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1
Abstract

In the pursuit of a system capable of measuring pain signals in humans we pro-
pose a method to di�erentiate those signals related to pain from those which
are not. We performed a time-frequency analysis using the Gabor transform
to have complete information about the spectrum and its behaviour through
the time to study the main di�erences over the evoked potentials provoked
by both nociceptive and somatosensory (non-nociceptive) stimulation. The
setup of the experiment also allowed us to study the mismatch negativity
and the di�erences between the potentials evoked by a deviant stimulus and
the ones evoked by a standard stimulus according to the roving paradigm.
The results show that nociceptive evoked potentials read over the scalp have
more energy than the somatosensory evoked potentials, they also di�er in the
frequencies that are activated as well as the latencies where such frequen-
cies are activated. These results were obtained after pre-processing the EEG
signals mainly removing the artifacts running the independent component
algorithm (ICA) which allowed us to have reliable results.
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2
Introduction

Pain is an unpleasant multidimensional experience which could be largely
in�uenced by various peripheral and cognitive factors. Therefore, the pain
experience and the related brain responses exhibit high variability from time
to time and from condition to condition.

The interpretation of nociceptive input ensues in the conscious experience
of pain. However, pain is an unpleasant multidimensional experience, which
does not simply re�ect sensory information but can be substantially in�uence
by various psycho-physiological factors. Because of a unique combination of
peripheral and cognitive factors, the pain related brain responses exhibit high
variability. Thus, the diagnosis and evaluation of pain still heavily rely on sub-
jective. For these reasons, the availability of an objective assessment of pain
perception that complements the subjective report would be of paramount
importance in both drug discovery and clinical practice [1].

The system meant to interpret signals to determinate, in an acceptable ac-
curate way, whether pain is present or not has not been achieved yet. However,
patterns recognition applied to certain data has been an approach, poten-
tially resulting in a related-to-pain data which could be bared in mind when
inputting parameters into a complex system capable to analyse the di�erent
characteristics associated to pain and thus achieving a precise assessment for
the presence of pain or even more, the level of pain experimented.

So, what could be the impact of identifying and classifying pain objec-
tively?. From a medicine specialist stand point, getting information, about
the pain being felt by a patient, that is di�erent to that information obtained
by typical written inquests or pain analog scale assessments which are based
on a verbal report driven to describe the kind of pain and the location of the
pain, would be very important, otherwise the assessment of pain would still
be unclear.

From the patient stand point, pain is an unpleasant sensation and even
when the pain plays a vital role in humans life, and in general in the animals
lives, working as an instinctive alert pointing out that something is going
wrong, pain could turn into a problem or a disease itself when it is about
a chronic or tonic pain. Having accurate information about the pain being
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Chapter 2. Introduction

experimented would give us a better diagnosis and so a better treatment for
patients and likewise that would give us a great tool when treating patients
who are not able to communicate e�ciently and therefore not able to com-
municate that they're feeling pain or what the characteristics of such pain
are.

The purpose of this work is to describe related-to-pain responses by per-
forming a time-frequency analysis over EEG signals evoked by nociceptive
stimulation. To do so, this document is going to be presenting a background
with content discussing the somatosensory system and nociception, as well
as general knowledge about the electroencephalogram and signal processing,
followed by a mathematical background, the presentation of the data used
for this work and the methods applied. Finally we will present the results
obtained and discuss about the main �ndings.

2



3
Background

The brain processes sensorial information, controls and coordinates the move-
ment and behaviour and also can prioritize homoeostatic corporal functions,
such as heart-beats, blood pressure, �uids balance and corporal temperature.
The brain is responsible of the cognition, emotions, memory and learning [2].
The brain is in charge not only of speci�c tasks as for example controlling the
heart beat, but also of the functional integration of such tasks that can make
the whole body work. It is well known that the brain is a very complex net-
work and the information can be e�ciently transmitted and processed within
either the whole brain or local brain areas [3]. This complexity makes the
brain a mystery and an interesting subject of study.

We can capture electric signals from the brain using the electroencephalo-
gram, and that allows us to gather information about the brain's behaviour
in either a regular or a pathologic condition. Certainly it has been applied
for studying neurological disorders like epilepsy which is characterized by the
frequent crisis. It would be helpful and life quality improving for patients suf-
fering from this disease to have a system capable of predicting such crisis. As
a matter of fact studying the signals obtained by the electroencephalogram
(EEG) has been an approach to the anticipation of such events [4].

The EEG signals are naturally a potential di�erence between two points
in the scalp. However such potential di�erence has its origin in the action
potentials occurred after the synaptic transmission and �nally captured by
the measurement instrument which is an electrode placed in the scalp. This
electrode captures the activity occurring nearby which is merely the one pro-
duced by the pyramid cells of the cerebral cortices. Several electrodes can be
used at the same time in order to obtain information from di�erent regions
in the scalp for the same period of time and thus we can characterize the
activity produced over one region and compare it to other regions. There are
di�erent types of electrodes but the surface or extra-cranial electrodes are
the most used since they are located in the scalp and represent a non-invasive
method. However they might have a delay in the electric signal and a minor
amplitude [5].
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Chapter 3. Background

Using several electrodes to record brain activity is certainly useful when
we try to record a large number of cortical neurons simultaneously but also
represents a challenge in terms of how to analyse and correlate such a big
data. In a study made in the University of Fudan for example, multi-neuronal
activity of multi-electrode recordings in the prefrontal cortex was analysed
for a rat during a Y-maze working memory task and this way describing the
small-world properties and the functional networks [3].

Pain may be very well de�ned as a personal experience that can be a�ected
by several factors. Thus the brain response to pain-related stimuli may vary
from person to person and time to time and also according to the condition
on how pain is presented. This is what would make an objective assessment
of pain a great breakthrough for basic and clinical applications [1].

Everybody have this kind of sensation because the pain is a natural warn-
ing for react in order to protect a whole body. However, the reaction from
the pain sometimes have to be avoided because the overreaction causes some
damages to near-by tissue [6], due mainly to the brain responses which lead
to a disconnection of the generation of pain by the initial tissue injury, and
consequently loss of responsiveness to treatment that can overcome the pain
[7]. Therefore, the system that can indicate pain level needs to be achieved.

Di�erent algorithms for treating EEG data have been tried in order to
estimate the presence of pain and the pain level. One of them has been the
fuzzy logic algorithm combined with the kernel support vector machine (SVM)
[6]. The subjective and uncertainty nature of pain justi�es the use of fuzzy
logic and then the use of the kernel support vector machine (SVM) helps to
create a linear line to separate the data in pain state or non-pain state. This
method has proved to be suitable for the classi�cation of pain.

The brain has always been an enigma for the human being. Tools of every
kind have been developed to analyse and comprehend the brain. Thus it has
been studied from di�erent perspectives like medicine, psychiatry, psychology,
biology and others like engineering.

However, if recording the brain activity represents a challenge itself, trying
to recognize patterns and extracting the main features from the brain ativity
is even more challenging. Therefore mathematical models have been developed
in order for us to be able to apply algorithms that allow us to go through the
brain signals in an manner that can provide us of reliable results.

3.1 The somatic sensory system

The somatic sensory system is considered to be one of the most complex
systems in the human body, it is in charge of a wide range of sensations that
vary from touch-sense, pressure, vibration, limb position, heat, cold, and pain.
Such sensations are triggered by di�erent events and captured by specialized
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3.1 The somatic sensory system

receptors contained mostly in the skin and muscles. The information travels all
the way from the receptors to the central nervous system. The whole nervous
system is also divided into subsystems functionally di�erent and with di�erent
receptors and pathways [8]. There are basically three types of subsystems,
one in charge of transmitting painful stimuli and changes in temperature,
another in charge of transmitting stimuli originated from cutaneous level such
as vibrations or touches and pressure, and one third subsystem related to
muscles, tendons and joints, which is in charge of the sensing the position of
the body parts in space.

When it comes to a somatic sensation, it is originated from the activation
of a�erent nerve �bers which extend to the skin and muscles where the action
potentials are the �rst product of the stimulation. The information is passed
to the location of the cell body in the ganglia and then it propagates to
the synaptic terminals of the �bers located in the central nervous system.
The pass of the information through the body cell is not a mandatory step,
however cell bodies play a vital role in maintaining the cellular machinery
that mediates transduction, conduction, and transmission by sensory a�erent
�bers.

The transduction of the energy of one stimulus into an electrical signal
pass across the body is ruled by the same principle for all somatic sensory
a�erents: �rst a stimulus changes the permeability of the cation channels in
the endings of the a�erent nerve, thus it generates a depolarizing current or
what is called a receptor potential. In the a�erent �bers, the action potential is
only generated if the receptor potentials is large enough to reach the threshold.
When the threshold is reached, the action potential generated is proportional
to the magnitude of the receptor potential.

There are two types of a�erent �bers, the ones that are encapsulated by
specialized receptor cells and the ones which are not. The once without any
encapsulation are related to the sensation of pain, and are known as free
nerve endings �bers. On the other hands the a�erent �bers which do have
encapsulation are more related to eliciting somatic sensations not necessarily
related to pain and are characterized by a low threshold for action potential.
Besides, other characteristics like the size of the diameter of the �bers make
di�er the sensory a�erents from each other, and depending on the diameter
the functionality of the a�erents also change. The largest diameter sensory
a�erents are known as Ia and they provide the sensory receptors in the mus-
cles. Smaller diameter �bers (Aβ a�erents) are mostly related to handle the
information provoked by touch and even smaller diameter �bers ( Aδ and C)
receive and transmit the information about pain and change in temperature.
Also the size of the receptive �eld area of the skin surface over which stimula-
tion results in a signi�cant change in the magnitude of the action potentials.
The receptive �elds in regions with dense innervation like �ngers, lips and
toes, are smaller than those in the forearm or back whose density of a�erent
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Chapter 3. Background

�bers is smaller [8].
Thus the transmission of information start with the action potentials gen-

erated by di�erent types of receptors and then the information is passed to
the central nervous system through a chain of neurons which are classi�ed in
three di�erent groups. The ones located in the dorsal root an cranial nerve
ganglia, the ones located in the brain-stem nuclei and the ones in the thalamus
from where the information is projected to the cerebral cortex [9].

3.2 Nociception

Nociception is referred to as a the perception of pain. It is also related to the
system in charge of alerting the brain that the body is physically in danger
when any noxious stimulus occurs. Although the transmission of nociceptive
information is similar to the transmission of somatic non-nociceptive infor-
mation, these two di�er in the type of receptors and the pathways. There is
still a lot to be discovered on how the brain manages the information related
to pain and that is why this is a big area of research.

The cells that initiate the sensation of pain are called nociceptors. Their
mechanism to transduce stimuli into a receptor potential is the same as the
one described for the somatic non-nociceptive case. The nociceptors also arise
from cell bodies in the dorsal ganglia that send one axonal process to the
periphery and other process inot the brain-stem.

The axons related with nociceptors have a relatively slow conduction ve-
locity. These axons which transmit the information associated with pain might
be classi�ed either within the Aδ group of a�erent which conduct at 5-30 m/s
or within the C �ber group which conduct at even smaller velocities usually
less than 2 m/s. The Aδ nociceptors respond to dangerously mechanical and
thermal stimuli, on the other hand the C nociceptors respond mechanical,
chemical and thermal stimul, these are known as polymodal nociceptors.

The way how human body perceives pain is still a �eld being studied,
and some experiments have been made with volunteers who are submitted to
pain stimulation, and frequently the participants are asked to rate the pain
experimented as well as describe the sensations elicited by the stimulation. In
general pain has been classi�ed in two groups, one where pain is perceived as
a sharp painful sensation and the other where pain is perceived as a di�used
and long-lasting sensation [8].

A distinct set of pain a�erents with membrane receptors known as nocicep-
tors transduces noxious stimulation and conveys this information to neurons
in the dorsal horn of the spinal cord. The major central pathway responsible
for transmitting the discriminative aspects of pain (location, intensity and
quality) di�ers from the mechanosensory pathway primarily in that the cen-
tral axons of dorsal root ganglion cells synapse on second-order neurons in
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the dorsal horn; the axons of the second-order neurons then cross the midline
in the spinal cord and ascend to thalamic nuclei that relay information to the
somatic sensory cortex of the postcentral gyrus. Additional pathways involv-
ing a number of centers in the brainstem, thalamus, and cortex mediate the
a�ective and motivational responses to painful stimuli. Descending pathways
interact with local circuits in the spinal cord to regulate the transmission of
nociceptive signals to higher centers [9].

3.3 The EEG

Electric and magnetic �elds are found mainly in the cerebral cortex, these are
the result of several electrical signals generated from the �ow of ions when
the neurons respond to di�erent stimuli. The cerebral cortex contains around
109 to 1010 neurons [10] and we can measure the electrical activity resulted
from a summated electrical signals driven by these cells in order for us to
be able to describe how brain works. Such electrical activity can be captured
by electrodes placed in the scalp, however ampli�cation is required since the
order of the signal at scalp level is just hundreds of mV or less. This electrical
activity recorded is known as electroencephalogram or simply the EEG.

The electrodes used to record the electrical activity of the brain are usually
placed following a standard system. Such system is related to the anatomical
structures of the brain like for example frontal, temporal or occipital. The
electrical activity is also related to this anatomical structures and it means
that the electrical activity is not uniformly distributed on the scalp.

The electrical activity measured from scalp is not randomly produced in
the sense that it responds to speci�c events. The EEG is a noninvasive tool
very useful to characterize the oscillatory signals from the brain. EEG has also
brought important breakthroughs and many applications have been created
in the �eld of clinical neurophysiology, and some interfaces have been designed
to enhance the communication and control abilities of motor-disabled people
[11]. Also EEG is used to monitor the state of the neurological brain, and
thus detecting any disorder or cerebral damage that might be present.

However since the brain responds to several stimuli at the same time, it is
no that easy to obtain a signi�cant result after using the EEG. So in order to
obtain statistically signi�cant results, exhaustive analysis are required before
making any conclusion. The main issues to deal with when using EEG could
be enclosed as follows:

1. Placement of the scalp electrodes and the data acquisition,
2. Variability of the brain wave patterns,
3. Scalability to a larger population,
4. Heritability of the EEG patterns.
The EEG is basically fed by millions of neurons with similar spatial ori-
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Chapter 3. Background

entation and whose activity is detected from scalp. The number of electrodes
used to record the electrical activity can vary from 19 to 256 depending on the
spatial resolution needed. However it is necessary to be very careful because
an inappropriate spatial separation of the electrodes might cause distortion
to the estimated potential on the scalp. Also a reference electrode is needed
so the potentials recorded from other electrodes can be measured with re-
spect to the reference channel or electrode. A bad reference could lead to bad
interpretation of the brain waves [12].

An EEG is characterized by small amplitude (µV ) noisy signal that ranges
from 0.5 to 30-40Hz [13]. At this point it is important to mention that when
working with EEG one will have to deal with artifacts, most of them are
generated from the body itself mainly caused by eye blinking, eye movements,
muscle activation and muscle activation. On the other hand a bad placement
of the electrodes can cause the electrodes to pop out or even a slight movement
of them might cause noise in the signal, also a bad grounding of the electrodes
could result in a strong signal over the 50Hz and 60Hz frequencies associated
with the power lines. For all of these reasons, acquiring EEG data has to be
done under the proper conditions in order to obtain signi�cant results.

Another feature of the brain waves is the dependency on the brain state.
It means that the results may vary depending on whether the subject is sleep-
ing, thinking, relaxed, walking or visualizing something. In order to obtain a
statistically signi�cant result one would have to have the maximum control
possible of these variables. Besides the brain responses also change accord-
ing to the age, the EEG in childhood for example shows slower frequency
oscillations than an adult [12].

The 10/20 system

The 10/20 system describes standard locations for the electrodes used in the
EEG. This system is largely and internationally recognized and accepted.

The system was created bearing in mind two criteria, the location of the
electrode itself and the underlying area of the cerebral cortex. The distances
between the closest electrodes are either 10% or 20% of the total front-back
orright-left distance of the skull and that is why this system is known as the
"10/20 system". Each electrode is given a letter and a number, the letter let
us identify the lobe and the number depends on the hemisphere, even numbers
refer to electrode positions on the right hemisphere and odd numbers refer
to electrode positions on the left hemisphere. The letters "C" and "z" are
used only for identi�cation purposes since there are not such a "C lobe" or
"z lobe".

Four anatomical landmarks are used for the essential positioning of elec-
trodes: �rst, the nasion which is the point between the forehead and the nose;
second, the inion which is the lowest point of the skull from the back of the
head and is normally indicated by a prominent bump; the pre auricular points
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3.3 The EEG

Table 3.1: Electrodes labels.

Figure 3.1: 10/20 system.

9



Chapter 3. Background

anterior to the ear. Also extra positions can be added by utilizing the spaces
in between the existing 10/20 system [14].

Electrical activity measured from scalp

The electrical activity from one neuron is not measurable with EEG due to the
di�erent layers such as tissue or skin that attenuate the signal but the activity
resulted from summation of millions of neurons is actually measurable from
scalp and the more neurons presenting synchronized activity the larger the
EEG signal will be, because the electric �eld produced by individual neurons
will add up. Likewise, if the activity from individual neurons is asynchronous,
the EEG signal will be a characterized by a low amplitude waveform. When
the synchronous activity is repeated continuously then the result will be an
rhythmic EEG. Such activity is produced from many millimeters depth and it
is strong enough to be detected by an electrode placed in the scalp. Sometimes
this collective electrical activity presents a repetitive and oscillatory behavior
, this is usually called a rhythm. The electrode then, detects these rhythms
generated by the currents originated during the synaptic excitation of the
dendrites.

The EEG rhythms basically depend on the mental state of the subject,
and the rhythm obtained during a sleeping state of the brain is way di�erent
from the rhythm obtained during a state of attention or attentiveness. These
rhythms in general are characterized by their frequency and amplitude. The
frequency of an EEG rhythm is sustained by activity coming from the tha-
lamus, in which the neurons have the ability to generated a constant and
sustained rhythmic pattern. Some rhythms are also generated by the interac-
tions between neurons found in the cortex. In general high frequency rhythm
is associated with alertness or dream sleep, in contrast, the low frequency
rhythms are related to drowsiness and non-dreaming sleep states [13].

Brain natural frequency bands

EEG signals are characterized by amplitudes between few microvolts to ap-
proximately 100 µV, although some perturbations may introduce some noise
even larger. The frequency of EEG signals are basically within the range of
0.5 to 30-40 Hz. This range is divided in �ve groups or frequency bands for
which some brain states make them dominate some regions in the scalp. For
these frequency bands the brain states related to them have been described
[13]:

Delta rhythm: <4 Hz. These frequencies are found during deep sleep
state of the brain and such signals are characterized by a large amplitude.

Theta rhythm: 4-7 Hz. The theta rhythm is related to drowsiness and
in certain stages of sleep.

Alpha rhythm: 8-13 Hz. Alpha rhythms are mostly presented in subjects
who are awake with eyes closed. Occipital regions are characterized by a larger
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3.4 Artifacts

amplitude when this rhythm is present.
Beta rhythm: 14-30 Hz. This rhythm is also present during some sleep

stages and is mostly present in the frontal and central regions of the scalp.
Gamma rhythm: >30 Hz. Gamma rhythm is associated with states of

alert and active information processing of the cortex.

Evoked potentials

The electrical response of the brain to di�erent types of stimuli like auditory,
visual or painful stimulation is referred to as "Evoked potential" and it is
described as an event-related activity. The extraction of such potentials gives
access to valuable information such as location of brain lesions, sesory path-
ways abnormalities and other types of disorders. Di�erent types of stimuli
lead to di�erent types of evoked potentials, so the characteristics of these po-
tentials like the amplitude or spectrum may di�er from each other depending
on the event that triggered the electrical response in the brain-stem. Further-
more, once again the state of the brain also a�ects the morphology of the
evoked potentials [13].

Even though the EEG signal ranges up to 100 µV , the evoked potentials
are characterized for ranging from 0.1 to 10 µV . According to this, the noise
is indeed an important issue to deal with since the evoked potentials repre-
sent such small magnitude signals. However the evoked potentials are usually
related to a certain event, it means that most of the times we expect to �nd
the evoked potentials within some period of time after the stimulus [13].

3.4 Artifacts

When it comes to electrical signals measurement, it is usual to have noise and
artifacts that we would like to reject from our data. EEG signals are not an
exception and it is common to have several noise sources contaminating the
data whilst it is being measured. In order to have reliable results from EEG
data analysis it is crucial to deal with the noise sources and reject them as
far as we can.

In EEG signals, the artifacts often come as high amplitude signals if com-
pared to those naturally evoked by brain activity and even though they might
be uniformly distributed across the data they could bias evoked potential or
other averages constructed from the data and consequently we could infer
wrong breakthroughs after data analysis.

Artifact processing has become more and more a relevant issue to deal
with in order to obtain signi�cant results. EEG artifacts are mainly produced
by physiological and technical origins [13]:

Eye movement and blinks: The electrical activity produced by eye
movement is referred to as electrooculogram (EEG) signals. This signals are
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Chapter 3. Background

usually strong and are detecting by the EEG, however it varies depending on
the proximity with electrode and direction in which the eyes are moving.

Muscle activity: The muscles movement can introduce a perturbation
in the EEG signal. The electrical activity of the muscles is measured on the
body surface using electromyograph (EMG). Depending on how hard is the
muscle contraction the EEG signal will present strong or weak spikes in the
EEG signal, the harder the contraction is the larger of the spikes, also the
time between the spikes will decrease as the contraction strength increases.

Cardiac activity: The electrical activity of the heart can also be re�ected
in the EEG. Nevertheless this activity is much smaller on the scalp compared
to the EEG signals with di�erent origin.

Electrodes and equipment: A bad placement of the electrodes may
cause them to move or if the electrode-scalp contact is not good it produces
an artifact known as electrode-pop and it is characterized by a change in
the baseline level which usually returns to the original one. Furthermore if
the electrodes are not shielded enough, the 50/60 Hz signals coming from
the power lines will be re�ected in the EEG as a constant signal over these
frequencies.
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Mathematical background

4.1 Mathematical model for artifact contaminated
EEG

One could think of the EEG as a signal composed by two signals, one which
is the noise v(n) and the other one coming from the cerebral activity s(n).
If the EEG is the result of the sum of these two signals (v(n) and s(n)), we
could estimate the noise v(n) and the subtract it from the observed signal
x(n) and thus we would be cleaning the EEG data [13],

x(n) = s(n) + v(n) (4.1)

This is associated with subtracting methods and also underlines noise
reduction through linear �ltering, this case applied to x(n). This model is
known as the additive model, it is simple and easy to handle, and several
methods have been developed for optimal estimation of s(n). However other
models have been proposed, and certainly they might be more suitable. In
eq. (4.2) is shown the multiplicative method in which the signal s(n) and the
noise v(n) interact in a multiplicative way:

x(n) = s(n)v(n) (4.2)

The solution for separating the signals s(n) and v(n) were developed in
1960's and yet have received marginal attention [13]. However, this model
will be suitable for the artifact rejection used in this work as we are going to
explain later in this section.

4.2 Independent component analysis (ICA)

A big challenge in neural network research, is �nding a model or a suitable
representation of multivariate data. Treating the data as linear combination
of the original variables has brought simpler concept and a much easier so-
lution for computational interfaces. Independent component analysis (ICA)
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Chapter 4. Mathematical background

is a method in which it is attempted to �n a linear representation of non-
Gaussian data so that the components are statistically independent, or at
least as independent as possible. This representation of the data has helped
to the feature extraction and signal separation [15].

If we think of the EEG signals as a result of the summation of di�erent
sources, in which are included both the artifacts and the features in which
we do have certain interest, we could then attempt to remove the artifacts
from the sample data by identifying the independent components or sources
that are related to such artifacts and thus from that point we could perform
signal processing based on data that after having run the ICA and removing
the right sources is almost free of artifacts.

However, removing the right sources supposes a challenge and it is even
more complex than running the ICA algorithm itself. The components may
either be classi�ed as artifact related sources or not and the criteria for doing
so is related to the properties of the component itself. The challenge relies on
the fact that such properties might have some variations from time to time
and across subjects, so in order to outcome this challenge it is necessary to
look carefully at the features and characteristics of every component to make
a good approximation.

One of the mos basic methods for dealing with artifacts in EEG data
is the one based on the detection of out-of-bounds potentials. Once given
the parameters of the maximum and minimum amplitudes in the signals, a
threshold is de�ned and the data out of this limits is simply rejected. How-
ever this simple method might not detect the artifacts whose amplitude is
small enough to be within the limits of rejection, for example most of the
artifacts related to muscle movement are usually small as well as some small
eye movement artifacts.

The independent component analysis (ICA) has proven to be an e�cient
method for detecting artifacts and separating artifactual processes. ICA is
actually considered an important technique for removing artifacts [16].

Independent Component Analysis, as the name implies, can be de�ned
as the method of decomposing a set of multivariate data into its underly-
ing statistically independent components. In this model, we observe n ran-
dom variables x1(t), x2(t), ..., xn(t), associated to n number of EEG channels
or electrodes, which are linear combinations of n random latent variables
u1(t), u2(t), ..., un(t) as:

xi(t) = ai1u1(t) + ai2u2(t) + ...+ ainun(t) ∀ i = 1, ..., n (4.3)

Where aij , forj = 1, ..., n are some real coe�cients. By de�nition, the
sources ui are statistically independent. The "latent variables" are the sources
ui(t), which are referred to as independent components. They are called
"latent" because they cannot directly be observed. Both the independent
components, ui(t), and the mixing coe�cients, aij , are not known and must
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4.2 Independent component analysis (ICA)

be determined using only the random variables xi(t). The ICA latent vari-
ables model is better understandable if it is presented in matrix form. If
U = [u1(t), u2(t), ..., un(t)]T represents the original multivariate data that is
transformed through some transformation matrix H producing X such that:

X = HU (4.4)

Then ICA tries to identify an unmixing matrix W such that:

W = H−1 (4.5)

So that the resulting matrix Y is:

Y = WX = W (HU) = U
′

= U (sinceW = H−1) (4.6)

The ICA demands that the original signals u1(t), u2(t), ..., un(t) be at any
time instant t statistically independent and the mixing of the sources be linear
[17].

Secondly, the number of mixtures must be equal to the number of sources
and the mixtures must be linearly independent from each other. Third, the
only source of stochasticity in the model is U . The model must be thus be
noise free. Fourth, it is assumed that the data are centered (zero mean). Also
for some algorithms, the data must be pre-processed further. Fifth, the source
signals must not have a Gaussian probability density function (pdf) except
for one single source that can be Gaussian [18].

Statistical independence

Let x1(t), x2(t), ..., xn(t) random variables with pdf f(x1(t), x2(t), ..., xn(t)),
then the variables xi(t) are mutually independent if:

f(x1(t), x2(t), .., xn(t)) = f1(x1(t))f2(x2(t))...fn(xn(t)) (4.7)

That is, if the pdf of the xi(t) is equal to the multiplication of each marginal
pdf of the xi(t). Statistical independence is a more severe criterion than un-
correlatedness between two variables. If we take random centered variables,
uncorrelatedness is expressed by the following equation:

E[xi(t)xj(t)]− E[xi(t)]E[xj(t)] = 0 for i 6= j (4.8)

Where E[.] is the expectation. On the other hand, independence can be de-
�ned using the expectation by the following:

E[g1(xi(t))g2(xj(t))]− E[g1(xi(t))]E[g2(xj(t))] = 0 for i 6= j (4.9)

For all functions g1 and g2. In the particular case where the joint pdf of
the variables is Gaussian, uncorrelatedness is equivalent to independence.

There are several ways to measure independence and each of them involves
the use of di�erent algorithms when it comes to perform an ICA, which results
in slightly di�erent matrices [18].
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Chapter 4. Mathematical background

Minimization of mutual information

Mutual information is de�ned for a pair of random variables as:

I(X;Y ) = H(X)−H(X|Y ) (4.10)

Where H(X|Y ) is the conditional entropy and H(X) is the entropy of X.
Conditional entropy is given by:

H(X|Y ) = H(X,Y )−H(Y ) (4.11)

Where H(X,Y) is the joint entropy of X and Y and H(Y ) is the entropy
of Y . Therefore, going back to the eq. (3.10), mutual information can be seen
as the reduction of uncertainty regarding variable X after the observation of
Y . Consequently if we had an algorithm to minimize mutual information, we
would be searching for the components ui that are maximally independent
[18].

InfoMax algorithm

Using Equation 3.10 and after some manipulation. Amari et al. (1996) pro-
posed the following algorithm to compute the unmixing matrix W (called
InfoMax) [18]:

1. Initialize W (0) (e.g. random)
2. W (t+ 1) = W (t) + η(t)(I − f(Y )Y T )W (t)
3. If not converged, go back to step 2
Where t represents a given approximation step, η(t) a general function

that speci�es the size of the steps for the unmixing matrix updates (usually
an exponential function or a constant), f(Y ) a nonlinear function usually
according to the type of distribution (super of sub-Gaussian), I the identity
matrix of dimensions mxm and T the transpose operator. In the case of super-
Gaussian distribution, f(Y ) is usually set to:

f(Y ) = tanh(Y ) (4.12)

And for sub-Gaussian distribution, f(Y ) is set to:

f(Y ) = Y − tanh(Y ) (4.13)

4.3 Time frequency analysis

One could think of the Fourier transform as a method to extract the spec-
tral information from the signal, and indeed is a good and recommended
method. However to obtain full knowledge of the signal you must perform a
time-domain analysis as well. The Fourier transform, despite of being a good
approach, is not adequate specially for procedures associated with analysis of
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4.3 Time frequency analysis

non-stationary signals and real-time processing. D. Gabor might be the �rst
person to make the observation about the de�ciency of the formula of the
Fourier transform, arguing that information about the spectral information
over the time is not presented in the results of the Fourier transform. Indeed,
in the extreme case, the Fourier transform of the delta distribution δ(t− to),
with support at a single point t0 is eit0w , which certainly covers the whole
frequency domain.

D. Gabor introduced a time-localization "window function" g(t−b), where
the parameter b is used to translate the window in order to cover the whole
time-domain, for extracting local information of the Fourier transform of the
signal. A Gaussian function would be chosen by Gabor as the one suitable for
the window function g.

The Gabor transform

Given a function f(t) in L2(<) with �nite energy and representing an analog
signal, its Fourier transform is de�ned by eq. (4.14).

f̂(w) =

∫ ∞
−∞

e−iwtf(t)dt (4.14)

By computing eq. (4.14) we obtain information of the spectral aspect of
the signal f(t). However if we wanted to extract information of the spectrum
f̂(w) from local observation of the signal f(t) we would need a time-window
function. Such time-window for time-localization is achieved by using a Gaus-
sian function and the width of the window is determined by a �xed positive
constant α. We can use a Gaussian function as the one presented in eq. (4.2)

gα(t) :=
1

2
√
πα

e
−
t2

4α (4.15)

where α > 0 is �xed. For any value of α > 0, the Gabor transform of an
f(t) ∈ L2(<) is de�ned by

(Gαb f)(w) =

∫ ∞
−∞

e−iwtf(t)gα(t− b)dt (4.16)

It implies that with (Gαb )f(w) we are evaluating the Fourier transform of
f(t) around t− b given the width of the time-window which is determined by
α.

If we set a function Gαb,wf de�ned as follows:

Gαb,w(t) := e−iwtgα(t− b) (4.17)

then we have
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Chapter 4. Mathematical background

(Gαb f)(w) = 〈f,Gαb,w〉 =

∫ ∞
−∞

f(t)Gαb,w(t)dt (4.18)

We may interpret this expression in eq. (4.18) as windowing the function
f(t) by using the window function Gαb,wf in eq. (4.17).

One advantage of the formulation in eq. (4.18) is that the Parseval Identity
can be applied to relate the Gabor transform of f with the Gabor transform
of f̂ . Using eq. (4.19) and eq. (4.17)

ĝα(w) = e−αw
2

(4.19)

We obtain:

Ĝαb,w(η) = e−ib(η−w)e−α(η−w)
2

(4.20)

Now for an α = 1/4α We have

Gαb,w(w) = 〈f,Gαb,w〉 =
1

2π
〈f̂ Ĝαb,w〉

=
1

2π

∫ ∞
−∞

f̂(η)e−ib(η−w)e−α(η−w)
2
dη

=
e−ibw

2
√
πα

∫ ∞
−∞

(eibηf̂(η))g1/4α(η − w)dη

=
e−ibw

2
√
πα

(G1/4α
w f̂)(−b)

(4.21)

We interpret eq. (4.21) from two di�erent points of view. First we consider

∫ ∞
−∞

(e−iwtf(t))gα(t− b)dt

= (

√
π

α
e−ibw) · 1

2π

∫ ∞
−∞

(eibηf̂(η))g1/4α(η − w)dη

(4.22)

Then it turns to be that the "window Fourier transform" of f(t) with
window function gα at t = b is the same as the "window inverse Fourier

transform" of f̂ with the exception of the coe�cient
√
π

α
e−ibw

Secondly we consider:

Hα
b,w(η) :=

1

2π
Ĝαb,w(η) = (

eibw

2
√
πα

)e−ibηg1/4α(η − w), (4.23)

we have
〈f,Gαb,w〉 = 〈f̂ , Hα

b,w〉 (4.24)
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4.3 Time frequency analysis

In conclusion, the information obtained by analyzing the signal f(t) at
the time point t = b when using the window function Gαb,w as shown in eq.

(4.18) can also be obtained by analyzing the spectrum f̂(η) of the signal in a
neighborhood of the frequency η = w by using the window function Hα

b,w as
de�ned in eq. (4.23).

By de�nition we know that the width of the time-window is two times the
standard deviation of the window function. Calculating the standard devia-
tion for the window functions we obtain:

∆Gαb,w
=
√
α (4.25)

and

∆Hα
b,w

=
1

2
√
α

(4.26)

The product of the width of the time-window Gαb,w and that of the
frequency-window Hα

b,w is

(2∆Gαb,w
)(2∆Hα

b,w
) = (2∆gα)(2∆g1/4α) = 2 (4.27)

The cartesian product of these two windows is:

[b−
√
α, b+

√
α]×

[
w − 1

2
√
α
,w +

1

2
√
α

]
(4.28)

This is called a rectangular time-frequency window. It is plotted in the
time-frequency domain to show how a signal is localized. The width 2

√
α

of the time-window is referred to as the "width of the time-frequency win-

dow", and the width
1√
α
of the frequency window is called the "height of the

time-frequency window". A plot of this window is shown in Fig. 4.1 Observe
that the width of the time-frequency window is unchanged for observing the
spectrum at all frequencies [19].
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Chapter 4. Mathematical background

Figure 4.1: Gabor window.

Let us make an example for a signal like this [20]:

x(t) = cos(πt)whent < 10

x(t) = cos(3πt)when10 <= t < 20

x(t) = cos(2πt)whent >= 20

(4.30)

Then when we compute the Gabor transform we would expect a result as
shown in �g. 4.2, where the grey tones represent higher power spectrum as
expected given the signal x(t)

Figure 4.2: Gabor plot.
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5
Dataset

The dataset used in this study comes from the same database acquired in
the paper "Mismatch responses by nociceptive stimuli" [21] whose authors
(Li Hu, Chen Zhao, Hong Li and Elia Valentini) obtained by experimenting
and measuring EEG signals under certain parameters which will be exposed
in this chapter. However we only had access to the data corresponding to 8
subjects of 16 subjects whom were experimented with in such study.

5.1 Experimental design

In [21] the event-related potentials were recorded in four sessions (two modal-
ities: non-nociceptive somatosensory and nociceptive stimuli; two conditions:
active and passive), and two repeated blocks were included in each session.
Block order was counterbalanced across participants. In each block, trains of
non-nociceptive somatosensory and nociceptive stimuli were delivered to lat-
eral (L), median (M), or wrist (W) section of the participants' right and left
hands, respectively. Each block had about 50 trains of stimuli with an inter-
train interval of 1000ms. Each train consisted of 4-8 repeated identical stimuli
delivered to the same section at a constant interstimulus interval of 1000ms.
In each modality participants were required either to focus their attention on
the stimuli in two blocks (A: active condition), or focus their attention on
watching a silent video in the remaining two blocks (P: passive condition).
The �rst stimulus in each train was a deviant that became standard (the last
stimulus in each train) through repetition. This design provided four condi-
tions (Ad,As,Pd,Ps). In this paradigm, deviants and standards had exactly
the same number of trials and physical properties [21].

5.2 EEG Recording

The EEG recording used in [21] a Brain Products system (bandpass: 0.01 -
100Hz, sampling rate: 500Hz) was used, connected to a standard EEG cap
with 60 scalp Ag - AgCl electrodes placed according to the 10-20 system. The
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Chapter 5. Dataset

Figure 5.1: Experimental Design [21].

left mastoid was used as reference channel, and all channels impedances were
kept below 5kΩ. To monitor ocular movement and eye blinks, electrooculo-
graphic (EOG) signals were simultaneously recorded from four surface elec-
trodes placed on the upper and lower eyelid and next by the outer canthus of
the left and right eye [21].

5.3 De�nition of spatial regions of interest

A two way repeated measures ANOVA was performed in [21] in order to
assess the e�ects of mismatch (two levels: deviant vs. standard) and atten-
tion (two levels: active vs. passive) on both somatosensory evoked potentials
and nociceptive evoked potentials, to de�ne the signi�cant spatial regions of
interest (sROI's). Consequently scalp topographies were obtained for both
somatosensory and nociceptive blocks for the four experimental conditions
(Ad,As,Pd,Ps) in steps of 20ms. The conditions for a sROI to be de�ned as
signi�cant were to be composed by at least two nearby channels and it had
to be composed by more than 10 consecutive signi�cant time points (20ms)
for the factor mismatch and attention, respectively (F > 8.9, p<.01)
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5.3 De�nition of spatial regions of interest

Figure 5.2: sROIs for somatosensory evoked potentials.

Figure 5.3: sROIs for nociceptive evoked potentials.
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6
Methods

6.1 EEGLAB and independent component analysis
(ICA)

EEGLAB is a toolbox and graphic user interface, running under the cross-
platform MATLAB environment (The Mathworks, Inc.) for processing collec-
tion of single-trial and/or average EEG data of any number of channels. [22]
Available functions include EEG data, channel and event information import-
ing, data visualization, preprocessing, independent component analysis (ICA)
and time/frequency decompositions including channel and component cross-
coherence supported bootstrap statistical methods based on data resampling.

A primary tool of EEGLAB is to facilitate the process of applying and
evaluating the results of independent component analysis of EEG data. ICA
algorithms have proven capable of isolating both artifactual and neurally gen-
erated EEG sources whose EEG contributions, across the training data, are
maximally independent of one another. ICA was �rst applied to EEG by
Makeig et al. (1996) and is now widely used in the EEG research community,
most often to detect and remove stereotyped eye, muscle, and line noise arti-
facts. ICA also has proved capable of separating biologically plausible brain
sources whose activity patterns are distinctly linked to behavioral phenom-
ena. In fact, many of the biologically plausible sources ICA identi�ed in EEG
data have scalp maps nearly �tting the projection of a single equivalent cur-
rent dipole, and are therefore quite compatible with the projection to the
scalp electrodes of synchronous local �eld activity within a connected patch
of cortex.

EEGLAB contains an automated version, runica() of the infomax ICA
algorithm with several enhancements both as a Matlab function and as a
stand-alone binary C program that allows faster and less memory-intensive
computation [22].

We can also study the relative strengths of the independent components
projected back onto the scalp using topplot(). Make decisions on which in-
dependent components might be artifacts using generally accepted heuristics
and �nally remove selected artifacts using icaproj() [17].
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6.1 EEGLAB and independent component analysis (ICA)

Visualizing EEG artifacts

The function topplot() is used to study the relative strengths of the inde-
pendent components projected back onto scalp. Assuming W is the weights
matrix obtained after running the ICA algorithm, the columns of the inverse
matrix, inv(W), give the relative projection strengths of the respective com-
ponents at each of the scalp sensors. These plots helps in visualizing the com-
ponents physiological origins [17]. Graphically the process looks as illustrated
in the Fig. 6.1.

Figure 6.1: ICA [23].

Where every scalp map in the scalp projections is representing the co-
e�cients aij from eq (4.3) for one independent component. In other words
every scalp map is built from one column of matrix W−1 where the rows are
related to the channels or EEG electrodes in this case, and the columns are
related to sources or independent components, so for example the indepen-
dent component 3 in Fig. 6.1 is represented by the the projection shown in
Fig 6.2.
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Chapter 6. Methods

Figure 6.3: ICA components and projections of selected artifacts [17].

Figure 6.2: Scalp projection, component 3.

In this case we are plotting the third column from W−1. Knowing certain
properties of di�erent artifacts help in deciding which components can be
classi�ed as probable artifacts [17]:

1. Eye movements and eye blinks mainly to frontal sites (near electrodes
FP1 and FP2).

2. Temporal muscle activity should project to the temporal sites (near T3
and T4).

3. Occipital (rear head) movements project to the back (electrodes O1 and
O4).

They should be projected as shown in Fig. 6.3.
Some of the scalp projections are clearly artifacts and not deep analysis
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6.1 EEGLAB and independent component analysis (ICA)

is required, however when using the EEGLAB plugin it is always possible
to drill down the results in order to classify the independent components as
an artifact or not. The scalp projections in EEGLAB/Matlab are plotted as
shown in Fig. 6.4.

Figure 6.4: Scalp Projections EEGLAB [24].

And by clicking the rectangular button above each component one can
access the properties of the components. For example the component 3 Fig.
6.4 can be identi�ed as an eye artifact for three reasons [24]:

1. The smoothly decreasing EEG spectrum is typical of an eye artifact.

2. The scalp map shows a strong far-frontal projection typical of eye arti-
facts.

3. It is possible to see individual eye movements in the component when
clicking in the top button to access the properties
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Figure 6.5: Component 3 properties [24].

Since this component accounts for eye activity, we may wish to subtract it
from the data before further analysis and plotting. If so, click on the bottom
green Accept button (above) to toggle it into a red Reject button. Now press
OK to go back to the main component property window.

Another artifact example in our decomposition is component 32, which
appears to be typical muscle artifact component. This components is spatially
localized and show high power at high frequencies (20-50 Hz and above) as
shown in Fig. 6.6.
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6.1 EEGLAB and independent component analysis (ICA)

Figure 6.6: Component 32 properties [24].

Once the components to eliminate from the data are selected we can mix
the new sources (without the components selected) and the weights back
again, and as a result we obtain artifact rejected clean data as follows [17]:
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clean data=W−1(:, a)ica(a, :)
Where:
a=vector of independent components to keep
ica=independent components Obtain from W ×X

For example, let H =

1 2 3

3 1 2

2 3 1

 be the blind mixing matrix on the blind

sources S =

s1s3
s2


producing the recorded EEG data X =

s1 + 2s2 + 3s3

3s1 + s2 + 2s3

2s1 + 3s2 + s3


Now, suppose we wanted to remove the independent component s2 from

the observed EEG data X. Then a = [1 3]
and clean data is,

clean data=W−1(:, [13])× ica([13], :)
= H(:, [13])×X =

[
s1s3

]
=

 s1 + 3s3

3s1 + 2s3

2s1 + s3


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6.1 EEGLAB and independent component analysis (ICA)

Graphically the process is explained by Fig. 6.7.

Figure 6.7: IC rejection/back-projection [23].
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6.2 Artifact rejection

EEG data from 8 subjects, 8 recording blocks each (1 repeated block per
condition: Nociceptive Active, Nociceptive Passive, Somatosensory Active,
Somatosensory Passive), were processed using the EEGLAB toolbox. Firstly
we applied a baseline correction to reduce the zero level �uctuations over
the EEG signals across all channels, such �uctuations might be due to noise
sources, sweating or muscles movement [25].

Then we used the Independent Component Analysis (ICA) to correct tri-
als contaminated by eyes movement or muscles activity, and then we corrected
baseline again to restore the zero level. Frontal scalp distribution activity af-
fected most of the EEG recording blocks, temporal and occipital activations
were found as well, indicating muscle artifacts and rear-head artifacts respec-
tively [17].

For example in Fig. 6.8 we can see the projections for the sixth subject
corresponding to the nociceptive active condition. Every scalp map in Fig.
6.8 corresponds to the projections of one of the independent components
found after running the ICA algorithm, the value assigned to each one of the
electrodes relies on the coe�cients aij given by eq. 4.3.

If we drill down over the component 42 we can obtain the scalp projection
(Fig. 6.9) and the power spectrum (Fig. 6.10) of such component.

There's clearly a pronounced activity over the occipital cortex suggesting
a rear-head artifact. Furthermore occipital activity is characterized by an
alpha band peak near 10 Hz [24] as we can see in the Fig. 6.10

Thus this component could be classi�ed as a rare-head artifact. Frontal
activity indicating eyes movement and/or eyes blinking were largely present
in all subjects. In Fig. 6.11 we can see the scalp projection map corresponding
to the �rst component of the the seventh subject for the nociceptive passive
recording block for which could be classi�ed as eyes movement artifact by its
activity over the frontal region and when we plot the power spectrum Fig.
6.12 we can con�rm so since it appears to be smoothly decreasing.

Besides, this activity should coincide with the activations of the elec-
trooculography (EOG) signals which were simultaneously recorded from the
four surface electrodes placed on the upper and lower eyelid, and next by the
outer canthus of the left and right eye. Using EEGlab we can plot the data
having eliminated this component as shown in Fig. 6.13.

Figure 6.13 shows a sample of the EEG data before (blue signals) and af-
ter (red signals) eliminating the component 1 from the data, this �gure shows
the results for 62 channels, the electrooculographic channels are numbered 22,
32, 39 and 62 for outer canthus left eye, lower eyelid, outer canthus right eye
and upper eyelid respectively. By looking at the behavior of the electrooculo-
graphic channels we can see their activations characterized by an increase in
the potential, in this case it is presented at about 300 ms after the stimulus.
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6.2 Artifact rejection

Figure 6.8: Projections, Subject 6, Nociceptive Active condition.
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Figure 6.9: Scalp projection independent component 42.
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Figure 6.10: Power spectrum Independent component 42.

Figure 6.11: Scalp projection independent component 1.
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Figure 6.12: Power spectrum Independent component 1.

Figure 6.13: EEG data with and without component 1.
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At the same time we can inspect how this component is eliminated from all of
the channels by comparing the blue and the red signals, being the red signal
the one representing the corrected data.

Artifacts related to muscle movement were also found in the data. In Fig.
6.14 we present the last 27 components for the sixth subject corresponding
to the nociceptive passive condition, for which we plot the properties of the
component 57 (Fig. 6.15 and Fig. 6.16). If we take a look at its scalp projection
(Fig. 6.15) we can see activity over the T4 electrode and temporal region, then
it might be possible to classify this component as a muscle movement artifact.
We can con�rm so by plotting its power spectrum (Fig. 6.16) and checking
once again if it matches with an artifact.

Figure 6.14: Projections, Subject 6, Nociceptive Passive condition.

Figure 6.15: Scalp projection independent component 57.

The high power at high frequencies over 20Hz allows us to classify this
component as a muscle movement artifact. Thus, this type of components
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Figure 6.16: Power Spectrum component 57.

were removed from the original EEG data. In total 3968 components were
analyzed across all subjects.
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6.3 EP's Extraction

After that, we were able to extract the evoked potentials for each recording
block, bearing in mind that according to the experiment setup and the roving
paradigm in which it was based on, there were two di�erent types of evoked
potentials: those evoked by a standard stimulus and those evoked by a deviant
stimulus.

For the evoked potentials we took time windows of 700ms, 200ms for pre-
stimulus and 500ms for post-stimulus over each channel [21]. For each record-
ing block and each channel there were 50 stimuli of every type (50 deviant
stimuli and 50 standard stimuli) which were averaged. In order to estimate
whether it was reasonable or not to average across subjects we �rst obtained
the standard deviation for each subject, condition and type of stimulus be-
tween the evoked potentials for the channels belonging to the same region of
interest. In Fig. 6.17 we can see the deviant evoked potentials read from the
channels FT7,T7,TP7,C5 and CP5 (contralateral temporal region) of one of
the subjects, during the somatosensory passive recording block. There is also
shown the mean value across the channels and the standard deviation:

time [ms]
-100 -50 0 50 100 150 200 250 300 350 400

V
ol

ts
 [u

V
]

-4

-3

-2

-1

0

1

2

3

4

channels FT7,T7,TP7,C5,CP5
FT7
T7
TP7
C5
CP5

time [ms]
-100 -50 0 50 100 150 200 250 300 350 400

V
ol

ts
 [u

V
]

-4

-3

-2

-1

0

1

2

3

4

channels Mean value and standard deviation
mean
std-max
std-min

Figure 6.17: ERP channels FT7,T7,TP7,C5 and CP5

We then computed the standard deviation point by point across the time
axis and averaged the resulting vector. Finally we average the results across
all subjects. In �g. 6.17 we can see the evoked potentials look so similar as
expected since both channels belong to the same region of interest. The results
are shown later on chapter 7

After that we were able to average such evoked potentials resulting in
one single evoked potential for each subject, condition, type of stimulus, and
region of interest

Consequently we grouped the evoked potentials across all subjects, once
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6.4 Wavelet transform

again the evoked potentials were grouped according to the condition, type
of stimulus and region of interest they belonged to so we could average the
evoked potentials and obtain the resulting evoked potential which will de-
scribe the response for one condition, one type of stimulus and one region of
interest. Evoked potentials results are shown in chapter 7.

6.4 Wavelet transform

Since our purpose is to make an analysis on the time-frequency domain we
computed a wavelet transform using the Gabor transform for each evoked
potential in the groups (each group containing the evoked potentials for each
subject separately) and calculated the standard deviation between the results.

Then we averaged the Gabor windows for each group. The result of all
this operation is a Gabor window by condition, type of stimulus and region
of interest.

Once we had that, we could start making comparisons between the Gabor
windows obtained. We were interested in comparing the di�erence between a
standard stimulus and deviant stimulus within each condition as well as the
di�erence between the conditions for both the deviant and standard stimulus.

The comparisons were made by pairs. We computed the di�erence between
the di�erent Gabor windows, if the di�erence was greater than the standard
deviation found for the Gabor windows we were comparing, then the results
were considered as signi�cant.
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7
Results

Let us start saying that the results for the standard deviation allowed us to
keep the regions of interest found in [21] showing similar responses for the
channels belonging to the same region of interest. The results are shown in
the tables 7.1, 7.2, 7.3 and 7.4 .

Table 7.1: Standard deviation results Nociceptive Active Condition

Type of stimu-
lus

Central region Contralateral
temporal
region

Ipsilateral

Deviant 1.05 0.84 1.01.
Standard 1.18 0.88 1.13

(Values in µV )

Table 7.2: Standard deviation results Nociceptive Passive Condition

Type of stimu-
lus

Central region Contralateral
temporal
region

Ipsilateral

Deviant 0.82 0.82 1.00
Standard 0.87 0.67 0.88

(Values in µV )
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7.1 Nociceptive active condition

(a) Central region, deviant stimulus (b) Central region, standard stimulus

Figure 7.1: Gabor window, Deviant and Standard stimulus

Table 7.3: Standard deviation results Somatosensory Active Condition

Type of stimu-
lus

Central region Contralateral
temporal
region

Ipsilateral

Deviant 1.56 1.45 0.80
Standard 1.10 1.08 1.87

(Values in µV )

Table 7.4: Standard deviation results Somatosensory Passive Condition

Type of stimu-
lus

Central region Contralateral
temporal
region

Ipsilateral

Deviant 0.94 0.97 0.68
Standard 0.92 0.90 0.64

(Values in µV )

7.1 Nociceptive active condition

In Fig. 7.1 we can see the Gabor window for both the deviant stimulus and
standard stimulus for the central region. These two Gabor windows are plot-
ted using the same scale in order for them to be compared. If we take look at
these two windows we will probably not �nd any signi�cant di�erence.
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Chapter 7. Results

(a) Central region, deviant - standard
stimulus

(b) Central region, deviant - standard
stimulus, signi�cant values

Figure 7.2: Deviant vs. Standard stimulus

However, for us to be able to �nd the di�erences between these two Ga-
bor windows we computed the mathematical di�erence pixel by pixel and
obtained the result showed in Fig. 7.2a where we can clearly appreciate the
main di�erences for each value in the matrices.

In this case we found the biggest di�erence around 40 Hz for both the
pre-stimulus at a latency of 20ms before stimulus and in the post-stimulus
at a latency of 88ms. It was expected not to have the same Gabor window
for the standard and deviant stimulus. In spite of the fact that the results
are di�erent, the di�erences might not be signi�cant enough compared to the
standard deviation found for each Gabor Window.

For that reason in Fig. 7.2b we plotted only the pixels of the Gabor window
in Fig. 7.2a whose values were larger than the largest value of the standard
deviation of the Gabor windows in Fig. 7.1a. In this case the standard devi-
ation for the Gabor window in Fig. 7.1a was 5.09 and 5.02 for Fig. 7.1b, so
in Fig. 7.2b we only plotted the pixels with values larger than 5.09.

As shown in Fig. 7.2b no signi�cant results were found. Aftermath the
evoked potentials must be very similar between each other and indeed they
are as we can see in Fig. 7.3

The same procedures were applied for the other regions of interest and
conditions. In Fig. 7.4 we can see the Gabor windows for the deviant and
standard stimulus for the contralateral temporal region. And in Fig. 7.5 we
can see the di�erence between these two Gabor windows. This time the results
show signi�cant values during the pre-stimulus for frequencies near the 40Hz
(Fig. 7.5b), and once again we can appreciate the result in the time-domain
shown in Fig. 7.6, however in this case the time-domain graphic does not o�er
as much information.

For the case of the contralateral temporal region and the ipsilateral region
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7.1 Nociceptive active condition

Figure 7.3: Central region EP's, deviant and standard stimulus

(a) contralateral-temporal region, deviant
stimulus

(b) contralateral-temporal region, stan-
dard stimulus

Figure 7.4: Gabor window, Deviant and Standard stimulus
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Chapter 7. Results

(a) contralateral-temporal region, deviant
- standard stimulus

(b) contralateral-temporal region, deviant
- standard stimulus, signi�cant values

Figure 7.5: Deviant vs. Standard stimulus

we obtained similar responses, but still not very signi�cant. For the case of
the ipsilateral region the main di�erence was found once again around the 40
Hz 24 seconds before the stimulus.
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7.2 Nociceptive passive condition

Figure 7.6: contralateral-temporal region EP's, deviant and standard stimulus

7.2 Nociceptive passive condition

For the nociceptive passive condition the results over the central region were
not much di�erent from the result obtained in the nociceptive active condi-
tion. The Gabor windows for the deviant and standard stimuli (Fig. 7.7) were
so similar that there were not signi�cant results when we computed the di�er-
ences between them (Fig. 7.8) and as expected neither the evoked potentials
showed big di�erences (Fig. 7.9).
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Chapter 7. Results

(a) Central region, deviant stimulus (b) Central region, standard stimulus

Figure 7.7: Gabor window, Deviant and Standard stimulus

(a) Central region, deviant - standard
stimulus

(b) Central region, deviant - standard
stimulus, signi�cant values

Figure 7.8: Deviant vs. Standard stimulus
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7.3 Somatosensory Active condition

Figure 7.9: Central region EP's, deviant and standard stimulus

The results over the temporal regions (Fig. 7.10) were also similar be-
tween the deviant and standard stimuli and there were not signi�cant values
obtained in the Gabor window representing the mathematical di�erence be-
tween them.

(a) contralateral-temporal region, deviant
- standard stimulus

(b) contralateral-temporal region, deviant
- standard stimulus, signi�cant values

Figure 7.10: Deviant vs. Standard stimulus

7.3 Somatosensory Active condition

Similar situation is presented for the somatosensory condition but slightly
di�erent. First of all this time we did obtained signi�cant di�erence over
the central region for the active condition (Fig. 7.12) when we computed
the di�erences between the Gabor windows in Fig. 7.11. Secondly, we also
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Chapter 7. Results

obtained signi�cant values over the temporal regions when comparing the
deviant and standard stimuli for the active condition but we did not �nd
signi�cant values for the passive condition.

(a) Central region, deviant stimulus (b) Central region, standard stimulus

Figure 7.11: Gabor window, Deviant and Standard stimulus
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7.3 Somatosensory Active condition

(a) Central region, deviant - standard
stimulus

(b) Central region, deviant - standard
stimulus, signi�cant values

Figure 7.12: Deviant vs. Standard stimulus

This time the the main di�erences between the standard and deviant stim-
uli were found around the 30Hz with a latency of 22ms before the stimulus.
Pretty much the same results were obtained for the temporal regions, in Fig.
7.13 and Fig. 7.14 we can appreciate the signi�cant values around 30Hz during
the pre-stimulus interval.

(a) contralateral-temporal region, deviant
- standard stimulus

(b) contralateral-temporal region, deviant
- standard stimulus, signi�cant values

Figure 7.13: Deviant vs. Standard stimulus
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Chapter 7. Results

(a) ipsilateral region, deviant - standard
stimulus

(b) ipsilateral region, deviant - standard
stimulus, signi�cant values

Figure 7.14: Deviant vs. Standard stimulus

7.4 Somatosensory Passive condition

As it was mentioned before, we did obtain signi�cant values for the somatosen-
sory active condition but it was not likewise for the somatosensory passive and
as we can see in Fig. 7.15 where despite of the di�erence found between the
deviant and standard Gabor windows, none of those di�erences were really
signi�cant.
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7.4 Somatosensory Passive condition

(a) Di�erence Gabor window (b) Signi�cant values Gabor window

(c) Di�erence Gabor window (d) Signi�cant values Gabor window

(e) Di�erence Gabor window (f) Signi�cant values Gabor window

Figure 7.15: Deviant vs. Standard stimulus, (7.15a) di�erence Gabor win-
dow over central region,(7.15b) signi�cant values Gabor window over central
region, (7.15c) di�erence Gabor window over contralateral-temporal region,
(7.15d) signi�cant values Gabor window over contralateral-temporal region,
(7.15e) di�erence Gabor window over ipsilateral region, (7.15f) signi�cant
values Gabor window over ipsilateral region
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Chapter 7. Results

7.5 Nociceptive vs. Somatosensory responses

To support the idea that there is, in fact, a di�erence between the responses
evoked by nociceptive and somatosensory stimulation we also computed the
di�erences for the Gabor windows of the nociceptive and somatosensory con-
ditions as follows: nociceptive active condition vs somatosensory active con-
dition, and nociceptive passive condition vs somatosensory passive condition.
This time we assume that the factor of attention will not a�ect the result of
the comparisons since it is the same for the recording blocks we are comparing,
and thus we will only focus on the nociceptive vs somatosensory matter.

Nociceptive Active vs Somatosensory Active

Let us start with the nociceptive active condition vs somatosensory active
condition comparison, which was also performed over the three regions of
interest.

In the central region the Gabor windows were widely di�erent for both the
standard and deviant stimulus (Fig. 7.16 and Fig. 7.17). The di�erence were
found from 10Hz to 60Hz and latency from 30ms before the stimulus to 96ms
after the stimulus for the deviant stimulus, and from 8Hz to 62 Hz and latency
from 46ms before the stimulus to 70ms after the stimulus for the standard
stimulus. These results were also consistent with the evoked potential which
show di�erent responses (Fig. 7.18).Same result was persistent over the three
regions of interest as shown from Fig. 7.19 to Fig. 7.24.
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7.5 Nociceptive vs. Somatosensory responses

(a) Central region, deviant stimulus, No-
ciceptive active vs. Somatosensory active

(b) Central region, standard stimulus, No-
ciceptive active vs. Somatosensory active

Figure 7.16: Gabor windows, Nociceptive active vs. Somatosensory active

(a) Central region, deviant stimulus, No-
ciceptive active vs. Somatosensory active

(b) Central region, standard stimulus, No-
ciceptive active vs. Somatosensory active

Figure 7.17: Signi�cant Gabor windows, Nociceptive active vs. Somatosensory
active
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Chapter 7. Results

(a) Central region, deviant stimulus, No-
ciceptive active vs. Somatosensory active

(b) Central region, standard stimulus, No-
ciceptive active vs. Somatosensory active

Figure 7.18: EP's, Nociceptive active vs. Somatosensory active

(a) contralateral-temporal region, de-
viant stimulus, Nociceptive active vs. So-
matosensory active

(b) contralateral-temporal region, stan-
dard stimulus, Nociceptive active vs. So-
matosensory active

Figure 7.19: Gabor windows, Nociceptive active vs. Somatosensory active
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7.5 Nociceptive vs. Somatosensory responses

(a) contralateral-temporal region, de-
viant stimulus, Nociceptive active vs. So-
matosensory active

(b) contralateral-temporal region, stan-
dard stimulus, Nociceptive active vs. So-
matosensory active

Figure 7.20: Signi�cant Gabor windows, Nociceptive active vs. Somatosensory
active

(a) contralateral-tempora region, deviant
stimulus, Nociceptive active vs. So-
matosensory active

(b) contralateral-temporal region, stan-
dard stimulus, Nociceptive active vs. So-
matosensory active

Figure 7.21: EP's, Nociceptive active vs. Somatosensory active
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Chapter 7. Results

(a) ipsilateral region, deviant stimulus,
Nociceptive active vs. Somatosensory ac-
tive

(b) ipsilateral region, standard stimulus,
Nociceptive active vs. Somatosensory ac-
tive

Figure 7.22: Gabor windows, Nociceptive active vs. Somatosensory active

(a) ipsilateral region, deviant stimulus,
Nociceptive active vs. Somatosensory ac-
tive

(b) ipsilateral region, standard stimulus,
Nociceptive active vs. Somatosensory ac-
tive

Figure 7.23: Signi�cant Gabor windows, Nociceptive active vs. Somatosensory
active
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7.5 Nociceptive vs. Somatosensory responses

(a) ipsilateral region, deviant stimulus,
Nociceptive active vs. Somatosensory ac-
tive

(b) ipsilateral region, standard stimulus,
Nociceptive active vs. Somatosensory ac-
tive

Figure 7.24: EP's, Nociceptive active vs. Somatosensory active

Nociceptive Passive vs. the Somatosensory Passive

In the central region the frequencies representing signi�cant di�erence are in
the range from 5Hz to 62Hz for the deviant stimulus and from 3Hz to 63Hz
for the standard stimulus (Fig. 7.26). On the other hand for the temporal
regions the range of frequencies representing signi�cant di�erence in the Ga-
bor windows was not as large but yet represent a wide frequency range, these
results regarding the temporal regions are also shown in Figs. 7.28 to 7.33.
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Chapter 7. Results

(a) Central region, deviant stimulus, Noci-
ceptive passive vs. Somatosensory passive

(b) Central region, standard stimulus, No-
ciceptive passive vs. Somatosensory pas-
sive

Figure 7.25: Gabor windows, Nociceptive passive vs. Somatosensory passive

(a) Central region, deviant stimulus, Noci-
ceptive passive vs. Somatosensory passive

(b) Central region, standard stimulus, No-
ciceptive passive vs. Somatosensory pas-
sive

Figure 7.26: Signi�cant Gabor windows, Nociceptive passive vs. Somatosen-
sory passive
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7.5 Nociceptive vs. Somatosensory responses

(a) Central region, deviant stimulus, Noci-
ceptive passive vs. Somatosensory passive

(b) Central region, standard stimulus, No-
ciceptive passive vs. Somatosensory pas-
sive

Figure 7.27: EP's, Nociceptive passive vs. Somatosensory passive

(a) contralateral-temporal region, deviant
stimulus, Nociceptive passive vs. So-
matosensory passive

(b) contralateral-temporal region, stan-
dard stimulus, Nociceptive passive vs. So-
matosensory passive

Figure 7.28: Gabor windows, Nociceptive passive vs. Somatosensory passive
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Chapter 7. Results

(a) contralateral-temporal region, deviant
stimulus, Nociceptive passive vs. So-
matosensory passive

(b) contralateral-temporal region, stan-
dard stimulus, Nociceptive passive vs. So-
matosensory passive

Figure 7.29: Signi�cant Gabor windows, Nociceptive passive vs. Somatosen-
sory passive

(a) contralateral-temporal region, deviant
stimulus, Nociceptive passive vs. So-
matosensory passive

(b) contralateral-temporal region, stan-
dard stimulus, Nociceptive passive vs. So-
matosensory passive

Figure 7.30: EP's, Nociceptive passive vs. Somatosensory passive
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7.5 Nociceptive vs. Somatosensory responses

(a) ipsilateral region, deviant stimulus,
Nociceptive passive vs. Somatosensory
passive

(b) ipsilateral region, standard stimu-
lus, Nociceptive passive vs. Somatosensory
passive

Figure 7.31: Gabor windows, Nociceptive passive vs. Somatosensory passive

(a) ipsilateral region, deviant stimulus,
Nociceptive passive vs. Somatosensory
passive

(b) ipsilateral region, standard stimu-
lus, Nociceptive passive vs. Somatosensory
passive

Figure 7.32: Signi�cant Gabor windows, Nociceptive passive vs. Somatosen-
sory passive
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Chapter 7. Results

(a) ipsilateral region, deviant stimulus,
Nociceptive passive vs. Somatosensory
passive

(b) ipsilateral region, standard stimu-
lus, Nociceptive passive vs. Somatosensory
passive

Figure 7.33: EP's, Nociceptive passive vs. Somatosensory passive
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8
Discussion

During the nociceptive active condition there was no di�erence between the
standard and deviant stimulus results found in the central region, there was
no antiphase nor di�erences in the amplitude observed in the evoked poten-
tials, which suggests that when it comes to nociceptive stimulation there are
not many di�erences in how the deviant and standard stimuli are re�ected
over the cortex, in this case over the central region. For the temporal regions
the main di�erences were found around 40Hz, 24 seconds before the stimu-
lus.For both regions the result was consistent. In this case it is interesting to
see a response over the pre-stimulus bearing in mind that the participants
were on the active condition which means they were actually focusing on the
stimuli before those actually came, and were asked to report the total number
of stimuli they received. So the factor of attention might be playing a role for
these results. And it all makes sense when we look at the results obtained for
the nociceptive passive condition, where the responses obtained over the tem-
poral regions for the pre-stimulus interval disappeared in the Gabor window
showing the signi�cant di�erences (Fig. 7.10). This shows that the factor of
attention is a�ecting the results for the nociceptive stimulation in the way the
di�erences between the types of stimuli (deviant and standard) are presented
and re�ected on the scalp. This result coincides with the ones found in [21]
where di�erent results were obtained for di�erent conditions depending on
the level of alertness.

As we mentioned in the results section, we obtained the same result for
the somatosensory condition, where we did have signi�cant values during the
pre-stimulus interval over the temporal regions when we compared the types
of stimuli but only during the active condition, and such results were not
presented in the results for the passive condition. So once again the factor of
attention is driving the results.

However during the somatosensory condition the main di�erences between
the standard and deviant stimuli were found around the 30 Hz with a latency
of 22ms before the stimulus. It is quite interesting the fact that the latency
was almost the same as the one found for the nociceptive condition but the
frequency was diminished in 10Hz, suggesting that pain signals are activating
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Chapter 8. Discussion

higher frequencies on their way up to the cortex and that is why we decided
to make a comparison between nociceptive and non-nociceptive condition in
section 7.5.

For this comparison between the nociceptive and somatosensory condition,
over the central region the Gabor windows were widely di�erent for both
the standard and deviant stimulus. The di�erence were found from 10Hz to
60Hz and latency from 30ms before the stimulus to 96ms after the stimulus
for the deviant stimulus, and from 8Hz to 62 Hz and latency from 46ms
before the stimulus to 70ms after the stimulus for the standard stimulus.
This time the di�erences cover a wide range in both the frequencies and
latency which suggest a big gap di�erence in how the information is processed
for the nociceptive stimulus compared to a somatosensory (non-nociceptive)
stimulus.

The evoked potentials were consistent with these results, and in both the
deviant stimulus and standard stimulus the amplitude was larger for the no-
ciceptive evoked potentials during the latencies representing more di�erence
in the Gabor windows. Larger amplitude in the signal is directly resulted
in larger energy which would imply that the transmission of nociceptive sig-
nals in the nervous system somehow uses more energy than that needed to
transmit a non-nociceptive signal.

Moreover, even though the latencies and frequencies activated in the Ga-
bor windows slightly vary, this result was consistent over the three regions
of interest, which enhances the fact that "pain" signals are re�ected in the
scalp as electric signals with more energy compared to those non-nociceptive
signals.

Well now, what about the nociceptive passive vs. the somatosensory pas-
sive comparison?. The results were once again consistent with the fact that
the signals related to pain represent more energy. However the range of the
frequencies that represent a signi�cant di�erence in the Gabor windows is not
as large as the ones found in the last comparison (nociceptive active vs. the
somatosensory active) except for the central region.

In the central region the frequencies representing signi�cant di�erence are
in the range from 5Hz to 62Hz for the deviant stimulus and from 3Hz to 63Hz
for the standard stimulus (Fig. 7.26).For the temporal regions the range of
frequencies representing signi�cant di�erence in the Gabor windows was not
as large. Nevertheless the energy for such frequencies during the signi�cant
latencies was larger for the nociceptive evoked potentials as we can see in the
evoked potentials.
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9
Conclusions

Performing a time-frequency analysis using the wavelet transform gave us
reliable information that allowed us to recognized features over the evoked
potentials, such as frequencies that were activated as well as the latencies in
which the di�erent evoked potentials di�ered from each other.

We obtained signi�cant results for the Gabor windows over the temporal
regions for the nociceptive active condition, showing di�erences between the
standard and deviant stimuli for frequencies between 38Hz and 40Hz at a
latency of 24ms before the stimulus. On the other hand, for the nociceptive
passive condition we obtained no signi�cant di�erences between standard and
deviant stimuli in the Gabor windows. This drove us to think that the factor of
attention played a role in the sense that it provoked di�erent evoked potentials
when the participants were focusing on the stimuli, and thus the standard
stimulus and deviant stimulus were di�erent for the active condition.

Same type of result was obtained for the somatosensory active condition
and somatosensory passive condition. However, in this case the Gabor win-
dow comparing the standard and deviant stimuli also showed di�erences over
the central region. Another important di�erence is the frequency where we
found signi�cant values on the Gabor window, for the nociceptive active con-
dition it was around 40Hz but for the somatosensory active condition it was
30Hz. Thus we can say the pain signals are re�ected in the scalp at higher
frequencies.

Not only the frequency was di�erent when comparing the nociceptive
stimulus with the deviant stimulus. It was a constant in the results that
the energy found in the signals evoked by nociceptive stimulation is larger to
those evoked by somatosensory non-nociceptive signals.
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