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Abstract

In this thesis top quark decays to a charm quark and a (CP even) Higgs boson (φ) are
investigated in a general two-Higgs-doublet model (2HDM) allowing flavour-changing neu-
tral currents. The theory behind 2HDMs is introduced and the specific choice of 2HDM
is put to test under theoretical constraints that require the potential in the Lagrangian
density of the model to satisfy vacuum stability, tree-level unitarity and perturbativity.
The parameter space of the specific 2HDM is also restricted by recent data from the LHC
on the signal strengths of the discovered Higgs boson in the γγ and ZZ decay channels.
In addition, constraints from a recent measurement of Br(t→ cφ) are taken into account.
This puts restrictions on the values of the off-diagonal Yukawa coupling ρct appearing in
the t → cφ decay. It is found that the commonly used Cheng-Sher ansatz regarding the
order of magnitude of this flavour-changing neutral coupling is not severely constrained by
the measurement.



Populärvetenskaplig beskrivning

Först lite terminologi: Standardmodellen är en kvantfältteori. S̊adana beskriver störningar
i fält och dessa kallas för partiklar. Tänk dig svallv̊agorna som följer p̊a ytan i ett badkar
vari en sten släppts, fast i tre dimensioner istället för tv̊a, det är ett fält. Varje ele-
mentär partikel är en störning i ett s̊adant tillhörande fält (eller ”kvantum” varav namnet
kvantfält). Fälten kommer i tv̊a sorter: fermionska och bosonska. De förstnämnda fälten
beskriver all materia vi känner till, samt lite till som kan skapas i acceleratorer men som
inte är n̊agot vi stöter p̊a till vardags. Bosonfält beskriver hur fermionfält interagerar med
varandra, hur störningar i ett fält kan orsaka störningar i ett annat. Ett bekant bosonfält
är det elektromagnetiska, som även är känt som ljus. Störningar i detta fält kallas för
fotoner.

Higgsfältet framlades som ett förslag p̊a 60-talet för att lösa problemet med varför vissa
(b̊ade fermion och boson) partiklar har massa. Cirka 50 år senare hittades en Higgsboson
(störning i det bosonska Higgsfältet) med rätt egenskaper s̊asom förutsagda av Standard-
modellen. Teorin beskriver massans ursprung p̊a ett liknande sätt som andra interaktioner
och sätter dem nästan p̊a jämn fot. Olika fält interagerar med Higgsfältet olika mycket och
detta gör att partiklarna f̊ar olika massa. De blir ”tröga”, som fysiker säger om partiklar
med massa, av att färdas genom Higgssoppan. Att ha massa är nämligen ett annat sätt
att säga ”att inte färdas i ljusets hastighet”.

Fysiker tycker att enkelt är snyggt (och praktiskt), därför har man i Standardmodellen
antagit att det bara finns ett Higgsfält som ger upphov till alla massor. Det finns dock
stora anledningar att l̊ata fler Higgsfält sköta jobbet. I den enklaste utvidgningen av teorin
inför man istället tv̊a Higgsdubletter som trots namnet introducerar fem nya partiklar i
teorin. Många vidare teorier som kan förklara varför laddning är kvantiserad och mörk
materia (med trevliga ord som supersymmetri och storförenade teorier) kräver minst detta
för att fungera.

I denna uppsats har jag undersökt en konsekvens av detta ”första steg mot en allmännare
teori”. En ny teori ska helst förklara allt som Standardmodellen förklarar och lite till, s̊a
att man kan särskilja dem med experiment. En s̊adan skiljelinje visar sig vid sönderfall av
en toppkvark till en charmkvark1 och en (valfri)2 Higgsboson. Detta sönderfall sker nästan
aldrig enligt Standardmodellen men kan göra det i tv̊a-Higgs-dublett modeller.

Jag har undersökt hur vanligt förekommande detta sönderfall f̊ar och kan vara, enligt
teoretiska och experimentella begränsningar. Sönderfallet är speciellt för just en viss sorts
tv̊a-Higgs-dublett modell (kallad 2HDM-III), i alla andra varianter är det väldigt sällsynt.
Om det g̊ar att hitta en signal för detta sönderfall, s̊a skulle allts̊a alla andra sorters tv̊a-
Higgs-dublett modeller och de teorier som bygger vidare p̊a dessa, visa sig vara felaktiga.
Många flugor i en smäll, med andra ord.

1Ytterligare n̊agra fermioner: De kommer i flera smaker. Smak är faktiskt den tekniska termen. Ett
topp- till charm sönderfall kallas för en smakändrande (neutral) ström.

2Men elektriskt neutral, om man ska vara petig.
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1 Introduction

The Standard Model has been successful at describing most interactions between funda-
mental particles, and in 2012 the LHC group announced the discovery of the long sought-for
Higgs boson [1]. However, this is not the end of particle physics. Many questions are still
left unanswered, for example; why is charge quantized? Why is gravitation so weak? What
is dark matter?

The scalar boson found at LHC is consistent with the Standard Model Higgs theory
by all the data obtained so far. It is of great interest to further study its properties, as
any deviations from the Standard Model can indicate which extended theories that are
compatible with observations, to know where to proceed next.

The Standard Model is an effective theory meaning it claims only to explain physics
up to a certain energy scale. Beyond this, new physics must necessarily arise. A new good
effective theory must incorporate the Standard Model at the relevant energy scale, but also
predict new phenomena. One approach to this is to extend the minimal Brout-Englert-
Higgs mechanism used in the Standard Model to contain two complex doublets, resulting
in five physical particles and three Goldstone bosons. Models that are based on this
assumption are called two-Higgs-doublet models, 2HDMs for short. 2HDMs are interesting
because for a minimum added complexity, a lot of interesting (and experimentally testable)
phenomena, that doesn’t occur in the Standard Model, are allowed to occur in 2HDMs.
One of these phenomena is the occurrence of flavour-changing neutral currents (FCNCs)
at tree-level, which is forbidden in the Standard Model. These FCNCs provide a good test
to compare different models beyond the Standard Model.

There are stringent limits on FCNCs from meson oscillations [2] which puts strong
restrictions on the models in which they occur naturally at tree-level. The rarity of FCNCs
has led physicists [3] to formulate versions of 2HDMs3 that are naturally free of FCNCs
at tree-level. This can be done by imposing a Z2 symmetry on the Higgs couplings to
fermions.

There are many variants of 2HDMs that are free of FCNCs at tree-level, each im-
posing different Z2 symmetries and thereby removing some degrees of freedom from the
Lagrangian. The most popular of these is called Type II. As Type II is favoured in ex-
tended theories requiring supersymmetry, much work has been done on the implications of
this model and restrictions based on current experimental data. If no assumption of extra
symmetry is made4, one obtains 14 degrees of freedom in the potential and 27 degrees of
freedom in the Yukawa sector, among which some lead to FCNCs at tree-level.

Three of the new particles introduced in 2HDMs are neutral scalar bosons h, H and
A that can mediate FCNCs.5 It is assumed that one of the neutral scalars is the particle
found at LHC, and the other two have unknown masses. The particle found at LHC is one
of the two scalars h or H. Two cases arise: either the particle found is the heavier of the
two (in this thesis called either case mH = 125 GeV/c2 or the heavy found Higgs case), or

3Type I, II, Type - LS and Type - Flipped
4In this thesis referred to as Type III
5Two are spin-zero scalars (h, H) and one is a pseudoscalar (A) in fermion interactions (CP-odd)
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it is the lighter one (case mh = 125 GeV/c2 or the light found Higgs case).6 The remaining
scalar bosons in 2HDMs are electrically charged. The properties of these charged bosons
will not be treated in this thesis.

The most significant difference between 2HDM-III and the Standard Model is the oc-
currence of FCNCs, and one of these FCNCs comes from top quark decay to a charm
quark and a Higgs boson at tree-level. The Higgs boson can be any of the three neutral
scalars and all cases can in general contribute to the branching ratio. This decay occurs
in the Standard Model but only through loops and is forbidden at tree-level, making the
branching ratio too small to ever be observed.

In the 2HDM Type III, the branching ratio could be within detectable limits depending
on the values of an undetermined Yukawa coupling and a parameter-space angle. A recent
measurement have put an upper limit to Br(t→ cφ) (φ = h, H, A) [4], and this restricts
the value of the coupling. Under the commonly used Cheng-Cher ansatz [5], the order of
magnitude of the Yukawa couplings is estimated so as to not give too large FCNCs and
still be natural. If the Yukawa coupling related to t→ cφ is required by the measurement
to be many orders of magnitude larger or smaller than unity, the 2HDM - III may face
problems with fine-tuning.

The parameter-space angle relates the found Higgs boson h (H), to the undiscovered
Higgs boson H (h). Therefore, experimental restrictions on signal strengths through pro-
cesses measured at the LHC restricts also the allowed parameters in a 2HDM. Explicitly,
the branching ratio Br(t → cφ) depends on four undetermined parameters (the Yukawa
coupling, the parameter-space angle and two unknown masses of the neutral Higgs bosons).
But theoretical considerations such as vacuum stability, tree-level unitarity and perturba-
tivity introduces implicit relations between all free parameters in the theory, and these
relations must be satisfied in every type of 2HDM.

The purpose of this thesis is to investigate the t → cφ decay under theoretical con-
straints and experimental restrictions on the parameter space of a 2HDM - III. The out-
line is as follows: In Section 2 the Standard Model and the minimal Brout-Englert-Higgs
mechanism is reviewed. The theory behind two-Higgs-doublet models and the theoretical
constraints on the parameters of the potential is introduced in Section 3. In Section 4
the Yukawa Lagrangian is expressed in different bases and the relations between different
2HDMs with Z2 symmetries is explained. Towards the end of Section 4, the general 2HDM-
III that allows FCNCs is introduced and restricted by some assumptions. The branching
ratio Γ(t → cφ) is given in Section 4.4 (derived in Appendix A). In Section 5 the experi-
mental restrictions from measurements of the properties of the discovered Higgs boson in
the φ → γγ and φ → ZZ decay channels are discussed and all the results are presented
and discussed in Section 6. The conclusions drawn from the results are summarized in
Section 7 along with an outlook for further investigations.

6By common convention, H always denotes the heavier of the two neutral scalar fields (found or not)
and h the lighter.

6



2 Symmetries in the Standard Model

This section will describe how the minimal Brout-Englert-Higgs mechanism used in the
Standard Model works. Those who are familiar with it may skip to Section 3. The rea-
soning throughout this section is heavily inspired by [6] and most equations in this section
are obtained from Chapter 8 in [6].

The Standard Model Lagrangian LSM = T − V describes all interactions between par-
ticles observed. It contains kinetic terms T and interaction terms in the potential V . The
Lagrangian of the Standard Model is made invariant under operations of SU(3) x SU(2) x
U(1) which in turn gives rise to gauge bosons and interaction terms between gauge bosons
and fermions. This is all seen explicitly by adding new terms in the covariant derivative in
order to keep L invariant under rotations in the different spaces. All fermion interactions7

in the first generation are described by [6]:

Lfermion,G1 =
∑

f=L, eR, (νR), QL, uR, dR

fiγµDµf, (2.1)

where the left-handed leptons and quarks are put in SU(2)-doublets L = (νeL, eL)T ,8

QL = (u, d)T and the right-handed terms are SU(2)-singlets. The other generations can be
included by simply adding terms like Lfermion,G1 but with e → µ, τ , νe → νµ, ντ , u → c, t
and d → s, b for both the left-handed and right-handed terms. A general U(1) symmetry
means that the theory makes the same predictions (which requires that L keeps the same
form) if f is changed to f ′ by the transformation

f → f ′U(1) = eiθ(x)f U(1). (2.2)

This is called a local U(1) symmetry since the phase θ(x) is allowed to depend on position.
LSM is also invariant under rotations in SU(2) and SU(3) space. This means that the
transformations:

f → f ′SU(2) = eiε
i(x)·τ if SU(2), (2.3)

where the τi (i = 1, 2, 3) are the Pauli matrices and for the quark SU(3) terms (with the
Gell-Mann matrices λa , a = 1, ..., 8):

f → f ′SU(3) = eiα
a(x)·λaf SU(3), (2.4)

leaves L unchanged.
The full covariant derivative that keeps L invariant under SU(3) x SU(2) x U(1) is:

Dµ = ∂µ − ig1
Y

2
Bµ − ig2

τ i

2
W i
µ − ig3

λa

2
Ga
µ. (2.5)

7Assuming they are massless.
8The notation (νeL, eL)T =

(
νeL
eL

)
is used for spatial convenience.
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Where gi are the gauge couplings, Y is the hypercharge, Bµ is the gauge field required to
keep L invariant under U(1), W i

µ for SU(2) and Ga
µ for SU(3).

Equation (2.1) is essentially the Dirac-equation for massless particles, with additional
gauge terms in the covariant derivative Dµ in order to keep L invariant under the above
mentioned symmetries. One important thing should be noted: equation (2.1) is assuming
all fermions to be massless, but they are not. Adding a mass term m to Eq. (2.1),
Dµ → (Dµ−m) would break the SU(2) symmetry explicitly. The same problem occurs for
the gauge particles, mass terms of the required dimension m2W+

µ W
µ− cannot simply be

added to the Lagrangian without breaking the SU(2) symmetry.

2.1 The Minimal Brout-Englert-Higgs Mechanism

There’s a neat way to give mass to the particles, developed by Brout, Englert and Higgs in
the 60’s [7] [8], that breaks the SU(2) symmetry of L only at one point, the ground state
(or vacuum) of the potential.

An additional spin-zero field is added to the theory in the form of a SU(2) doublet:

Φ =

(
Φ+

Φ0

)
=

(
φ1 + iφ2

φ3 + iφ4

)
, (2.6)

where Φ+ and Φ0 are complex fields. The Lagrangian for the spinless doublet is:

(DµΦ)†DµΦ− µ2Φ†Φ− λ(Φ†Φ)2, (2.7)

where Dµ is the covariant derivative including the Electro-Weak SU(2) x U(1) gauge fields
and µ2 and λ are free parameters. Focusing on the potential of the field:

V = µ2Φ†Φ + λ(Φ†Φ)2 (2.8)

This ’Mexican hat’ potential has a minimum at Φ†Φ = 0 if µ2 > 0 and at Φ†Φ = −µ2
2λ
≡ v2

2

if µ2 < 0. Since there are four fields in Φ†Φ = φ2
1 + φ2

2 + φ2
3 + φ2

4. The minimum can be
reached in a non-trivial (four-dimensional Mexican hat) way:

Φ†Φ = φ2
1 + φ2

2 + φ2
3 + φ2

4 =
v2

2
.

Picking, quite arbitrarily, the point φ3 = v, φ1 = φ2 = φ4 = 0 the SU(2) doublet field can
be expanded around this point (the vacuum),

Φ =
1√
2

(
0

v + h(x)

)
. (2.9)

Put into the potential part of (2.8) yields a mass term for the field h(x):

−1

2
(2λv2)h2(x) ≡ −1

2
m2
hh

2(x).
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Writing the relevant part of the first term in (2.7) with U(1) and SU(2) terms from the
covariant derivative explicitly (the SU(3) term is omitted since Φ is a SU(2) doublet and
a SU(3) term acting on it gives zero by definition and the normal derivative ∂µ is not
interesting for the purpose of generating mass):

Φ†
(
ig1

Y

2
Bµ + ig2

~τ

2
· ~Wµ

)†(
ig1

Y

2
Bµ + ig2

~τ

2
· ~W µ

)
Φ. (2.10)

Evaluating this gives

1

8
v2g2

2

(
(W 1

µ)2 + (W 2
µ)2
)

+
1

8
v2(g1Bµ − g2W

3
µ)2.

The linear combination of Bµ and W 3
µ appearing in the second term is proportional to the

physical particle denoted by Zµ, Zµ ∝ (g1Bµ − g2W
3
µ) and the first term in brackets is

2W+
µ W

−µ. So,(1

2
vg2

)2

W+
µ W

−µ +
1

2

(1

2
v
√
g2

1 + g2
2

)2

ZµZ
µ ≡ m2

WW
+
µ W

−µ +
1

2
m2
ZZµZ

µ.

And thus, the gauge vector bosons have acquired mass. Note that there is a factor of 2
difference between the mass terms for a charged gauge boson and a neutral one. Note also
that no mass terms of the sort:

1

2
m2
A(g2Bµ + g1W

0
µ) =

1

2
m2
AAµA

µ

appears, the photon remains massless.
The fermions (except for the neutrinos) of the first generation can be given mass using

a different Lagrangian (which from now on will be denoted Lyukawa):

Lyukawa = geLΦe−R + gdQLΦdR + guQL(−iτ2Φ∗)uR + h.c. (2.11)

When expanded around the vacuum of (2.9) this expression becomes:

Lyukawa =
gev√

2
ee+

gdv√
2
dd+

guv√
2
uu+

ge√
2
eeh+

gd√
2
ddh+

gu√
2
uuh. (2.12)

The first three terms have the right dimensions to be interpreted as mass terms mf =
gfv√

2
and the last three terms represent interactions with a field h.

The same Lagrangian (with obvious substitutions) can generate mass for the other
generations as well.
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3 2HDM

As the name suggest, in a two-Higgs-doublet model two doublets of the form (2.6) are
introduced [9]. This gives rise to 5 physical fields and three Goldstone fields that turn into
the longitudinal polarisations of the W± and Z. In addition, many new parameters are
introduced that make the model slightly more intricate than the minimal Brout-Englert-
Higgs mechanism in the Standard Model, but many new interesting phenomena can occur.
The basic idea is the same; a non-zero vacuum expectation value breaks the SU(2) x U(1)
symmetry and mass terms arise. The theory is described in this and the following section.

3.1 Generic Potential

With two complex scalar SU(2) doublets Φ1,2, a gauge-invariant and renormalizable po-
tential can be written [10]:

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1

(
Φ†1Φ1

)2

+
1

2
λ2

(
Φ†2Φ2

)2

+
1

2
λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+

1

2
λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

{
1

2
λ5

(
Φ†1Φ2

)2

+ λ6

(
Φ†1Φ1

)(
Φ†1Φ2

)
+ λ7

(
Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c.

}
.

(3.1)

As will be discussed in detail later, the differences between various models of this kind
(usually called 2HDM I, II, III) consist of imposing different symmetries that require some
of the parameters to vanish. In the most general model, all parameters can have non-zero
values and (with CP-violation allowed) the parameters m2

12 and λ5,6,7 are allowed to be
complex. Imposing a Z2 - symmetry (Φ1 → Φ1, Φ2 → −Φ2) require m2

12 and λ6,7 to be zero.
The parameter m2

12 is soft-breaking since the Z2 symmetry is regained in the high-energy
limit (more on this in section 4.1). The two complex SU(2) doublet fields can be written:

Φ1 =

(
φ1 + iφ2

φ3 + iφ4

)
, Φ2 =

(
φ5 + iφ6

φ7 + iφ8

)
.

A vacuum expectation value (abbr. vev) of the respective doublets that breaks SU(2) x U(1)Y

but keeps the UEM symmetry can be written [10]:

〈Φ1〉 =
v√
2

(
0

cos β

)
, 〈Φ2〉 =

v√
2

(
0

eiξ sin β

)
(3.2)

where v is the same as in the Standard Model, eq. (2.9). In the rest of this thesis CP-
conservation will be assumed which follows by putting ξ = 0 and requiring that m2

12 and
λ5,6,7 are real. The angle β has been introduced such that

tan β =
〈Φ2〉
〈Φ1〉
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which is true only if CP is conserved. In the following, the notation sβ = sin β, cβ = cos β
and sβ−α = sin(β − α) will be used.

With the generic potential in 3.1 acquiring a vev as in 3.2, some mass terms arise such
as:

m2
A =

m2
12

sin β cos β
− v2

2
(2λ5 + λ6 cot β + λ7 tan β), (3.3)

and

m2
H± = m2

A +
v2

2
(λ5 − λ4). (3.4)

The other mass terms can be summarised in the following mass matrix M :

M2 = m2
A

(
s2
β −sβcβ

−sβcβ c2
β

)
+v2

(
λ1c

2
β + 2λ6sβcβ + λ5s

2
β (λ3 + λ4)sβcβ + λ6c

2
β + λ7s

2
β

(λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β λ2s

2
β + 2λ7sβcβ + λ5c

2
β

)
(3.5)

Since the mass matrix contains off-diagonal terms, a rotation by an angle α can be per-
formed to get to the mass eigenstate with eigenvalues m2

H , m2
h :

R(α)M2RT (α) =

(
m2
H 0

0 m2
h

)
(3.6)

In terms of the elements of the mass matrix in (3.5), the eigenvalues are:

m2
H,h =

1

2

[
M2

11 +M2
22 ±

√
(M2

11 −M2
22)2 + 4(M2

12)2
]

(3.7)

These in addition tomA andmH± are the physical masses in a 2HDM with CP-conservation.
In terms of the fields in the physical mass-eigenstate basis, the original doublets (Φ1,

Φ2) can be expressed as [10]:

Φ1 =
1√
2

( √
2(G+ cos β −H+ sin β)

v cos β − h sinα +H cosα + i(G0 cos β − A sin β)

)
, (3.8)

Φ2 =
1√
2

( √
2(G+ sin β +H+ cos β)

v sin β + h cosα +H sinα + i(G0 sin β + A cos β)

)
. (3.9)

Where G±, G0 are three Goldstone bosons that turn into the longitudinal polarisation
states of W± and Z as they propagate and h, H, A and H± are the physical fields with
masses as in (3.7), (3.3) and (3.4).

The two-Higgs-doublet model calculator (2HDMC) [10] is a program that can calculate
various observables in any (CP-conserving) 2HDM with or without Z2 symmetries once the
free parameters of the specific model are set. The 2HDMC has been updated and used to
calculate branching ratios and check the parameter-space of the model under consideration
in this thesis.
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3.2 Theoretical constraints

In what follows, the theoretical considerations that are used when checking allowed param-
eters in the model will be described briefly.9 All of these constraints are implemented in
the 2HDMC [10] and can be checked once a given set of parameters (mh, mH , mA, mH± ,
m2

12, sin(β−α), tan β in the physical basis or λi’s in the generic basis) have been specified.
This routine is used when checking the parameter points in Section 6.

3.2.1 Vacuum stability

For the vacuum to be stable the potential in (3.1) needs to be bounded from below. The
potential must not reach negative infinity for large values of the fields in any direction in
(Φ†1Φ1, Φ†2Φ2)-space. This is only true for some sets of values of the λi’s in the generic
potential (3.1). The constraints on the λi’s due to vacuum stability are summarized as
follows:

λ1, λ2 > 0 , λ3 > −
√
λ1λ2, (3.10)

and for λ6 = λ7 = 0 which ensures the Z2 symmetry is only softly broken in the potential
as is assumed for the rest of this thesis:

λ3 + λ4 − |λ5| > −
√
λ1λ2. (3.11)

With these constraints on the λi’s, the vacuum of the Higgs potential Φ†1Φ1 + Φ†2Φ2 = v2

2

is the global minimum. Recall that the λi’s are related to the masses mh, mH , mA and
mH± in the physical basis by equations (3.7), (3.3) and (3.4), so this puts constraints on
the masses of the Higgs particles.

3.2.2 Tree-level unitarity

The scattering matrix S describing the probability of transitioning from an initial state I
to a final state F must respect unity, that is:

S†S = 1,

which is to say that the probability of either going to state F, in whatever way, or not, must
sum to one. The λi couplings in (3.1) appear in the elements of the scattering matrices
SY,Σ for a given hypercharge Y and weak isospin Σ and the tree-level unitarity constraint
requires that the eigenvalues Li of SY,Σ be: |Li| < 16π. This puts bounds on the λi’s that
can be calculated and checked with 2HDMC.

3.2.3 Perturbativity

Perturbativity requires that the quartic self-couplings of and between the Higgs scalars
λφiφjφkφl (for example λhhhh, λhHHH etc.) not be too large. This stems from the require-
ment that the theory should be able to be described perturbatively. The quartic couplings

9For a more thorough description see for example [9] or [11].
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of the physical Higgs fields are related to the λi’s in the generic basis by (3.8) and (3.9) if
expanded in the generic potential (3.1). The requirement puts bounds on λi of the quartic

couplings in the generic potential in (3.1) in order to keep a typical loop factor
λ2φiφjφkφl

16π2 < 1.

4 Yukawa interactions

In analogy with Eq. (2.11), the 2HDM Yukawa Lagrangian in the generic basis for the first
generation can be written:

−LY = QL(Y d
1 Φ1 + Y d

2 Φ2)dR +QL(Y u
1 Φ̃1 + Y u

2 Φ̃2)uR + L(Y l
1 Φ1 + Y l

2 Φ2)eR + h.c. (4.1)

Where QL = (uL, dL), L = (νe, eL), the Y f
1,2 are Yukawa couplings in the generic basis and

Φ̃i = −iτ2Φ∗i . For the other generations the same Lagrangian apply if the substitutions
u → c, t, d → s, b and e → µ, τ are made. From equation (3.2) it is evident that the
doublets can be rotated to a basis where only one of the doublets gets a non-zero vev. In
this basis, called the Higgs basis, the new doublets are denoted H1 and H2 and are related
to the generic doublets Φ1 and Φ2 by a rotation:

H1 = cos βΦ1 + sin βΦ2 (4.2)

H2 = − sin βΦ1 + cos βΦ2 (4.3)

or inverted:
Φ1 = cos βH1 − sin βH2 (4.4)

Φ2 = sin βH1 + cos βH2 (4.5)

The Yukawa Lagrangian (4.1) in the Higgs basis is obtained by simply replacing

Y f
1 Φ1 + Y f

2 Φ2 = κfH1 + ρfH2, (4.6)

κf and ρf are the couplings to fermion f in the Higgs basis.
Expressing Φ1 and Φ2 in terms of the physical fields as in (3.8) and (3.9) and inserting

into (4.2), (4.3) and repeating for each family gives the Yukawa Lagrangian expressed in
terms of the physical fields in the Higgs basis given below in Eq. (4.7).

The Yukawa part of the 2HDM Lagrangian is suitably expressed in terms of the physical
fields h, H, A and H±. Fermions are denoted as vectors in flavour space D = (d, s, b)T for
down-type quarks, U = (u, c, t)T for up-type quarks, L = (e, µ, τ)T (in flavour space, not
the same L as in (4.1) where only one generation was considered) and ν̄ = (ν̄e, ν̄µ, ν̄τ ) for
neutrinos. This Yukawa Lagrangian does not contain any mass term for neutrinos and so
they are assumed massless.10

10A discussion of the implications of massive neutrinos to 2HDM is thus left for further investigations.
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The Yukawa Lagrangian can then be written as:

−LYukawa =
1√
2
D
{
κDsβ−α + ρDcβ−α

}
Dh+

1√
2
D
{
κDcβ−α − ρDsβ−α

}
DH +

i√
2
Dγ5ρ

DDA

+
1√
2
U
{
κUsβ−α + ρUcβ−α

}
Uh+

1√
2
U
{
κUcβ−α − ρUsβ−α

}
UH − i√

2
Uγ5ρ

UUA

+
1√
2
L
{
κLsβ−α + ρLcβ−α

}
Lh+

1√
2
L
{
κLcβ−α − ρLsβ−α

}
LH +

i√
2
Lγ5ρ

LLA

+
[
U{VCKMρ

DPR − ρUVCKMPL}DH+ + νρLPRLH
+ + h.c.

]
.

(4.7)

PR and PL are the usual projection matrices PR/L = 1
2
(1 ± γ5). The κF (F = D, U, L)

matrices are κF =
√

2
v
MF where MF is the mass matrix in flavour space,

MF =

mF
1 0 0

0 mF
2 0

0 0 mF
3


The ρF matrices determine couplings in the various interactions contained in (4.7) and are
model-dependent. In the most general case ρF is arbitrary and can thus be non-diagonal.
They are free to be determined either by invoking symmetries or general arguments and this
is one of the places where different models can be put to test, as many of the interactions
described by (4.7) can be measured at high-energy colliders. In this thesis, focus will be
on the second row of (4.7), describing the up-quark interactions with neutral Higgs fields.

4.1 Flavour-changing neutral currents

Flavour-changing neutral currents are very restricted byK0−K0
andB0−B0

oscillations [2]
and experiments at LHC [4]. For top quark decays, the latest results show Br(t→ cφ) <
0.79% at 95% confidence level [4]. The fact that FCNCs are observed to be very rare
led Glashow and Weinberg [3] to postulate that in 2HDMs, the FCNCs at tree-level are
naturally absent due to some symmetry of the theory. The symmetry required is that all
fermions of a given charge couple to only one Higgs doublet.

A Z2 operator is defined with eigenvalues for Φ1, Φ2, QL and L (as in (4.1)) chosen to
be,

Z2Φ1 = Φ1,

Z2Φ2 = −Φ2,

Z2QL = QL,

Z2L = L.

The Z2fR (f = u, d, e) eigenvalues are allowed to be different for each fermion-type,
the eigenvalues for the right-handed terms can be chosen in eight different ways. Since
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a change in all the indices corresponds to a redefinition of sin β ↔ cos β, there are four
physically different ways to impose a Z2 symmetry in a 2HDM. These models are listed in
Table 1 in the next section.

Now let us see what happens if a Z2 symmetry is applied to equation (4.1). Focusing
on the first term only:

QL(Y d
1 Φ1 + Y d

2 Φ2)dR

The eigenvalues for all fields except for dR have been defined. Assume Z2dR = dR. If
this expression is to be invariant under a Z2 operation, then Y d

2 must be zero since
Z2QLY

d
2 Φ2dR = −QLY

d
2 Φ2dR. If instead Z2dR = −dR, the other term breaks the Z2

symmetry and so Y d
1 = 0 is the only acceptable choice if Ly is to be symmetric under a Z2

operation. Depending on what Z2 eigenvalue dR is assigned, it may only couple to one of
the two doublets. The same thing applies for the other fermion terms in (4.1) (as well as
for the other generations). If for example Y f

1 = 0 (by imposing a Z2 symmetry) in (4.6),
then the κf and ρf couplings in the Higgs basis must be proportional to each other:

Y f
2 Φ2 = κfH1 + ρfH2,

expanding Φ2 as in (4.5),

sin βY f
2 H1 + cos βY f

2 H2 = κfH1 + ρfH2, (4.8)

which implies:

ρf = cos βY f
2 = cot β sin βY f

2 = κf cot β. (4.9)

If instead Y f
2 = 0 then,

cos βY f
1 H1 − sin βY f

1 H2 = κfH1 + ρfH2, (4.10)

⇒ ρf = − sin βY f
1 = − tan β cos βY f

1 = −κf tan β. (4.11)

4.2 2HDM - II

If you follow the approach taken by Glashow and Weinberg [3], the assumption that each
type of fermions only couple to one doublet lead to various possibilities of combinations.
For example, all quarks and leptons can couple to one doublet (2HDM - I) or the up-type
quarks couple to one and the down-type quarks and leptons couple to the other (2HDM -
II). All of the models are illustrated in the table below:

Table 1: Different 2HDMs. [9] Caveat: Naming conventions vary a lot in the literature.

Fermion type 2HDM - I 2HDM - II 2HDM LS 2HDM - Flipped 2HDM - III
U Φ2 Φ2 Φ2 Φ2 Φ1, Φ2

D Φ2 Φ1 Φ2 Φ1 Φ1, Φ2

L Φ2 Φ1 Φ1 Φ2 Φ1, Φ2
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In order to fulfil the Glashow-Weinberg condition, the ρF (F = U, D, L) coupling
matrix must be proportional to the κF matrices with different proportionality constants
depending on which fermions couple to which doublet. In a 2HDM-II, the coupling matrices
are:

ρU = κU cot β, ρD = −κD tan β, ρL = −κL tan β. (4.12)

Since the κ matrices are proportional to the mass matrix and the fields are expressed in
the mass basis eigenstate, the requirement ρF ∝ κF implies that also the ρF matrices are
diagonal, i.e. no FCNCs. In this thesis, in order to reduce the number of free parameters
present in a completely general 2HDM, the diagonal elements of ρU and ρD are assumed
to be of the 2HDM-II sort, this makes tan β a physical parameter of the theory, whereas in
general (2HDM-III), only the difference between the angles β −α is a physical observable.
The starting point for the model investigated in this thesis is therefore a 2HDM-II but
with non-diagonal ρF .

4.3 2HDM - III

In a completely general 2HDM - type III, no restrictions on the elements of ρF are imposed.
However, in order to reduce the number of free parameters some reasonable assumptions
can be made. As mentioned in the preceding section, the diagonal elements ρii are here
assumed to be proportional to the corresponding κii elements according to (4.12). In
addition, an assumption regarding the off-diagonal FCNC generating elements ρij can be
made. T.P. Cheng and M. Sher argued in [5] that the assumption made by Glashow-
Weinberg in [3] that all the elements of ρF in a 2HDM-III should be of the same order of
magnitude (set by the heaviest fermion mass) is unreasonable. In the SU(2) generation-
model for fermions there is a clear hierarchical structure in the masses of fermions of
different generations. The elements of ρF are assumed to be proportional to the geometric
mean (to make the diagonal elements resemble κii) of the quark masses involved.

Qualitatively, the Cheng-Sher ansatz can be summarised as follows: The elements of
the coupling matrix ρF are,

ρFij = λij

√
2

v

√
mimj, (4.13)

where mi and mj are the masses of fermions of type F and λij are constants of order unity
(so that the relevant scale is determined by the quark-masses).

The assumptions made so far that will be used when calculating Br(t→ cφ) are:

1. The diagonal elements of ρU and ρD are as in a 2HDM-II.

2. The off-diagonal elements of ρU are as in the Cheng-Sher ansatz, equation (4.13) with
undetermined constants λij of order unity.

3. The couplings between anti-quarks and quarks are assumed to be the same ρct = ρtc.

4. Only FCNC between the heaviest quarks are considered, meaning all ρij are small
compared to ρct and thus are neglected ρij ≈ 0 except ρct.
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After all assumptions made, the ρU matrix is:

ρU =

√
2

v

mu cot β 0 0
0 mc cot β λct

√
mcmt

0 λct
√
mtmc mt cot β

 . (4.14)

In the plots for the branching ratios illustrated in Section 6, λct is varied between 0.1 ≤
λct ≤ 10 and the effect on Br(t→ cφ) is observed.

4.4 Top quark decay

t

c

h

Figure 1: Feynman diagram for top quark decay to a charm quark and a neutral scalar

The decay width Γ(t→ cφ), (φ = h, H, A) for the process in Figure 1 is given by [12]:

Γ(t→ cφ) =
g2
φ

16π
mt[(1± xc)2 − x2

φ] ·
√

1− (xφ + xc)2

√
1− (xφ − xc)2 (4.15)

Where ± is + for the CP-even scalars (h, H) and − for the CP-odd (A). Furthermore gφ
is gh = − 1√

2
ρct cos(β−α), gH = 1√

2
ρct sin(β−α) and gA = i√

2
ρctγ5. With kinematic factors

xc = mc
mt

, xφ =
mφ
mt

. A derivation of this expression is shown in Appendix A. Neglecting the
small term xc ≈ 0.008 it is seen that the decay width behaves approximately as a quartic
polynomial in xφ (and quadratic in gφ):

Γ(t→ cφ) ≈
g2
φ

16π
mt(1− x2

φ)2 , (xc ≈ 0). (4.16)

In the Section 6 Br(t→ cφ), which is simply Γ(t→ cφ) in equation (4.15) divided by the
total decay width of the top quark, is investigated. Of particular interest is; What values
of the couplings, the masses and sin(β − α) are allowed under the theoretical constraints
described in Section 3.2 and constraints on sin(β−α) and tan β coming from the properties
of the φ boson found at LHC [1] to be described in Section 5 as well as how this compares
to the experimental restriction that Br(t → cφ) < 0.79%? The 2HDMC code has been
upgraded in order to calculate FCNCs of the sort qi → qjφ and the results are presented
for the two cases mh = 125 GeV/c2 and mH = 125 GeV/c2.
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5 Experimental restrictions on sin(β − α)
The two most important channels for Higgs discovery at the LHC are the φ → γγ and
φ → ZZ → 4l11 processes shown in Fig. 2, 3 and 4 [13]. In addition to production
by gg → φ, the Higgs boson can also be produced by W+W− → φ, but in this first
investigation the latter is neglected and only the former, dominant production channel will
be considered [13]. The signal strength for a process with initial state I going to a final
state F is defined as,

µ =
σ(I → F )observed
σ(I → F )SM

. (5.1)

Experimentally found values of the signal strengths corresponding to these processes can
be used to put limits on sin(β − α) and tan β. Much work has already been devoted to
checking the allowed parameter space for sin(β−α) versus tan β (see for example [14] for a
thorough investigation) but recent updated values from LHC for the signal strengths [15]
motivates an updated analysis.

g

g

l

l
t

t

t

h/H

Z

Z
l

l

Figure 2: Feynman diagram for gg → h/H → 4l

g

g

t

W

γ

t

W

γ

t

h/H

W

Figure 3: Feynman diagram for gg → h/H → γγ through a W-loop.

11Throughout this section, φ = h or H will refer only to the found Higgs boson in the respective cases.
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t
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Figure 4: Feynman diagram for gg → h/H → γγ through a top-loop.

If the 2HDM should correspond to the observed data, then

σ(I → F )2HDM

σ(I → F )SM

= µ =
σ(I → F )observed

σ(I → F )SM

. (5.2)

The signal strength µhZZ (µHZZ) can be calculated and compared to experimental data.
With the approximation that gg → φ production via a top-loop dominates [13],

µφZZ =
σ(pp̄→ φ)2HDM

σ(pp̄→ φ)SM

· Br(φ→ ZZ)2HDM

Br(φ→ ZZ)SM

(5.3)

≈
(gφtt2HDM

gφttSM

)2

· Γ(φ→ ZZ)2HDM

Γ(φ→ ZZ)SM

· ΓTOT
SM

ΓTOT
2HDM

(5.4)

=
(gφtt2HDM

gφttSM

)2

·
(gφZZ2HDM

gφZZSM

)2

· ΓTOT
SM

ΓTOT
2HDM

. (5.5)

So far this is completely general and true for both µhZZ and µHZZ . The signal strength
µφγγ, corresponding to φ→ γγ, through the processes shown in Fig. 3 and 4 is,

µφγγ =
σ(pp̄→ φ)2HDM

σ(pp̄→ φ)SM

· Br(φ→ γγ)2HDM

Br(φ→ γγ)SM

(5.6)

≈
(gφtt2HDM

gφttSM

)2

· Br(φ→ γγ)2HDM

Br(φ→ γγ)SM

. (5.7)

For the case φ = h in a 2HDM-II from Eq. (4.7) and (4.12):

ghtt2HDM

ghttSM

=
cosα

sin β
, (5.8)

and for φ = H,
gHtt2HDM

gHttSM

=
sinα

sin β
. (5.9)

The h coupling to the Z-boson is [11]:

ghZZ2HDM

ghZZSM

= sin(β − α). (5.10)
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and for H,
gHZZ2HDM

gHZZSM

= cos(β − α). (5.11)

To compare
ΓTOT
SM

ΓTOT
2HDM

to experimental data, ΓTOT
SM is obtained from a tabulated reference [13].

The Higgs Cross-Section group has also calculated all partial Higgs decay widths and
branching ratios in the Standard Model [13] so these values are inserted immediately in
Eq. (5.4) and (5.7) and the 2HDM decays ΓTOT

2HDM and branching ratio Br(φ → γγ)2HDM

are calculated using 2HDMC.
An approximate analytic formula for µφZZ can also be obtained. This approach might

be useful to give an idea of how µφZZ behaves as a function of tan β and sin(β − α).
The Higgs boson mostly decays to bb̄ [13] and for a 2HDM-II in the case φ = h:

ghbb2HDM

ghbbSM

=
sinα

cos β
. (5.12)

So if
ΓTOT
SM

ΓTOT
2HDM

is approximated to its dominating channel,

ΓTOT
SM

ΓTOT
2HDM

≈ ΓhbbSM

Γhbb2HDM

=
( ghbbSM

ghbb2HDM

)2

=
(cos β

sinα

)2

, (5.13)

this gives the following expression for µhZZ :

µhZZ ≈
sin2(β − α)

tan2 α tan2 β
. (5.14)

As for the case φ = H, the same approximation apply, with the change

gHbb2HDM

gHbbSM

=
cosα

cos β
. (5.15)

Leading to

µHZZ ≈
cos2(β − α) tan2 α

tan2 β
. (5.16)

The process φ→ γγ can happen through two processes, shown in Fig. 3 and 4. However,
the two channels interfere giving linear terms in cos(β − α), so no simple approximate
analytic formula for µγγ can be obtained.

6 Results and discussion

In the following, the results obtained using 2HDMC will be presented. The 2HDM under
consideration, after all assumptions, still contains free parameters and some of them will
simply be chosen to have a fixed value (m2

12,mA,mH±) accepted by all the theoretical
constraints, whereas others are varied (mh,mH , sin(β − α), tan β) in the different plots
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presented throughout this section. The values for the parameters that are fixed as well as
the different mh and mH values that are used in the plots are presented in Table 2.

Table 2: Parameter values used in the different cases, the masses of mh and mH , tan β and
sin(β − α) will be stated explicitly in each plot. Every mass term in the table is given in
units GeV/c2.

Parameter Case mh = 125 GeV/c2 Case mH = 125 GeV/c2

mh = 125 75, 95, 115
mH = 400 125
mA = 500 500
mH± = 500 500
m2

12 = 500 500

The fixed mass parameters (m2
12, mA, mH±) are chosen to not give trouble regarding

the theoretical constraints of section 3.2 but also to be heavy enough to not affect other
Higgs decay widths at tree-level. If a more thorough analysis would be made, for example
using the programs HiggsBounds [16] and HiggsSignals [17], specific masses with the given
parameters that give acceptable values for observables (within measured values) could be
found. In this investigation, the mass terms are just chosen to be heavy to not enter any
of the illustrated decays. There is one exception that needs to be treated with care. In
the heavy found Higgs case, the light Higgs can obviously not be made any heavier than
125 GeV/c2. In this case its effects on all measured observables need to be calculated, this
has been done in [14] and they found acceptable points for mh. In this investigation, the
experimental dependence on mh in the heavy found Higgs case is excluded, and this means
that the points (y1, y2 and y3) chosen in Fig. 8 might not necessarily be acceptable if
all measured observables are calculated. However, the approach has been to illustrate the
dependence of Br(t → cφ) on sin(β − α). Even if precisely these points aren’t physically
acceptable, as shown in [14] some points in the near region can be found that are.

6.1 Allowed values for sin(β − α)

With the mass terms fixed according to Table 2, the only free parameters left are λct,
sin(β − α) and tan β. The last two are related to each other through the signal strengths
µγγ and µZZ as discussed in Section 5. Fig. 5 and 6 show the allowed regions after
imposing the 68% confidence level (CL) constraints 0.90 < µγγ < 1.43 (red area) and
1.15 < µZZ < 1.70 (green area) as the signal strengths have been measured in [15] for the
two cases mh or mH found respectively. The blue area corresponds to the overlap, where
both restrictions are satisfied.
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Figure 5: Allowed values for tan β and sin(β − α) based on the signal strengths µγγ and
µZZ in the case mh = 125 GeV/c2.

The limit sin(β − α) → 1 is called the alignment limit [14], in which the couplings to the
found Higgs boson becomes exactly as in the Standard Model. When this happens, the
model can still have two neutral CP-even scalars, but their couplings to fermions are not
related to each other in the general case12. In the mH = 125 GeV/c2 case, the alignment
limit corresponds to cos(β−α)→ 1 or sin(β−α)→ 0. The sign of sin(β−α) depends on
how the angle α is defined and may differ from conventions used in other articles.

The parameter-space shown in Fig. 6 does not depend on mh (as long as 2mh > mH ,
to prevent the decay H → hh) so the blue area shown there is a valid region with the
given parameters for all values of mh in the range mH

2
< mh < mH shown in Fig. 8. In

fact, all the allowed parameter regions in Fig. 5 and 6 are independent of any mass term,
as listed in Table 2 (apart from the found Higgs boson mass at 125 GeV/c2). The effects
of imposing the theoretical constraints from section 3.2 are shown in Fig. 7 and 8. Note
that this introduces a dependence on the masses of the other Higgs bosons as explained in
more detail below.

12That is, in a Type - III. In a Z2 conserving 2HDM, they can still be related by the relations in Eq.
(4.12).
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Figure 6: Allowed values for tan β and sin(β − α) based on the signal strengths µγγ and
µZZ in the case mH = 125 GeV/c2.

23



Figure 7: Allowed values for tan β and sin(β−α) in case mh = 125 GeV/c2 after imposing
both experimental and theoretical constraints as explained in the text.

The parameter-space in Fig. 7 and 8 is restricted by both µγγ, µZZ and all theoretical
constraints (vacuum stability, tree-level unitarity and perturbativity). In order to illustrate
the dependence of Br(t→ cφ) on sin(β − α), two points x1 and x2 in Fig. 7 (from left to
right, respectively) have been picked, one from each region. They are highlighted with blue
crosses at x1 = (sin(β−α)1, tan β1) = (0.419, 0.31) and x2 = (0.978, 1). These points will
be used later when calculating the branching ratios in Fig. 10. For case mH = 125 GeV/c2

as illustrated in Fig. 8, three points y1, y2 and y3 have been picked, one in each region
(again from left to right). These points are used in the calculation of branching ratios in
this heavy found Higgs case, as illustrated in Fig. 11, 12 and 13: y1 = (−0.901, 0.3),
y2 = (−0.329, 4.81) and y3 = (−0.168, 2). These points have been chosen deliberately
to be allowed in all the illustrated cases mh = 75 GeV/c2, mh = 95 GeV/c2 and mh =
115 GeV/c2.

When the theoretical constraints (as described in 3.2) are applied as in Fig. 7 and 8, the
allowed parameter region does depend on the masses since the constraints on the couplings
λi’s in the generic basis are related to the physical masses through equations (3.7), (3.3)
and (3.4). This means that if also the other mass terms would be varied, more allowed
parameter points could be found and the red region in Fig. 7 and 8 would expand. For the
given set of mass terms, perturbativity imposes the strongest constraint and is responsible
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Figure 8: Allowed values for tan β and sin(β−α) in case mH = 125 GeV/c2 after imposing
both experimental and theoretical constraints as explained in the text.

for much of the vanished region for increasing mh in Fig. 8.
The branching ratio Br(t→ cφ) doesn’t depend on tan β so any point along a vertical

line (within the red area) could have been chosen in Fig. 7 and 8. This is particularly inter-
esting in Fig. 8 since the allowed parameter region removed by the theoretical constraints
for larger mh mostly correspond to higher values of tan β and doesn’t affect the allowed
values of sin(β − α) very much, at least in the region 0 < tan β < 8 that is observed.

Data from B−B meson mixing and Rb
13 measurements [18] forces tan β & 1 unless mH±

is quite heavy. This is another reason why mH± was chosen to be heavy in Table 2. As seen
in Fig. 9 below, slightly lower values than tan β = 1 are allowed for mH± = 500 GeV/c2

at 95% CL but it is doubtful if the points x1 in Fig. 7 and y1 in Fig. 8 are allowed. They
have been included anyway for illustrative purposes.

13Rb ≡ Γ(ZZ → bb)/Γ(ZZ → hadrons) [18].

25



Figure 9: Constraints on (tan β, mH±) from B−B mixing and Rb data in Type II. Picture
obtained from [14].

6.2 Branching ratio Br(t→ cφ)

Now that a few parameter-points for sin(β−α) accepted by measurements and theoretical
constraints have been found, the branching ratios for t→ cφ in the different cases can be
calculated. The still undetermined Yukawa coupling λct is varied between 0.1 < λct < 10
in the figures below. The results are illustrated in Fig. 10 in the light found Higgs case
for two different values of sin(β − α) to illustrate the dependence and show what ranges
of Br(t → cφ) when λct is varied that these points correspond to. In the heavy found
Higgs case, as mentioned earlier, the undiscovered light Higgs boson must also enter the
top decay. In addition to the dependence on sin(β − α) illustrated for the three points y1,
y2 and y3 in each figure Fig. 12, 11 and 13, the dependence for Br(t→ ch) on mh (in the
range mH

2
< mh < mH) for three different values of mh are illustrated in the respective

different figures. In all of the plots, the experimental limit Br(t → cφ) < 0.79% at 95%
CL as measured in [4] is illustrated as a horizontal line. Note that this limit is only valid
for the found Higgs boson, as will be discussed below. According to the Cheng-Sher ansatz
discussed in Section 4.3, the constant λct should be of order unity. In the figures throughout
this section, the effects from the experimental limit on this assumption will be illustrated
and discussed.
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Figure 10: Branching ratio for t→ ch in case mh = 125 GeV/c2 for the different parameter
points x1 = (0.419, 0.31) and x2 = (0.978, 1).

As seen in Fig. 10, λct can be of order O(1) without conflicting with experiments in the
light found Higgs case. In the more probable close-to alignment limit (x2 because of the
tan β & 1 restriction in Fig. 9 from [14]) the experiment at [4] has just barely excluded the
largest allowed value of λct . 10. For the points x1 (x2) the experimental limit corresponds
to forcing λct < 2.1 (λct < 9.2).

The alignment limit to the Standard Model Higgs boson (with absence of FCNCs at
tree-level) can be seen in Fig. 10, as sin(β − α) → 1 (x2 compared to x1) and Br(t →
ch)→ 0 since gh = − 1√

2
ρct cos(β − α)→ 0 in equation (4.15). The same thing happens in

case mH = 125 GeV/c2 in Fig. 11, 12 and 13 for gH ∝ sin(β − α) → 0 (y3 compared to
y1), but FCNCs involving the undiscovered Higgs boson h can still occur in this case since
it couples to the general ρ matrices when cos(β − α) = 1.
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Figure 11: Branching ratio for t→ c(H, h) in case mH = 125 GeV/c2 and mh = 75 GeV/c2

for the different parameter points y1 = (−0.901, 0.3), y2 = (−0.329, 4.81) and y3 =
(−0.168, 2).
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Figure 12: Branching ratio for t→ c(H, h) in case mH = 125 GeV/c2 and mh = 95 GeV/c2

for the different parameter points y1 = (−0.901, 0.3), y2 = (−0.329, 4.81) and y3 =
(−0.168, 2).
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Figure 13: Branching ratio for t→ c(H, h) in case mH = 125 GeV/c2 and mh = 115 GeV/c2

for the different parameter points y1 = (−0.901, 0.3), y2 = (−0.329, 4.81) and y3 =
(−0.168, 2).
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The restrictions on λct in the heavy found Higgs case for the various values of mh and
sin(β−α) are summarized in Table 3. It is seen that λct can be of order unity in this case,
for all parameter points, as well.

Table 3: Limits on λct from Br(t→ cH) < 0.79 %.
mh = 75 95 115
y1 λct < 2.1 λct < 2.1 λct < 2.1
y2 λct < 6.5 λct < 6.3 λct < 6.1
y3 λct < 25 λct < 18 λct < 14

Something interesting occurs in Fig. 11, 12 and 13. Since the experimental limit Br(t →
cH) < 0.79 % as measured in [4] is only obtained for a Higgs mass of mH = 125 GeV/c2

the channel Br(t → ch) in the heavy found Higgs case is not taken into account in [4].14

In Fig. 11, 12 and 13 with (the more probable) angles (y2, y3), Br(t→ ch) is even larger
than the channel through the found Higgs (mH = 125 GeV/c2). This implies that an
investigation of the kind done in [4] but for a Higgs mass lower than 125 GeV/c2 and
with the corresponding right couplings could be of interest. However, one should note
that before such an investigation is started, the allowed mass ranges for mh and couplings
through their effect on other measured observables15 should be performed, in particular
since a low Higgs mass could enter and dangerously affect many observed decays.

7 Conclusions and outlook

To conclude, in this thesis a 2HDM - type III with diagonal elements as in 2HDM - type II
under the constraints imposed by vacuum stability, tree-level unitarity and perturbativity
has been investigated. It is shown that the allowed region of sin(β−α) is almost indepen-
dent of the mass of a lighter Higgs boson with 2mh > mH in the case mH = 125 GeV/c2

with 0 < tan β < 8, for a specific set of mass terms, as far as the theoretical constraints
are concerned.

In addition, the effect on the model from recent restrictions on top quark related FCNCs
in [4] has also been investigated. It has been shown that the experimental restriction on
top quark flavour-changing neutral decay t → cφ can be accounted for in a 2HDM - III
using Cheng-Sher’s ansatz, the undetermined coupling λct can be of order unity in both
cases without conflicting with experiment.

For large sin(β−α) in case the found Higgs boson is the heavy one, the branching ratio
for t → ch is shown to be larger than the branching ratio Br(t → cH) that was searched
for in [4], implying that a similar investigation taking into account the effects of a lighter
Higgs boson might be of interest.

14In other words, the horizontal line at Br(t → cH) in Fig. 11, 12 and 13 is only valid for the red line
(decay to H).

15For example by implementing HiggsBounds [16] and HiggsSignals [17] in 2HDMC and looping over
the allowed masses and couplings.
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From the limits on the Yukawa coupling, it is clear that acceptable values of the pa-
rameters in a 2HDM - III can be found without fine-tuning16, the experimental limit on
Br(t→ cφ) does not require a 2HDM - III to resort to fine-tuning of its parameters.

Many things could be improved in a further investigation: Since the mass terms involved
were chosen quite arbitrarily, a more thorough investigation would include letting the mass
terms vary to find more allowed values for sin(β − α) under the constraints of vacuum
stability, tree-level unitarity and perturbativity. Such an analysis should make use of
tools such as HiggsBounds and HiggsSignals to check how the masses and couplings affect
other experimentally measured decays. This restriction would make the allowed region in
parameter-space shrink. This is done in [14], but the allowed mass terms are not stated
explicitly.

From an experimental perspective, it might be interesting to know in what range of
λct one might hope to be able to find the decay t → cφ. Since the statistical error σ in
Br(t → cφ) falls with the number of points N as 1√

N
, to get an experimental value with

10 times better precision than for example the one in [4], the LHC would have to acquire
∼ 100 times more data. The integrated luminosity used in [4] is 20.3 fb−1 and one would
have to acquire an integrated luminosity of 2000 fb−1 which will probably take O(10) years.
This means that if λct . 1 it is unlikely that the Br(t→ ch) channel ever will be observed
in the light found Higgs case or Br(t → cH) in the heavy found Higgs case according to
the model considered in this thesis.

Of greatest interest would be to check if, in case the found Higgs is the heavier, there
exist points in (mh, mA, m

±
H , m

2
12)-space acceptable by all measured observables (as can

be checked in HiggsBounds) that allows the branching ratio Br(t→ ch) to be detectable.
Since the investigation in [4] used the H → γγ decay, it would be necessary (and easily done
using 2HDMC) to check the h→ γγ with correct couplings and a lower-than-125 GeV/c2

Higgs mass. In addition, other channels that contributes to unwanted background should
be checked, perhaps not even the h→ γγ channel is optimal for searches for t→ ch for a
lower Higgs mass.
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A Derivation of the Decay Width for t→ cφ

For a tree-level decay with A→ B+C, the decay width Γ is (in natural units c = ~ = 1) [6]:

dΓ =
1

(2π)2

1

2EA
δ4(PB + PC − PA)

dPB
2EB

dPC
2EC
M2 (A.1)

In the rest frame of A [6]:

dΓ =
| ~Pc|
E2
A

dΩC

32π2
M2 (A.2)

The overlined matrix element M2 implies averaging over spins:

M2 =
1

2

∑
spin

M†M

For the process t→ ch the relevant part of the Yukawa Lagrangian (4.7) is

Lct = − 1√
2
cρct cos (β − α)t ≡ cght.

where gh = − 1√
2
ρct cos (β − α) has been defined (for gH simply change − cos(β − α) →

sin(β − α) and gA = i√
2
ρctγ5). Assigning the four-momenta such that t has P1, c has P2

and h has P3, the Feynman rules give that the matrix element M can be written as

M = u(P2)(−ig)u(P1)

⇒M†M = u(P1)(ig)u(P2)u(P2)(−ig)u(P1),

and

M2 =
1

2

∑
spin

M†M =
1

2
g2Tr[( /P2 +mc)( /P1 +mt)]

=
1

2
g2Tr[( /P2 /P1 +mcmt)]

(A.3)

Since P1, P2 are scalars in Dirac space (but not /P2 = γµa,bP2µ or /P1 = γνb,cP1ν since γµa,b and
γνb,c have two Dirac indices and are matrices in Dirac space):

Tr[ /P2 /P1] = Tr[γµa,bP2µγ
ν
b,cP1ν ] = Tr[γµa,bγ

ν
b,c]P2µP1ν = 4gµνP2µP1ν = 4P µ

2 · P1µ.

The mass term in (A.3) is implicitly multiplied by a unity matrix, giving:

mcmtTr[1] = 4mcmt.
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So
M2 = 2g2(P µ

2 · P1µ +mcmt).

Putting this into the expression for the decay width in the rest frame of t (where EA = mt,

P1µ = (mt,~0) and | ~Pc| = | ~P2|):

dΓ =
| ~P2|
m2
t

dΩ2

32π2
2g2(P µ

2 · P1µ +mcmt),

=
| ~P2|
m2
t

dΩ2

32π2
2g2(E2mt +mcmt).

Integrating over all angles possible (isotropic since no particular direction is preferred) and

using that E2
2 = | ~P2|2 +m2

c gives

Γ =
g2

4πmt

| ~P2| ·
[√
| ~P2|2 +m2

c +mc

]
. (A.4)

For three-body scattering [19]:

| ~P2| =
mt

2
(1 + x4

c + x4
h − 2x2

c − 2x2
h − 2x2

cx
2
h)

1
2 =

mt

2
λ

1
2 (1, x2

c , x
2
h)

=
mt

2

√
1− (xh + xc)2

√
1− (xh − xc)2,

(A.5)

where the kinematical factors are xc = mc/mt and xh = mh/mt. λ(1, x2
c , x

2
h) is the Källén-

function with proper arguments.

The factor
[√
| ~P2|2 +m2

c +mc

]
can be rewritten after some algebraic manipulation:

[√
| ~P2|2 +m2

c +mc

]
=
[1

2
(m2

tλ(1, x2
c , x

2
h) + 4x2

cm
2
t )

1
2 + xcmt

]
,

=
mt

2

[
(1 + x4

c + x4
h + 2x2

c − 2x2
h − 2x2

cx
2
h)

1
2 + 2xc

]
,

=
mt

2

[
((1 + x2

c − x2
h)

2)
1
2 + 2xc

]
=
mt

2

[
(x2

c + 2xc + 1)− x2
h

]
,

=
mt

2

[
(1 + xc)

2 − x2
h

]
.

(A.6)

So the decay width, using equations (A.5) and (A.6), is

Γ =
g2

16π
mt[(1 + xc)

2 − x2
h] ·
√

1− (xh + xc)2 ·
√

1− (xh − xc)2. (A.7)

For the CP-odd pseudoscalar A, because of the γ5 matrix in the coupling gA and since
γ5 /P = −/Pγ5, a minus sign appears in (A.3) that propagates to (A.7) and changes the plus
in (1 + x2

c) to a minus, thus the expression in (4.15) is obtained.
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