

CLI Crawler

- A tool for command line interface discovery

LTH School of Engineering at Campus Helsingborg

Department of Computer Science

Bachelor thesis:
Oskar Jermakowicz
Martin Ekberg

 Copyright Oskar Jermakowicz, Martin Ekberg

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2015

Abstract

Many systems within the IT infrastructure have a Command Line Interface (CLI) for

configuration changes. Some of these systems may expose a Configuration Management

interface over a web service but this web service usually only exposes a fraction of the

configuration possibilities in a CLI. Thus it would be of great help to investigate how a

framework for automated CLI discovery can be developed, which is what this bachelor’s

thesis is about.

One objective of the bachelor’s thesis was to determine the best possible way to access the

command structure of CLIs and to determine how a CLI discovery application can be

developed. The other objective was to develop such a prototype. Such a CLI discovery

application must support exporting the result of the discovery process into a YANG model

(a hierarchical modeling language for NETCONF) in the future.

A prototype, CLI Crawler, was developed. CLI Crawler was designed to be as automated as

possible, however during the discovery process user interaction is required in order to help

CLI Crawler get past certain obstacles. Such an obstacle could be when a CLI requires a

certain input that only the user has knowledge of. At first CLI Crawler connects to a remote

system with the use of Secure Shell (SSH) or Terminal Network (Telnet). Thereafter the

discovery process is started which traverses all of the possible commands, modes and

attributes in a certain CLI. During such a discovery process the command structure is both

being printed in real-time in the GUI as a hierarchical tree structure and added to a database

which will be used for exporting the command structure as YANG in the future.

CLI Crawler shows that it is possible to develop a framework for automated CLI discovery.

However more work and research has to be done before CLI Crawler will become a viable

way of discovering and representing a CLI’s command structure. For instance more CLIs

have to be integrated with CLI Crawler in order to make them compatible with the

discovery process.

Keywords: Command Line Interface, discovery, automation, YANG, remote connection

Sammanfattning

Många system inom IT infrastrukturen har ett Command Line Interface (CLI) som används

för konfigurationsinställningar. Vissa av dessa system kan använda sig av ett Configuration

Management gränssnitt på en web-service, dock så brukar en sådan web-service endast ge

tillgång till en viss del av konfigurationsmöjligheterna i ett CLI. Därmed hade det varit till

stor hjälp att undersöka hur man kan utveckla ett ramverk för automatisk CLI discovery,

vilket är examensarbetets syfte.

Ett mål med examensarbetet är att undersöka det bästa sättet att komma åt

kommandostrukturen av ett CLI och undersöka hur en CLI discovery applikation kan

utvecklas. Det andra målet är att utveckla en prototyp för CLI discovery. En sådan

applikation måste stödja export av kommandostrukturen till en YANG modell (som är ett

hierarkiskt modellerings-språk för NETCONF) i framtiden.

En prototyp, kallad CLI Crawler, har utvecklats. CLI Crawler har utvecklats att vara så

automatisk som möjligt men användarinteraktion är nödvändig för att hjälpa CLI Crawler

med vissa hinder. Ett möjligt hinder kan vara då ett CLI behöver en viss input som endast

användaren känner till. Först så ansluter CLI Crawler till ett fjärrsystem genom Secure

Shell (SSH) eller Terminal Network (Telnet). Därefter startas discovery-processen som

traverserar genom alla möjliga kommando, moder och attribut i ett visst CLI. Under en

discovery-process så lagras kommando strukturen i realtid i CLI Crawlers GUI som en

trädrepresentation och i databasen som i framtiden kommer att användas för att exportera

kommandostrukturen till YANG.

CLI Crawler bevisar att det finns möjlighet att utveckla ett ramverk för automatisk CLI

discovery. Dock så krävs det mer arbete och undersökning innan CLI Crawler blir ett bra

sätt att undersöka och lagra kommandostrukturen av ett CLI. Exempelvis så måste fler

CLIer integreras med CLI Crawler för att göra de kompatibla med discovery processen.

Nyckelord: Command Line Interface, discovery, automation, YANG, fjärranslutning

Foreword

This bachelor thesis is the result of the final course of the Bachelor of Science in Computer

Engineering program at the Faculty of Engineering at Lund’s University. The thesis was

carried out at Data Ductus in Malmö.

We would like to thank Data Ductus for giving us the opportunity of doing our bachelor

thesis with them. Sincere thanks to our supervisor Göran Edin at Data Ductus for providing

a lot of valuable information and helping us when needed.

We would also like to thank our supervisor Christian Nyberg and our examiner Christin

Lindholm at the Faculty of Engineering at Lund’s University for aiding and supporting us

with valuable input throughout the thesis work.

Oskar Jermakowicz & Martin Ekberg.

Table of contents

1. Introduction ... 1
1.1 Background ... 1
1.2 Purpose .. 1
1.3 Objectives .. 1
1.4 Questions at issue .. 2
1.5 Constraints .. 2

2. Method .. 3
2.1 Way of working .. 3

2.1.1 Pre-study .. 3
2.1.2 Implementation... 4
2.1.3 Finalization ... 4

2.2 Source criticism .. 5

3. Technical background .. 7
3.1 Command Line Interface .. 7
3.2 SSH and Telnet .. 8

3.2.1 Ganymed SSH-2 for Java .. 9
3.2.2 Apache Commons (Telnet) .. 9

3.3 Hierarchical data model .. 10
3.3.1 YANG ... 10
3.3.2 Extensible Markup Language ... 11
3.3.3 Unified Modeling Language ... 11

3.4 Expect .. 12
3.4.1 Expect-for-Java .. 12

3.5 Neo4j .. 13
3.5.1 Web service ... 13

3.6 Graphical user interface ... 14
3.6.1 Java Swing ... 14
3.6.2 JavaFX ... 14

3.7 VirtualBox .. 15
3.8 Dynamips ... 15

4. Analysis .. 17
4.1 SSH and Telnet connection establishment ... 17
4.2 GUI toolkit .. 18
4.3 Database .. 18
4.4 Expect .. 19

5. Result ... 21
5.1 Overview .. 21
5.2 Functionality .. 22

5.2.1 Discovery algorithm .. 22
5.2.1.1 Utilities .. 23
5.2.1.2 Tree representation ... 24
5.2.1.3 Resuming a CLI Crawler discovery ... 25

5.2.2 Database .. 25
5.2.3 Communicating with the remote shell .. 27
5.2.4 GUI ... 28

5.2.4.1 Setup ... 29
5.2.4.2 Output and debug ... 30

5.2.4.3 Customization ... 31
5.2.4.4 Command structure ... 31
5.2.4.5 Managing the GUI during a discovery ... 31

6. Conclusion ... 33
6.1 Further development ... 34

7. Terminology ... 37

8. References ... 39

Appendices .. 43
Appendix A – Code snippets .. 43

Appendix A.1 ... 43
Appendix A.2 ... 44
Appendix A.3 ... 44
Appendix A.4 ... 45

Appendix B – Screenshots ... 47
Appendix B.1 ... 47
Appendix B.2 ... 48

Appendix C – Diagrams, charts and figures ... 49
Appendix C.1 .. 49
Appendix C.2 .. 50
Appendix C.3 .. 51
Appendix C.4 .. 52
Appendix C.5 .. 53
Appendix C.6 .. 53
Appendix C.7 .. 54

Appendix D – User manual ... 55

1

1. Introduction

1.1 Background

Automation is important when managing large IT infrastructures since manual solutions are

more time consuming and require more resources. The key challenge today is to interface

with the systems within the IT infrastructure, which may for instance be done with options

such as Simple Network Management Protocol (SNMP), Network Configuration Protocol

(NETCONF), Simple Object Access Protocol (SOAP) or Representational State Transfer

(REST).

Many of the systems within the IT infrastructure have SNMP to expose events and a

Command Line Interface (CLI) for configuration changes. Even if a system exposes a

Configuration Management (CM) interface over a web service, the web service only

exposes a fraction of the configuration possibilities of the CLI. This is especially true for

older systems. Thus it would be of great help to develop an automated framework for

discovering the structures of CLIs since it has not been previously done and there is no

information or documentation on how such a framework could be developed.

The thesis work was done at Data Ductus in Malmö which is an IT consulting company that

specializes in advanced solutions within telecommunications and IT. These advanced

solutions are for instance Network Management Solutions, Software Defined Networks,

system development, integration, infrastructure & visualization, Machine-to-Machine and

mobile & web development. There are currently around 150 employees in all of the Data

Ductus offices which are located in Malmö, Skellefteå, Uppsala, Stockholm, Luleå in

Sweden and in Longmont in the US.

1.2 Purpose

The purpose of the thesis is to investigate a method for discovery of certain CLI based

systems and decide whether it is possible or not to develop a framework for automated CLI

discovery.

1.3 Objectives

In order to fulfill the purpose of the thesis there are two objectives that the thesis work is

focused on achieving.

The first objective is to analyze several ways to approach a CLI’s command structure and

determine how a CLI discovery application may be developed.

The second objective is to develop a prototype in Java, CLI Crawler, which connects to a

remote system through SSH or Telnet to discover the systems CLI command structure. This

prototype must be executable and maintainable on a Linux Platform. The discovery

progress should be stored in some way so that the process can be resumed on a later

occasion and in the future support that the result of the discovery is exported into a YANG

model, a data modeling language for NETCONF.

Such a YANG model would include the following:

1. Classes.

2

2. Associations and dependencies between classes.

3. Attributes within a class.

The result of the objectives should be as follows:

1. A pre-study showing a high-level design on one selected CLI.

2. A high level design on a CLI discovery application. The application shall navigate

through a CLI by using SSH or Telnet to connect to a system.

3. A prototype implementing a subset identified by the pre-study.

1.4 Questions at issue

In order to complete the objectives it is important to analyze several factors that are

important to consider during the thesis work. These factors are shown below as questions at

issue, answering them during the thesis work is important in order to achieve the best

possible result of the objectives.

1. Which CLI would be the most relevant to investigate and show as a high-level

design in the pre-study?

2. How can one access a CLI’s command structure?

3. How can the CLI’s command structure be stored before being exported to YANG?

4. How can the application be developed in order to be as automated as possible?

5. Are there any open-source software which may be used as help for the application?

1.5 Constraints

The thesis work was limited in some aspects, which may have limited the scope of the

result. Below is a list of several constraints that may have limited the thesis work in some

way.

1. The application cannot require any license for development and execution.

2. Due to time constraints it is only feasible to investigate a limited amount of CLIs.

3. There is no information, documentation or any ideas on how such a discovery

algorithm could work.

4. It may not be possible to make the application fully automatic, which would mean

that some functionalities would need user interaction.

5. The application will not be compatible with all CLIs.

6. Due to the scope of the thesis work, exporting the CLI’s command structure as

YANG will not be implemented. However CLI Crawler will be designed to make it

possible to implement YANG support in the future.

3

2. Method

2.1 Way of working

During the thesis work Scrum (Kniberg & Skarin, 2010) was used as the project model.

Scrum provides the ability to easily adapt during a specific project which leads to more

flexibility during the thesis work. Other factors that make Scrum suitable for the thesis

work are for instance that most of the thesis work is done at Data Ductus with a near

connection to the customer and that the thesis work would be iterative as seen in Figure 2.1.

Both the thesis workers and Data Ductus also have previous experiences with Scrum so the

choice of project model fits very well with the thesis work.

The thesis work is divided into two week sprints where each sprint starts with a planning

session and ends with a demo and retrospect. Each sprint has daily morning meetings. The

initial project plan can be seen in Appendix C.7.

Figure 2.1 shows a visualization of the way of working during the thesis work.

As seen in Figure 2.1, the thesis work is divided into two main phases which both consist of

three sprints each, the pre-study phase and the implementation phase. After the

implementation phase comes a short finalization phase (consisting of no iterations) which

focuses on finishing the last bits of the thesis work as an entity. The thesis report was being

worked on during the whole span of the thesis work, but the majority was written during the

second half of the thesis work and in particular during the finalization phase.

2.1.1 Pre-study
The main purpose of the pre-study is to determine the most efficient ways of implementing

CLI Crawler and becoming familiar with the tools to be used. Learning from various

tutorials available on the internet and gathering knowledge from personnel at Data Ductus

was of great help. A specific network device simulator was chosen to be focused on since

one of the thesis objectives is to provide a high-level design of a certain CLI during the pre-

study. The network device simulator was chosen since it was well documented, structured

and that Data Ductus was familiar with it.

There were two important factors during the pre-study. One was to investigate available

open-source software that could be of use for CLI Crawler and the other was to construct

the foundation of the discovery algorithm. Functions such as SSH and Telnet establishment,

stream handling among others are critical for CLI Crawler and since these functions may

4

have already been developed, investigating available open-source APIs was important. To

know which of these APIs would work best with CLI Crawler required basic understanding

of the algorithm, how it will work and what it will need to function properly. Thus it was

best to investigate various APIs in parallel to constructing the foundation of the algorithm.

The simulated CLI was the main focus when constructing the foundation of the algorithm,

as it was viable to first focus on one particular CLI and understand it before moving on to

other CLIs.

During the pre-study a lot of the foundation for CLI Crawler was developed, which was

only to be expected after focusing on APIs and the logic of the algorithm. Even though

most of the pre-study was developing, the phase still included a lot of research and

gathering of knowledge.

2.1.2 Implementation
After the pre-study, the foundation of CLI Crawler was finished and now had to be further

developed. This phase consisted of almost only programming.

In general, the way of working consisted of four steps;

1. Prioritizing which feature to develop.

2. Writing the logic in pseudo-code.

3. Translating the pseudo-code to Java.

4. Testing and fixing potential issues.

At first, it had to be determined which feature is currently important to develop, this was

done during discussions both internally between the thesis workers but also with Data

Ductus. After a choice was made, the best way to implement the new feature had to be

determined which was also done with discussions between the thesis workers. Usually

pseudo-code was written since it was easily editable and highly readable, thereafter it was

translated into Java code. Once translated it was tested and sometimes altered in order to

make sure it fulfilled the desired functionality.

Even though most of the APIs that were needed were identified during the pre-study phase,

it was noted that additional APIs may be needed. An example of this is JavaFX which was

used for the GUI. At some stages it was also noted that some changes had to be done in

previously developed features in order to make new features work properly. Thus the

workflow was not only based on new functionalities but also on the features and APIs that

were established during the previous phase.

2.1.3 Finalization
The final phase, which had no strict sprints or iterations was used to finish everything that

was left to do which includes both continuing to develop CLI Crawler and to finish the

thesis report. The finalization of the report was done during this phase, the foundation of it

and the majority of the sections had already been written but putting everything together

and writing the final sections was still to be done.

In parallel to the finalization of the report, the planning of the presentations was also being

worked on (one presentation for the university and one for Data Ductus). While writing the

report one had an idea of what would be relevant to include in the respective presentations,

which naturally led to planning the presentations.

5

2.2 Source criticism

Most of the references (which can be found in section 8) used for this thesis report are

internet sources. Technology is constantly under evolution and most technology related

topics are rapidly evolving. With such a fast change in various technologies, the most

relevant and up-to-date information is often found on the internet even though older articles

and literature can cover common knowledge within a certain topic.

Before choosing a certain source to reference in the report the source was analyzed in order

determine whether it was trustworthy or not. Different types of sources were analyzed with

different factors in mind, generally the analysis was based on the following factors:

1. Who is the publisher? Who is the author?

2. When was the source published? Is there newer information about the specific

topic?

3. Are there any hidden motives behind the source?

4. Does the source originate from any other sources?

5. Are there any other sources that have the same type of information?

These factors are inspired by and based on the guide Källkritik på Internet (Alexanderson,

2012).

CLI Crawler uses multiple APIs which are referenced to throughout this report. Before

choosing each API the two following factors were considered in order to determine the

legitimacy of the source:

1. Is the API published by the developer(s) or an affiliated part with the developer(s)?

2. Do other sources such as forums, blogs etc. recommend the API?

There are usually multiple APIs to choose from that all have similar functionality, so the

main factor to consider is whether the API is recommended by other sources and whether

the API is published by the developer(s). The references of the report refer to the primary

source of each API which is as reliable as a source can get.

Another type of source used in this report are RFCs. RFCs are published by the Internet

Engineering Task Force (IETF) that has a world-wide reputation. RFCs are however not

always primary sources since the RFCs can be written by parts that are not affiliated with

the IETF, but since they are published by the IETF they can be seen as legitimate.

Other sources consist of web-pages or articles that are published by different companies or

organizations that are seen as trusted within the IT industry. These companies and

organizations have good reputation and many other sources recommend them. These web-

pages and articles are also primary sources and after considering the factors in the

beginning of this section the sources were seen as legitimate and trusted.

6

7

3. Technical background

This section contains several sub-sections where each explains a relevant technical aspect

of the thesis work. This is to provide knowledge about relevant information that will be

needed in order to understand the result of the thesis work.

3.1 Command Line Interface

A command line interface (CLI) is an interface which is used for text-based communication

between a user and a system or software. The communication is based on typing commands

into a text-based console and then receiving the feedback or output back the same way.

Simply put, it works as a chat between a user and a system or software.

Different CLIs have different purposes. An example may be a UNIX shell which is a

command-line interpreter which is used on most Linux platforms, one may operate the

system with the traditional graphical user interface (GUI) however the UNIX shell provides

the user with the ability to do it with commands instead. The command prompt on

Windows systems provides the same ability and works in a similar way.

CLI was the main way for interaction with a computers system and software in the early

years of computing. However, it is still very relevant in the IT industry as it provides a lot

of flexibility for developers. Developers can make automated software that navigates and

performs operations by sending commands to a CLI and parsing the output. An example of

a CLI can be seen in Figure 3.1.

Figure 3.1 shows an example of a Cisco router 7200 CLI emulated in Dynamips.

Different types of network devices such as routers and switches can have their own CLI

which is used for configuration changes of the device. A CLI is usually divided into a

hierarchical structure which consists of different modes which contain their own set of

commands. Commands are used for various changes but some commands are dedicated

purely to entering other modes with other commands, for instance “config” is often used to

enter the main configuration mode of a network related CLI.

Commands can sometimes be used as they are initially represented but many commands

have different attributes which may be appended to the commands. The purpose of

attributes is usually to configure a certain setting of the command that is being sent. The

8

attributes are often required in a specific order to send a command and in some cases they

may be optional. This varies between different commands based on their purpose. Some

commands are strict with the way the attributes can be appended but some commands may

take attributes in any possible order and any possible amount of them, these are often

referred to as lists.

The CLIs of different devices may vary, usually on the following factors:

1. The command structure.

2. How the output is presented.

3. The prompt.

4. How to navigate.

The main difference is of course the command structures, different CLIs have different

commands and therefore different configuration changes can be made. However, different

CLIs also have their own way of doing things – how they present the output, how one

navigates through the CLI and how the prompt looks. The three last factors are in fact the

most important to CLI Crawler, as they determine how the full command structure can be

accessed in a certain CLI. How these factors impact CLI Crawler is further explained in

section 5.2.1.

As for the CLI in Figure 3.1, one can display all the commands in a certain mode by typing

a question-mark. To see the possible attributes of a command, one can type the command

followed by a question-mark. This way of working is very specific for the CLI in Figure 3.1

and even though other CLIs are often based on the same principles they can still have

variations in some aspects.

3.2 SSH and Telnet

Secure Shell (SSH) and Terminal Network (Telnet) are two network protocols defined in

respectively RFC 4253 (Ylonen & Lonvick, 2006) and RFC 854 (Postel & Reynolds, 1983)

by the IETF, which with the use of TCP as the underlying transport protocol provide

remote access to systems such as Linux and UNIX-like servers as shown in Figure 3.2.

Figure 3.2 shows a visualization of a SSH or Telnet connection.

The remote access establishment is essentially used to execute shell commands in a remote

system where the local terminal appears to be the terminal in the remote system. While

SSH establishes a secure channel between the end points (for example with RSA and DSA

encryption), Telnet has no such functionality for security which is the main difference

9

between the two. The disadvantage with SSH could however be the fact that encryption and

decryption increases the computing time.

To establish a connection between the client and the host it is required that the correct

username, password, IP address and port number is provided for the remote system. The

standard TCP port 22 is generally assigned for SSH servers and TCP port 23 for Telnet

servers (Study CCNA, n.d.). Even though a password is needed to establish the connection,

Telnet is not secure enough as it sends and receives the password (and the same goes for

other types of data) in clear text while SSH sends and receives it encrypted.

OpenSSH is an implementation of the two versions of SSH protocols, SSH1 (SSH) and

SSH2 (SecSH) and contains a suite of connectivity tools used for hosting an SSH server. In

CLI Crawler OpenSSH and Telnet is used to host a SSH and Telnet server on a Linux

platform. The server will run the CLI that is discovered by CLI Crawler.

To connect through SSH or Telnet to a remote system requires quite complex

programming, however many developers have already developed such functionality thus

there are various types of open-source Java APIs that may be used for this functionality.

3.2.1 Ganymed SSH-2 for Java
The CLI Crawler uses the Ganymed SSH-2 for Java API for the SSH connection. The

standard procedure of using this API can be seen in Figure 3.3.

Connection connection = new Connection(hostname, port);

connection.connect();

Session session = connection.openSession();

// get the input and output stream

// perform some operations

session.close();

connection.close();

Figure 3.3 shows the standard procedure of using Ganymed SSH-2 for Java.

As seen in Figure 3.3, one has to first establish the connection, which is done by connecting

to a certain hostname and port, and then opening the session. Once the session is open and

the connection is established, one can perform operations to communicate with the remote

system. Usually this is done by getting the sessions input stream with

session.getStdOut() and the output stream with session.getStdin(). These

streams are then used to handle the text that is being sent over the remote connection,

making one able to simulate a shell.

3.2.2 Apache Commons (Telnet)
For the Telnet connection in CLI Crawler, the Apache Commons API is used. This API

provides various tools such as functionality for Telnet connection. The standard procedure

of using Apache Commons for Telnet can be seen in the code snippet in Figure 3.4.

TelnetClient telnetClient = new TelnetClient();

telnetClient.connect(hostname, port);

// get the input and output stream

// perform some operations

Figure 3.4 shows the standard procedure of using Apache Commons for Telnet.

10

As seen in Figure 3.4, this procedure is very similar to Ganymed. First a connection is

established and then one has access to the input and output stream with telnetClient

.getInputStream() and telnetClient.getOutputStream() which are then used

to handle the communication over the remote connection in the exact same way as

Ganymed.

3.3 Hierarchical data model

Many systems use different data modeling languages for both high and low-level purposes

to store data in a format that is made to be easily managed by both humans and computers.

Common languages that represent the data in a hierarchical model are for instance

Extensible Markup Language (XML), Unified Modeling Language (UML) and YANG.

As for CLI Crawler, a hierarchical data model will be used to represent the CLI’s command

structure and then further used for configuration changes which make YANG the most

viable option. It may however be important to understand the differences between YANG

and other hierarchical data models to see why YANG is most suited for the purpose of CLI

Crawler. Thus the three most viable options are explained in this section.

3.3.1 YANG
YANG is a data modeling language that is used to model configuration and state data

manipulated by the Network Configuration Protocol (NETCONF) which is defined in RFC

4741 (Enns, 2006), NETCONF remote procedure calls and NETCONF notifications.

YANG is defined in RFC 6020 (Bjorklund, 2010).

YANG is a relatively new data modeling language (published in September 2010)

compared to other data modeling languages. YANG focuses on factors that other data

modeling languages cannot handle as well, such as configuration management and being

highly human-readable. Even though YANG is different from XML, it can be converted to

a XML syntax called YANG Independent Notation (YIN). This allows applications with

existing XML parsers to work with YIN.

YANG models a structure, a hierarchy of data similar to a tree structure as opposed to being

object-oriented. YANG has various nodes such as parent and child nodes like a regular tree

structure, but it also has other functions, such as dependencies, data types and different

ways of modeling this hierarchy.

In YANG, the model is defined by a module where various kinds of meta-data is stored

such as namespace, revision and description among others as seen in Figure 3.5.

module router {

 namespace "http://namespace/";

 description "Description...";

 revision 2015-01-01 {

 description "Initial revision.";

 }

}

Figure 3.5 shows the foundation of a model in YANG.

11

The module is what contains all of the different nodes in the model. In YANG there are

four different types of nodes; container, leaf, list and leaf-list nodes. Each node has an id (or

name) and either some kind of value or a set of sub-nodes.

container resources {

 leaf port {

 type uint16 {

 range “1 .. 9999”;

 }

}

container other {

leaf-list domain {

 type string;

}

}

}

Figure 3.6 shows the various nodes in a YANG model.

Figure 3.6 is a very simple example showing the basic hierarchical structure and the very

basic functionality in YANG. A container node is a node that contains a set of sub-nodes,

which can be any of the four node types, in this case there is a container resources and a

container other. In the resources container there is a leaf node, port which has some kind

of value (in this case uint16 with a certain range). There are many different types that are

already defined in YANG, such as int or string among others, one can also define own

types if needed. The leaf-list domain in the other container is a list of “domains” which

have the type string. The fourth node type is not present in this example, but it is the list

node which has the purpose of grouping various leaf nodes into a list, making the list node

a set of leaf nodes. For a more extensive example of a YANG model, see Appendix A.1, it

includes all four types of nodes and also includes the module statements.

3.3.2 Extensible Markup Language
XML is used for many different systems and is used to define a set of short rules in a

document, using a standard encoding format. XML itself is not a markup language, rather it

is a “meta-language” that may be used to create markup languages for a specific

application. The tags used to markup the document are formatted in a hierarchical structure

as seen in Figure 3.7.

<system>

 <router>

 <port>22</port>

 </router>

</system>

Figure 3.7 shows how XML is used to represent hierarchical data.

3.3.3 Unified Modeling Language
UML is a general-purpose modeling language that represents a system’s architecture. UML

was released in the late 90’s with the purpose to provide the development community with

a stable and common design language. The language is mainly used to develop and build

computer applications. The application is represented by several class diagrams that

visually display the data architecture. This makes UML quite different as compared to

12

YANG or XML but ultimately it fulfills the same purpose in a different way. UML

examples may be seen in Appendix C.2 through C.6 which show the design of CLI Crawler

(these UML diagrams are further explained throughout section 5).

3.4 Expect

Expect is used to manage the input and output (IO) controls from a remote connection

through a shell. When commands are executed in a sequence from a remote machine the

program needs to know when it is appropriate to execute the next command. This is to

prevent the application from crashing, which could occur if two commands would collide

during an execution. It also provides closures for getting the complete output log of an

executed command.

Because the remote server sends a continuous flow of data to the output stream when

commands are executed, a closure is needed to separate the commands in the output. The

issue is that there can only be one instance of an output stream (for example Java

System.out) during the applications lifespan, which is why the stream cannot be opened

and closed between commands.

This is solved by guessing (expecting) a single or multiple keywords and patterns in the

output, then wait for the keyword to be detected by the expect API. Usually the command

prompt is expected, since it indicates that the system is ready to accept new input. However

the prompt will change depending on which system is used and on what level the user is

located in the system.

There are different types of Expect tools for different programming languages. For CLI

Crawler, Expect-for-Java was used. Expect-for-Java is simple but effective, with support

for modification if needed.

3.4.1 Expect-for-Java
The standard procedure of Expect-for-Java can be seen in Figure 3.8.

Expect expect = new Expect(inputStream, outputStream);

expect.send(”ls\n”):

expect.expect(“$”, “#”, Pattern.compile(“(?:^|)=>(?:$|.*)”));

System.out.println(expect.before + expect.match);

Figure 3.8 shows the standard procedure of using Expect-for-Java.

First, one has to create the Expect object, for this an input and output stream is needed.

With the method expect.send() the client sends some kind of command or information

to the remote system, in this case “ls\n” which would display the current folder contents on

a Linux platform. After a command is sent, some kind of output is expected, the expected

output can be defined with the expect.expect() method, which takes a string or a

number of strings (or combined with regular expressions (regex)) that it then expects. The

output contents are thereafter stored in two variables in the expect object which can be

accessed through expect.before + expect.match.

13

Expect-for-Java has functionality to log all of the procedures during execution, making it

easier to troubleshoot. The log functionality is done with the use of the Apache Log4j API

(The Apache Software Foundation, n.d.).

3.5 Neo4j

Neo4j is a graph database (Neo Technology Inc, n.d.) that uses the Cypher query language,

similar to the Structured Query Language (SQL). The graph will represent the command

structure of the CLI and will be constructed in real-time during the program execution. The

database is also used to resume the state of the discovery algorithm where the application

was terminated. Each command found during the discovery process will be inserted into the

graph as nodes. Each node will have its own unique id that can be used to receive the node.

A node can also contain different metadata such as labels, properties and relationships.

Figure 3.9 shows how data is stored in a Neo4j database.

The graph in Figure 3.9 has the labels Actor and Movie. The relationship-arrows in the

graph state that the actor Russell Crowe acts in the movies Gladiator and A Beautiful Mind,

note the direction of the arrows. The box to the left displays the selected node which has the

assigned properties name and year.

3.5.1 Web service
Neo4j provides a web service located at http://localhost:7474/browser/, where localhost is

the hosting IP address and 7474 is the port number. The web service is used to visually

display the graph as shown in Figure 3.9, send Cypher queries (as shown in Figure 3.10)

and distribute the contents of the database.

The web service is hosted as a REST API, which is an architectural style that is based on

web-standards and the HTTP protocol. A REST architecture consists of resources. A

resource can be defined as an object with a type, associated data, relationships to other

resources, and a set of methods that operate on it and may be accessed via a common

interface based on the HTTP standard methods, which are typically URIs. REST allows that

resources different representations such as HTML, plain text, JavaScript Object Notation

(JSON) or XML (Oracle, 2013). The Neo4j REST API uses JSON to represent resources,

so that it can be used from many languages and platforms (this is further explained in

section 5.2.2).

CREATE (m:Movie {name:"Gladiator", year: "2000"})

http://localhost:7474/browser/

14

MATCH (a:Actor),(m:Movie)

WHERE a.name = 'Russell Crowe' AND m.name = 'Gladiator'

CREATE (a)-[r:Acts_in]->(m)

RETURN r

Figure 3.10 shows how the Gladiator node is created and how the relationship is set

between the actor and movie with the Cypher language.

3.6 Graphical user interface

3.6.1 Java Swing
Swing is a GUI toolkit for Java which is a part of the Java SE (Holm, 2007). The basic idea

is that the GUI is created from a collection of Swing components such as buttons and text

fields that are placed on a JFrame (the main window).

3.6.2 JavaFX
JavaFX is a GUI framework for Java applications. JavaFX’s long-term aim is to eventually

substitute Swing as the standard GUI framework for Java SE, however Swing will remain a

part of the Java SE at the present time (Oracle, n.d.).

The basis for a JavaFX application is the Application class in the JavaFX framework

that essentially enables multithreading by creating an application thread. This requires

that the GUI class extends application and overrides start(Stage). The primary

stage is constructed by the platform and is the top level JavaFX container. An application

may create other stages, but they will not be primary stages.

The main class creates an instance of the GUI class when Application.launch(

String[]) is invoked, therefore no constructor is needed. Instead, the start(Stage)

method from the GUI class is run by the application thread when Application

.launch(String[]) is invoked. This start method is where one places the code to be

executed (just like a regular main method in Java).

JavaFX uses a visual layout tool, JavaFX Scene Builder to build applications. This is done

by placing out containers in a hierarchical order in the Scene Builder. Each container will

have its own properties such as size, position and id among others. The id is used to call the

container externally from the Java class. The containers are stored in an .fxml file by the

Scene Builder and are translated into an xml format. Each container can be accessed from

the GUI class by first loading the .fxml file and then loading the container from its id as

shown in Figure 3.11.

FXMLLoader fxmlLoader = new

FXMLLoader(getClass().getResource(“file.fxml”));

Button button = fxmlLoader.getNamespace().get(“myId”);

button.setDisable(true);

Figure 3.11 shows how one can load a component from an .fxml file.

At first, the .fxml file has to be loaded into the Java project which is done with the

FXMLLoader object. Thereafter the FXMLLoader object works as a loader for the various

components that the .fxml contains. In Figure 3.11, the FXMLLoader loads a button with an

id myId and stores it as a Button object. After a component is loaded, various operations

15

can be performed on the component, in Figure 3.11 the button is disabled right after loading

it. In this particular case, the button was loaded from the .fxml file in Figure 3.12.

<?import javafx.scene.*?>

<?import javafx.scene.control.*?>

<?import fxml.MyGroup?>

<MyGroup xmlns:fx="http://javafx.com/fxml">

 <children>

 <Button fx:id="myId" text="Click Me!"

onAction="#handleButtonAction" />

 </children>

</MyGroup >

Figure 3.12 shows the structure of an .fxml file.

An .fxml file contains information and values for each of the components in a certain scene,

in Figure 3.12 the .fxml file has one component – a button. Even though the files are

created with the use of Scene Builder, they may be manually modified and created without

the use of it.

3.7 VirtualBox

VirtualBox is a cross-platform virtualization application used to emulate virtual machines

(VM) (Oracle, n.d.). VirtualBox can load multiple guest operating systems (OS) under a

single host system and supports Linux, Mac OS X, Windows and Solaris as guest OS. Each

VM can be started, stopped and paused independently during the emulation and at exit the

state of the VM can be saved and resumed at the same point.

VirtualBox was of great help during the development of CLI Crawler, a Linux platform was

virtually emulated with the use of it. The CLIs that were tested during the development

were installed on a Linux platform (Ubuntu and LinuxMint in the thesis work) which were

reached by connecting through SSH or Telnet.

Since CLI Crawler has to work on a Linux platform, and the fact that CLI Crawler is

developed in Windows, one could easily move the CLI Crawler application from Windows

to the virtually emulated Linux platform to test it.

This provided increased flexibility during development as everything could be done on the

same computer. The development was done on computers provided by Data Ductus, which

had Windows installed on them. If the computers had a Linux platform as the operating

system, no VirtualBox would be needed, but this was not optimal since the thesis workers

did not have any previous experience with Linux platforms.

3.8 Dynamips

Dynamips is an open-source tool for emulating Cisco based routers on the command line.

The principle is that the user who has a Cisco image, can virtually emulate this image using

Dynamips. This provides various possibilities such as being able to understand, test and

experiment on a virtual router, instead of doing it on a real router where experiments may

have consequences. (GNS3, n.d.)

16

Since Dynamips emulates these Cisco routers on the command line, one can connect to a

shell (such as a Linux shell) using SSH or Telnet and start the emulation. This is very

relevant to the thesis since the emulation is on the command line which is the way CLI

Crawler discovers a CLI’s command structure.

Dynamips was used during the development of CLI Crawler to simulate CLIs. This made it

possible to investigate them and test them with CLI Crawler.

17

4. Analysis

Understanding the background and purpose behind network configuration and its various

tools such as CLI or YANG and how the application may be developed was very important,

this could only be done by gathering and analyzing a lot of information (and open-source

APIs which may be of use) from various sources.

Most of the information was gathered from people who work with the specific topics, for

example employees at Data Ductus. Usually done by discussing a topic (often a topic that

was being worked on, during a demonstration) and taking notes for future references, or

getting tips of where one can read more about a certain topic on the internet. The

discussions often provided quantitative information which was then further discussed in

order to filter and prioritize the most important information.

An important part during the first phase of the thesis work was examining various available

open-source software and APIs which could be of help for the application. Functionality

which the application requires may have already been developed and published as open-

source, which would result in that specific functionality to not have to be developed in the

thesis work leading to the capability of focusing on other areas. However the APIs could

not require any license for development or execution either as per Data Ductus request.

This turned out to not be a major constraint since there were plenty of open-source APIs to

choose from.

4.1 SSH and Telnet connection establishment

For some functionality, such as SSH and Telnet connection establishment there were

multiple APIs to choose from even though most of them shared the same functionality. To

find the optimal one depended heavily on a few factors, it needed some functionalities such

as sending single commands and receiving the output in an efficient way.

Different APIs had to be investigated and while there was a lot of different APIs to choose

from, a lot of them had minor issues which impacted CLI Crawler. Most of the issues were

noticed when entering a CLI and trying to send commands within it. For instance some

special characters were not fully supported which would result in odd characters to display

and sometimes even terminate the connection to the remote host. This led to the choice of

Ganymed SSH-2 for Java for SSH (Plattner, n.d.) and Apache Commons (The Apache

Software Foundation, n.d.) for Telnet as they were seen as the most all-around stable APIs.

However the choices of APIs were made before an expect tool was used and since the

expect tool provided a lot of improvements it could have potentially made other APIs

viable to use too.

For the Telnet connection there were two options to choose from – Apache Commons or

telnetd (Wimberger, 2007). Apache Commons was chosen due to being simpler and more

straight-forward to use than telnetd. However the choice of SSH API was not as easy, there

were multiple good APIs to choose from that performed the desired functionalities well

such as JSch (JCraft Inc, n.d.), J2SSH Maverick (SSHTOOLS, n.d.) or Ganymed SSH-2 for

Java. J2SSH Maverick had no free-to-use license which did not make it a viable option and

Ganymed SSH-2 for Java had better documentation and was much simpler to integrate with

CLI Crawler than JSch which ultimately led to the choice of Ganymed SSH-2 for Java.

18

4.2 GUI toolkit

An important factor to consider was the choice of how CLI Crawler will look and how the

user will interact with the program (since user interaction was a requirement) and whether it

will have some kind of graphical interface or if it will be command line based. At first, CLI

Crawler was developed to be command line based but soon enough the thesis workers

realized that it may be better to develop a GUI due to the amount of different functionalities

that are needed. This led to investigating different GUI toolkits for Java.

At first, a GUI prototype was developed with Java Swing (Holm, 2007), a screenshot of this

GUI can be seen in Appendix B.1. It was quickly noticed that Swing was not optimal for

CLI Crawler as it had several functional issues. The ignore list would sometimes not

display at all and the scroll function in the various windows (especially in the output

window) would not work in some cases.

A choice had to be made, either to solve the issues (which may not even be possible in a

realistic timeframe) or investigate if there is any other effective GUI toolkit for Java. Since

more functionalities had to be implemented into the GUI and the fact that there already was

multiple issues with the current GUI a decision was made to see whether there is a potential

substitution for Java Swing.

JavaFX (Oracle, n.d.) was noticed as a potential substitution. After investigating how

JavaFX works and what possibilities it provides it was quickly noticed that JavaFX is most

likely a better toolkit for the GUI. JavaFX is simpler to work with and it has many more

functionalities providing much more possibilities for CLI Crawler. This led to the

construction of a new GUI (which can be seen in Appendix B.2), which was both better

looking and had better functionality (as well as more control over the functionality) than the

GUI prototype that was made with Swing. The JavaFX GUI is also a lot easier to manage in

the long run (to add, remove or change existing components or change entire

functionalities) due to both having a better documentation and due to the JavaFX Scene

Builder which provides a simple way of managing the GUI which may be important for

further development.

4.3 Database

As per Data Ductus request, CLI Crawler should work in a way so that if one starts the

discovery algorithm and then stops it prematurely, it should be possible to continue the

algorithm from the stopping point on another occasion. For this to be possible, some kind

of database had to be used to store progress.

Data Ductus recommended a graph database called Neo4j (Neo Technology Inc, n.d.).

After investigating Neo4j, it was noticed that it would work very well with CLI Crawler as

it could store database entries and dependencies both graphically and in table-form in a

very efficient way. Since Neo4j was so efficient with CLI Crawler during the pre-study

phase and that Data Ductus had previous experience with it, no other database tool was

investigated as Neo4j had all of the desired functionality.

19

4.4 Expect

For the SSH and Telnet connection to work properly and for it to be able to handle single

commands some kind of expect tool was needed.

Data Ductus recommended Expect4j (Verges & Ryan, n.d.), however it requires a very

complex implementation in the project before working which was a time based issue.

Failure of correct implementation would also lead to commands not being able to execute at

all.

A decision was made to see if there are any other Expect tools for Java that were simpler

and more straight-forward. ExpectIt (Gavrilov, n.d.) and Expect-for-Java (Dong, n.d.) were

two options which were fairly similar. The choice ended up being Expect-for-Java as it had

available source code and was much easier to implement (and to modify if needed).

20

21

5. Result

The result of the thesis work is a CLI Crawler prototype. In this section, the high-level

design and the different functionalities of CLI Crawler will be explained.

A user manual for CLI Crawler can be seen in Appendix C.

5.1 Overview

In order to understand the different functionalities of CLI Crawler it is important to first get

an overview over the application and how it works.

Figure 5.1 shows a context diagram of CLI Crawler.

The context diagram in Figure 5.1 gives an overview of how CLI Crawler interacts with

external systems. The box labeled CLI Crawler displays the sub-systems that are included

in the prototype. The items outside of the box represent the external systems that are used

by CLI Crawler.

The CLI figure represents any CLI that is located on a remote server which can be accessed

through SSH or Telnet. The Ganymed and Apache Commons APIs are clients used to

communicate with their corresponding SSH or Telnet server. The clients use the Expect-

for-Java API to regulate the IO flow between the server and CLI Crawler. Discovery is the

core of the whole system and controls each background process used for the CLI discovery.

It also manages the inbound traffic coming from the server and database. The database

contains data which is extracted from a CLI during the CLI discovery and is accessed

through the Jersey API, this data will thereafter be used to render a YANG model (which is

not implemented in the prototype). The GUI is used to manage all interactions between the

discovery algorithm and the user.

The context diagram represents a very general picture of CLI Crawler and the external

systems, but it may also be important to understand the inner design of CLI Crawler. A

representation of the packages within CLI Crawler and the classes within the packages can

be seen in Appendix C.1 through C.6 as UML diagrams. Appendix C.1 represents CLI

22

Crawler as an entity, showing how the different packages and classes interact with each

other without showing the contents of the classes. The contents of the classes can be seen in

the UML diagrams representing the different packages in Appendix C.2 through C.6.

5.2 Functionality

5.2.1 Discovery algorithm
The discovery algorithm relies on the navigation of CLIs and their structure. It is handled

by the discovery() and discovery(String, int, Command,

ArrayList<String>) methods in the Discovery class.

Consider the pseudo-code in Appendix A.3 and A.4, these appendices show the basic

functionality of the algorithm. At first the discovery() method is called, this method will

initialize the algorithm, find and go through all of the top commands at the root of the CLI.

For each of the top commands it will call the recursive method discovery(String,

int, Command, ArrayList<String>) method on that particular command, this

extended discovery method is recursive and has the job to go through all of the attributes,

subcommands and modes of a certain top command depth-first. In order to manage a good

structure of the algorithm and in order to store all of the information that is used and

processed during the algorithm several utility classes are used as help, these are further

explained in section 5.2.1.1.

Most CLIs support the use of question-mark to get an output of all possible commands and

to check which attributes are possible for a certain command. One can just write a question-

mark to get all of the commands at the root of a mode and one can write the command with

a space and question-mark at the end to find the possible attributes for a certain command.

This is the basic way to navigate through a CLI and is also the way the algorithm navigates

throughout the discovery process.

The principle is that after sending a certain command, the output is parsed and split into

words and thereafter each word is sent either as an attribute or command to see what

happens and based on that to determine what to do next.

Since there may be some attributes or commands that can either cause issues or are not

relevant to discover, CLI Crawler provides the opportunity to ignore certain attributes or

commands which is done through GUI interaction. Commands that are ignored are removed

from the output of each mode and attributes that are ignored are removed from all outputs

which will make sure that they are not tested during the discovery algorithm.

Before the algorithm sends the words, either as an attribute or command, it will analyze the

output. There are a lot of factors that can affect which words are going to be sent (if any at

all), the most important ones are mentioned below.

- If a word is in the attribute or command ignore list it will be removed from the

commands or attributes output.

- It is possible the output led to a new mode, then a new recursion is started.

- In some cases the output has a timeout which indicates that an input is needed which

makes the algorithm test several test-commands in order to see if they are possible

inputs, this includes strings, integers or booleans. If no valid input is detected by the

algorithm the user will be needed in order to provide a valid input.

23

- An output from a command may be displaying just a set of files and folders. This

means that the actual attribute to the command is either a file or path, therefore the

output is edited so that each word of it is not tested. Instead a test-string is tested to

see what further attributes the command has.

- It is possible that a command can take any string as its attribute, any integer or a

certain range of integers. This is also detected by the algorithm as in cases where a

command can take a string as attribute the output may have some kind of

description which consists of words and therefore these words would be shown as

possible completions to the command.

- If the output contains the tested command it may mean that the output is either

showing the full command and its attributes or showing an example on how the

command is used. The algorithm will in these cases try to detect such occurrences

and test whether the potential attributes are real attributes.

- If the output contains some word that contains an ignored attribute or command the

user will be asked first whether this word should still be tested. The same goes for

certain special characters which are known to cause issues.

- If the prompt is in the output it will be removed in order to not test unnecessary

words.

- The algorithm will check whether the output has occurred in the previous recursions

in order to make sure the application does not end up in an infinite loop.

- Some CLIs may have support for abbreviations, for instance you may be able to

type “c” instead of “config”. The algorithm will also detect these cases in order to

avoid storing the same command more than once in the tree and graph.

In some cases there can be occurrences of words that do not provide an invalid output (from

a description or similar) even though they are not a possible attribute or command. If the

output for instance displays a set of files and folders, the algorithm will detect this and not

send all of the displayed files and folders as attribute but instead a string as the attribute is

just the path of a certain file. The same principle is used to check a lot of other possible

scenarios, such as a command being able to take any string or integer as attribute, or if the

command can take a range of integers as attribute.

It is also important to consider that different CLIs may have different ways of navigating

through them and that the navigation may change after a software update of the CLI. For

some CLIs it may be possible to use tab-completion while for others it is not possible.

Since changes between different CLIs cannot entirely be predicted it is important to make

the algorithm as general as possible. Making such an algorithm general is a complex task,

so some specific factors have to be considered such as keywords for error messages or

keywords for commands which can exit modes since the algorithm needs to have something

to rely on to know whether it is testing a real command or not.

During the algorithm, a node-graph is constructed in the Database (which is further

explained in section 5.2.2) and a tree is also constructed to show the user what the

algorithm is doing in real-time by displaying a constantly updated tree in the GUI (this is

further explained in section 5.2.1.2).

5.2.1.1 Utilities

To support the discovery algorithm there are some utility classes in the util and

algorithm.util packages. util contains three classes – TextUtilities which

provides several methods for handling text, SimpleTree for the tree representation (which

24

is further explained in section 5.2.1.2) and Triplet which is used to group three objects

together.

To handle useful information about the CLI there are several CLI-specific utility classes in

the package algorithm.util. These were implemented in order to have a well-structured

algorithm and to easily be able to add more useful information to the objects in the future if

needed.

Modes are stored with the use of the Mode class during the algorithm in order to avoid

discovering a specific mode more than once. A Mode object stores three objects:

1. A list containing the commands in the root of the mode (which are stored as

Command objects).

2. The URI node of the command that initially entered the mode.

3. The output the mode provides upon typing question-mark in the root of the mode.

As seen above, a Mode contains a list of commands which are stored as Command objects. It

is important to note that a Mode object will only contain the root commands, but that a

Command object is used for both attributes and commands in other cases. A Command

object is used to group information about a certain attribute or command, with the main use

of sending useful information about a discovered attribute or command to the next

recursion of the algorithm. A Command object stores five objects:

1. A Triplet object containing three properties for the command as strings. The first

string is the actual command that is sent and used during the algorithm, the second

one is the name of the command (which can be different from the actual command

as for instance a command with the name “screen-width” can have a certain number

as its actual command) and the third one being the type of the command. In some

cases, some of the properties are not used and are therefore stored as null in the

Triplet.

2. The command as text.

3. The prompt at the place from where the command is sent.

4. The output of the command stored as an Output object.

5. The URI node of the command.

Finally, there is an Output object used for storing outputs. The Output object will only

contain two pieces of information – the actual output represented as text and a boolean

which indicates whether a timeout occurred when getting the particular output (the purpose

of the boolean is further explained in section 5.2.3).

5.2.1.2 Tree representation
During a discovery a hierarchical tree is constructed in real-time which is constantly printed

to the GUI in order for the user to see a hierarchical high-level design of the CLI. The

purpose of this is to tell the user how much of the CLI the algorithm has discovered and

give an overview of the CLI’s command structure. The tree is built by using a

SimpleTree object during the discovery.

The tree structure is stored in a two dimensional list (matrix) which permits modifications

to be made without the need to loop through the entire tree. The class is designed to allow

an application to build a tree in real-time by inserting nodes depth-first. This means that it is

25

not possible to add new nodes to a previous branch with a higher index in the matrix, where

x is the index. Figure 5.2 explains this further.

SimpleTree simpleTree = new SimpleTree();

simpleTree.add(x, node);

Figure 5.2 shows an example of two trees.

The left tree in Figure 5.2 shows a possible scenario for the insertion of nodes in a sequence

of 0 to 7. The right tree shows a scenario that is not possible for the insertion of nodes in a

sequence of 0 to 7 (note the order of the nodes 6 and 5).

SimpleTree is invoked in Discovery each time a command or attribute is found. This

requires that the algorithm can calculate how far it has traversed in a CLI, to position the

node on the correct branch.

5.2.1.3 Resuming a CLI Crawler discovery

Upon resuming a discovery the method lastInstance(String) will be called in order

to get a list of the last command and attribute combination that was tested and in order to

print out the tree that was displayed during the previous discovery process. This list will

contain the commands and attributes that are needed to be sent in order to return to the

stopping point of the previous discovery process (which means that already discovered

commands will not be included in this list).

The discovery process is essentially the same even when resuming a discovery, however

some parts are skipped. Each command and attribute will be sent as usual, but the output

will be parsed from the index of the command or attribute in the list to the end of the output

in order to not discover the already finished commands and attributes. Each time this

parsing occurs the command or attribute in the list is removed.

During the parsing of some outputs user interaction could have been needed and when

resuming a discovery these moments should not have to be repeated, this is solved by the

boolean resuming in the Discovery class. Before each user interaction resuming is

checked so that it is not true in order to perform the user interaction. Once the list has been

emptied resuming will be set back to false. resuming is also used to determine whether a

certain command or attribute should be added to the tree and database, which in the case of

a resume it should not – as it already is added to both.

5.2.2 Database

The Neo4jGraph class is used to make transactions to the Neo4j REST API, the class

relies on the Jersey API to do this. The Jersey API is an open-source RESTful Web

Services framework that allows RESTful web services to be implemented in a Java servlet

26

container. Figure 5.3 shows how the Jersey client library may be used to communicate with

the Neo4j RESTful web service.

Client client = Client.create();

WebResource resource=

client.resource(“http://localhost:7474/db/data/cypher");

String query = "MATCH (c:Command { name:'Autowizard' }) RETURN c";

ClientResponse response =

resource.accept(MediaType.APPLICATION_JSON)

.type(MediaType.APPLICATION_JSON)

.entity("{\"query\":\"" + query + "\"}")

.post(ClientResponse.class);

String data = response.getEntity(String.class);

Figure 5.3 shows how one can implement a client to send cypher queries.

The URI http://localhost:7474/db/data/cypher from Figure 5.3 is the HTTP endpoint used to

send cypher queries via the Neo4j REST API. The Client is used to connect to the

specified endpoint, where the transaction takes place. The WebResource is used to post the

query as a JSON resource and get the response from the REST API. The response is

captured by the ClientResponse as a list of string headers and columns, containing

HTTP representations of the field values such as node, relationships, properties, labels or

other types of metadata used in the database. The method response

.getEntity(class) is used to convert the client response into String, an example of

the response is shown in Appendix A.2.

A node is represented by the URI http://localhost:7474/db/data/node/{node_id} where

{node_id} is the unique id of a node, which can be used to create a node in the database. By

appending /labels to the node URI it is possible to modify the nodes label. It is also possible

to add properties to a node by appending /properties/{property_name} to the node URI,

where {property_name} is the name of the property type.

In the Discovery class it is necessary to pass on nodes with each iteration during the

recursive process of discovery(String, int, Command, ArrayList<String>).

Since a node can be represented by an URI http://localhost:7474/db/data/node/{node_id}, it

is possible to pass on the URI to the next iteration which is done by storing the URI in a

Command object which is thereafter passed on to the next iteration. This makes it possible

to get a node without using queries and traversing the database. The method

createNode() in the Neo4jGraph class is used for this purpose, it creates an empty node

in the database and returns the URI location of the node. The Neo4jGraph methods

addLabel(URI, String), addProperty(URI, String, String) and

addRelationship(URI, URI, String, String) are used to add labels and

properties to the node, using the node URI and corresponding HTTP endpoint

(addRelationship(URI, URI, String, String) uses the URI of both nodes that

are connected).

The method sendTransactionalCypherQuery(String) is used to send custom

Cypher queries and is based on the code in Figure 5.3. The method is mainly used to read

from the database, usually when MATCH, WHERE, RETURN and DELETE query statements are

http://localhost:7474/db/data/cypher
http://localhost:7474/db/data/node/%7bnode_id%7d
http://labels
http://properties/%7bproperty_name%7d
http://localhost:7474/db/data/node/%7bnode_id%7d

27

required to get or manipulate data in the database. The method returns the client response

received from the server.

When returning a node property, the response must be reformatted in order to access the

relevant data in the headers and columns of the client response. The response is parsed by

the method getProperty(String, String) and returns a set of strings containing the

property values received from each node in the response.

There are two types of trees in the graph. A tree containing the CLI’s structure and a tree

containing the list items used in the customization lists of the GUI (which are further

explained in section 5.2.4). Each tree has a root node with the property “name” containing

the name of the CLI, to avoid data being overwritten by another instance.

The nodes connected to the CLI’s command structure have these properties:

1. name – The name of the command.

2. command – True if the command is not an attribute.

3. container – True if the command is a YANG container.

4. type – The type of the command.

5. input – The actual command that is sent during the discovery.

6. mode – True the command returns a mode.

7. carriageReturn – True if it is possible to press enter on the command.

The root-node in a tree containing list items have the label “ListView” and may be

connected to nodes with the labels “Command” and “Attribute” that represent each list in

the GUI. These nodes have the property “name” that contains the name of the command

that is placed in the list.

5.2.3 Communicating with the remote shell
The communication between the discovery algorithm and the remote system is handled by

three classes;

1. RemoteShell

2. Expect

3. Output

RemoteShell is the primary class out of the three, it is the class that connects to a remote

system using SSH or Telnet and is also the class which sends commands and receives

outputs.

RemoteShell remoteShell = new RemoteShell(hostname, port,

username, password);

remoteShell.startSSH();

Output commandOutput = remoteShell.send(command);

System.out.println(“Sent the following command: “ + command);

System.out.println(“Received the following output: “ +

commandOutput.toString());

Figure 5.4 shows the standard procedure of using a RemoteShell object.

At first a RemoteShell object has to be created, thereafter the connection is established

with the use of startSSH() or startTelnet(). Upon calling the respective start method

an Expect object is created within the RemoteShell object (which is part of Expect-for-

28

Java) in order to handle the input and output streams. This Expect object is then utilized

within the send commands in RemoteShell.

There are three types of methods that will send some kind of command and receive some

kind of output.

1. getPrompt() will send an empty message in order to get an empty output and then

parse the out everything but the prompt and return the prompt.

2. send(String) will send a certain command and return the output.

3. sendCheck(String, boolean) will send a certain command with a question-

mark at the end of it. Since CLIs may vary, some CLIs may not need an enter to be

sent after the command since the command may be triggered right when the

question-mark is typed and the output is then displayed, hence the use of the

boolean needEnter. In some CLIs that trigger the command when the question-

mark is typed the command may still be on the prompt which can cause some issues

when the next command is sent. In order to work around this, after the output is

displayed a ctrl + u keystroke is sent in the form of a byte (which is the default

Linux keyboard shortcut to remove anything that has been typed on the current

line).

Even though the output is just a string, it is important to know how the output was obtained,

which is the reason the send methods in RemoteShell return Output objects which

contain both the output in string but also a boolean hadTimeout. As a command is sent, a

prompt is expected and is usually found. However if no prompt is found, an exception is

thrown by the expectOrThrow(Object…) method from Expect which is called in the

send(String) method. This exception is caught and then the prompt is no longer

expected, instead a regular expression is now expecting the last character in a string (with

the use of Pattern.compile(“.$”)).

If an exception was thrown an Output object is returned with the output and the boolean

hadTimeout set to true, while if no exception was thrown hadTimeout would be set to

false. Once the command is sent and the output is received, one can obtain the output by

calling the toString() method in the Output object and one can know whether a

timeout occurred by calling hadTimeout().

The hadTimeout boolean indicates on whether the output was obtained by finding the

prompt or not. This is very useful information as in some cases a sent command does not

immediately provide an output but can in some cases need a certain value to continue. Thus

the output does not contain the prompt but a line stating that the user has to type in some

kind of value to be able to continue. By detecting whether a timeout occurred, one can see

if the command is not finished but needs additional information, but it can also help in

identifying potential issues such as crashes (which could for example make the CLI

Crawler jump out of the CLI or jump back into the root of the CLI).

5.2.4 GUI

The GUI is built using the JavaFX platform and is managed by the Main class in the

application package. The Main class initiates the GUI and thereafter the GUI is

managed by the Discovery class during the discovery algorithm which makes use of an

inner class ComponentManager which is further explained in section 5.2.4.5.

29

The GUI consists of two setup-windows used at launch of CLI Crawler and a main GUI

layout. The main GUI layout which can be seen in Appendix B.2 is designed to be fully

customizable and scalable during execution. Each window may be resized, closed and

repositioned as needed. It consists of the following four windows:

1. Debug

2. Output

3. Customization

4. Command structure

The different windows and the GUI functionalities are further explained throughout this

section.

5.2.4.1 Setup
When CLI Crawler is started, the login screen is prompted which lets the user enter the

connection information to the server and the Neo4j database. A screenshot of the login

screen can be seen in Figure 5.5.

Figure 5.5 shows the connect window of CLI Crawler.

Once connected to both the server and Neo4j database a second screen is displayed – the

console screen. A screenshot of the console screen can be seen in Figure 5.6. In the console

the user is required to run the CLI in order for the discovery process to work since CLI

Crawler cannot know where the user has the CLI installed. The console screen also lets a

user select a previously used CLI from a drop-down menu or add a new one if it is a new

CLI that is being discovered. If a previously used CLI is selected the algorithm will resume

where the previous discovery was terminated.

30

Figure 5.6 shows the console window of CLI Crawler.

5.2.4.2 Output and debug
The output and debug windows are used to handle user interaction, a screenshot of these

can be seen in Figure 5.7. The output window is used to display outputs provided by

commands during the discovery. This happens when user interaction is prompted and thus

the output for the command is displayed to aid the user. The actual user interaction and

instructions is managed in the debug window at the same moment.

Figure 5.7 shows the output and debug windows.

Each time the algorithm enters a new mode the algorithm will pause and wait for the user to

press continue in the debug window, during this stage it is possible for the user to add items

to the lists in the customization window (which is further explained in section 5.2.4.3) by

dragging items from the output to a list.

31

Since user interaction may be needed several times during a discovery, the algorithm will

pause and ask for a certain user input through the debug window. The input is often just a

simple yes or no button click but sometimes an actual input may be needed.

5.2.4.3 Customization
The customization window is used to display the ignore lists used for attributes and

commands and also to manage priorities. Each tab in the customization window contains a

certain list. One can either drag-and-drop items from the output window to add them to a

certain list or use the input field at the bottom of the customization window. It is also

possible to adjust the internal order of the items in the list which is important when

managing the priorities in the priority list. One may also double-click on a certain item in a

list to edit it.

5.2.4.4 Command structure
The command structure window is used to display a tree representing the current CLI’s

command structure. The command structure is updated and displayed in real-time during a

discovery process for the tree that is being discovered. This is as previously mentioned

done by using the utility class SimpleTree in Discovery.

5.2.4.5 Managing the GUI during a discovery

Since the Main class cannot be initialized, the GUI objects need to be sent over to other

classes through constructors in order for other classes to manipulate the GUI components.

The solution was to create a ComponentManager class within the Main class.

ComponentManager provides the ability for manipulation of certain GUI components

outside of the Main class. The idea is that the ComponentManager object is created within

the Main class and thereafter sent through a constructor to Discovery.

ComponentManager has methods which provide the ability to modify certain components,

and more can be added easily if needed. It could have also been possible to simply make

ComponentManager return the different GUI objects, however one would need make use

of Platform.runLater(new Runnable() {}) in order to call methods in the GUI

objects which would lead to a lot of more code and less human readability. This way of

designing ComponentManager makes it so that all of the GUI component manipulation is

in one place, simply to provide easier and more understandable programming.

ComponentManager may not be the best possible way of designing this particular feature,

but it is very sufficient since CLI Crawler does not need many GUI manipulation calls.

However if there is a need of many GUI component manipulations, ComponentManager

should perhaps return the GUI component objects and a private class should be

implemented within Discovery which makes use of for example the strategy pattern in

order to execute the GUI manipulation calls.

32

33

6. Conclusion

It is possible to develop a framework for CLI discovery which is shown by the CLI Crawler

prototype. The most important factor for such a framework is the accuracy of the discovery,

the discovery algorithm needs to discover the CLI’s command structure very precisely

since the structure will thereafter be used to make configuration changes. Another

important factor is to make it as automatic as possible, but the more automatic it is, the risk

of inaccuracy increases, so the ultimate solution is a balance between both factors. Even

though it may not be possible to make the framework fully automatic it seems to be

possible to make it very close to fully automatic with little need of user interaction.

By considering the questions at issue which are previously mentioned in section 1.4 and

answering them during the thesis work has helped with achieving the objectives of the

thesis work. The questions at issue may also be seen below. They are answered and

analyzed throughout section 6.

1. Which CLI would be the most relevant to investigate and show as a high-level

design in the pre-study?

2. What is the best way to access the CLI’s command structure?

3. How can the CLI’s command structure be stored before being exported to YANG?

4. How can the application be developed in order to be as automated as possible?

5. Are there any open-source software which may be used as help for the application?

CLI Crawler uses the principle of navigation of CLIs as foundation for the algorithm and

tests different words detected in outputs to see if they are commands or attributes. Since it

does seem like the framework could become close to fully automatic with this way of

accessing and managing the CLI throughout the algorithm it does seem like this is a viable

way to perform CLI discovery. The main issue with this way of discovering a CLI’s

command structure is the total time it takes to discover commands and attributes (this is

further discussed in section 6.1).

The main focus during the pre-study and the development of CLI Crawler was a simulated

CLI using a network device simulator, as it was seen to be the most relevant CLI to focus

on since Data Ductus is very familiar with it. It is well documented and structured which

means that information about the configuration possibilities of it are well known. Since the

configuration possibilities were well known it was easy to verify whether the different

functionalities of CLI Crawler worked as intended when testing them during development.

To develop a discovery algorithm while focusing on this CLI naturally led to the need of

considering many factors in order to make the algorithm as accurate, general and automatic

as possible since it is quite a large CLI.

CLI Crawler does manage to discover most of the simulated CLI with a few minor

exceptions (which are discussed in section 6.1) and display a hierarchical high-level

representation of the CLI’s command structure as a tree in the GUI and as a graph in the

Neo4j database. This hierarchical high-level representation is accurate and fairly easy to

understand but the best possible way to represent the structure of a CLI would be as YANG

which is the next important step in the further development.

Most of the algorithm turned out to be general, as a result of this the algorithm should be of

use for discovering other CLIs too (with perhaps some changes). Since the simulated CLI

was the primary focus and not that many other CLIs were investigated it is difficult to say

34

how well CLI Crawler would work with other CLIs but it is certain that the foundation of

the algorithm and CLI Crawler will be useful when expanding the program and making

sure it works with more CLIs during further development. Investigating more CLIs in order

to determine what needs improvements is therefore vital to make CLI Crawler a viable

program to use. There are also a few other factors to consider before making CLI Crawler a

viable solution for CLI discovery which are discussed throughout section 6.1.

The final conclusion is that a framework for CLI discovery is very possible which is proven

by the CLI Crawler prototype. There is still work to be done before CLI Crawler will be

viable to use for CLI discovery, but with some further development there is definitely

possibilities of making CLI Crawler both precise and automatic while being able to

discover the command structure of many different CLIs.

6.1 Further development

CLI Crawler provides the foundation of a CLI discovery framework, a lot of the features

can be developed to become even more effective and features that make use of user

interaction can become more automatic. There is a lot of small changes that can be made to

CLI Crawler that do not really affect the discovery framework itself but makes the program

better in general. This could be for example features such as saving connection information

at the set-up screen or making the console in the console window work better and be more

consistent. But as mentioned previously, the main focus is to make an accurate and

effective algorithm for CLI discovery.

The algorithms computing time could potentially be reduced, there are currently four

factors which take a lot of computing time during the algorithm.

1. Timeouts.

2. No list detection during algorithm.

3. Printing the tree in the GUI.

4. Analyzing commands.

If timeouts are handled in a different and more efficient way (by expecting in a different

way and perhaps not waiting for exceptions) it would reduce the computing time by a lot,

since it can currently take between one and four seconds just to handle a timeout for a

certain command. Another factor that takes a lot of time is that lists (which are previously

explained in section 3.1) are currently not detected during the discovery, this leads to

testing the same commands multiple times since it will test all possible combinations of a

certain list. The idea was to detect lists during the export from the database but the optimal

solution would be to somehow detect lists during the discovery, since then all possible

combinations will not have to be tested. Displaying a tree in real time in the GUI is a tricky

task since previous entries in the tree have to be edited in order to maintain the tree

structure. Currently the tree is restructured for every entry that has to be added which leads

to unnecessary computing time, although this does not affect smaller trees that much it will

still take noticeable computing time for larger trees which means that the computing time

used by the tree will increase over time during the discovery. When analyzing commands

there are a lot of minor functionalities that are working, but together they can lead to a lot

of computing time. Making sure what a command does and what its attributes are uses a lot

of different functionalities, an example is that every command is for example tested with a

test-string and a test-integer to check whether the attribute could be any possible string or

any possible integer. Most of the words in an output are also tested to see whether that word

35

is a possible attribute or command. All of this adds up which makes minor functionalities

like these take a lot of computing time together.

In the CLI Crawler prototype, user interaction can be needed in some stages during the

discovery and thus the program is paused and waits for a user input, but it is not easy for

the user to predict when the algorithm will stop and need a user input to continue. The best

solution would be to let CLI Crawler remember which modes or commands need user

interaction and save the discovery of those modes or commands for the end of the

discovery, this would lead to everything else that can be discovered automatically being

done first and then at the very end of the discovery process all of the user interaction would

be handled.

A settings window in the GUI can also be useful for CLI Crawler. Currently there are

manually coded keywords in the Discovery class which are for instance used to

determine whether a certain word gave an invalid output. The user should be given the

possibility to edit such keywords if needed (or for instance navigation methods) which

would be done in a settings window. If a new CLI has to be tested and the CLI has different

ways of navigation or the way it displays outputs the user could perhaps still discover the

new CLI with a couple of changes in the settings. Another potential solution would be to

develop some automatic process that is run in the beginning of a discovery which detects

the keywords and navigation methods itself. For this to be as efficient as possible it would

be of help to investigate a lot of different CLIs as CLI Crawler was developed with the

focus on mainly the one simulated CLI.

There may be certain commands which impact the CLI itself, common commands are quit

or exit which exit the CLI or commands related to the prompt or the screen size which can

change the prompt or the size of the screen which can have a major impact on CLI Crawler.

While these commands may not be relevant to discover as they will most likely not be used

for configuration changes it can still be a good idea to handle them.

Most of the improvements mentioned throughout this section improve existing features of

CLI Crawler, there are still however two major features that are left to develop in order to

make CLI Crawler viable to use for CLI discovery.

The first one being the detection of dependencies within a CLI, there may be a command

which is dependent on another command before it can be run. This is currently not detected

but is important to consider as some command may for instance not display its attributes if

it is dependent on another command to be run first, this would therefore be stored as a

YANG leaf-ref which would reference the dependencies with a link between each other in

the YANG model. The idea would be to detect a dependency and then let the algorithm skip

the command where the dependency was detected and come back to it at a later time to see

if it still is dependent on something and perhaps make use of user interaction to solve the

dependency.

The second one is exporting the CLI structure as YANG. The CLI structure is stored in the

Neo4j database, so essentially all that the program needs to do is to go through this database

and write YANG formatted files. In order for this to work properly, more metadata may

have to be stored in the properties of nodes during their insertion to the database. If

metadata is stored in a general way this could provide the possibility to not only export the

36

CLI structure as YANG but perhaps also as other formats if other formats become relevant

to use with CLI command structures.

37

7. Terminology

API An application programming interface is a specification used as an

interface to let software components in a system communicate with

each other.

CLI Command line interface – a text-based interface for communication

between a user and a system or software.

CLI Crawler The prototype that was developed during the thesis work.

Cypher A query language used by the graph database Neo4j, similar to the

Structured Query Language (SQL).

Discovery algorithm Algorithm used to detect a CLI’s command structure.

Dynamips Command line based emulation tool for Cisco routers.

Expect Tool for handling interaction (input and output streams) with a text-

based program such as a shell.

Expect-for-Java Expect tool specifically made for Java.

JavaFX Java based GUI framework.

JSON JavaScript Object Notation is a language independent human

readable data format which is mainly used for transmitting data

between a server and a web application.

Mode A CLI is often divided into modes which contain their own set of

commands.

Neo4j An open-source graph database, implemented in Java.

NETCONF NETCONF is a protocol which is used as a communication tool

between client and server. With this the client can manage and

manipulate network devices and configuration data on the server.

Network device- A service instance in a network of real or simulated devices.

simulator

Prompt A character or a sequence of characters that indicate that the shell is

ready to receive input.
Regular Expression A regular expression is a combination of characters used for text

parsing and pattern matching.

REST A software architecture style for designing network-based

applications.

(Text) Shell Text based user interface.

SSH Secure Shell network protocol.

Swing GUI framework included in Java SE.

Telnet Telnet network protocol.

XML Extensible Markup Language is a language made to be both human

and machine-readable.

YANG High-level data modeling language made for specifically

configuration and state data changes by NETCONF.

38

39

8. References

Alexanderson, K., 2012. Källkritik på Internet. [Online]

Available at: https://www.iis.se/docs/Kallkritik-pa-Internet.pdf

[Accessed 09 06 2015].

Bjorklund, M., 2010. A Data Modeling Language for the Network Configuration Protocol.

[Online]

Available at: http://tools.ietf.org/pdf/rfc6020.pdf

[Accessed 09 03 2015].

Dong, R., n.d. Expect-for-Java. [Online]

Available at: https://github.com/ronniedong/Expect-for-Java

[Accessed 11 03 2015].

Enns, R., 2006. NETCONF Configuration Protocol. [Online]

Available at: https://tools.ietf.org/html/rfc4741

[Accessed 10 04 2015].

Gavrilov, A., n.d. ExpectIt. [Online]

Available at: https://github.com/Alexey1Gavrilov/ExpectIt

[Accessed 09 04 2015].

GNS3, n.d. Dynamips. [Online]

Available at: http://www.gns3.net/dynamips/

[Accessed 24 03 2015].

Holm, P., 2007. In: Objektorienterad programmering och Java. Lund: Studentlitteratur, p.

247.

JCraft Inc, n.d. JSch - Java Secure Channel. [Online]

Available at: http://www.jcraft.com/jsch/

[Accessed 14 04 2015].

Kniberg, H. & Skarin, M., 2010. Kanban and Scrum, making the most of both. [Online]

Available at: http://www.infoq.com/minibooks/kanban-scrum-minibook

[Accessed 25 03 2015].

Neo Technology Inc, n.d. How to use the REST API from Java. [Online]

Available at: http://neo4j.com/docs/stable/server-java-rest-client-example.html

[Accessed 15 04 2015].

Neo Technology Inc, n.d. Neo4j. [Online]

Available at: http://neo4j.com/

[Accessed 25 03 2015].

Oracle, 2013. What Are RESTful Web Services?. [Online]

Available at: https://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html

[Accessed 09 04 2015].

40

Oracle, n.d. Is JavaFX replacing Swing as the new client UI library for Java SE?. [Online]

Available at: http://www.oracle.com/technetwork/java/javafx/overview/faq-

1446554.html#6

[Accessed 09 04 2015].

Oracle, n.d. JavaFX - The Rich Client Platform. [Online]

Available at: http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-

2158620.html

[Accessed 09 04 2015].

Oracle, n.d. Package javax.swing. [Online]

Available at: http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html

[Accessed 09 04 2015].

Oracle, n.d. VirtualBox. [Online]

Available at: https://www.virtualbox.org/

[Accessed 30 03 2015].

Plattner, C., n.d. Ganymed SSH-2 for Java. [Online]

Available at: http://www.ganymed.ethz.ch/ssh2/

[Accessed 12 03 2015].

Postel, J. & Reynolds, J., 1983. Telnet Protocol Specification. [Online]

Available at: https://tools.ietf.org/html/rfc854

[Accessed 11 03 2015].

SSHTOOLS, n.d. Java SSH Client. [Online]

Available at: https://www.sshtools.com/en/products/j2ssh

[Accessed 14 04 2015].

Study CCNA, n.d. Telnet & SSH. [Online]

Available at: http://study-ccna.com/telnet-ssh

[Accessed 11 03 2015].

The Apache Software Foundation, n.d. Apache Commons. [Online]

Available at: http://commons.apache.org/

[Accessed 12 03 2015].

The Apache Software Foundation, n.d. Apache Log4j 2. [Online]

Available at: http://logging.apache.org/log4j/2.x/

[Accessed 21 04 2015].

Verges, C. & Ryan, J., n.d. Expect4j. [Online]

Available at: https://github.com/cverges/expect4j

[Accessed 09 04 2015].

Wimberger, D., 2007. telnetd. [Online]

Available at: http://telnetd.sourceforge.net/

[Accessed 14 04 2015].

41

Ylonen, T. & Lonvick, C., 2006. The Secure Shell (SSH) Transport Layer Protocol.

[Online]

Available at: https://www.ietf.org/rfc/rfc4253.txt

[Accessed 10 04 2015].

42

43

Appendices

Appendix A – Code snippets

Appendix A.1
module example-system {

 namespace "http://example.com/system";

 prefix "example";

 contact "person@example.com";

 description "The example system.";

 revision 2015-03-05 {

 description "Initial revision.";

 }

 container system {

 leaf hostname {

 type string;

 }

 list interface {

 key "name";

 leaf name {

 type string;

 }

 leaf id {

 type int;

 }

 leaf type {

 type enumeration {

 enum ethernet;

 enum atm;

 }

 }

 }

 leaf-list domain {

 type string;

 }

 ...

Example of a YANG model.

44

Appendix A.2
{

 "columns" : ["c"],

 "data" : [[{

 "outgoing_relationships" :

"http://localhost:7474/db/data/node/0/relationships/out",

 "labels" : "http://localhost:7474/db/data/node/0/labels",

 "data" : {

 "name" : "Autowizard"

 },

 "traverse" :

"http://localhost:7474/db/data/node/0/traverse/{returnType}",

 "all_typed_relationships" :

"http://localhost:7474/db/data/node/0/relationships/all/{-

list|&|types}",

 "self" : "http://localhost:7474/db/data/node/0",

 "property" :

"http://localhost:7474/db/data/node/0/properties/{key}",

 "outgoing_typed_relationships" :

"http://localhost:7474/db/data/node/0/relationships/out/{-

list|&|types}",

 "properties" :

"http://localhost:7474/db/data/node/0/properties",

 "incoming_relationships" :

"http://localhost:7474/db/data/node/0/relationships/in",

 "extensions" : {

 },

 "create_relationship" :

"http://localhost:7474/db/data/node/0/relationships",

 "paged_traverse" :

"http://localhost:7474/db/data/node/0/paged/traverse/{returnType}{

?pageSize,leaseTime}",

 "all_relationships" :

"http://localhost:7474/db/data/node/0/relationships/all",

 "incoming_typed_relationships" :

"http://localhost:7474/db/data/node/0/relationships/in/{-

list|&|types}",

 "metadata" : {

 "id" : 0,

 "labels" : ["Command"]

 }

 }]]

}

Example of a client response formatted in JSON.

Appendix A.3
Get the prompt

Send a question-mark to detect the top commands of the CLI

// Other operations such as detecting whether a restart is

currently run

For each top command

 Perform a discovery on that top command

Code snippet showing pseudo-code for the discovery() method.

45

Appendix A.4
Send the command with a question-mark at the end

If there was no output

 Handle the output and possibly end the current recursion

If it is resuming a previous discovery process

 Parse the output

If the output is the same as the previous output

 End the current recursion

If the command is an abbreviation (has been previously tested)

 End the current recursion

If the output had a timeout

 Handle the timeout

If the command is just a question-mark

 Count up the level

 If the mode has been previously discovered

 Set the output to empty

 Else

 Add the mode to the graph

 Set the current mode as this mode

 Add the mode to the mode list

Parse the output

If the output is not empty

 Create a new node, thisNode

 If the command is just a question-mark

 Add a label “mode” to the last node

 Append the mode ID to the tree

 Set thisNode to the last node.

 Else

 Add the command to the tree

 Add properties to thisNode

 Add the node to the current mode

 Add a relationship between the last node and thisNode

 Further parse the output word by word

 If the output is not empty and has no errors

 Split the output into a list of lines

 For each line in the output

 If the line contains the command

 If the line contains valid attributes or commands

 Perform a new discovery on these

 If no attributes or commands were found

 Split the output into a list of words

 For each word in the output

 If the algorithm is in the root of the mode

 Perform discovery on word

 Else

 Perform a discovery on command + “ “ + word

 Send the command

 If the output had a timeout

 Handle the timeout

 If there is a new prompt

 Set the prompt to the new prompt

 Perform a discovery on “” (no command - new mode)

 If the command is just a question-mark

 Send an exit command

 If the output had a timeout

 Handle the timeout

46

 While the prompt is not the previous mode prompt

 Send an exit command

 If the output had a timeout

 Handle the timeout

 Set prompt to the new prompt

 If the parsed output is not empty

 Return this attribute or command

 Else

 Return an empty string

Code snippet showing pseudo-code for the discovery(String, int, Command,

ArrayList<String>) method.

47

Appendix B – Screenshots

Appendix B.1

Figure showing the initial GUI of CLI Crawler using Java Swing.

48

Appendix B.2

Figure showing the current GUI of CLI Crawler using JavaFX as GUI toolkit.

49

Appendix C – Diagrams, charts and figures

Appendix C.1

UML diagram representing CLI Crawler as an entity and showing the relationships

between the different classes and packages.

50

Appendix C.2

UML diagram representing the application package of CLI Crawler.

51

Appendix C.3

UML diagram representing the algorithm package of CLI Crawler.

52

Appendix C.4

UML diagram representing the algorithm.util package of CLI Crawler.

53

Appendix C.5

UML diagram representing the connection package of CLI Crawler.

Appendix C.6

UML diagram representing the util package of CLI Crawler.

54

Appendix C.7

Gantt chart showing the initial project plan.

55

Appendix D – User manual

User manual for CLI Crawler

Introduction

CLI Crawler is a very early build of a CLI discovery program. It will discover a certain

CLI’s command structure and store it in a Neo4j database while showing the hierarchical

structure of the CLI in real-time during the discovery process.

This document will give an overview of how to use CLI Crawler.

Recommendations

In order to use CLI Crawler properly, the following is recommended:

1. Having Java Runtime Environment 1.8.0_40 or higher installed.

2. Running CLI Crawler on a Windows or Linux platform.

CLI Crawler has not been tested with other Java Runtime Environments nor on any other

operating systems and therefore may not work properly if the recommendations are not

followed.

Starting a new CLI discovery process

1. Run the CLI_Crawler.jar file.

2. A setup window will be shown as seen below.

a. Enter the hostname, user, port and password of the remote system.

b. Select whether the remote system is hosted by SSH or Telnet connection.

c. Enter the hostname for the Neo4j database.

d. Press Login to continue.

Note: If the connection is unsuccessful then a pop-up window will be shown and

thereafter it will be possible to edit the connection information and reconnect.

56

3. A console window will be shown as seen below.

a. Enter the name of the CLI to be discovered in the input field.

b. Enter the CLI in the console field by sending regular commands.

c. Press OK to start the discovery process.

Resuming a CLI discovery process

1. Run the CLI_Crawler.jar file.

2. A setup window will be shown as seen below.

a. Enter the hostname, user, port and password of the remote system.

b. Select whether the remote system is hosted by SSH or Telnet connection.

c. Enter the hostname for the Neo4j database.

d. Press Login to continue.

Note: If the connection is unsuccessful then a pop-up window will be shown and

thereafter it will be possible to edit the connection information and reconnect.

57

3. A console window will be shown as seen below.

a. Choose the CLI to be further discovered from the drop-down menu next to

the name input field.

b. Enter the CLI in the console field by sending regular commands.

c. Press OK to restart the discovery process.

Note: Even when resuming a CLI process, the CLI has to be entered manually.

This is due to the possibility of the CLI having a different path than in the

previous discovery.

Managing CLI Crawler during a discovery process

The layout of the GUI is designed to be customizable so that each window can be resized,

repositioned or even closed. The default layout and window positioning is shown below.

58

During a discovery process a tree representing the CLI’s command structure will be printed

in real-time in the command structure window.

It is also possible that user interaction will be needed during a discovery process. By default

the output and debug windows will display a text saying “Running” if the discovery process

is working by itself. These will however change if user interaction is needed. Below is an

example of the output and debug windows when user interaction is needed – in this case

when a new mode is discovered.

As seen in the screenshot above, when user interaction is needed instructions are shown in

the debug window in order to know what to do since there may be different types of user

interaction.

During a discovery process it is also possible to customize the lists in the customization

window, how to do this will be explained in the next section of the user manual.

Customizing ignore lists

There are three lists in the customization window – one for each tab.

1. Command ignore list – commands in this list will not be tested during discovery.

2. Attribute ignore list – attributes in this list will not be tested during discovery.

3. Priority list – a list of execution order during discovery. (Note: not yet implemented)

The list may be edited in three ways;

1. To add an item – drag-and-drop it from the output window to the customization

window or simply type in the item in the input field and press the Add button.

2. To remove an item – drag it out of the list.

3. To edit an item – double click on the item, edit it and then press enter.

