a good approximation. The
implementation therefore uses this discretization for the process noise covariance
matrix.

The implementation uses measurements up to the current sample to generate the
state estimate for the next sample. This makes the implementation a one-step ahead
estimator, since it is possible to perform the estimation for the next sample when the
measurements of the current sample becomes available. Having this structure means
that large systems, where the computational time is not negligible compared to the
sample time, can be considered as the calculations can be done between samples.

As stated in Section 4.3, there exist two different types of constraints in Opti-
mica, path constraints and point constraints. In this implementation, only path con-
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straints will be allowed. This decision was made since there might be ambiguities as
to which time points the user wishes the point constraints to be active. Constraints
are added by extending a model using the optimization class and adding con-
straints to the constraint section. Constraints can also be manually added to a
created OptimizationProblem object.

The implementation limits the types of allowed Modelica models to the ones
where there exists at least one input for the process noise, e.g., an input on the form
input Real w, or that it is possible to consider at least one of the inputs of the
system as a superposition of the intended signal and process noise, that is, inputs on
the form

u = u0 +w (5.1)

where u0 is the intended input signal, w the process noise and u is the input that
enters the system. For inputs of this type the distribution of the process noise can be
warped by the system, meaning that the discretization of the covariance matrix can
be less accurate.

5.2 Implementation Structure

To avoid making the structure of the implementation overly complicated, an effort
was made to keep the number of classes and modules relatively small, while at the
same time trying to keep some things separate to make maintaining the MHE plat-
form manageable. The main part consists of a single class, the MHE class. It is only
with this class and the corresponding options class MHEOptions that the user inter-
acts. Contained within the MHE class, there is an object that performs linearization
and calculates the error covariance matrix associated with the EKF covariance up-
date used to approximate the arrival cost. This object belongs to a separate class
EKFArrivalCost. The decision to keep the classes separated was made so that
the method for performing the arrival cost approximation can be changed if other
methods are implemented.

There are several methods in the MHE class that can be directly utilized by the
user, but the most important is the step method that performs the estimation for one
time step. The step method and the methods exposed to the user will be explained
in detail in Sections 5.4.2 and 5.5.

The MHE package also includes two modules, check_mhe_inputs and
mhe_initial_values. In check_mhe_inputs, functionality for checking if the
inputs are correct, and raising exceptions for faulty inputs is collected. It also re-
places any aliases the user may have given in the input. It can be difficult for the
user to keep track of which variables that will be treated as aliases, especially when
working with a large model, and therefore the module handles this. The user does
not come in contact with this module, it is used internally in other parts of the
implementation.
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The mhe_initial_values module is an optional module and is not necessary
for the MHE class. The module contains a method for generating the initial values
of the state derivatives and the algebraic variables of the system. These are needed
for the first linearization performed by the EKFArrivalCost object. The choice of
having the module separate from the class was made so that the user has a choice
regarding how the initial values are generated. If, for example, artificial measure-
ment data are used it is possible to extract the initial values from the simulation, and
thus having no need for the module at all. The module was created to provide the
user with a consistent method of generating the initial values of the state derivatives
and the algebraic variables, should no other convenient method exist.

5.3 MHEOptions Class

The MHEOptions class was created to gather objects used in the MHE class and
in other parts of the MHE platform, such as the generation of initial values for
the derivatives and algebraic variables. The usage of options objects is common in
JModelica.org. The options objects for optimization, simulation and compilation all
extend from the same base class as MHEOptions does. The base class, in turn, is an
extension of the dictionary class. The objects contained in the MHEOptions object
are explained in Table 5.1.

Table 5.1 Options of the MHEOptions object.

input_names A list of all the inputs used as control signals.
process_noise_cov A list that specifies the covariance of the pro-

cess noise in continuous time that affects the
system.

measurement_cov A list that specifies the covariance of the mea-
surement noise in continuous time that affects
the system.

P_0_cov A list that specifies the covariance of the initial
guess of the state vector. That is it specifies the
error covariance matrix at time step 0.

IPOPT_options A dictionary that specifies the options for the
NLP-solver IPOPT.

All the covariance lists in the MHEOptions object contain tuples, where the first
item of the tuple specifies the names of the variables having a covariance matrix
specified by the second item of the tuple. The first item can therefore be a single
string, if the variable is uncorrelated to all other variables, or a list of names if there
exists covariance between variables. There can of course be many such lists. The
second item can therefore vary in size from a float, in the case of one variable, to a
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Numpy array of suitable size for several variables. The goal of this kind of structure
is to makes it possible to express sparse matrices, which is often the case for covari-
ance matrices, easy. At the same time, this structure allows the user to easily modify
the structure to add covariance between variables. It also removes the need for or-
dering the variables, which would have to be done if the covariance matrices were
expressed as matrix-like objects. With the lists, it is clear which intensity belongs
to which variable, reducing the risk of implementation errors.

The input_names option is there so that the user can define which of the
model’s input variables that will be used as control signals for the system. If an
input variable is found both in input_names and process_noise_cov, the in-
put signal is treated as an input with noise. If an input variable is only found in
process_noise_cov, the input variable is regarded as a process noise input. If
found in neither of the lists, an input is considered to be a zero input, i.e., it is zero
at all points in time.

The IPOPT_options specify the options used by IPOPT to solve the NLP. See
the IPOPT documentation [IPOPT] for more details.

5.4 MHE Class

This section explains how the MHE class is initialized and what the public methods
do. It is also explained how the cost function is approximated and how the approxi-
mation is created.

5.4.1 Initialization
An MHE object can be created with a call on the form

MHE_object = MHE(op, sample_time, horizon,

x_0_guess, dx_0, c_0, MHE_options)

where op is an OptimizationProblem object, sample_time the sample time as
a float, horizon the length of the horizon in samples, x_0_guess the guess of the
initial value of the state vector, dx_0 the initial values of the state derivatives, c_0
the initial values of the algebraic variables and MHE_options a MHEOptions object.

The inputs dx_0 and c_0 are needed for the first linearization step. After the
first step, the values of the derivatives and the algebraic variables are provided by
the optimization result object.

When an MHE object is first created, the following steps are done

1. The user-provided inputs to the object are checked for errors and inconsisten-
cies with the model. Any alias variables are replaced.

2. The EKFArrivalCost object is created.
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3. The cost function and the required new parameters and variables are added to
the OptimizationProblem object.

5.4.2 Public Methods
This section contains descriptions of the public methods of the MHE object, i.e., the
methods that are exposed to the user.

5.4.2.1 step

step(self, u, y):

"""

Estimates the state vector at the next sample using the

input and measurement vector at the current sample and

returns it.

Parameters::

u --

The control signal for the current sample, given as

a list of tuples on the form (name, value) where 'name'

is the name of the control signal and 'value' its

value.

y --

The measurement for the current sample, given as a

list of tuples on the form (name, value) where 'name'

is the name of the measured variable and 'value' its

value.

Returns::

x_est_dict --

A dictionary with the state names defined by the user

as keys and the state estimates at the next sample as

values.

"""

Figure 5.1 presents an overview of the step method. The method starts out
by making sure that the dictionaries provided by the user contain the proper vari-
able names using functionality from the check_mhe_inputs module. If the next
sample is strictly larger than the horizon, i.e., the data point at time zero is outside
of the window, the EKFArrivalCost object is called to calculate the new value
of the error covariance matrix. This is done by calling the get_next_P method
with the point of the sample just outside of the window. The public methods of the
EKFArrivalCost class are presented in Section 5.5.2.

After the error covariance matrix has been updated old data is removed and the
different options for the optimization are defined. The number of elements, n_e, is
set so that there is exactly one element between every pair of neighbouring sample
points. To make the discritization backward Euler, the number of collocation points,
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Figure 5.1 Overview of the step method. The user provides the method the input
and measurement array for the current time step and the state estimate for the next
time step is returned.

n_cp, is set to one. To create piece-wise constant inputs the blocking_factors

options is used, with a list containing ones summing up to the number of elements.
The external_data option is used to provide the values of the control signals

and the measurements to the optimization. To make the optimization result object
contain a value for the state vector at the next sample, the optimization time interval
must stretch to the time for that sample. There must therefore be values for the in-
puts and measurements up to that time. These are not available. The measurements
are handled by adding a new input variable that is used to mask the value of the
measurement in the last sample. This is further explained in Section 5.4.4. It is not
possible to simply mask the control signal since the use of an explicit discretiza-
tion means that the current state values are generated using the control signal at the
current sample. Thus, some kind of approximation needs to be made. In the imple-
mentation the choice was made to use the value of the current sample. For a signal
that does not vary quickly or drastically, this is the best and most natural assump-
tion, and without more information about the controller structure there is no way to
make a more informed guess.

5.4.2.2 set_process_noise_covariance_matrix
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set_process_noise_covariance_matrix(self, process_noise_cov):

"""

Sets the process noise covariance matrix according to a

new covariance list describing the process noise covariance

matrix in continuous time.

Also makes sure that the process noise covariance matrix is

changed in the arrival cost object.

Parameters::

process_noise_cov --

A list describing the covariance structure of the

process noise. Items are on the form

(names, covariance_matrix).

"""

Calling this function will change the value of the process noise covariance matrix.
A call is then made to a corresponding function in the EKFArrivalCost object that
changes the representation of the matrix. This method was implemented so that the
user can change the process noise covariance matrix should the characteristics of
the noise entering the system change.
5.4.2.3 set_measurement_noise_covariance_matrix

set_measurement_noise_covariance_matrix(self, measurement_cov):

"""

Sets the measurement covariance matrix according to a new

covariance list describing the measurement noise covariance

matrix in continuous time.

Also makes sure that the measurement covariance matrix is

changed in the arrival cost object.

Parameters::

measurement_cov --

A list describing the covariance structure of the

measurement noise. Items are on the form

(names, covariance_matrix).

"""

This method does the same thing as the set_process_noise_covariance_-

matrix method, but for the covariance matrix of the measurement noise.
5.4.2.4 set_beta

set_beta(self, value):

"""

Sets the value of the beta parameter that scales the arrival

cost part of the cost function. Defined for values between

0 and 1.
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Parameters::

value --

New value of the beta parameter. Between 0 and 1.

"""

This method gives the user a way to set the beta parameter discussed in Sec-
tion 2.4.1.2. No method for calculating the value of the parameter was implemented,
as the condition for guaranteeing stability was considered overly restrictive and
would involve solving an additional optimization problem. The method was im-
plemented to give the advanced user the ability to set the forgetting factor should it
be required for some specific system.

5.4.2.5 set_dirty

set_dirty(self):

"""

Sets the dirty flag to True. This indicates that the

functions used in the linearization need to be recalculated.

This needs to be done if one parameter or more in the DAEs

have been changed.

"""

If the user changes one of the parameters in the OptimizationProblem object
that affect the DAEs after the initialization this function needs to be called. When
called it changes a boolean flag to True. When this flag is changed the next time the
step method is called it, in turn, calls the recalculate_jacobian_functions

method, Section 5.5.2.2, in the EKFArrivalCost object. That method recalculates
the functions used to perform the linearization.

5.4.3 Cost Function Approximation
The sum in (2.27) depends on time-varying variables and is therefore approximated
as an integral in the objectiveIntegrand part of the cost function in the Optimica
formulation. This results in the sum being approximated by

J1 =
∫ tk

tk−N

‖v‖2
R−1 +‖w‖2

Q−1 dt.

where tk is the time at the k:th time index. When evaluating the integral, the values
at each collocation point in each element are added. If the number of collocation
points is set to one, w and v are approximated as piece-wise constant functions. If,
in addition to this, the number of elements is set to the number of time points in the
interval minus one, so that the end of each element matches a the time point, the
evaluation of the integral is equivalent to the sum

J2 = h
T−1

∑
k=T−N+1

‖vk‖2
R−1 +‖wk‖2

Q−1
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where h is the sample time.
Since using implicit Euler means that the value at the end point of the collocation

element is used to approximate the function value, the function value at the first time
point is not included. This is compensated for by adding the first time point to the
objective part of the cost function instead.

The usage of the implicit Euler discretization has its drawbacks. Since the order
of the method is low there will be a relatively large approximation error compared to
higher-order methods. However, using implicit Euler is necessary to avoid making
the approximation too difficult.

5.4.4 Creating the Cost Function
To create the cost function a number of new parameters, inputs and variables need to
be added to the OptimizationProblem object. To avoid confusion between added
variables and variables belonging to the model, all added variables are given the
prefix "_MHE_". This naming convention is also used to identify and look up the
variables in a number of different internal methods, meaning that it is important that
the model contains no variables starting with the prefix.

For every input that is defined as a superposition of noise and a control signal, a
new input variable is created for the original signal u0 and a new variable is created
for the noise. A new equation is added to specify the superposition u = u0 +w and
the new input is used to feed the control signal to the system and the old input signal
is set as a free optimization variable. For the inputs used exclusively for process
noise, the input is set as a free variable in the optimization.

To specify the measurement noise structure, a new variable for the measurement
noise and a new input for the measurements is created for every measured variable.
The structure is specified by creating an equation on the form v = ymeas− y, where
y is the measured variable, v the measurement noise and ymeas the input signal used
to supply the measurements.

Parameters for all the necessary elements in the covariance matrices are added.
Here the sparseness of the matrices is utilized so that parameters are only created
for the elements that were specified in the covariance list. For the error covariance
matrix, however, parameters are created for all the elements since the matrix will
change and it can not be guaranteed that the sparsity of the matrix will remain.
Parameters are also created for the initial guess of the state vector and the sample
time.

When the set_measurement_noise_covariance_matrix or the set_-

process_noise_covariance_matrix methods are called the parameters that
were created during the initialization phase are given the value of the new inverse
matrix. For elements of the matrix that were not described by the covariance list
used during the initialization, new parameters are created and given their value.
The cost function is then generated once again and replaces the old one. Using this
strategy, parameters are introduced the first time they are needed. There is no way
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to remove parameters from the OptimizationProblem object, meaning that there
can be unused parameters in the OptimizationProblem object, but since they are
not included in the cost function they do not contribute to the problem size.

To make the optimization result object contain the value of the state vector at
the next sample, the optimization must run until the time of that sample. This means
that the objectiveIntegrand will include values for the measurements at the
next sample. Since the measurements at the next sample are not available, their
contribution to the cost function must be removed. This is done by adding a new
input variable that is used to mask the contribution of the last measurement. Since
backward Euler is used and there is only one collocation point used per element
the signal can simply be chosen as ones for every time point except for the last
one where it is zero. A parameter corresponding to the beta parameter discussed in
Section 2.4.1.2 is also added and its value is set to one.

After creating all the necessary variables, inputs and parameters the cost func-
tion is created. For all the process noise and measurement noise variables, corre-
sponding timed variables, i.e., the variable values for a certain point in time, are cre-
ated for the start time of the optimization interval, and added to the objective part.
The mask signal is multiplied with the vT R−1v part of the objectiveIntegrand

and thus removes the influence of measurement at the last sample. The arrival cost
part of the cost function is multiplied with the beta parameter so that it is possible
to scale it in order to guarantee stability.

5.5 EKFArrivalCost Class

This section explains how an EKFArrivalCost object is initialized and explains
the public methods of the class.

5.5.1 Initialization
When the EKFArrivalCost object is first created, the DAEs are extracted from
the OptimizationProblem object and are made into functions that can be evalu-
ated. The functions created are the derivatives of the DAEs with respect to the state
derivatives, the states, the input signals and the algebraic variables of the system.
An EKFArrivalCost is created with a call of the form

EKF_obj = EKFArrivalCost(op, sample_time, state_names,

alg_var_names, process_noise_names,

undefined_input_names,

measured_var_names, MHE_opts)

where op is the OptimizationProblem object, sample_time the sample time,
state_names a list of the state names, alg_var_names the names of all the al-
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gebraic variables, process_noise_names a list of all the variables affected by
process noise, undefined_input_names a list of all the inputs not defined by the
user and therefore considered as zero valued inputs, measured_var_names a list
of the names of the measured variables and MHE_opts an MHEOptions object.

The EKFArrivalCost object is used to update the error covariance matrix and
therefore does a lot of matrix-based calculations. Since this is the case, it is im-
portant that the order of the variables is well defined. This is the reason why the
inputs to the object largely consist of lists of names, since the variables in the MHE

object need to have the same order. None of this is exposed to the user since the
EKFArrivalCost object is only used, internally, by the MHE class.

5.5.2 Public Methods
This section contains descriptions of the public methods of the EKFArrivalCost

object, i.e., the methods exposed to the MHE object.
5.5.2.1 get_next_P

get_next_P(self, t, x, dx, u, c):

"""

Calculates the error covariance matrix at the next time step.

This is achieved by evaluating the Jacobian function at the

work point, solving linear systems to get the system matrices

of the linearised system on the form:

xdot = Ax + Bu + Gw

y = Cx + v

and then discretizing the system using backward Euler to get

the system matrices of the system on the form

x_k+1 = Ax_k + Bu_k+1 + Gw_k+1

y_k = Cx_k + v_k

The error covariance is then updated using these matrices.

Parameters::

t --

The time of the work point. Given as a float.

x --

A list of tuples on the form (varName, value) of the

state variables.

dx --

A list of tuples on the form (varName, value) of the

derivatives of the state variables.

u --

A list of tuples on the form (varName, value) of the
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control signals.

c --

A list of tuples on the form (varName, value) of the

algebraic variables.

Returns::

P --

The updated error covariance matrix. 2D numpy array

"""

This method is invoked each time the step method of the MHE object is called, if
the sample at index zero is outside of the optimization window. When called, the
Jacobian functions that were created during initialization are evaluated at the point
sent to the method. A linear system is solved to get the system matrices of the
linearized, continuous system. This needs to be done since the model can contain
algebraic variables that are not part of the linearized, continuous system representa-
tion. The system is then discretized, using backward Euler, to provide the matrices
used in (2.29). The equation is then used to update the error covariance matrix and
the result is returned.
5.5.2.2 recalculate_jacobian_functions

recalculate_jacobian_functions(self):

"""

Recalculates the Jacobian functions after a change of the model

parameter values.

"""

Called when the step method is invoked, before the call to the get_next_P

method, but only if the dirty flag has been set to True. Recreates the Jacobian func-
tions created during the initialization with the new parameter values.

5.5.2.3 update_process_noise_covariance_matrix

update_process_noise_covariance_matrix(self, process_noise_cov):

"""

Updates the process noise covariance matrix according to a

new covariance list describing the process noise covariance

matrix in continuous time.

Parameters::

process_noise_cov --

A list describing the covariance structure of the

process noise. Items are on the form

(names, covariance_matrix).

"""

The method recalculates the covariance matrix of the process noise when it is up-
dated in the MHE object.
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5.5.2.4 update_measurement_noise_covariance_matrix

update_measurement_noise_covariance_matrix(self, measurement_cov):

"""

Updates the measurement noise covariance matrix according

to a new covariance list describing the measurement noise

covariance matrix in continuous time.

Parameters::

measurement_cov --

A list describing the covariance structure of the

measurement noise. Items are on the form

(names, covariance_matrix).

"""

Same as the update_process_noise_covariance_matrix method, but for the
covariance matrix of the measurement noise.

5.6 Example

This section illustrates how the implemented MHE-framework can be used. The
section begins by explaining the model used, which is a continuously-stirred tank
reactor (CSTR), introduced in [Hicks and Ray, 1971]. An example script that per-
forms state estimation on the process is then explained to show how the implemen-
tation might be used.

5.6.1 Model
The model describes a tank where an exothermic reaction takes place. It has two
states, the temperature T and the concentration c. There is a constant inflow to the
tank with a fixed temperature and concentration, and a constant outflow from the
tank. The speed of the reaction increases with the temperature, meaning that the
process can easily spiral out of control. The controllable input of the system is the
temperature of the cooling fluid Tc. The dynamics of the system can be described
using the differential equations

ċ(t) = F0
c0− c(t)

V
− k0ce

−EdivR
T (t) (5.2)

Ṫ (t) = F0
T0−T (t)

V
− dHk0ce

−EdivR
T (t)

ρCp
+2U

Tc−T (t)
rρCp

where F0, c0 and T0 are the flow rate, concentration and temperature of the inflow.
The other parameters are geometric constants describing the tank and thermody-
namic constants defining the properties of the reaction.

The system can be described using the Modelica model:
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model CSTR "A CSTR"

parameter Modelica.SIunits.VolumeFlowRate F0=100/1000/60 "Inflow";

parameter Modelica.SIunits.Concentration c0=1000 "Concentration of inflow";

Modelica.Blocks.Interfaces.RealInput Tc "Cooling temperature";

parameter Modelica.SIunits.VolumeFlowRate F=100/1000/60 "Outflow";

parameter Modelica.SIunits.Temp_K T0 = 350;

parameter Modelica.SIunits.Length r = 0.219;

parameter Real k0 = 7.2e10/60;

parameter Real EdivR = 8750;

parameter Real U = 915.6;

parameter Real rho = 1000;

parameter Real Cp = 0.239*1000;

parameter Real dH = -5e4;

parameter Modelica.SIunits.Volume V = 100 "Reactor Volume";

parameter Modelica.SIunits.Concentration c_init = 1000;

parameter Modelica.SIunits.Temp_K T_init = 350;

Real c(start=c_init,fixed=true,nominal=c0);

Real T(start=T_init,fixed=true,nominal=T0);

equation

der(c) = F0*(c0-c)/V-k0*c*exp(-EdivR/T);

der(T) = F0*(T0-T)/V-dH/(rho*Cp)*k0*c*exp(-EdivR/T)+2*U/(r*rho*Cp)*(Tc-T);

end CSTR;

This model is one of many example models found in the JModelica.org plat-
form [JModelica.org].

The two differential equations in (5.2) are defined in the equation section of
the model. The rest is simply the declaration of the required variables and parame-
ters.

5.6.2 Script
The script presented here will perform state estimation on a CSTR with a horizon
length of 5 over a period of 10 seconds, using the sampling time 0.1 seconds. These
properties are defined by

#Time properties

sim_time = 10.0

nbr_of_points = 101

horizon = 5

#Sample time

sample_time = sim_time/(nbr_of_points - 1)

#Vector containing the time points

time = N.linspace(0., sim_time, nbr_of_points)

The total number of samples used is defined, where the sample at time index zero is
included. The number of samples is not something the estimator needs to know in
advance, but is defined for the generation of measurement data. A vector containing
all the time points is also created. After this the MHEOptions object is created and
the options are specified.
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##Set up the MHEOptions-object

MHE_opts = MHEOptions()

#Process noise and input specifications

MHE_opts['process_noise_cov'] = [('Tc', 10.)]

MHE_opts['input_names'] = ['Tc']

#Measurement properties

MHE_opts['measurement_cov'] = [(['c', 'T'], N.array([[1., 0.0], [0.0, 0.1]]))]

#Error covariance matrix

MHE_opts['P0_cov'] = [('c', 10.), ('T', 5.)]

The MHEOptions object specifies that Tc will be affected by noise with a vari-
ance of 10 and that it is used to input a control signal. The covariance lists for
the measurement noise and the initial guess show how the covariance matrix can
be specified in different ways. The preferable way in this case is that of the initial
guess since it takes advantage of the sparse structure of the matrix.

This is followed by creating the OptimizationProblem object.

#Transfer the optimization problem

op = transfer_optimization_problem(model_string,

package_string,

accept_model = True,

compiler_options=

{"state_initial_equations":True})

It is created using transfer_optimization_problem. The first two in-
puts are used to locate the Modelica model, and the third one says that it is
an object of the model class and not the optimization class. The option
state_initial_equations must be set to true so that all initial equations are
replaced by initial equations for the states and parameters for the initial values are
created. The naming convention of the created parameters is also utilized to locate
them.

After this the preparations are made for generating artificial measurement. This
consists of defining the control signal and the initial state values. No controller is
used in this example since it simply illustrates the usage of the MHE class, thus the
control signal is chosen beforehand. The control signal and initial values are defined
as

#Define a control signal dictionary

sin_signal = N.array([N.sin(2.*N.pi*0.5*time)])

u = dict([('Tc', 300. + 50*sin_signal[0,:])])

#Define the initial state values for the artificial measurement data

x_0 = dict([('c', 1000.), ('T',325.)])

Omitted from this example is the actual generation of the artificial measurement
data since it is somewhat technical and is not a necessary part of the implementation.
The data are created by optimizing with an empty cost function over the entire
time interval using one element between every pair of neighboring time points and
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one collocation point per element. Process and measurement noise described by the
options object are added and the measurements and the state values are extracted.
The measurements are saved in y_meas and the states in x.

The initial values of the state derivatives and the algebraic variables are needed
for the first linearization. These are calculated using the mhe_initial_values

module, imported as initv. To generate the initial values the a priori estimate and
the control signal at time index zero are required. The initial control signal, the a
priori estimate and the initial values of the state derivatives and algebraic variables
are generated by

#Define the guess of the initial state values

x_0_guess = dict([('c', 990.), ('T', 330.)])

#Create a dictionary for the first value of all the control signals

u_0 = {}

for (name, data) in u.items():

u_0[name] = data[0]

#Get the initial values of state derivatives and algebraic variables

(dx_0, c_0) = initv.optimize_for_initial_values(op, x_0_guess, u_0, MHE_opts)

The input u_0 is a dictionary defining the control signal at time index zero.
The dictionary has the names of the control signals as its keys and the values of
the initial control signals as values. The initial values of the state derivatives and
algebraic variables are stored in dx_0 and c_0 respectively.

The MHE object can now be created with

#Create the MHE-object

MHE_object = MHE(op, sample_time, horizon, x_0_guess, dx_0, c_0, MHE_opts)

After creating a dictionary for storing the results a loop is used to call the step
method at every time step. The method is provided with the control signal and mea-
surements of the current sample and returns the state estimate of the next sample.

#Create a dictionary for storing the estimates

x_est = {'c':[x_0_guess['c']], 'T':[x_0_guess['T']]}

#Lists of the state and input names for convenience

state_names = ['c', 'T']

input_names = ['Tc']

#Loop over all the indices in the interval

for t in range(0, (nbr_of_points - 1)):

#Create the list of measurements at the current sample

y_t = []

for name in state_names:

y_t.append((name, y_meas[name][t]))

#Create the list of control signals at the current sample

u_t = []

for name in input_names:
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u_t.append((name, u[name][t]))

#Perform the estimation

x_est_t = MHE_object.step(u_t, y_t)

#Save the estimates

for name in state_names:

x_est[name].append(x_est_t[name])

Using matplotlib the results can be visualized with

#Plot the results

plt.close('MHE')

plt.figure('MHE')

plt.subplot(3, 1, 1)

plt.plot(time, x_est['c'])

plt.plot(time, x['c'], ls = '--', color = 'k')

plt.plot(time, y_meas['c'])

plt.legend(('Concentration estimate',

'Simulated concentration',

'Measured concentration'))

plt.grid()

plt.ylabel('Concentration')

plt.subplot(3, 1, 2)

plt.plot(time, x_est['T'])

plt.plot(time, x['T'], ls = '--', color = 'k')

plt.plot(time, y_meas['T'])

plt.legend(('Temperature estimate',

'Simulated temperature',

'Measured temperature'))

plt.grid()

plt.ylabel('Temperature')

plt.subplot(3, 1, 3)

plt.step(time, u['Tc'])

plt.grid()

plt.ylabel('Cooling temperature')

plt.xlabel('time')

plt.show()

which results in the plots in Figure 5.2.
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Figure 5.2 The simulated, estimated and measured trajectories of the states for the
CSTR example. Third plot shows the used control signal.
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Results

In this chapter, a number of simulation examples are used to evaluate the perfor-
mance and show the capabilities of the implemented MHE. Four different examples
are used. The first example compares the performance of the MHE to that of the
Kalman filter on an LTI system. The second example aims to investigate the po-
tential improvement achievable with constraints. A linear system and the nonlinear
CSTR presented in Section 5.6.1 are used to illustrate this. The third simulation ex-
ample uses the CSTR, which is a small system, and a large model of a simplified
thermal power plant, to test the effects of different horizon lengths. Finally, the plant
model is used to evaluate how the performance is affected by having a mismatch of
the parameters used in the model used to generate the measurement data and in the
model used in the MHE.

All the measurement data used for the tests were generated using Optimiz-

ationProblem objects, except for the plant model where the size of the model
made it impossible to have enough elements to create data for longer time intervals.
For the plant model, simulation using FMUs was used. Using FMUs means that
piece-wise constant inputs could not be used, resulting in a mismatch between the
model used to generate data and the one used by the MHE.

6.1 Kalman Filter Comparison

As stated in Section 2.4, using the EKF covariance update as the arrival cost ap-
proximation and having a horizon of one sample results in the Kalman filter and the
MHE becoming the same, for LTI systems. To evaluate if this property is preserved
for this implementation, the performance of the implemented MHE is compared to
that of a Kalman filter. To make the comparison valid, backward Euler is used as
the discretization scheme for the model used by the Kalman filter. A one-step ahead
Kalman filter is used, meaning that the a priori estimate is used.

Since an implicit discretization is used, the Kalman filter should use the control
signal at the next sample to generate the estimate at the next sample. Since this is
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unreasonable, the same approximation as in the MHE is used, i.e., the control signal
at the current sample is used.

The model used is the simple LTI system. This system can be expressed in state
space form as

ẋ =
[
−1 −0.5
−0.5 −1

]
x+
[

1 0
0 1

]
u+
[

1 0
0 1

]
w

y =
[

1 0
0 1

]
x+ v

where x is the state vector, y the measurement vector, u the control vector and w and
v are the process and measurement noise vectors, respectively. When discretized
using backward Euler with a sampling period of 0.1 s it results in the system repre-
sentation

xk+1 =

[
0.953 −0.023
−0.023 0.953

]
xk +

[
0.048 −0.001
−0.001 0.048

]
uk+1 +

[
0.048 −0.001
−0.001 0.048

]
wk+1

yk =

[
1 0
0 1

]
xk + vk

where xk is the state vector, yk the measurement vector, uk the control vector,
wk and vk are the process and measurement noise vectors, respectively, and k is
the time index. The process noise covariance matrix and the measurement noise
covariance matrix in continuous time are given by

Qc =

[
10 0
0 10

]
, Rc =

[
0.01 0

0 0.01

]
respectively. These are discretized as

Qd = hQc =

[
1 0
0 1

]
, Rd = Rc/h =

[
0.1 0
0 0.1

]
where h is the sample time.

Using a square wave for both the control signals and an initial error covariance
matrix

P−0 =

[
1 0
0 1

]
over a time period of 5 s gives the results presented in Figure 6.1. From the plots, it
is clear that the Kalman filter and the MHE give the same results. The effect of the
control signal approximation is clear in the points where the approximation is least
valid, i.e., in the points where uk changes drastically. In these points, most obvious
for the first state around the point at 1 s, the estimators are using a control signal
which is drastically incorrect and thus produces an erroneous estimate.
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Figure 6.1 Comparison of the estimates generated by the MHE and the Kalman
Filter for the LTI system. The green and the blue lines overlap for both of the states.

6.2 Effect of Constraints

This section investigates how the addition of constraints to the optimization prob-
lem affects the performance of the MHE estimator. Two different systems are used,
an LTI system used in [Rao and Rawlings, 2002] and the CSTR presented in Sec-
tion 5.6.1.

6.2.1 Constrained LTI
The aim of this section is to perform a test very similar to the one found in [Rao
and Rawlings, 2002], where the effect constraints on an LTI system is investigated.
Therefore the same constraint and model are used with similar initial values and the
same covariance matrices. The noise sequence will be different and for this reason
there is no straight comparison to be made, but more general conclusions can be
drawn. The performance of the MHE is compared to that of the Kalman filter in
accordance with the evaluation presented in [Rao and Rawlings, 2002].

The assumption that is made is that the characteristics of the process noise wk
is known. The process noise sequence wk is the absolute value of the independent,
zero-mean, normally distributed sequence zk. To capture this knowledge, the con-
straint wk ≥ 0 is added.

The system used is described by the transfer function G(s) = (−3s+ 1)/(s2 +
3s+1). The system can, for instance, be represented in state space form as
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ẋ =
[

0.097 0.984
−0.984 −3.005

]
x+
[

0.001
1

]
w

y =
[
1 −3

]
x+ v

which, when discretized using backward Euler and the sample period 0.3 s, yields
the system

xk+1 =

[
0.984 0.153
−0.153 0.502

]
xk +

[
0.046
0.151

]
wk+1

yk =
[
1 −3

]
xk + vk

Using the covariance matrices in [Rao and Rawlings, 2002], i.e.,

Qd = 1, Rd = 0.1, P−0 =

[
1 0
0 1

]
as well as the same initial a priori state estimate x̂−0 = [0,0] and the horizon length
10, yields the results presented in Figure 6.2. The plot of the estimated process noise
uses the estimate at the current sample since the fact that estimator uses prediction
means that the estimated process noise for the next sample is always zero.

Figure 6.2 Comparison of the state and measurement estimates generated by the
MHE and the Kalman Filter, and the process noise estimates at the current sample
for the MHE.

The results generated here are similar in structure to those presented in [Rao
and Rawlings, 2002]. The estimate of the first state is vastly improved while the
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estimate of the second state is more or less unchanged. There is still a large bias,
since the mean of the process noise is not zero. The estimate of the measurement y
is slightly different in character from that in [Rao and Rawlings, 2002]. After some
investigation it was discovered that this is likely due to the fact that in this thesis the
a priori estimate of the Kalman filter is used. The plot of the estimated process noise
at the current sample shows that the constraint seems to be active for a majority of
the samples.

6.2.2 Constrained CSTR
In this example the CSTR system is used to investigate how the use of constraints
founded in knowledge about the physical properties of the system can be used to
improve the results. The fact that a concentration can not be negative can be cap-
tured using the constraint c ≥ 0. If the system is then run close to this boundary in
an environment with significant measurement noise, the benefit of constraints can
easily be illustrated.

Consider the situation where the CSTR has a concentration of zero and the re-
actant is being introduced at an increased flow rate. The concentration will quickly
deviate from the constraint, but significant measurement noise can make an estima-
tor not utilizing constraints produce infeasible estimates. In Figure 6.3, this case is
presented with a constant cooling temperature of 370 K, a horizon of 10 samples
and a sample period of 0.2 s and the covariance matrices

Qc = 20, Rc =

[
10 0
0 1

]
, P−0 =

[
5 0
0 2

]
The unconstrained MHE produces a number of infeasible estimates when work-

ing close to the constraint, while the constrained MHE avoids this completely. Gen-
erating infeasible estimates can be a major problem when combining the estimator
with a controller that employs constraints, such as MPC. Being able to guarantee
that constraints are not violated is therefore a desirable property of an estimator. The
estimate of the temperature appears virtually identical for both of the estimators.

6.3 Plant Model

To evaluate the performance of the estimator on a larger system, a simplified model
of a thermal power plant was chosen. The model is a part of the larger model pre-
sented in [Runvik, 2014]. The code implementing the model is very long, well over
2000 lines, meaning that the model is hard to interpret without using a graphical
overview. Figure 6.4 shows a graphical representation of the model viewed using
the Modelica interpreter Dymola [Dymola]. Three major components, the evapo-
rator, the separator, and the wall of the separator, make up the model. Using these
components several times with different parameter values and a few other com-
ponents, such as turbines and pumps, an approximate model of an entire thermal
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Figure 6.3 Comparison of an MHE utilizing constraints and a corresponding MHE
not utilizing constraints. The constraint is indicated by the bold black line.

power plant can be constructed. This model gives a good example of how a large
part of modeling in Modelica is done, using a graphical interface to connect differ-
ent components, rather than writing all the code by hand. This way components can
be connected to easily create large systems.

The system has six states, two inputs, 36 algebraic variables and 36 equations.
The states and the inputs of the system are presented in Table 6.1.

Table 6.1 The states and inputs of the plant model. States belonging to the evapo-
rator component are denoted by the subscript e, the ones belonging to the separator
s and the ones belonging to the separator wall sw.

ρs Water density in the separator.
us Specific internal energy of the water in the separator.
T 2

sw Temperature of the second node in the separator wall.
ρe Water density in the evaporator.
ue Specific internal energy of the water in the evaporator.
T wall

e The temperature of the wall in the evaporator.
gasFlow The flow rate of the gas input.
steamFlow The flow rate of the steam input.

For this model, and many larger models in general, it is necessary to tell the

54



6.3 Plant Model

Figure 6.4 Graphical overview of the plant model.

compiler not to use function inlining. This is done using the inline_functions

option in Table 4.1. If this is not done for this model, the performance of the solver
will decrease gradually to the point where it can not find a solution.

The model is very sensitive to the initial values of the states. To find values
which made it possible to perform optimization at all, the system was simulated
for a long time until steady state were reached. The values of the states in steady
state were then used as the initial values for the starting point of the iterations in
the optimization. Providing the solver with initial guesses for many of the variables
improved the stability and performance of the optimization algorithm, but the max-
imum number of elements that could be used before the solver could not find a
solution was still only approximately two.

A part of this sensitivity has its root in the fact that some of the equations con-
tain if statements that introduce a discontinuity. In this case the sign of a number
of variables was used to determine the flow direction in some components and this
introduced the discontinuity. Using the steady state initial values, the system was
always strictly on one side of the if statement, but when searching for a solution
the solver can still search on both sides of the discontinuities, which greatly af-
fects the performance of the solver. Introducing constraints on the variables in the
if statements that keep the solver away from the discontinuities greatly improved
the performance of the solver and allowed the use of up to seven elements. For
this model, constraints are utilized not to model a physical or practical limit of the
system but for solver stability.
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6.4 Horizon Length

This section investigates the effect of the horizon length on the estimate. Two sys-
tems are used, the CSTR and the plant model. Performance will be evaluated using
the mean square error (MSE), that is the mean of the squared error of every sample.

6.4.1 CSTR
This section uses the CSTR model to illustrate the effect different horizon lengths
has on the estimation for different cases. A sample period of 0.2 s and a total of 25
samples are used for all the cases, along with the covariance matrices

Qc = 50, Rc =

[
0.2 0
0 0.02

]
, P−0 =

[
10 0
0 5

]
where the subscript c indicates continuous time.

To illustrate the effect the horizon has in the most simple case for the CSTR sys-
tem, a constant control signal of 300 K is used with no measurement noise added to
the generated measurement data. Figure 6.5 presents the result for two different sets
of initial values, x−0 = [500,300]T and x−0 = [1000,350]T . The two different initial
values were chosen since they result in very different system behaviors, making it
possible to investigate different aspects of the effect created by the horizon length.
Plots for different horizon lengths are not shown because there was no noticeable
difference. Figure 6.6 presents the MSE as a function of horizon length for both the
initial values.

(a) x0
- = [500, 300]T (b) x0

- = [1000, 350]T

Figure 6.5 The estimates of the CSTR for different initial values, having no mea-
surement noise and a constant control signal. A horizon length of 10 is shown for
both plots.

In Figure 6.6(a) the structure is surprising. That the shortest horizon yields the
best results for this system is something that could not be explained with certainty.
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(a) x0 = [500, 300]T (b) x0 = [1000, 350]T

Figure 6.6 The MSE as a function of the horizon length for the CSTR with no
measurement noise and a constant control signal for the two initial values.

Though the difference is very small. The MSE should decrease with longer horizons
and its derivative should approach zero for long horizons, which is the case for
the longer horizons in the plot. One possible explanation is that the cost function
approximation introduces an error that is then overcome by the benefit of having
a longer horizon as the horizon length increases. The structure in Figure 6.6(b) is
closer to that which is expected. There is, however, still a lower MSE for horizon
length one for both the states, and for horizon length two for the temperature. It
appears that the structure in Figure 6.6(a) becomes less significant when estimating
larger changes.

To investigate how an increased horizon length helps reduce the effect of the
control signal approximation, a square wave control signal with frequency 0.25 Hz,
minimum 250 K and maximum 350 K is used, again with no measurement noise
to reduce the dependency of the test on random quantities. Figure 6.7 shows the
results for four different horizon lengths. Here the length of the horizon reduces
the effect the control signal approximation has on the system. The poor estimate
resulting from the control signal approximation results in a periodic poor estimate.
This happens with a periodicity of a horizon length samples and is caused by the fact
that the poor estimate is used in the arrival cost term a horizon samples later. The
poor estimate is also used in the linearization of the system and therefore, in turn,
causes the error covariance estimate to be poor. A similar phenomenon is briefly
discussed in [Tenny and Rawlings, 2002], where a poor initial guess of the error
covariance matrix gives the same kind of periodic behavior. By coincidence this
periodic behavior improves the estimate for the horizon lengths five and ten, where
the period of the square wave and the poor estimates happen to match and subtract
from each other resulting in the effect of the control signal approximation being
reduced.

Figure 6.8 presents the MSE as a function of the horizon length for the case
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(a) Horizon length 1. (b) Horizon length 5.

(c) Horizon length 6. (d) Horizon length 10.

Figure 6.7 The estimates of the CSTR for different lengths of the horizon, having
no measurement noise and a square wave control signal.

when a square wave control signal is used. Both the case without measurement
noise and with measurement noise is included to illustrate the difference between
the two. Figure 6.8(a) presents the MSE as a function of the horizon length for the
test. Here the MSE has local minima at horizon lengths two, five and ten where the
control signal approximation error is accidentally counteracted by the periodicity
of the poor estimates. Figure 6.8(b) presents the case with measurement noise. The
characteristic for the temperature is much the same as for the case where no mea-
surement noise was added, but for the concentration the addition of measurement
noise has made a change. The MSE now grows larger with the length of the horizon.
It should be noted that the difference in scale between the plots is large. The MSE
of the concentration is only slightly increased, while the MSE of the temperature is
many times decreased as the horizon length grows.
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(a) Without measurement noise. (b) With measurement noise.

Figure 6.8 The mean square error as a function of the horizon length for the CSTR
with and without measurement noise using a square wave control signal. The figure
with measurement noise shows the average MSE for 30 different noise sequences.
Different scales are used in the left and right figures.

6.4.2 Plant
For the larger plant model, the length of the horizon can be a maximum of seven
samples before the solver fails. The length of the horizon for the plant model is
therefore evaluated up to this limit. The covariance matrices used are

Qc = diag(1, 1),
Rc = diag(100, 5, 0.5, 100, 0.5, 5),

P−0 = diag(15000, 1, 0.1, 15000, 0.1, 1)

with

u =
[
gasFlow steamFlow

]T
, x = y =

[
ue T wall

e ρe us ρs T 2
sw
]T

which corresponds to the covariance lists

process_noise_cov = [('gasFlow', 1.), ('steamFlow', 1.)]

P0_cov = [('evaporator.u', 15000.), ('evaporator.T_wall', 1),

('evaporator.rho', 0.1), ('separator.u', 15000.),

('separator.rho', 0.1), ('separatorWall.T__2', 1.)]

measurement_cov =[('evaporator.u', 100.), ('evaporator.T_wall', 5.),

('evaporator.rho', 0.5), ('separator.u', 100.),

('separator.rho', 0.5), ('separatorWall.T__2', 5.)]

A total of 25 samples are used with a sampling period of 0.2 s.
Figure 6.9 presents the estimated states when using different horizon lengths.

A square wave control signal with the frequency 0.5 Hz, the minimum 90 and the
maximum 110 is used for both of the inputs.
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(a) Horizon length 1.

(b) Horizon length 7.

Figure 6.9 The estimates of the plant model for different lengths of the horizon,
using a square wave control signal. The green lines are the measurements, the blue
lines the estimates and the dashed black lines the true trajectories.

By inspecting the plots it is evident that the quality of the estimates for four of
the six states is improved for longer horizons. For the temperature of the evaporator
wall and the separator wall this is not the case. The reason behind this is not easy to
trace. The model is large and the states are intricately connected making conclusions
hard to draw. Adding to this the fact that the model is very sensitive and that many
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different factors cause issues for the solver, makes the analysis even more difficult.
It is fully possible that the improved estimates of the other states are causing this
behavior, but is is also possible that the solver finds a non-global minimum instead
of the global minimum.

Figure 6.10 shows the MSE as a function of the horizon length both for a
square wave control signal and a constant control input at 110 for both signals.
Figure 6.10(a) shows many of the phenomena that could be observed in Figure 6.9,
that is, the estimate is generally improving for longer horizons for all of the states
except for the temperature of the evaporator and separator walls. For the evaporator
wall temperature, the curve shows the expected declining trend after the length of
two, but for the separator wall temperature there is not a clear trend. It might be
possible to determine if there is a trend if it was possible to use longer horizons.

(a) Square wave control signal. (b) Constant control signal.

Figure 6.10 The average mean square error for ten different noise sequences as a
function of the horizon length for the plant model using two different control signals.

Figure 6.10(b) presents the case where two constant inputs were used. Here too
the same structure can be seen where just the estimates of the temperature states
are not strictly improving when using a longer horizon. It is worth to note that in
contrast to the CSTR system, the case where constant inputs are used gives, at least
for most of the states, improved estimates for longer horizons.

6.5 Parameter Mismatch

This section will investigate how estimator performance is affected when the model
parameter values used to generate the measurement data are different from those
used in the estimator. This is therefore an investigation of the estimators sensitivity
to model uncertainties. The plant model will be used for this. All the independent
parameters, that is, parameters whose value does not depend on other parameters,
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of the model will have their value changed to different percentages of their original
value. The results are evaluated using the MSE for the different mismatches.

Figure 6.11 presents the estimates for four different cases of the parameter val-
ues being mismatched. The same set up as in Section 6.4.2 is used, meaning that the
number of samples, sample period, square wave input signals and covariance lists
are the same. In this test, however, the horizon length is fixed and set to six.

Figure 6.11 The estimates of the plant model for different mismatches of the pa-
rameter values. The blue lines are the measurements, the dashed black lines the true
trajectories and the other colors are the estimates for different mismatches. For the
specific internal energy of the evaporator all the estimates overlap and the measure-
ments and the true trajectory also overlap.

For some of the states, mainly the water densities and the evaporator wall tem-
perature, there seems to be a linear relation between the parameter mismatch and
the resulting error, since the curves seem to move a fixed amount between each
plot. The large spike in the plots for the specific internal energy of the separator
also seems to grow close to linearly with the mismatch. If any of these are actually
linear behaviors is of course hard to judge from the plots, but what is clear is that
the parameter mismatch has a large effect on the performance of the estimator.

To reduce the effect of having an incorrect model it is possible to change the
weight matrices, that is, the covariance matrices, of the cost function. By increasing
the magnitude of the process noise covariance matrix, or by decreasing the magni-
tude of the measurement noise covariance matrix, less faith is put in the model and
more faith is put in the measurements, possibly improving the results when work-
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ing with an incorrect model. Figure 6.12 presents the average MSE for ten different
noise sequences as a function of the percentage of the original parameter values for
three different choices of covariance matrices. The first case uses the original co-
variance matrices, the second case uses a process noise covariance matrix where the
intensities have been increased by a factor 100 and in the third case the intensities in
the measurement covariance matrix have been reduced by a factor 100 in addition
to the same change of the process noise covariance matrix as in the second case.

Figure 6.12 The average MSE of ten different noise sequences as a function of the
percentage of the original parameter values for the plant model using three different
sets of weight matrices. The blue lines are for the original weights, the green lines for
when the process noise covariance matrix has been multiplied by a factor 100 and
the red lines for when both the process and measurement noise covariance matrices
have been multiplied by 100 and 0.01 respectively.

For a number of the states, the green and red curves show a visible flattening
of the curves meaning that for these states the change of covariance matrices has
improved the performance of the estimator when used on incorrect models. More
surprising is that for some states the change of covariance matrices yield an overall
lower MSE. This might be explained either by the fact that the dynamics of the
system is very complicated meaning that an improvement of one states estimate
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may be linked to the worsening of another. Another possible explanation is that
since the process noise enters the system the same way as the control signal, thus
having its distribution affected by the system. This in turn can mean that the best
covariance matrices to use in the cost function are no longer those used to generate
the noise. For the blue curves the states for which there was a linear behavior in
Figure 6.11, the corresponding curves resemble parabolas. This serves to strengthen
the hypothesis that for these state there is some kind of linear dependence between
the mismatch and the estimates.
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7
Conclusions and Future
Work

A nonlinear MHE was successfully implemented in the JModelica.org platform. An
effort was made to keep the user interface as simple as possible and to make the in-
puts few and on an intuitive form. The implementation works with many already
existing Modelica models and requires little effort on the user’s part. The examples
in Chapter 6 show that the implementation performs well for several different sys-
tems. One of the major benefits of using MHE is the ability to utilize constraints,
which is illustrated in the Chapter 6. The importance of the horizon length was also
shown. While there was some behavior which could not be explained, it was clear
that a longer horizon benefits the estimator. For this implementation in particular
the horizon length is of importance since it helps decrease the effect of the control
signal approximation.

Since the goal was to implement the core functionality of a possible future MHE
platform in JModelica.org, there are many possible improvements that can be made.

Speed was not a key goal in this implementation, but is a key factor when con-
sidering the types of real systems the implementation could be used on. In the later
stages of the thesis warm start capabilities for optimization were introduced in
JModelica.org. Warm start refers to exploiting the fact that the discretization is the
same for all the optimizations in the MHE if the problem size is constant. The results
from the previous optimization is also used as an initial guess for the next optimiza-
tion, helping convergence. For many models the discretization process can take up
a substantial part of the total solution time. Since the problem size of the MHE is
not constant for the first horizon length samples, the warm start of JModelica.org
could not be directly applied to the MHE implementation. This in combination with
the lack of time forced the decision to not use warm start in the implementation. To
include warm start in the implementation, either optimization without warm start
would have to be used until the problem size becomes constant or warm start is
used but unavailable measurements are masked.

65



Chapter 7. Conclusions and Future Work

The approximation of the control signal is one of the major error sources in
the implementation. To remove the periodic effect an incorrect estimate causes the
smoothing update introduces in [Tenny and Rawlings, 2002] can be implemented.
By using an estimate that utilizes more of the measurement data, the periodic effect
can be removed. To lessen the effect of the control signal approximation itself, a
method that allows the user to provide a guess for the next control signal can be
implemented. When using MPC, a more accurate guess for the next control signal
is readily available meaning that the effect of the approximation could be lessened.

Implementing the ability to use higher order discretizations than backward Eu-
ler would make it possible to reduce the discretization error in many cases. The
difficulty lies in how to approximate the cost function and how to set the masking
signal.

The implementation performs prediction. In some cases it is more natural to
produce the estimate for the current sample using measurements up to the current
sample, i.e., filtering. It could therefore be beneficial to add filtering functionality
to the MHE platform.

Since the arrival cost approximation is separate from the MHE class, it is possible
to implement other types of arrival cost approximations than the EKF covariance
matrix update. This would give the user the ability to chose the approximation that
works best for the system they are using.
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Abstract

In this thesis a Moving Horizon Estimator (MHE) has been implemented for the JModelica.org 
platform. JModelica.org is an open-source software platform for simulation and optimization of 
systems described in the modeling language Modelica. MHE is an optimization-based strategy for 
state estimation where, at each time step, a finite horizon optimization problem is solved to generate 
an estimate of the current state values. The goal has been to implement an MHE that works with 
many already existing Modelica models and that has an intuitive user interface. The performance of 
the implemented MHE is evaluated using both linear and nonlinear systems in a series of simulation 
examples. The results indicate that the MHE performs well.
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