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Abstract
A short introduction to optimal control problems is presented. For these
problems the calculation of sensitivity matrices with the method of adjoint
equation is shown. The adjoint equations are derived with the corresponding

initial values. At the end two examples are calculated.
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1 Introduction

In this thesis we look at the computation of sensitivity matrices with the adjoint
method. Now the question is, what is sensitivity analysis or what are sensitiv-
ity matrices? Sensitivity analysis looks at small perturbations of the solution
of a mathematical model based on how the input parameters can change the
output. Here with a mathematical model a system of equations which are de-
pendent on some variables and parameters is meant. The parameters describe
some influences, which can happen in the mathematical model. The sensitivity
analysis shows how big the influence of the change of the initial parameter is
for the solution. So the sensitivity matrices show the influence of changing the
initial conditions of the mathematical model that affect the solution of a sys-
tem of ordinary differential equations (ODE) or differential algebraic equations
(DAE). Applications of this sensitivity analysis can be found in optimization,
in physical problems, in the field of the engineering and others.
Recent work [1] explains the forward computation method for the sensitivity
matrices and how they can be calculated with CVODES.
But what is a real problem where the computation of sensitivities can be used?
For example: You have two water boxes where each of these boxes has a given
volume and a controllable outflow rate of water. Then you are interested in the
influence of a change in the initial outflow on the resulting outflow. Here the
sensitivity matrix describes the influences of changing the inflow.
In this paper the focus is on the adjoint sensitivity analysis for optimal control
problems, the derivation of the adjoint equations and the computation of the
sensitivity matrices. For this optimization problem we have a given objective
function, which we want to minimize, from an optimal control problem. This ob-
jective function depends on a given parameter u, for which we want to compute
the sensitivities. The sensitivities are given by the derivative of the objective
function at the parameter u.

In the beginning a short overview for optimal control problems is given. After
this the adjoint equation for an optimal control problem will be derived. Then
the formula for the computation of sensitivity matrices will be derived. Finally,
two examples are calculated.
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2 Optimization Problem

This section gives a short introduction to optimal control problems, what an
optimal control problem is and the definition of such a problem. The sec-
tion ends with two special cases of optimal control problems. These cases are
the parametrized optimal control problem and the initial value optimal control
problem.

2.1 Optimal Control Problem
Optimal control problems are given, for example, when we are searching for the
right angle of holding a water towel to water a salad. Here maybe some steps are
needed to find the best angle that we catch the salad best, without loosing to
much water. This means that in this case the changing of the angle is what we
want to optimize. Such control problems are described by a system of ordinary
differential equations

ż = f(z1, . . . , znz
, u1, . . . , unu

) (1)

where zi describes the process and ui are the control parameters which describe
the problem at the time t. In the example above the control parameter u is
a vector of parameter values, rather then a vector valued function is normally
called parameter identifications. In this thesis we consider these problems as
(discrete) special cases of optimal control problems, where u is a vector valued
function in time, which is given by

ui = ui(t) for i = 0, . . . , n

In this paper the idea behind optimal control problems is to look what the
influence of changing the initial conditions has on the output. This means that
the calculation of the sensitivities from the given optimization problem is of
interest. The sensitivities are given by

d
dui

g,

where g is the objective function of the optimal control problem with the con-
straints ż. So the definition of the optimal control problem is given by

Problem 1. Let ϑ := [t0, tf ] ⊂ R be a compact interval with fixed time points
t0 < tf and let

g : Rnz × Rnz → R
ϕ : Rnz × Rnz → R
f : ϑ× Rnz × Rnu → Rnz

be sufficiently smooth functions.
Minimize

g(z, u) =

∫ T

0

ϕ(z(t), u(t))

with respect to z : ϑ→ Rnz and u : ϑ→ Rnu

such that

{
ż = f(t, z, u)

z(0) = z0
.
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2.2 Parametrized Optimal Control Problem
Here the focus is on a parametrized optimal control problem. This part of
optimal control problems is a special case of this problem class. Here the control
parameters are no longer functions which depend on time t, now these control
parameter functions are discretized control parameters and are given as a vector
u ∈ Rnz . From the discretization it follows that the initial conditions of the
given system of differential equations (1) depend on the control parameters,
which means that

z(t0) = z0(u).

Because the discretization of the control parameter functions has an influence
on the system of differential equations and so it has an influences at the initial
conditions from this system. From this the definition for parametrized optimal
control problems follows

Problem 2. Let ϑ := [t0, tf ] ⊂ R be a compact interval with fixed time points
t0 < tf and let

g : Rnz × Rnz → R
ϕ : Rnz × Rnz → R
f : ϑ× Rnz × Rnu → Rnz

be sufficiently smooth functions.
Minimize

g(z) =

∫ T

0

ϕ(z(t))

with respect to z : ϑ→ Rnz and u ∈ Rnz

such that

{
ż = f(t, z, u)

z(0) = z0(u)

2.2.1 Initial Value Optimal Control Problem

In the last part of this section the focus is on a more specific case of optimal
control problems. Here we have an optimal control problem where only the
initial conditions depend on the parameters u. The name of this special case
is initial value optimal control problem. Mathematically speaking this means
that the given system of differential equations is independent of the control
parameters ui. So the system looks like

ż = f(z1, . . . , zn)

with the initial condition

z(t0) = u,

where u ∈ Rnz . The definition of initial value optimal control problems is:
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Problem 3. Let ϑ := [t0, tf ] ⊂ R be a compact interval with fixed time points
t0 < tf and let

g : Rnz × Rnz → R
ϕ : Rnz → R
f : ϑ× Rnz → Rnz

be sufficiently smooth functions.
Minimize

g(z, u) =

∫ T

0

ϕ(z(t))

with respect to z : ϑ→ Rnz and u ∈ Rnz

such that

{
ż = f(t, z)

z(0) = u
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3 Sensitivity Analysis

The goal is to derive the adjoint equations in order to compute the sensitivity
matrices. Therefore this chapter starts with the derivation of adjoint equations
and the sensitivity equation for optimal control problems. After this the adjoint
equation for parametrized optimal control problems and initial value optimal
control problems will follow. At the end of the chapter the idea of computing
the sensitivities as a boundary value problem is given.

3.1 Sensitivity Analysis for Optimal Control Problem
The calculation of the sensitivity matrices depends on the objective function of
Problem 1

g(z, u) =

∫ T

0

ϕ(z, u)dt

and its constraints. The sensitivities are the derivatives of the function g(z) for
the parameters u(t). For this the construction of an auxiliary function will be
used. The residual of the system will be multiplied with a multiplier λ. The
idea behind this is that the multiplier times the residual will be equal to zero.
From this the adjoint equation follows. The auxiliary function looks like

I(z, u) =

∫ T

0

ϕ(z, u)dt−
∫ T

0

λT (ż − f(z, u))dt

In this function ż − f(z, u) describes the residual. If the residual is equal to 0
or λT makes the second integral equal to 0, then

d
du
g(u) =

d

du
I(u) =

∫ T

0

ϕzzu + ϕu −
∫ T

0

λT (żu − fzzu − fu)dt (2)

In the next step we will use integration by parts for the last term of the equation∫ T

0

λT (ẋ− fzzu − fu)dt = λT zu|T0 −
∫ T

0

(λ̇T zu − λT fzzu − λT fu)dt

Now we can look again at equation (2) and from the integration by parts of the
last term in equation (2) it follows

d

du
I(u) =

∫ T

0

ϕzzu + ϕu −
∫ T

0

(λ̇T zu − λT fzzu − λT fu)dt− [λT zu]
T
0 (3)

⇔
d
du
I(x, u) =

∫ T

0

ϕu − λT fu −
∫ T

0

(λ̇T − λT fz − ϕz)zudt− [λT zu]
T
0

In the next step the idea is that the second integral will be zero. This happens
when,

λ̇T − λT fz = −gz (4)

holds. So the adjoint equation for what is being sought is given by (4). The
next interesting point is the last term of the equation (3), because this term
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should also be zero so that the derivative of the auxiliary function is equal to
the derivative of the objective function from problem (1). So from this term

[λT zu]t=T = 0

the assumption for the initial condition at the time T for the adjoint equation
follows. For this we assume that λ(T ) = 0, that the last term of equation (3)
will be zero at T , because it is known that zu can’t be zero. So it follows for
the computation of the sensitivities

d
du
g(u) =

∫ T

0

(ϕu − λT fu)dt+ [λT zu]t=0, (5)

because the multiplier λ is chosen such that the second integral of equation (3)
is zero. Here is it important to note that zu at t = 0 is the sensitivity of the
initial conditions with respect to u [2]. With this equation the calculation of
the sensitivities can be done for an optimal control problem.

3.1.1 Sensitivity Analysis for a Parametrized Optimal Control Prob-
lem

The sensitivities of a parametrized optimal control problem can be calculated in
an easier way. From Problem 2 it follows that, by a parametrized optimization
problem, the initial conditions depend on the control parameter u,

z(t0) = z0(u).

This implies that in this case the system of differential equations derived at the
parameter u gives the sensitivities, because the objective function is independent
of the control parameter. So the sensitivities from the right-hand-side function
are what is being sought. So the adjoint equation for these special systems is
given by

λ̇T = λT fz + fu (6)

λT (t0) = z0u

and then the sensitivities can be evaluated with equation (4). When we compare
the adjoint equation (4) with the adjoint equation (6) then the term d

dz g(z) =
d
duf(t, z, u), because we are interested in the sensitivities of the right-hand-side
function.

3.1.2 Sensitivity Analysis for an Initial Value Optimal Control Prob-
lem

In the special case of an initial value optimal control problem, the initial values
for the given system of ordinary differential equations are

z(t0) = u

and the given right hand side of the system of ODEs is independent of the
parameter u. Here the sensitivities are given from the initial conditions, because
the initial value optimal control problem is a special case of the parametrized
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optimal control problem. From this it follows that the last term of the adjoint
equation of the parametrized problem is removed, because the right hand side
f(t, z) from the system of differential equations is independent of the control
parameter u. So this term fu = 0, from this we get the following system for the
adjoint equation:

λ̇T = λT fz

λ(t0) = Ii,

where Ii stands for the i-th column of the identity matrix. In this special case
the solution of the adjoint equation gives the sensitivities of the system.

3.2 Solve Sensitivity Analysis with Boundary Value Prob-
lem

The idea behind this section is to solve the given system of differential equations
at the same time as the system of the adjoint differential equations. So the
system of differential equations from the optimal control problem is given

ż = f(t, z, u)

z(t0) = z0

and the system from the adjoint differential equations is given

λ̇T = λT fz − gz
λ(T )T = 0.

Let h(z, λ, u) = λT fz − gz and

ẋ =

(
ż

λ̇T

)
with boundary values

x(t0) =

(
z0
?

)
and x(T ) =

(
?
0

)
The question marks are there, because there is no initial condition for z(T ) and
λ(t0), but we can solve this problem with the approach of a boundary value
problem for differential equations. The idea is to make a piecewise interpolation
for the solution of the given system ẋ at the time points ti with the conditions

xi(ti) = xi−1(ti)

ẋ =

(
f(zi(ti+1), ui(ti+1))

h(zi(ti+1), λi(ti+1), u(ti+1))

)
.

Then the piecewise interpolated polynomials here of order 3 look like

xi(t) =

(
σi
3(t− ti)3 + σi

2(t− ti)2 + σi
1(t− ti) + σi

0

ai3(t− ti)3 + ai2(t− ti)2 + ai1(t− ti) + ai0

)
.

Now the idea is that the missing initial conditions can be evaluated. So a
solution for the system of the adjoint differential equations is found, which can
be used for computing the sensitivities with the given formula (5).
In this paper a different method for the computation of the solution of the two
systems is used. This method will be explained in the next section.
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3.3 Solve Sensitivity Analysis with Forward and Back-
ward Integration

By the sensitivity analysis two systems of differential equations are given. The
first one is the system of differential equations of the optimal control problem
and the second one is the adjoint system of differential equations. Then the two
systems be given by

ẏ = f(t, y)

y(0) = y0

t ∈ [t0, T ]

and

λ̇T = h(τ, y, u)

λT (T ) = 0

τ ∈ [t0, T ].

In this case the solution of the second system of differential equations depend
on the solution of the first system. For this a forward integration can be used to
compute the solutions for the first system of differential equation and a backward
integration, which includes the solution from the forward integration, gives the
solution of the second system of differential equation. The method is shown
in figure 2. Here the long green arrow describes the solution of the forward

Figure 1: Illustration of the forward and backward integration during
calculation of the adjoint system [4]

integration and the small right and green arrows stand for the forward and
the backward integration steps which will be done. But it can happen that
different time steps are used for the forward and the backward integration, for
example when no fixed step size is used. Thus an interpolation over the solution
from the forward integration is needed. The forward integration gives solutions
y0, . . . , yN for t0, . . . tN = T , but for the backward integration y(τ) is needed,
because maybe different time points from the forward integration are used in
the backward integration. So it is easy to think that

ti < τ ≤ ti+1

and then an interpolation over the given ti and the given yi(ti) can be done to
evaluate the function y(t) at the point τ . With this interpolation the backward
integration can be computed and then the sensitivity equation (5) from above
can be evaluated.
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4 Examples

In this chapter are two examples for the computation of sensitivity matrices.
The first example is about a system of two water boxes with a controllable
outflow rate and the second example is a Sundials test example. For the first
example only the analytic calculation is shown and for the second example the
analytic calculation combined with the numerical calculation is given. For the
numerical calculation a program with forward-backward integration is used.

4.1 System of two Water Boxes
Here we consider a system of two water boxes, where x1(t) and x2(t) stand for
the volume of water in the reservoirs and v1(t) and v2(t) stand for the outflow
rate of water for each reservoir, respectively, at time t.

Figure 2: System of two water boxes with controllable outflow rate [3]

The system describes the influence of an controllable outflow from reservoir 1 in
reservoir 2 for the outflow of reservoir 2. For this the optimal control problem
is given by

Problem 4. Let ϑ = [0, 10].

Minimizev1,v2

g(x1, x2, v1, v2) = −
∫ 10

0

(10− t)v1(t) + tv2(t)dt

such that 

ẋ1(t) = −v1(t)
ẋ2(t) = v1(t)− v2(t)
x1(t0) = x10
x2(t0) = x20
x1(t), x2(t) ≤ 0

v1(t) = v2(t) ∈ [0, 1]
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In Problem 4 the control parameters are given by v1, v2 and the system is inde-
pendent of the states, it depends only on the control parameters. Now by the
formulae from the section before it follows

f(x, ẋ, t;u1, u2) =

(
ẋ1(t) + v1

ẋ2(t)− v1 + v2

)
The adjoint equation for this problem is given by

λ̇(t) =

(
0
0

)
with λ(T ) = 0

Now we can compute the sensitivities for this problem with

d
du
I(x, u) =

∫ T

0

(ϕu − λT fu)dt+ (λTxu)|0

The last term (λTxu)|0 = 0, because we have no sensitivity for the initial con-
dition. So it follows that the equation reduces to

d
du
I(x, u) =

∫ T

0

(ϕu − λT fu)dt.

For this we need the solution of the adjoint equation, but it is easy to see that
the solution is given by

λ(t) = 0,

because of the initial condition λ(T ) = 0. So now we have all the information
we need for the calculation of the sensitivity matrix.

d
dv
I(x, v) =

∫ 10

0

ϕudt

=

∫ 10

0

(
−10 + t, t

)
dt

=
(
−10t+ 1

2 t
2, 1

2 t
2
)
|100

=
(
−50, 50

)
This means that the solution of the integral will be changed. In the sense that
the initial outflow v1 changes then the first term of the integral (10 − t)v1(t).
In this case that these term will be multiplied with a factor of −50 and when
the initial outflow v2 is changed then the last term of the integral tv2(t) will be
multiplied with a factor of 50.

4.2 Sundials test Example
This is an example of an initial value problem. In this problem the initial values
depend on the sensitivity u. The given problem is

ẏ1 = −0.0712y1 + 0.0111y2 + 0.039y3 + 49.3

ẏ2 = 0.0111y1 − 0.0286y2

ẏ3 = 0.039y1 − 0.000035y3

13



with initial condition y(0) = u [5]. So the computation of the sensitivities can
be done with

d
du
I(u) =

∫ T

0

ϕu − λT fudt (7)

and the adjoint equation

λ̇T = λT fy − ϕyyu

So f is given by

f(y, ẏ, t) =

ẏ1 + 0.0712y1 − 0.0111y2 − 0.039y3 − 49.3
ẏ2 − 0.0111y1 + 0.0286y2
ẏ3 − 0.039y1 + 0.000035y3


and fy is given by

fy =

 0.0712 −0.0111 −0.039
−0.0111 0.0286 0
−0.039 0 0.000035


Now for this example the question is: what is the function ϕy? The function is
given by

ϕy =
(
1 0 . . . 0

)y1...
yn

 ,

because it is searched for the sensitivities of the inital conditions from the sys-
tem, but here is only a example given for the first vector. Here it can be choosen
every row of the identity matrix for the first term of ϕy. So the sensitivities for
the these system can be calculated with the equation (5).

4.2.1 Numerical Solution

The problem will be solved with a program which is written in Python. Here the
package Assimulo is used. Assimulo can be used for solving differential equa-
tions. For this, a right-hand-side function is given, which will be transformed
in an explicit problem and for the simulation a CVODE solver is used.

In this example Assimulo is used to calculate the forward integration and the
backward integration, where in the right-hand-side function the interpolation of
the forward solution is done. In the next lines the code for the forward integra-
tion will be explained and then the code for the backward integration will be
explained.
The program of the forward integration starts with the right-hand-side function.
This function contains the system of differential equations from the optimal con-
trol problem. Here y1, y2, y3 are written as a vector y. By the definition of the
right-hand-side function this function will be transformed into an explicit prob-
lem, with the function called Explicit_Problem. This function needs as an input
the right-hand-side function and the initial values for the given system, here also
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a name for the problem can be given. For this example y0 =
(
0, 0, 0

)
. After

the problem is discretized a CVode solver is used to solve the problem. This
works with the function called CVode and finally this problem will be simulated,
for this the function called simulate is used.
From this program the solution of the forward integration follows: In this plot

Figure 3: Solution of the forward integration

the solution of the problem is given, where the parameter is chosen as u = 0.
This means that the solution without the influence of the parameter is shown.
The program for the backward integration is the same, only two small differences
are in it. The first difference is that in the right-hand-side function the solution
of the forward integration will be interpolated, with a degree three polynomial.
The second difference is that we need a special variable that the interpolation
in backward time can be done. This variable is called backward and it has to
be true. From this the following solution for the adjoint equations are shown in
figures 4-6.

Figure 4: Solution of the backward Integration where dy
dy01
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Figure 5: Solution of the backward Integration where dy
dy02

Figure 6: Solution of the backward integration where dy
dy03

In these three plots, the influence of the parameter at the time is shown. This
means for example that when the parameter u1 is chosen for which the compu-
tation of the sensitivities should be done. Then the influence for the solution of
the system when the parameter u1 is changed at t = 0 is, for example, that the
solution of y3 will be multiplied with a factor of 225000, the solution of y1 will
be multiplied with a factor of 100000 and the solution of y2 will be multiplied
with a factor of −10000. This means that in the plot the factor for changing
parameters at a given time point is shown, which means that the solution of
this system will be multiplied with this factor if the parameter is changed.
If the influence of the sensitivities is searched for a given time interval, then the
computation can be done with the following formula

d
du
I(u) =

∫ T

0

λT · I3dt.
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In the next step the solution of this integral is computed where T = 100, from
this the following sensitivity matrix follows

d
du
I(u) =

 148389.47134845212 148569.16737826829 149028.31931999006
−19327.387537068535 −19149.415402086557 −18698.284831337056
335924.48444081156 336109.53173379973 336592.77106828295

 ,

here in the first collum the sensitivities d
dy10

y = u1 are given, in the second
collum the sensitivities for d

dy20
y = u2 and in the last collum for d

dy30
y = u3. So

in the matrix are the factors shown, which multiplie the solution at T = 100,
when the inital parameters will be changed.
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5 Conclusion

In this paper, first a short introduction for optimal control problems was given.
For these problems the adjoint equations which for the regular problem looks
like

λ̇T − λT fz = −gz
λ(T ) = 0

and the formula for the computation of the sensitivity matrices

d
du
g(u) =

∫ T

0

(ϕu − λT fu)dt+ [λT fzzu]t=0

were derived. We found out that for initial value optimization problems the
calculation of the sensitivities is equal to the integral over the solution of their
adjoint differential equation system, because there the sensitivities depend on
the initial conditions of the system of ODEs.
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6 Appendix

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jun 17 16:27:59 2015
4
5 @author: kathrin
6 """
7
8 from scipy import *
9 import numpy as N

10 import pylab as P
11 from assimulo.problem import Explicit_Problem
12 from assimulo.solvers import CVode
13 import warnings
14 from numpy.polynomial.hermite import hermfit
15
16 def run_example(with_plots=True):
17 """ forward integration to compute the sensitivity matrices in the next step"""
18 #Define the rhs
19 def f(t, y):
20 y1,y2,y3 = y
21 k01 = 0.0211
22 k02 = 0.0162
23 k21 = 0.0111
24 k12 = 0.0124
25 k31 = 0.0039
26 k13 = 0.000035
27 b1 = 49.3
28
29 yd_0 = -(k01+k21+k31)*y1+k12*y2+k13*y3+b1
30 yd_1 = k21*y1-(k02+k12)*y2
31 yd_2 = k31*y1-k13*y3
32
33 return N.array([yd_0,yd_1,yd_2])
34
35
36 #Define an Assimulo problem
37 forward_exp_mod = Explicit_Problem(f, y0=array([0,0,0]), name = r’forward integration’)
38
39 #Define an explicit solver
40 forward_exp_sim = CVode(forward_exp_mod) #Create a CVode solver
41 #Sets the parameters
42 #forward_exp_sim.inith=-1.e-15
43 forward_exp_sim.iter = ’Newton’ #Default ’FixedPoint’
44 forward_exp_sim.discr = ’BDF’ #Default ’Adams’
45 forward_exp_sim.atol = [1e-6] #Default 1e-6
46 forward_exp_sim.rtol = 1e-6 #Default 1e-6
47
48 #Simulate
49 t1, x1 = forward_exp_sim.simulate(100,100) #Simulate 5 seconds
50 #Plot
51 P.figure()
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52 if with_plots:
53 legend_text=r"${}$"
54 P.plot(t1, x1)
55 P.title(forward_exp_mod.name)
56 P.legend((legend_text.format(’y_1(t)’),
57 legend_text.format(’y_2(t)’),
58 legend_text.format(’y_3(t)’)))
59 P.ylabel(’y’)
60 P.xlabel(’Time’)
61 P.show()
62
63 return forward_exp_mod, forward_exp_sim
64
65 if __name__==’__main__’:
66 forward_mod,forward_sim = run_example()
67
68 def run_example2(with_plots=True):
69
70 """ backward integration to compute the sensitivities of dx/dp_1"""
71 t=N.array(forward_sim.t_sol)#time of the forward integratio
72 u=N.array(forward_sim.y_sol)#solution points of the forward integration
73
74 def lambda_xy(tau,lambda1):
75 upp_index = lambda tau: argmax(array(t)>tau)#gives the upper index
76 index=upp_index(tau)#gives us the upper index for the t
77 try:
78 u_pol=polyfit(t[index:index+3],u[index:index+3,i],3)
79 except IndexError:
80 u_pol=polyfit(t[index-3:index],u[index-3:index,i],3)
81
82 #adjoint equation
83 lambda_xdot=0.0712*lambda1[0]-0.0111*lambda1[1]-0.039*lambda1[2]-polyval(u_pol,u[0,i])
84 lambda_ydot=+0.0111*lambda1[0]+0.0286*lambda1[1]-polyval(u_pol,u[0,i])
85 lambda_zdot=-0.039*lambda1[0]+0.000035*lambda1[2]-polyval(u_pol,u[0,i])
86
87
88 return N.array([lambda_xdot,lambda_ydot,lambda_zdot])
89
90 #Define an Assimulo problem
91 exp_mod = Explicit_Problem(lambda_xy, y0=array([0,0,0]),t0=100, name = r’backward integration’)
92
93 #Define an explicit solver
94 exp_sim = CVode(exp_mod) #Create a CVode solver
95 #Sets the parameters
96 exp_sim.backward=True
97 #exp_sim.inith=-1.e-5
98 exp_sim.iter = ’Newton’ #Default ’FixedPoint’
99 exp_sim.discr = ’BDF’ #Default ’Adams’

100 exp_sim.atol = [1e-7] #Default 1e-6
101 exp_sim.rtol = 1e-6 #Default 1e-6
102
103 #Simulate
104 tau1,x1 = exp_sim.simulate(0,100) #Simulate 5 seconds
105 #Plot
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106 P.figure()
107 if with_plots:
108 legend_text=r"$\mathrm{{d}}{}/\mathrm{{d}}{}$"
109 P.plot(tau1,x1)
110 P.title(exp_mod.name)
111 P.legend((legend_text.format(’y_1(t)’,’u_1(t)’),
112 legend_text.format(’y_2(t)’,’u_1(t)’),
113 legend_text.format(’y_3(t)’,’u_1(t)’)))
114 P.ylabel(’lambda’)
115 P.xlabel(’Time’)
116 P.show()
117 return exp_mod, exp_sim
118 for i in range(3):
119 if __name__==’__main__’:
120 with warnings.catch_warnings():
121 warnings.filterwarnings(’ignore’,category=FutureWarning)
122 warnings.filterwarnings(’ignore’,category=RankWarning)
123 mod,sim= run_example2()
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