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ABSTRACT  

The aim of this study was to use data from Meteosat Second Generation’s Spinning 

Enhanced Visible and Infrared Imager (MSG/SEVIRI) to calculate the gross primary 

production (GPP) in the Sahel region of Africa for 2011 and 2012. GPP was calculated using 

the light use efficiency method, which relates GPP to the absorbed photosynthetically active 

radiation the light use efficiency. The results were compared with the widely used Moderate 

Resolution Imaging Spectroradiometer (MODIS) GPP product (MOD17A) and ground 

measurements using the eddy covariance method, from Dahra, Senegal.  

The results show that MSG/SEVIRI derived GPP more accurately represent the in situ 

measurements from the Dahra site compared with MODIS GPP, both for short time changes 

and the magnitude of GPP. MODIS GPP underestimated the ground measurements during 

the growing season, findings which were consistent with previous studies of the Sahel. 

MODIS performed well during the dry season and in replicating the change of seasons.  

 

 

 

 

 

 

 

SVENSK SAMMANFATTNING 

Syftet med denna studie var att använda data från Meteosat Second Generation’s Spinning 

Enhanced Visible and Infrared Imager (MSG/SEVIRI) för att beräkna total fotosyntes 

(GPP) i Sahel-regionen i Afrika för åren 2011 och 2012. GPP beräknades med ’light use 

efficiecy’-metoden, med vilken man använder den mängd strålning som absorberas av 

växterna tillsammans med hur effektivt växten använder den för att fixera kol från 

atmosfären. Resultaten jämfördes med den välanvända MOD17A GPP-datan från Moderate 

Resolution Imaging Spectroradiometer (MODIS) samt markdata från Dahra i Senegal. 

Resultaten visar att GPP beräknat från MSG/SEVIRI-data gav bättre resultat än MODIS-

GPP för Dahra, både för korta tidsperioder och för nivåerna av GPP. MODIS GPP 

underskattade markmätningarna under växtsäsongen, vilket också har observerats av andra 

studier av Sahel. MODIS GPP var dock bättre under torrsäsongen och för att se 

årstidsförändringar.  
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1 INTRODUCTION 

One of the most important processes in the 

biosphere is the photosynthetic assimilation 

of CO2 from the atmosphere by vegetation. 

This absorption of carbon is called the gross 

primary production (GPP). Accurate 

estimations of GPP on regional to global 

scale is important for creating accurate 

climate-carbon cycle models (Beer et al. 

2010). GPP can also be used to derive 

information on how well the biosphere can 

support humans (Running et al. 2004), as 

seen in studies such as Abdi et al. (2014) 

which estimated the supply and demand of 

carbon needed to support the population 

with food, feed  and fuel. Accurate large-

scale estimates of GPP can be an important 

tool for predicting the risk of future famines 

and changes in resource availability.  

Potential changes in the productivity of the 

Earth’s biosphere is a very important effect 

of future global change due to a changing 

climate (Running et al. 2000). Among the 

continents, Africa is one of the most 

sensitive to climate change (Niang et al. 

2014). The warming of Africa due to 

climate change is likely to be more than 2o 

C, with minimum temperatures rising rise 

faster than maximum temperatures (Niang 

et al. 2014). Future change in mean annual 

precipitation (MAP) is uncertain for sub-

Saharan Africa, however, the increasing 

temperatures will exacerbate the already 

present stress on water availability (Niang 

et al. 2014).   

The Sahel is a region of Africa between the 

Sahara desert and the savannahs closer to 

the equator (figure 1). Arid regions such as 

the Sahel are more vulnerable to changing 

climate conditions than other parts of Africa 

(Abdi et al. 2014;  Niang et al. 2014). 

Increased temperature and decreased 

rainfall are predicted for the western Sahel 

in the 21st century (Roehrig et al. 2013). 

These potential future conditions could see 

the region return to the severe droughts and 

famines that plagued the region in the latter 

decades of the 20th century (Batterbury and 

Warren 2001;  Abdi et al. 2014). 

Understanding the distribution and amount 

of GPP that enters the Sahel ecosystem is 

therefore important for improved 

understanding and quantification of the 

carbon cycle and climate models. And for 

creating more accurate early warning 

systems for famines in the region, as well as 

contribute to risk assessments for longer 

term deficits in resources due to declines in 

GPP and increases in population. Semi-arid 

ecosystems like the Sahel play an important 

role in the interannual variability of global 

CO2 uptake  (Ahlström et al. 2015). 

One problem with estimating GPP in the 

Sahel is there are few sites where in situ data 

on GPP and environmental properties is 

available (Tagesson et al. 2015b). Satellite 

remote sensing is therefore an important 

method for collecting data on the Sahel 

(Tagesson et al. 2015a). The Meteosat 

Second Generation’s Spinning Enhanced 

Visible and Infrared Imager 

(MSG/SEVIRI) and the Moderate 

Resolution Imaging Spectroradiometer 

(MODIS) are two of the satellite sensors 

currently used for remote sensing of GPP. 

The data from MODIS covers the entire 

Earth, while the geostationary MSG covers 

Africa, Europe and parts of Asia and South 

America.  

1.1 AIM 
The aim of this study is to:  

1. Evaluate how well GPP can be 

estimated using data from the 

MSG/SEVIRI satellite sensor  
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2. Make a descriptive analysis of how 

GPP varies across the year in the 

Sahel region of Africa. 

A further aim is to answer the following 

questions: 

3. How do the satellite derived GPP 

compare against GPP data collected 

from measurement towers on the 

ground? 

4. How does the GPP calculated from 

MSG/SEVIRI for the Sahel 

compare to the MODIS GPP 

product? 

5. If the products provide different 

results, what might be the best use 

for each of them? (This of course 

depends on what questions are being 

asked.)  

The study period was the years 2011 and 

2012. These years were selected since all 

the necessary data was available for this 

time period. The field site near the town 

Dahra in Senegal was the only site with in 

situ GPP data for the 2011-2012 time 

period. 

1.2 BACKGROUND 
The Sahel has been the subject of much 

environmental research since the 1970s 

(Batterbury and Warren 2001). For the 

period 1982-1990 GPP varied between 

years, with the inter-annual variation linked 

to large variations in precipitation (Myneni 

et al. 1995). This is expected since water is 

the main limiting factor in the Sahel 

(Running et al. 2004). For 2000-2009 GPP 

was stable throughout the region, based on 

data from MODIS and ecosystem models 

(Zhang et al. 2014). Olsson et al. (2005) 

found increasing Normalized Difference 

Vegetation Index (NDVI) across the Sahel 

for 1982-1999. This suggests an increase of 

green biomass for the time period. The 

primary driver of this greening trend was 

precipitation, according to ecosystem 

modelling done by Hickler et al. (2005). 

Herding, grazing and agricultural pressures 

did not significantly affect the vegetation 

dynamics in the Sahel for 1982-2002 

(Seaquist et al. 2009). However, the authors 

note that such pressures could increase in 

the coming decades. More information on 

the Sahel can be found in section 1.3.  

1.2.1 The Satellite Systems 

There are a number of differences between 

the data from the SEVIRI and MODIS 

sensors. MSG/SEVIRI is in geostationary 

orbit over Africa and collects data every 15 

minutes, which can then be integrated for 

longer timespans (Aminou 2002). The 

geostationary orbit also means that it is 

constantly observing the same area, so there 

is no time when data is not being collected.  

The Terra satellite orbits the Earth in a polar 

orbit. Therefore the MODIS sensor has to 

make several orbits to completely cover the 

Earth. MODIS data is provided as eight day 

composites to reduce the effects of clouds 

and other atmospheric interferences. Daily 

data is also available. The eight day 

composite data was used in this study. Each 

data point is then only an instantaneous 

value from the time when the satellite 

passed over that point.  

These differences in sensor and satellite 

characteristics are reflected in the data. For 

the same time period the size of the data 

files from MSG/SEVIRI are much larger 

than for MODIS, because the temporal 

resolution is much higher. MODIS has a 

better spatial resolution than MSG/SEVIRI. 

The increased temporal resolution could 

result in more accurate GPP estimations and 

results that better reflect nature. The 

increased amount and size of data files also 

requires more storage and more processing 

power.  
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1.2.2 The Carbon Cycle 

The carbon cycle is the exchange of carbon 

between the atmosphere, biosphere, 

hydrosphere, pedosphere and hydrosphere 

of the Earth. 

GPP is the total amount of carbon that is 

absorbed by vegetation, usually measured 

in g C m-2 d-1 (Chapin et al. 2002). As it is 

the influx of matter and energy into an 

ecosystem understanding GPP on large 

scales is important for carbon cycle studies 

as well as resource planning and 

management (Waring and Running 2007).  

Environmental controls of GPP include 

temperature, precipitation, more directly the 

soil moisture, incoming radiation and 

nutrient availability (Traore et al. 2014). On 

a global scale mean annual precipitation 

(MAP) accounts for 72% of GPP variation 

(Garbulsky et al. 2010). Mean annual 

temperature (MAT) accounts for 45% on a 

global scale, mostly in northern forest 

ecosystems (Garbulsky et al. 2010). 

Nemani et al. (2003) found that 

precipitation was an important factor for 

NPP levels in dry regions and temperature 

is more important in high latitude colder 

regions.   

Some of the GPP absorbed by plants is 

returned to the atmosphere by autotrophic 

respiration (Ra). Ra is the carbon that is used 

by plants for their metabolism. It is usually 

divided into growth respiration and 

maintenance respiration. Respiration is 

limited by temperature (Sitch et al. 2003) 

and nutrient availability (Ryan 1991) as 

well as water. The partitioning of Ra 

between growth and maintenance changes 

over the year, while the total Ra is stable 

(Falge et al. 2002) 

The remaining part of the GPP is the Net 

Primary Production (NPP) which is the 

amount of carbon that a plant can use to 

increase its biomass and produce necessary 

chemicals (Chapin et al. 2002).  

Carbon also leaves the ecosystem by 

heterotrophic respiration (Rh), which is the 

respiration of animals and microbes 

(Chapin et al. 2002). The sum of Rh and Ra 

is called ecosystem respiration (Re) (Falge 

et al. 2002).  

The balance between absorbed CO2 and lost 

carbon by respiration is named Net 

Ecosystem Exchange (NEE) (Tagesson et 

al. 2015a). NEE can be directly measured 

with gas analysers, in contrast to GPP 

(Chapin et al. 2002).   

1.2.3 Estimating GPP 

It is not practically possible to directly 

measure GPP. Instead GPP has to be 

estimated indirectly by deriving it from e.g. 

remote sensing, vegetation models or in situ 

measurement of CO2 fluxes. Satellite 

remote sensing has the advantage of being 

able to cover large areas of the Earth 

simultaneously and therefore giving 

scientists the ability to easily study large 

scale patterns of GPP. However, the 

satellite derived GPP needs to be validated 

against in situ measurements on the ground 

to ensure the reliability of the data.  

The LUE method (Monteith 1972) is a 

commonly used method for estimating GPP 

from satellite data. The method estimates 

GPP by means of Photosynthetically Active 

Radiation (PAR), measured in MJ m-2 day-

1, the fraction of PAR that is absorbed by 

plants (FAPAR, unitless, 0-1), and the Light 

Use Efficiency (LUE, ε) in g C MJ-1.  Eq. 1 

describes the relationship between these 

parameters: 

𝐺𝑃𝑃 = 𝜀 ∙ 𝑃𝐴𝑅 ∙ 𝐹𝐴𝑃𝐴𝑅                    Eq. 1. 

Where ε is the light use efficiency.  
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PAR is the amount of incoming solar 

radiation in the visible spectrum (400 – 700 

nm) (McCree 1981).  

PAR varies over the year as the incoming 

solar radiation changes. Furthermore clouds 

have a negative impact on the amount of 

PAR that reaches the ground (Frouin and 

Pinker 1995). Diffuse incoming radiation 

can also have an effect on GPP (Donohue et 

al. 2014).  The diffuse fraction accounted 

for 5-10% of the accuracy of their model 

across coastal sites in Australia. For 

northern Australia, which has a monsoon 

season, the diffuse fraction’s contribution 

was up to 50% (Donohue et al. 2014). 

FAPAR is the fraction of incoming PAR 

absorbed by green plants in their canopy. 

FAPAR is a fundamental variable, often 

used in carbon and global circulation 

models (GCM) (GCOS 2003). In GCM’s it 

can be used to estimate how much carbon is 

assimilated by plants and how much water 

is released due to evapotranspiration 

(Gobron and Verstraete 2009). It is 

expressed in a range from 0 – 100 %. 

FAPAR mainly depends on Leaf Area 

Index (LAI) and vegetation cover (Asrar et 

al. 1992). LAI is area of leaves per ground 

area (m2/m2), and vegetation cover is how 

much of the ground is covered by the 

vegetation in percent. For environments like 

the Sahel where the vegetation cover is 

often sparse, the vegetation cover is more 

important than LAI when determining 

FAPAR (Asrar et al. 1992). 

LUE is the efficiency with which the 

vegetation converts the absorbed 

photosynthetic radiation into carbon. It 

varies widely with different vegetation 

types (Running et al. 2004). There is no 

convergence of LUE between different 

plant functional types (Goetz and Prince 

1999). Generally, precipitation is the most 

important control of LUE according to 

Garbulsky et al. (2010), who also concludes 

that the annual precipitation is more 

important for the variation of LUE than 

long-term MAP. LUE increases with 

increasing precipitation (Garbulsky et al. 

2010). Temperature can be more important 

than precipitation in cold regions. Nutrient 

availability is also a factor controlling LUE 

(Goetz and Prince 1999). Future increases 

in atmospheric CO2 can have an effect on 

LUE, which is highly sensitive to CO2 

levels (Traore et al. 2014). Increased 

atmospheric CO2 concentration means that 

less water is needed by the plants to 

assimilate the same amount of carbon. This 

increases the water use efficiency, which 

means that arid ecosystems can increase 

their uptake of CO2 without an increase in 

precipitation (Poulter et al. 2014). 

For in situ estimations the Eddy Covariance 

(EC) method is a standard for measuring 

fluxes between the atmosphere and the land 

on scales of ca 1×1 km, depending on sensor 

height, wind direction and other 

environmental conditions. The main 

problem with this method in African 

regions is that the number of measurement 

stations are limited (Sjöström et al. 2011). 

This is due to the expense of the equipment, 

lack of technical expertise and maintenance 

difficulties.  

The EC technique measured NEE, from 

which GPP can be calculated using the 

following equation (Chapin et al. 2002): 

𝐺𝑃𝑃 = 𝑁𝐸𝐸 + 𝑅𝐸                    Eq. 2. 

Where RE is the ecosystem respiration, 

which is the same as the NEE measured 

during night where there is no 

photosynthesis. Re for the entire diurnal 
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cycle can be estimated by a temperature-

based model (Chapin et al. 2002). 

1.3 STUDY AREA 

The Sahel is an eco-climatic region in 

Africa located between the Sahara desert to 

the north and the savannah to the south, as 

seen in figure 1. It stretches across the 

continent from Senegal in the west to 

Eritrea in the east. The climate is hot and 

dry for most of the year. The main 

characteristic is the rainy season  between 

July and October (Herrmann et al. 2005). 

The growing season coincides with the 

rainy season, and the seasonal differences 

are strong (Herrmann et al. 2005). The 

annual uptake of carbon is low in 

comparison to other biomes (Hanan et al. 

1998). During the growing season the CO2 

flux was often equal to those of other 

biomes (Hanan et al. 1998). The 

measurements of Hanan et al. (1998) 

peaked at 15 µmol m-2 s-1. In comparison 

peak fluxes were 6-38 µmol m-2 s-1 for 

temperate deciduous forests, 2 µmol m-2 s-1 

for a boreal forest, 16 µmol m-2 s-1 for a 

Brazilian tropical forest and 25 µmol m-2 s-

1 in a temperate grassland (Hanan et al. 

1998). 

Rainfall in the Sahel is driven by the 

northward movement of the Inter Tropical 

Convergence Zone (ITCZ) (Nicholson 

1981;  Sultan and Janicot 2000). The ITCZ 

is the region where the winds from north 

and south of the equator converge (Chapin 

et al. 2002). Due to the Earth’s axial tilt 

zone of maximum surface heating moves 

north and south of the equator during the 

year, and the ITCZ moves along with it 

(Lucio et al. 2012). Wetter years may be 

caused by the ITCZ moving further north 

than during regular years (Nicholson 1981). 

El Niño Southern Oscillation (ENSO) 

affects the sea surface temperature (SST) of 

the Indian and Atlantic ocean (Nicholson 

and Kim 1997). These SST changes in turn 

affect the rainfall in the Sahel by changing 

the tropical atmospheric circulation 

(Folland et al. 1986). Bader and Latif (2003) 

found that increased SST in the Indian 

Ocean reduced the amount of rainfall in the 

west Sahel for 1950-1990. Colder SST than 

normal in the Atlantic or Indian Oceans 

increases the precipitation in the Sahel 

(Nicholson and Kim 1997) 

There has been severe droughts throughout 

the last half of the 20th century (Wang and 

Eltahir 2000). The decreased rainfall that 

lead to the severe droughts of the 1970’s 

and 1980’s were not caused by movement 

of the ITCZ (Lucio et al. 2012). In the last 

decades there has been a re-greening trend 

in parts of the region (Dardel et al. 2014). 

This greening of the Sahel is caused by 

increased precipitation which in turn has 

increased the biomass, primarily in the form 

of a higher tree cover (Brandt et al. 2015). 

While GPP showed medium to high 

interannual variation for 1982-1990, NPP 

remained unchanged for most of the Sahel 

during 1981-1999 (Running et al. 2004). 

The GPP variability stabilized in the first 

decade of the 21st century. During that time 

period NPP increased for most of the Sahel, 

while the global NPP decreased (Zhao and 

Running 2010). This is in contrast to the 

Figure 1: Location of the Sahel region in Africa. 

Image from Wikimedia Commons. 
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findings of Zhang et al. (2014), who found 

a decrease of NPP in the Sahel for 2000-

2009 based on MODIS data and ecosystem 

models, while GPP remained stable.  

The soils of Africa, and especially in the 

Sahel, are unsuitable for agriculture 

(Breman et al. 2001). The sandier soils are 

easy to cultivate with simple tools. Heavier 

soils require more expensive machinery, 

which few farmers in the region can afford.  

Historically the people of the Sahel have 

been accustomed to using diversity and 

flexibility to ensure their livelihood 

(Batterbury and Warren 2001;  Mertz et al. 

2009).  

1.3.1 Dahra 

The ground control data for this thesis was 

obtained from a measurement site located 

north-east of the town Dahra, Senegal 

(15.40 oN, 15.43 oW). The site is located in 

the Sahel region of Africa, and was 

established in 2002 (Tagesson et al. 2015b). 

The climate is hot and dry, with 

temperatures between 15.9 and 39.9 oC 

(Tagesson et al. 2015b). Mean annual 

temperature is 29 oC (Tagesson et al. 

2015a). The rainy season lasts from July to 

October, peaking in August. For the study 

period the precipitation was 466 mm for 

2011 and 606 mm for 2012 (Tagesson et al. 

2015b). More than 95% of the annual 

precipitation falls during the rainy season 

(Tagesson et al. 2015b). The rainy season  

started day of year (DOY) 176 for both 

2011 and 2012 and ended on DOY 278 in 

2011 and 289 in 2012 (Tagesson et al. 

2015b). The vegetation consists of shrubs, 

low trees and grasses, with a tree cover of 

around 3% (Tagesson et al. 2015a). The 

terrain is flat and extends with the same 

vegetation for several kilometres in all 

directions (Tagesson et al. 2015a). 

Tagesson et al. (2015a) noted high CO2 

fluxes for Dahra compared to other semi-

arid sites in Africa, with fluxes being more 

similar to tropical grasslands. The peak 

daily GPP was 15 g C m-2 for 2010-2013 

and Re peaked at 12 g C m-2 for the same 

period (Tagesson et al. 2015a). LUE varied 

between 0.02 g C MJ-1 in the dry season and 

peaked at 2.27 g C MJ-1 in the rainy season 

(Tagesson et al. 2015a). No greening or 

browning trend in NDVI was found for 

Dahra between 2002-2012 (Tagesson et al. 

2015b).  

2 DATA AND METHODS 

2.1 DATA  
The data used for the GPP calculations were 

from the MSG/SEVIRI sensor, which 

provides data in four visible and NIR 

channels as well as eight IR channels 

(Aminou 2002). The spatial resolution is 3 

km at nadir, and the baseline repeat cycle is 

15 min. The MSG-2 satellite upon which 

the SEVIRI sensor is mounted was 

launched in 2005 and is in an geostationary 

orbit (ESA 2015). The satellite data was 

processed by the Land Surface Analysis 

Satellite Applications Facility (LSA SAF) 

(http://landsaf.meteo.pt/) to create the 

Downward Surface Shortwave Flux (DSSF) 

and FAPAR data sets used for calculating 

GPP. The LSA SAF products used were 

Image 1: View of the Dahra site February 6 

2013. 
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DIDSSF (daily integrated DSSF) and 

FAPAR.  

The land cover map used to assign LUE-

values was downloaded from the LSA-SAF 

website (https://landsaf.ipma.pt/). This land 

cover data was provided by LSA-SAF for 

use with their products. It uses the land 

cover definitions from the International 

Geosphere-Biosphere Program (IGBP) as 

they are defined in Belward (1996). 

The data from LSA-SAF is divided into 

geographical regions as seen in figure 2. 

The data sets for North Africa (NAfr) was 

used since they contain the whole of the 

Sahel region.  

The MODIS GPP data comes from the 

MODIS sensor mounted on NASA’s Terra 

and Aqua satellites. It has a spatial 

resolution of 250, 500 or 1000 m and 

collects  data in 36 different bands 

(Lillesand et al. 2008). The MOD17 GPP 

product used in this study has a spatial 

resolution of 1 km and a temporal resolution 

of 8 days. The evaluation data is GPP 

calculated from eddy covariance (EC) 

measurements in the Dahra field site in 

Senegal. The GPP was calculated from the 

EC data by Tagesson et al. (2015a). 

Below, each data set used in the study is 

described. More detailed information can be 

obtained from the referenced documents 

and papers.  

2.1.1 DSSF  

Downward Surface Shortwave Flux (DSSF) 

is the radiative energy between 0.3 – 4 µm 

reaching the Earth in W m-2. DSSF depends 

on the solar zenith angle, cloud cover and to 

a smaller degree on the surface albedo and 

the atmospheric absorption (LSA-SAF 

2011a). The daily DSSF (DIDSSF) product 

used in this study is created by integrating 

the 30 min values for the standard product 

over the day.  

The method used for retrieval of DSSF from 

the satellite data by LSA-SAF is based on 

the methods and developments at Météo-

France (LSA-SAF 2011a). The LSA-SAF 

method differs from the methods from 

Météo-France in spatial and temporal 

resolutions, the source of the ancillary data 

and which SEVIRI channels are used (LSA-

SAF 2011a). Clouds have a negative impact 

on the amount of DSSF reaching the 

surface. Therefore there are two methods 

with different parameterisation used for 

deriving DSSF data: one for cloudy skies 

and one for clear skies.  

For clear skies the method used takes into 

account the scattering of radiation in the 

atmosphere, the spherical albedo of the 

atmosphere (LSA-SAF 2011a). Both the 

direct and diffuse, scattered by the 

atmosphere, incoming radiation is 

considered and included in the DSSF 

product. The equations used are from 

Frouin et al. (1989) 

A cloud mask is used to determine if a pixel 

is cloudy or not. If a pixel is cloudy the 

DSSF estimation is done considering the 

effect that clouds have on radiation transfer 

Figure 2: Geographical distribution of the 

LSA-SAF SEVIRI-based data sets. Image from 

(LSA-SAF 2011a). 
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in the atmosphere. This is done based on 

methods according to Gautier et al. (1980) 

and Brisson et al. (1999). If a pixel is 

classified as cloudy it is assumed that the 

entire area of the pixel is covered by clouds. 

The cloudy skies method includes cloud 

transmittance in addition to atmospheric 

transmittance. It also includes cloud albedo 

and atmospheric transmittance between the 

cloud layer and the surface (LSA-SAF 

2011a).  

The DSSF and DIDSSF products have been 

validated by LSA-SAF prior to their 

release. Validation data from Mali, which is 

the most relevant location for this study, 

shows that there is an overestimation of 

DSSF for clear sky pixels (LSA-SAF 

2011b). However, the time series for Africa 

have not yet been analysed in detail. 

Aerosols are one source of uncertainty in 

the data, since it is currently included only 

as a simple parameter not as variable. 

Surface albedo on the other hand is included 

as a variable using the Land-SAF albedo 

product (LSA-SAF 2011b). Problems due 

to surface albedo are only expected to occur 

when an area is covered with snow (LSA-

SAF 2011b).  

For the DIDSSF product the relative errors 

are lower than 10 % and sometimes lower 

than 5 % for the North African validation 

sites (LSA-SAF 2011b). Underestimation 

of the effects of aerosols and the influence 

of missing data are the main sources of error 

in the DSSF and DIDSSF products (LSA-

SAF 2011b). 

2.1.2 FAPAR 

LSA-SAF provides FAPAR data with daily 

temporal resolution, which is integrated 

from instantaneous FAPAR over the day. 

FAPAR is calculated assuming clear skies.  

The algorithm used for calculating FAPAR 

uses directional coefficients from the 

Bidirectional Reflectance Distribution 

Function (BRDF) for the different spectral 

channels (Geiger et al. 2008). Negative 

impacts from view and sun angles to 

variation surface reflectance are minimized 

since the product is derived from the same 

geometry for the entire SEVIRI disk (LSA-

SAF 2013). 

The SAIL (Scattering by Arbitrarily 

Inclined Leaves) model is used to provide 

the BRDF data and how much radiation the 

vegetation absorbs (LSA-SAF 2013). 

Inputs for the SAIL model are leaf area 

index (LAI), leaf transmittance and 

reflectance, leaf inclination distribution and 

soil spectral albedo. FAPAR is derived 

from the calculated NDVI. (LSA-SAF 

2013).  

The FAPAR data has been validated by 

comparing it to ground data. For the Sahel 

region the validation was done in Dahra. 

Errors inherent to the model has also been 

considered. The product has also been 

compared to similar offerings from other 

sources (LSA-SAF 2008).  

Retrieval of FAPAR is unreliable for 

regions such as Central Africa where 

persistent clouds interfere with the model 

(LSA-SAF 2008).  

“Another limitation of the algorithm comes 

from the synthetic dataset used to simulate 

global conditions. Although this algorithm 

is based on more than 5000 soil/vegetation 

combinations varying LAI, LIFD, soil 

spectral albedo and leaf optical properties 

for obtaining a unique global RDVI-FAPAR 

relationship, lambertian properties for the 

soil are assumed, which could introduce a 

systematic error for sparse canopies.” 

(LSA-SAF 2008).  
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Errors due to geometry is not a factor for the 

African data sets, the main source of 

uncertainty is instead the cloud cover (LSA-

SAF 2008). 

Compared to MODIS data the largest 

differences in FAPAR occurs in bright 

areas, generally corresponding to areas with 

bare soil or sparse vegetation (LSA-SAF 

2008). Brightness due to highly reflective 

snow is not a problem for the African data 

sets (LSA-SAF 2008). The largest 

differences occur in deserts and semi-arid 

grasslands, such as in the Sahel region 

(LSA-SAF 2008). Validation against in situ 

data from Dahra for 2006 and 2007 shows 

that compared to MODIS the MSG/SEVIRI 

product might be more useful when 

investigating vegetation productivity and 

yield estimates in the Sahel (LSA-SAF 

2008).  

Across the Sahel region the FAPAR had 

optimal to medium quality in 2007. Optimal 

meaning a theoretical uncertainty lower 

than 0.1 and medium an uncertainty 

between 0.1 and 0.15 (LSA-SAF 2008). 

However in cloudy regions of west and 

central Africa it was lower, with 

uncertainties greater than 0.15 (LSA-SAF 

2008). Much of the validation was done for 

2006 and 2007. No new validation has been 

done for data collected since then.  

2.1.3 MODIS GPP 

The MODIS GPP (MOD17A) product is 

calculated  from satellite-derived FPAR and 

estimations of PAR and LUE (Running et 

al. 1999). The MOD17 algorithm calculated 

daily GPP as: 

𝐺𝑃𝑃 = 𝜀𝑚𝑎𝑥 × 𝑆𝑊𝑟𝑎𝑑 × 𝐹𝐴𝑃𝐴𝑅 ×

𝑓(𝑉𝑃𝐷) × 𝑓(𝑇𝑚𝑖𝑛)                              Eq. 3 

Where εmax is the maximal, biome-specific 

light use efficiency (g C MJ−1), SWrad is 

incoming short-wave radiation (assuming 

45% to be PAR), FAPAR is the fraction of 

absorbed PAR, f(VPD) and f(Tmin) are 

linear scalars reducing GPP due to water 

and temperature stress. 

PAR is from the MOD15 product and PAR 

comes from National Centre for 

Environmental Prediction (NCEP) along 

with Tmin and VPD (Plummer 2006;  Zhao 

and Running 2010). LUE is calculated 

based on parameters from biome look-up 

tables (BLUT) based on the land cover at 

launch (Running et al. 1999). 

The parameters that control LUE are 

derived from the results of global NPP 

simulated with the BIOME-BGC model 

(Heinsch et al. 2003). LUE was then 

computed from this NPP together with PAR 

and FAPAR to generate biome specific 

LUE for use in the GPP calculation. 

(Heinsch et al. 2003). 

MODIS GPP has been evaluated several 

times for many different biomes. It has a 

strong forest focus, and values for other 

sites might not be as representative 

(Plummer 2006). On a global scale GPP 

seasonality is captured for a large variety of 

climates with good results (Turner et al. 

2006). In Africa the seasonality is also 

captured well, however GPP is 

underestimated for sites in the Sahel 

(Sjöström et al. 2013). MODIS GPP was 

reasonably good at replicating EC GPP 

across sites in Africa, but underestimated 

GPP consistently (Sjöström et al. 2011), 

especially in the Sahel. Fensholt et al. 

(2006) compared the MODIS NPP product 

with ground measurements in Senegal, and 

found that MODIS NPP underestimated in 

situ NPP. They found that the 

underestimation was due to the values in the 

BLUT. Underestimation of EC GPP was 
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also found in a coniferous forest in North 

America (Coops et al. 2007), however the 

correlation between MODIS GPP and EC 

GPP was strong. There is a generally poor 

performance during droughts and in dry 

areas (Plummer 2006;  Turner et al. 2006;  

Sjöström et al. 2013). 

The FAPAR value used in the model is the 

highest value recorded with clear skies 

during the 8-day period (Plummer 2006). 

The GPP value is therefore the maximum 

possible during the period, and is not 

representative of normal conditions 

(Plummer 2006).  

2.1.4 In situ GPP data 

The in situ GPP data was calculated from 

NEE, measured by EC measurements 

between 2010 and 2013 (Tagesson et al. 

2015a). For the 2011-2012 period covered 

by this study there was a major loss of data 

between 5 November 2010 and 17 July 

2011 (Tagesson et al. 2015a). Other minor 

breaks in the data were caused by power 

failures. GPP is calculated from NEE by 

adding RE (Chapin et al. 2002). More details 

about the measurements can be found in 

(Tagesson et al. 2015a). 

2.2 GPP CALCULATIONS 
After downloading the DIDSSF and 

FAPAR datasets from the LSA-SAF 

website (https://landsaf.ipma.pt/) the first 

step was to extract the dates with matching 

datasets for FAPAR and DIDSSF. Some 

days did not have either of the datasets, and 

some had only datasets for one of DIDSSF 

or FAPAR. For 2011 there was 343 (94%) 

days with matching data, and for 2012 there 

was 333 (91%) days.  

Since the Dahra field site was located at the 

border of two MSG/SEVIRI pixels the data 

was extracted from all the surrounding 

pixels, as shown in figure 3, and averaged 

to create a representative value for use with 

the evaluation against EC data. The MODIS 

GPP data was extracted from the area 

surrounding Dahra in order to cover 

Figure 4: PAR calculated from the DIDSSF 

product for April 1 2011. PAR = 0.46 

×DIDSSF. The black square is Dahra. 

Figure 3: Approximate location of the pixels 

used to extract data for calculating GPP in 

Dahra. The blue grid represents the 

MSG/SEVIRI pixels, the red grid represents the 

MODIS pixels and the black circle is the Dahra 

site. 
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approximately the same area as the 

MSG/SEVIRI pixels. 

PAR was calculated to 46% of the DSSF 

according to Iqbal (1983). An example of 

daily PAR can be seen in figure 4. Note the 

areas of low values in blue, likely 

corresponding to clouds and or aerosols.  

FAPAR was extracted from the 

downloaded files along with the theoretical 

errors of the product described previously. 

An example of daily FAPAR and its errors 

can be seen in figure 5 below.  

LUE for the regional calculations was 

determined by land cover. LUE values were 

assigned to the different land cover classes 

based on the values found in Garbulsky et 

al. (2010). The annual average LUE for 

each land cover type was used. The 

distribution of LUE can be seen in figure 6. 

GPP from MSG/SEVIRI was then 

calculated using Eq 1.  Regional GPP maps 

for a selection of dates were made for 2012 

to illustrate the change of GPP before, 

during and after the rainy season. The final 

GPP for April 1 2011 can be seen in figure 

7.  

For the Dahra site GPP was calculated from 

the extracted PAR and FAPAR values with 

a LUE value of 1.2 g C MJ-1, an 

intermediate value between the highest and 

lowest values for savannahs and grasslands 

according to (Garbulsky et al. 2010) and 

also between the highest and lowest noted 

for Dahra by Tagesson et al. (2015a), as 

mentioned earlier.  

The FAPAR error product was used to 

calculate the highest and lowest possible 

GPP values due to possible errors in 

FAPAR. After calculating the GPP for the 

Dahra site the results for days that had been 

Figure 5: Shows the FAPAR and FAPAR errors 

from the LSA-SAF FAPAR product for April 1 

2011. The value -0.06 indicates missing data. 

The black square is Dahra. 

Figure 6: Shows the distribution of LUE based 

on land cover type. The black square is Dahra. 

Figure 7: GPP calculated from the data shown 

in figures 2-4 for April 1 2011. The black square 

is Dahra. 
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flagged as erroneous, from the DSSF 

product were removed. In total 2 such dates 

were removed.  

2.2.1 Statistics 

The mean absolute error (MAE), mean bias, 

root mean square error (RMSE) and 

correlation coefficient (r) were calculated 

for MSG/SEVIRI derived GPP and MODIS 

GPP compared to the in situ EC-derived 

GPP. In addition the annual mean value and 

variance for the three data sets were 

calculated. 

In the following equations x is the satellite 

derived GPP, y is the EC GPP, n is the 

sample size, sx is the standard deviation of 

the satellite GPP and sy is the standard 

deviation of the EC GPP. 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1                 Eq. 4 

MAE, formula in Eq. 4, is a measure of how 

close the satellite derived GPP values are to 

the EC GPP values. It does not give any 

information on whether the satellite GPP 

values are higher or lower than EC GPP. 

The closer the satellite GPP is to the EC 

GPP, the lower the MAE.  

𝐵𝑖𝑎𝑠 =
∑ (𝑥𝑖−𝑦𝑖)𝑛

𝑖=1

𝑛
                    Eq. 5 

Bias, formula in Eq. 5, is a measure to see if 

there are any systematic errors between the 

satellite GPP and EC GPP. A bias of 0 

would mean that there is no systematic 

error, a positive bias would mean that the 

satellite GPP tends to overestimate the EC 

GPP while a negative bias would indicate 

that the satellite GPP underestimates the EC 

GPP.  

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
                  Eq. 6 

RMSE, formula in Eq. 6 is a measure of 

how accurate the satellite GPP is compared 

to the EC GPP. The lower the RMSE the 

less difference there is between the satellite 

GPP and the EC GPP. 

𝑟 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

(𝑛−1)𝑠𝑥𝑠𝑦
                     Eq. 7 

The correlation coefficient, Eq. 7, measures 

of how strong of a linear relationship there 

is between two variables. It ranges from -1 

to +1, where -1 is a perfect negative linear 

relationship and +1 is a perfect positive 

linear relationship. A value of 0 means that 

there is no linear relationship between the 

two variables. A value of r close to +1 is 

desired in this study. However, even though 

the correlation is good it does not mean that 

the satellite GPP is accurate compared to the 

EC GPP. The r-value is influenced by the 

size of the sample. The larger the sample, 

the lower the absolute r-value needs to be 

for significance (Rogerson 2010). For this 

study the MODIS GPP with a sample size 

of n = 46 needs an r-value of >0.361 for 

significance, while MSG/SEVIRI GPP with 

n > 300 needs an r-value of >0.124 

(Rogerson 2010) 

Accurate satellite estimation of GPP would 

therefore have a low MAE, bias and RMSE 

with an r-value close to +1. The mean value 

and variance should also be close to those 

of the EC GPP.  

3 RESULTS 

3.1 2011 
Figure 8 shows the result of the GPP 

calculations for the Dahra site for 2011. A 

larger version of figure 8 can be found in 

appendix A1. For this year there was no EC 

data for the first months of the year, 

meaning that all comparisons between in 

situ GPP and satellite derived GPP are done 

only for the growing season and the 

beginning of the dry season.  
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Figure 9: Difference in GPP values between MSG/SEVIRI derived GPP, MODIS GPP and EC GPP for 

the Dahra field site in 2011. 

Figure 8: GPP of 2011 for the Dahra field site from MSG/SEVIRI, MODIS and in situ measurements. 

Gaps in the graphs indicate periods of missing data. 
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MSG/SEVIRI GPP show much day-to-day 

variance, as does the EC GPP. Though, as 

seen in figures 8 and 9 the variations does 

not always match in timing of magnitude. If 

they did the EC-SEVIRI graph in figure 9 

would be 0 or close to 0 throughout 2011.  

MSG/SEVIRI lags behind the in situ 

measurements during the early growing 

season, and it fails to capture the peak 

values. Towards the end of the growing 

season the MSG/SEVIRI GPP seems to 

match the EC GPP better, as the EC-

SEVIRI graph in figure 9 is closer to 0. 

Figure 9 also shows a large difference 

between MSG/SEVIRI GPP and EC GPP 

between DOY 235 and 244. Apart from this 

peak the difference between EC GPP and 

MSG/SEVIRI GPP is lower than the 

difference between EC GPP and MODIS 

GPP. 

Since MODIS has values every eight days it 

cannot match the day-to-day variance of the 

EC GPP. As seen in figure 8, MODIS GPP 

fails to reach the same maxima as the in situ 

data does. It stays consistently lower than 

MSG/SEVIRI GPP during the dry season. 

For the time between about DOY 300-350 

the MODIS GPP matches the EC GPP more 

closely than the MSG/SEVIRI GPP. 

Despite not being able to capture the same 

values as the in situ measurement the start 

and end of the growing season is captured 

well (figure 8).  

Figure 9 shows that MODIS GPP 

underestimates EC GPP for the entire 

growing season, and apart from the peak 

around DOY 240, underestimates EC GPP 

more than MSG/SEVIRI GPP does. 

However, it performs better than 

MSG/SEVIRI for the start of the dry season 

where the EC-MODIS graph is almost 0 

while the EC-SEVIRI graph overestimates 

EC GPP (figures 8 and 9). 

Maximum GPP occurs in DOY 235 for the 

EC GPP with a value of 13.55 g C m-2 d-1. 

For MS/SEVIRI GPP it occurs in DOY 254 

with a value of 10.66 g C m-2 d-1. For 

MODIS GPP it occurs in DOY 249 with a 

value of 3.01 g C m-2 d-1. 

Figure 10 shows the MSG/SEVIRI derived 

GPP and MODIS GPP compared with the 

EC GPP. For low values the MSG/SEVIRI 

overestimates the in situ GPP, while for the 

higher values it underestimates them, 

showing that it has a lower dynamic range 

Figure 10: EC GPP plotted against MSG/SEVIRI GPP and MODIS GPP. The dotted line is the 

regression line between the EC GPP and the satellite derived GPP values. n=343 for MSG/SEVIRI GPP 

and n=46 for MODIS GPP 
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than EC GPP. Note that for 2011 there was 

EC data only for the growing season so this 

figure does not show MSGSEVIRI/GPP 

over the entire year. MODIS GPP has a 

higher R2 value than MSG/SEVIRI GPP. 

However, the underestimation seen in 

figures 8 and 9 is clearly visible here. 

According to figure 10 MODIS GPP is only 

accurate for the lowest GPP values.  

3.2 2012 
The GPP for 2012 from the three sources for 

Dahra can be seen in figure 11. A larger 

version is available in the appendix. For this 

year there was EC data for most of the dates, 

meaning that a comparison between the two 

satellite products and the in situ data can be 

made for the dry season as well. Similarly 

to 2011 the results for 2012 the MODIS 

GPP products does not reach the high GPP 

values of the growing season (figure 11).  

MSG/SEVIRI GPP is more accurate at 

estimating the high values of the growing 

season as seen in figure 11. There appears 

to be three distinct peaks of GPP during the 

growing season. The first one at ca DOY 

215, the second one at ca DOY 230-250 and 

the last one at ca DOY 280. There is a 

distinct drop in GPP between the second 

and third peak, which is visible for both 

MSG/SEVIRI GPP and the MODIS GPP.  

The MSG/SEVIRI GPP seem to replicate 

the EC GPP more accurately when it comes 

to the growing season, including the 

observed peaks. As with 2011 the 

MSG/SEVIRI GPP lags behind during the 

start and end of the growing season, which 

MODIS GPP seem to capture more 
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Figure 11: GPP of 2012 for the Dahra field site from MSG/SEVIRI, MODIS and in situ measurements. 

Gaps in the graphs indicate periods of missing data. 
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accurately. As seen in figures 11 and 12 

MSG/SEVIRI GPP underestimates GPP for 

the first half of the growing season, and is 

more similar to MODIS GPP than the EC 

GPP. In figure 12 the EC-SEVIRI and EC-

MODIS graphs show an increasing 

underestimation for the first half of the 

growing season, while the SEVIRI-MODIS 

graph stays around 0.  

For the latter half of the growing season 

MSG/SEVIRI GPP is more similar to EC 

GPP than MODIS GPP is (figure 12), 

however there are several days when the 

difference spikes to reach high values, 

meaning it underestimates EC GPP. When 

the dry season starts MODIS is more 

accurate than MSG/SEVIRI, as seen in 

figure 12 where MSG/SEVIRI reaches 

values further from 0 than MODIS GPP 

does. For the dry season there are large gaps 

and it is difficult to see any clear results. 

However, looking at both figures 11 and 12 

MODIS GPP seems to perform slightly 

better than MSG/SEVIRI GPP during the 

dry season. 

Figure 13 above shows the MSG/SEVIRI 

GPP and MODIS GPP compared to the EC 

GPP for 2012. MSG/SEVIRI GPP shows 

the same low dynamic range compared to 

EC GPP as seen for 2011.   

Figure 13 also show the large deviation of 

MODIS GPP compared to EC GPP that can 

be seen in figure 11. For the lower values of 

the dry season it is accurate, and does not 

overestimate them as MSG/SEVIRI GPP 

does. 
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The daily GPP for a selection of dates from 

the latter half of 2012 are shown in figures 

14 and 15. The images below each map 

were taken with a digital camera from 

measuring tower at the Dahra site, showing 

how the landscape changes throughout the 

growing season.  

Figure 13: EC GPP plotted against MSG/SEVIRI GPP and MODIS GPP. The dotted line is the 

regression line between the EC GPP and the satellite derived GPP values. n=333 for MSG/SEVIRI GPP 

and n=46 for MODIS GPP 

Figure 14: GPP distribution across northern Africa in 2012along with images taken at the Dahra field 

site for the same date, July 10 for subfigure A and August 10 for subfigure B. 
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Figure 15: GPP distribution across northern Africa in 2012 along with images taken at the Dahra field 

site for the same date, September 10 for subfigure A, October 10 for subfigure B, November 10 for 

subfigure C and December 10 for subfigure D.  
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July 10 (DOY 192) is 16 days after the start 

of the rainy season in DOY 176, and the 

greening of the landscape can be seen 

(figure 13). After the end of the rainy season  

in DOY 289 (October 15) the rapid decrease 

of GPP as seen in figure 11,  can be seen in 

figure 15 where November and December 

are markedly less green than the previous 

months seen in figure 14.  

The regions of along the southern coast of 

West Africa and near the equator in Central 

Africa are marked in black due to NoData 

flag in the FAPAR data set. This lack of 

data is especially clear in figure 14(B) and 

15(A), and is present in for all subfigures. 

NoData regions are also present across the 

Sahara desert in many figure 15(A). The 

presence of errors in the Sahara is less likely 

to impact the results since there is almost no 

photosynthetic activity there. 

3.3 ENTIRE PERIOD (2011-2012) 
Figure 16 below shows the GPP from the 

three sources for the entire period January 1 

2011 to December 2012. When viewed 

together there are some differences, and 

similarities, in the patterns of GPP between 

the two years which become more apparent.  

The delay in the start of the growing season 

for MSG/SEVIRI GPP is apparent. Also the 

difference between MODIS GPP and 

MSG/SEVIR GPP during the dry season, 

where MODIS GPP seems to be more 

accurate at the actual values, while the 

MSG/SEVIR GPP is more accurately 

matching the day-to-day variation.  
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Figure 16: MSG/SEVIRI GPP, MODIS GPP and EC GPP for 2011 ad 2012 for the Dahra field site. 

Gaps in the graphs indicate periods of missing data. The vertical lines represent the start and end of the 

rainy season for the two years.  
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Table 1 shows the computed bias, errors, 

correlation coefficients as well as annual 

mean and variance for the three data sets 

used in this study. It should be remembered 

that for 2011 most of the available EC GPP 

was for the rainy season, so the values for 

2011 in table 1 are mostly a comparison of 

how the two products perform during the 

rainy season. For 2012 there was in situ data 

for the entire year, and the values for 2012 

are therefore more accurate when 

evaluating performance throughout the year 

compared to 2011. 

The MSG/SEVIRI GPP has a higher mean 

and variance compared to MODIS GPP, 

and both are lower than the EC GPP (table 

1). Especially the variance is much higher 

for the EC GPP. 2012 shows lower values 

compared to 2012 for all three data sets.  

The MAE and RMSE are lower for 

MSG/SEVIRI GPP than for MODIS GPP, 

with lower values for 2011 compared to 

2012. There is also less difference between 

the two products for 2012 compared to 

2011.  

MODIS GPP’s underestimation of EC GPP 

during the growing season can be seen in 

table 1, especially for 2011 where the bias 

of MODIS shows a strong tendency for 

lower values for MODIS GPP compared to 

EC GPP. Both MSG/SEVIRI GPP and 

MODIS GPP have negative bias for both 

2011 and 2012.  

Figure 17 shows the accumulated GPP 

calculated with the data from 

MSG/SEVIRI. The distribution of GPP is 

similar between the two years, with a 

general north-to-south gradient of 

increasing GPP. The highs and lows are 

similar between the years. As can be seen in 

the bottom map of figure 17 the values for 

the southern half of the region, especially in 

the rainforests near the equator, are lower 

for 2012 than 2011. Across the Sahel there 

are patches of lower and higher values for 

2012 compared to 2011.  

Table 1: Means, variances (Var), bias, mean 

absolute errors, root mean square errors and 

correlation coefficients for MSG/SEVIRI GPP, 

MODIS GPP and EC GPP. Correlations are 

between satellite data and in situ data. Apart 

from r the units are in g C m.-2 d-1. 

Figure 17: Accumulated GPP for 2011 and 

2012 calculated from MSG/SEVIRI data. The 

difference between the two years is also shown 

(ΔGPP = GPP2012 - GPP2011). 
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These findings are reflected at the site in 

Dahra. The values for MSG/SEVIRI GPP 

are lower for 2012 than for 2011, as seen in 

table 2. The accumulated MODIS GPP for 

Dahra is far lower than either the 

MSG/SEVIRI derived GPP or the in situ 

measurements, which is consistent with the 

other findings of the study.  

4 DISCUSSION 

4.1 MSG/SEVIRI GPP 
As seen in table 1 the MSG/SEVIRI GPP 

outperforms the MODIS GPP in all the 

calculated statistics apart from the 

correlation coefficient. The differences are 

smaller for 2012 than for 2011 (table 1). The 

lower correlation coefficient for 

MSG/SEVIRI GPP is likely due to the 

larger number of data points (n = 343 for 

2011 and n = 333 for 2012 for 

MSG/SEVIRI data, compared to n = 46 for 

MODIS data). According to the guidelines 

in Rogerson (2010) both r-values are above 

the significance level, based on the number 

of observations, of 0.361 for MODIS GPP 

and 0.124 for MSG/SEVIRI GPP. The 

larger variance within the data likely 

explains the lower r-value. This can be seen 

in figures 10 and 13.   

Figures 8-13 also show that the calculated 

MSG/SEVIRI GPP tends to overestimate 

the in situ GPP during the dry season, where 

GPP is low, and underestimate the higher 

values during the rainy season. One reason 

for this could be the use of a static LUE 

throughout the year. LUE has been shown 

to vary over the year, with higher values 

during the rainy season in a Sahel 

environment (Ardö et al. 2008;  Traore et al. 

2014).  

A more accurate model for LUE would 

incorporate the effects of temperature and 

precipitation, which limit of LUE. This type 

of model is used in MOD17 and several 

other GPP models. One such model is used 

by Gilabert et al. (2015) and uses actual and 

potential evapotranspiration to limit LUE 

due to water stress. Such a model could not 

be used in this study due to lack of data for 

2011 and 2012. An intermediate value of 

1.2 g C MJ-1 for LUE was used instead, 

which could account for some of the 

observed over- and underestimation of 

GPP. Specifically LUE should be lower 

than 1.2 g C MJ-1 during the dry season and 

higher, reaching a peak 2.27 g C MJ-1 in the 

rainy season (Tagesson et al. 2015a). 

The FAPAR product used can also account 

for some of the observed difference due to 

limitations in the model for areas with open 

canopies, such as the Sahel and savannah 

environments (LSA-SAF 2008). The 

assumed Lambertian soil properties which 

can be a source of systematic errors in 

sparse canopy environments can also have 

an effect on the calculated GPP (LSA-SAF 

2008). The MSG/SEVIRI FAPAR product 

has also been shown to have more 

intermediate values in contrast to the better 

representation of the range of high and low 

values in the MODIS FAPAR product, in 

the Iberian peninsula (Martínez et al. 2013).  

The DSSF product used in the study has 

been shown to overestimate values during 

clear skies (LSA-SAF 2011b), which could 

be one of the reasons behind the 

overestimation of lower GPP values, since 

low values mostly occur during the dry 

season when there is less cloud cover. 

Table 2: Accumulated GPP from the 

MSG/SEVIRI, MODIS and in situ datasets. 

Note that EC GPP for 2011 only contains data 

from the latter half of the year. Units are in kg 

C m-2 yr-1. 
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As seen in figure 14(B) and 15(A) there are 

large areas of missing data in coastal 

regions near the Gulf of Guinea and the 

equator. Since the missing data is present in 

large scale only during the rainy season the 

reason for them is likely clouds. This 

problem of missing data on large areas 

during cloudy conditions has likely also 

affected the result of the accumulated GPP 

shown in figure 17. The Sahel region, which 

is this study’s main concern, is less affected 

by large-scale missing data than more 

southern regions. Likewise, the large areas 

of missing data in the Sahara does not affect 

the MSG/SEVIRI sensor’s performance in 

the Sahel, but could be important for studies 

of Africa covering the affected areas.   

The large error interval seen in 2012 (figure 

A2 in the appendix) between ca DOY 60 

and DOY 220 are caused by unknown 

factors. There are no quality flags present 

for that time period. The three peaks of GPP 

in 2012 seen in figure 11 could correspond 

to periods of increased rainfall, or the 

opposite, periods during the rainy season 

with lower than normal precipitation. Based 

on fig. 2 in Tagesson et al. (2015b) the 

second alternative seems more likely.  

There have not been many previous studies 

using MSG/SEVIRI data to calculate GPP. 

One study by Martínez et al. (2015) 

compared MSG/SEVIRI derived GPP with 

MODIS GPP, and EC GPP for two African 

sites: Demokeya in Sudan and Mongu in 

Zambia. The results of the study are similar 

to this one. In the Sahel site of Demokeya 

MSG/SEVIRI better reproduced variation 

and magnitude of GPP while, MODIS 

shows the same underestimation during the 

growing season (Martínez et al. 2015). 

4.2 MODIS GPP 
According to figures 11 and 12 the MODIS 

GPP product seems to perform well during 

the dry season in 2012. However, since GPP 

is so low during this period that it 

sometimes is ignored this is not of great 

importance. The low levels of 

photosynthesis during this period mostly 

come from trees with deep roots, able to 

reach groundwater aquifers or plants that 

are able to store water.  

For 2011 there was no EC GPP data for 

much of the dry season, so interannual 

comparison is not possible. Figures 10 and 

13 show that MODIS GPP is more accurate 

for lower GPP than higher for both years 

though. The lack of variation over time as 

seen in figures 8 and 11 as well as the low 

variance seen in table 1 is likely a result of 

the lower temporal resolution of MODIS 

compared to the EC GPP or the 

MSG/SEVIRI derived GPP.  

The main issue with MODIS GPP in the 

Sahel is the severe underestimation of GPP 

during the growing season compared to the 

in situ GPP and the MSG/SEVIRI GPP. In 

2012 it only reaches around 25-30 % of the 

EC GPP during the growing season. Table 

1 shows that MODIS GPP performs poorer 

than MSG/SEVIRI derived GPP for all the 

calculated statistics apart from the 

correlation coefficient. The reason for the 

higher r-value is likely that the variance 

within the data set is lower, and that it has 

fewer data points compared to 

MSG/SEVIRI. The accumulated GPP 

shown in table 2 is also lower than for the 

other two data sets. 

This underestimation of GPP in the Sahel by 

MODIS has been observed by Sjöström et 

al. (2011) who found that MODIS GPP 

underestimated EC GPP with 36% in the 

Sahel and southern Africa. At the most the 

underestimation was 64% which is a similar 

figure to in this study. Sjöström et al. (2013) 

also found that for 2000-2009 MODIS GPP 

underestimated EC GPP, especially in dry 

areas. However, seasonality is captured 

well. Sjöström et al. (2013) suggests that 
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improved driver data, FAPAR and higher 

maximum LUE could improve the 

performance of MODIS GPP in Africa.  

A study by Kanniah et al. (2009) in a 

savannah in northern Australia found that 

the MODIS GPP algorithm performs poorly 

in water limited conditions, such as the 

Sahel. The main cause for differences 

between EC GPP and MODIS GPP in this 

study was found to be the FAPAR product 

used in the MODIS algorithm. Including 

soil moisture in the LUE model improved 

the results (Kanniah et al. 2009). Poor 

performance of the MODIS GPP product in 

water limited sites has also been observed 

by (Leuning et al. 2005;  Heinsch et al. 

2006). 

The poor performance of MODIS in the 

Sahel is not as pronounced in other biomes, 

but still present at high GPP values when 

compared with EC GPP data (Zhang et al. 

2012). Good correlation, but 

underestimation of 30% compared to EC 

GPP was found by Coops et al. (2007) 

studying Douglas firs in Canada. Turner et 

al. (2006)  found that MODIS GPP responds 

well to trends and levels of GPP, but tended 

to underestimate high productivity, and 

overestimate low productivity.  

4.3 IMPROVEMENTS AND ISSUES 
LUE in this study was parameterized based 

on land cover for the regional GPP 

calculations. The results could likely be 

improved by using more accurate LUE 

values. Studies focusing on LUE use remote 

sensing data of FAPAR combined with EC 

GPP and/or GPP from ecosystem models in 

order to calculate LUE, such as in Traore et 

al. (2014) and Moreno et al. (2012). Using 

this method to derive LUE for use in GPP 

calculations such as in this study would 

involve dividing the in situ GPP data 

between evaluating the GPP calculations 

and for deriving LUE for use in the model. 

This would be a problem for GPP 

calculations in the Sahel due to the low 

amount of in situ measurement stations 

(Sjöström et al. 2011).  

Another method for using satellite remote 

sensing to estimate LUE was used by Drolet 

et al. (2008). That study used the MODIS 

Photochemical Reflectance Index (PRI) and 

MODIS FAPAR products for calculating 

LUE in a Canadian boreal forest. However, 

they concluded that new sensors designed 

for remote sensing of LUE was required for 

achieving good results (Drolet et al. 2008). 

New sensors designed for LUE would be 

useful for studies in Africa where in situ 

measurements of LUE are sparse. 

One problem with the study is the lack of in 

situ measurement stations that are used to 

ensure that the satellite derived GPP is 

accurate. There are more sites in the Sahel 

than Dahra, as seen in Sjöström et al. 

(2013). Data from these sites was not 

available for use during the 2011-2012 time 

period for different reasons. For other time 

periods and in the future more in situ data 

might be available.  

The LSA-SAF FAPAR and DIDSSF 

products have some issues that could have 

had an effect on the results. Some of these 

has been discussed earlier. The FAPAR 

product has not been validated since 2007, 

the data was deemed to be of medium to 

optimal quality for the Sahel (LSA-SAF 

2008). However, newer validation could 

help ensure the quality of the product. The 

validation report for the DIDSSF product is 

from 2011, the same year as the start of the 

study. Therefore the quality assessment 

should be more accurate for the study 

period.  

An assumption that has been made 

throughout this study is the EC GPP 

represents ground truth. However, the EC 

GPP measurements are not free of error. 
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Different wind conditions during the 

diurnal cycle can affect the results, and 

cause random and or systematic errors 

(Heinsch et al. 2006). According to 

Sjöström et al. (2011) tower GPP values are 

an adequate method of estimating local 

conditions if the landscape around the tower 

is homogenous, as it is in the vicinity of 

Dahra.  

4.4  SUMMARY 
The aim of this study was to evaluate how 

well GPP can be estimated using data from 

the MSG/SEVIRI satellite sensor for the 

Sahel region of Africa. In addition the 

resulting GPP would be compared against 

the commonly used MODIS GPP product 

MOD17A in order to evaluate which one 

performed best. The GPP from both sources 

was compared against in situ GPP 

estimations using eddy covariance data 

from the Dahra field site in Senegal.  

The result show that GPP calculated from 

the MSG/SEVIRI data performed better 

than MODIS GPP in capturing the day-to-

day variations seen in the EC GPP. It was 

also more accurate in estimating the high 

values reached during the growing season, 

though it underestimated the EC GPP 

values. On the other hand MSG/SEVIRI 

GPP had some issues during the dry season 

when GPP was overestimated for the lowest 

values. However, since GPP is almost 0 for 

the dry season this is not a major issue. 

MODIS GPP performed well during the dry 

season and in capturing the change between 

dry and rainy season GPP. However, it 

failed to reproduce the high values of the 

growing season, generally underestimating 

them by 25-30%. Total accumulated GPP 

for the Dahra field site was lower than the 

EC GPP and the MSG/SEVIRI GPP.   

GPP across the Sahel was calculated from 

MSG/SEVIRI data. However, it was not 

possible to evaluate its performance across 

the region due to the lack of sites with in situ 

data available for the study period. There 

were problems with clouds for regions 

further south (figures 14 and 15) but the 

impact on the Sahel from the clouds was 

likely minor. Dahra has been noted to have 

high productivity, and therefore the 

underestimation of GPP at Dahra might not 

be reflected at other sites. This will require 

further studies with other sites to confirm. 

As part of the aim of this study, three 

questions were asked concerning the 

performance of MSG/SEVIRI derived GPP 

and MODIS GPP; and how they compared 

to in situ GPP estimated using the eddy 

covariance method.  

1. How does the satellite derived GPP 

compare against GPP data 

collected from measurement towers 

on the ground? 

Compared to the in situ EC GPP the 

MSG/SEVIRI derived GPP was better at 

replicating the results from the Dahra site. 

The accumulated GPP was more similar to 

the EC measurements, the day-to-day 

variation was captured more accurately and 

the actual daily GPP levels were more 

similar. However, MSG/SEVIRI GPP tend 

to overestimate GPP during the dry season 

and underestimate it during the rainy 

season. 

MODIS GPP proved to be well suited for 

capturing seasonal changes, perhaps more 

so than MSG/SEVIRI GPP regarding the 

start and end of the growing season. 

However, the GPP values from the MODIS 

GPP product was lower than the EC GPP 

for the growing season. It performed well 

during the dry season though. This issue 

with MODIS GPP in dry water limited 

environments, both in the Sahel and in other 

locations, has been observed by other 

studies such as (Leuning et al. 2005;  
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Heinsch et al. 2006;  Kanniah et al. 2009;  

Sjöström et al. 2011;  Sjöström et al. 2013). 

2. How does the GPP calculated from 

MSG/SEVIRI for the Sahel compare 

to the MODIS GPP product? 

The GPP derived from the two sensors are 

different. GPP calculated from 

MSG/SEVIRI data showed, due to its high 

temporal resolution, strong day-to-day 

variability. MODIS GPP on the other hand 

has lower temporal resolution and did not 

capture any short term variation in GPP. 

Seasonality was captured by both products, 

though the actual GPP values were much 

higher for MSG/SEVIRI during the 

growing season. The size of the data used 

was much higher for MSG/SEVIRI 

compared to MODIS data. For the study 

period the raw data files from MSG/SEVIRI 

was 35.3 GB of data. For MODIS on the 

other hand it was 766 MB for the same time 

period. If storage and processing power is a 

concern, this might cause problems. 

Especially if the study involves time series 

longer than a few years. The additional data 

also means that more processing power is 

needed to compute GPP quickly.  

3. If the products provide different 

results, what might be the best use 

for each of them? (This of course 

depends on what questions are 

being asked.) 

MSG/SEVIRI derived GPP provides a 

higher temporal resolution and more 

accurate GPP estimation, which could be 

improved with a more accurate LUE model. 

Therefore it would be more accurate to use 

in studies where actual magnitude of GPP is 

important, for example carbon budgets, 

yield estimation and vegetation 

productivity. Early warning systems trying 

to predict food security with remote 

sensing, such as Oroda (2002) could benefit 

from the more accurate GPP estimation of 

MSG/SEVIRI. Supply and demand studies 

of NPP such as Abdi et al. (2014) could also 

benefit from more accurate GPP, from 

which NPP can be derived. If 41% of NPP 

is consumed by humans (Abdi et al. 2014) 

underestimating NPP, or GPP, can have a 

large effect on the result.  

MODIS GPP performs well during the dry 

season, which is of little importance, and 

captures seasonality well. Its main problem 

is the underestimation of GPP during the 

growing season. MODIS would be suitable 

for use when the actual magnitudes of GPP 

is not as important as more general trends 

and patterns. Then the underestimation is 

less important. MODIS GPP is also suitable 

for long time series. Both due to the fact that 

the MODIS GPP is available for more years 

than relevant MSG/SEVIRI data and due to 

the smaller file sizes which makes storage 

and processing less of a problem.  

5 CONCLUSIONS 

The study concludes that MSG/SEVIRI 

derived GPP performs better than MODIS 

GPP in the Sahel for 2011-2012 with 

respect to accuracy of the estimated GPP 

values when compared to in situ EC GPP, 

and also in capturing the day-to-day 

variance. However, this variance does not 

always accurately represent the EC GPP 

variance.  

MSG/SEVIRI GPP should therefore be 

more suitable when studying carbon 

budgets, yield estimation and vegetation 

productivity. MODIS GPP should be more 

suitable when studying more general trends 

and patterns in GPP. If data storage and 

processing power is a concern MODIS data 

is much less demanding than MSG/SEVIRI 

data.  
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