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Abstract

Experimental single qubit gate fidelities in the rare-earth quantum computing (REQC)
scheme was found to be lower than predicted by simulation of the optical Bloch equations
for the system. The cause was believed to be excitation-induced frequency shifts (EFS),
so this BSc thesis investigates a model for EFS in Eu:YSO where stochastic frequency
shifts are imposed on the ions. This was implemented as a convolution of the solution
to the Bloch equations in each time step with a convolution kernel, where the width of
the kernel was dependent on the change in excitation. The simulation was run for a 7us
complex hyperbolic secant pulse, one of the pulses used in previous experiments. The
result was decreased fidelity, but not enough to explain the experimental result. This
indicates that EFS may not be the main cause of the experimental fidelity losses, but
more thorough investigation is required to draw more certain conclusions.
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List of Abbreviations

DFT
EFS
FFT
FWHM
NMR
RE
REQC
RK4
YSO

discrete Fourier transform
excitation-induced frequency shift

fast Fourier transform

full width at half maximum

nuclear magnetic resonance

rare-earth element

RE-doped-crystal-based quantum computing
4th order Runge-Kutta method

Y5SiO5 (yttrium silicate)
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Chapter 1

Introduction

This chapter introduces the reader to the key concepts and motives for this work. A
brief introduction to the theory of quantum computing and the preceding experiments
carried out by the quantum information group in Lund is provided, while the in-depth
discussion is postponed to chapter 2. Understanding the results of experiments such as
those performed in Lund is the main motivation for the simulation that constitutes the
body of this thesis. Finally, the goals and scope of the work is discussed in section 1.3.

1.1 Introduction to Quantum Computing

By analogy to the binary unit of classical information and computation, the bit, a similar
unit for quantum information, the qubit, can be defined. The qubit is a two-level quantum
mechanical system with eigenfunctions representing 0 and 1 respectively, but contrary to
the classical bit the qubit has not only the possibility to be in a state 0 or 1, but can
also be in a superposition thereof. Classical bits are always independent and need to be
addressed individually. For instance, it is not possible to prepare two bits such that a
manipulation addressing only one of them automatically affects both. This is possible for
qubits however, due to quantum entanglement which can be thought of as a superposition
of more than one qubit. The field of quantum information and quantum computing evolves
around harnessing the information carrying power of exotic effects such as superposition
and entanglement.

Just like classical computation is represented by circuits of binary logical gates, also
quantum computing can be represented using a model of circuits of quantum gates. There
is an infinite number of potential quantum operations that could be represented as a quan-
tum gate. It can be shown however, that a set of only four universal gate types is needed to
perform any quantum operation with arbitrary accuracy. More complicated algorithms
for carrying out some computation can then be constructed as circuits of such gates.
Although quantum algorithms seem capable to perform many of the tasks of classical
algorithms, quantum algorithms have to have some significant advantage over a classical
counterpart to be of any real interest. Generally, there are three classes of algorithms
with this characteristic [1, p. 37]. These are Fourier transform-based, quantum search
and quantum simulation algorithms, and they all rely on the information compressing
advantages of superposition and entangled states.

As the size of classical computer hardware approaches the limit where quantum effects
can no longer be ignored, there will be the need for far better understanding and control
of the quantum world than there is today. But for quantum computing to extend beyond



being a merely a theoretical curiosity, there has to be a way to physically implement qubits
such that advantageous algorithms can be demonstrated. A working quantum computer
would bring computational power enough to break the public key cryptographic systems
on which much of today’s information security relies. Also, the possibility to simulate
larger scale quantum systems would have a tremendous impact on the natural sciences.

1.2 Preceding experiments in Rare-Earth Quantum
Computing

Various implementations of qubits have been proposed and tested experimentally, and
they all have their merits and drawbacks. The qubit system investigated in Lund uses
hyperfine levels of the ground state of rare-earth (RE) dopant ions in inorganic crystals.
Several combinations of dopants and host crystals have been investigated, although this
thesis mainly concern europium-doped yttrium silicate, Eu*:Y,SiO5 or Eu:YSO for short.
One of the merits of this system is the long life and coherence time of the hyperfine levels,
which is mainly due to outer electron shells shielding the ground state from the atom’s
surrounding, allowing the state of the qubit to evolve undisturbed for relatively long
periods of time.

Also, the resonance lines of the dopant ion species are strongly broadened by the
crystal, where this band is made up of narrower lines corresponding to ensembles of
ions in the crystal that happen to resonate at some frequency within the band. These
ensembles can be addressed separately by tuning the frequency of the narrow-band laser
light sent into the crystal. Therefore, RE doped crystals are said to be highly frequency
selective. The frequency selective feature in combination with a technique called hole
burning, where spectral regions are be emptied of absorbing ions by optical pumping
them to other levels, allows ensembles of ions to be transferred between states by tailored
laser pulses and series of pulses. This interaction between ion and light is described by
the optical Bloch equations introduced in section 2.2.2.

Such an ensemble represents a qubit in the RE-doped-crystal-based quantum comput-
ing (REQC) scheme, thus known as an ensemble qubit. However, this approach poses a
difficulty as the ensemble has to remain in the same state over time. The accuracy with
which an ensemble can be transferred to a given state is known as fidelity, and loss of
fidelity in the transfer to an intended state means losing the information that state rep-
resents. A previous simulation of single ensemble qubit state transfers, upon which this
work is based, predicts the fidelity to be higher than 99.9% for a full population inversion.
Experiments on the other hand have fidelities around 96-98% which is believed to be
due to excitation-induced frequency shifts (EFS) of the resonance frequency of the ions.
This shift occurs because the excitation of one ion changes the permanent electric dipole
moment of that ion and thus the local electric field, imposing a Stark effect perturbing
the neighbouring ions’ levels. The effect on the obtained population in the excited state
le) is illustrated in figure 1.1 where a pulse of sweeping frequency v has excited ions of all
ensembles I through III in ascending order, thus inducing EFS to the degree where some
ions are no longer in resonance and therefore left in their ground state |g).
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Figure 1.1 The pulse v sweeps from lower to higher frequency. As ensemble I is excited,
a small shift is induced for some ions of ensemble II. Most ions of ensemble II are can still
be excited however. Moreover this induces a stronger shift on some ions of ensemble III,
shifting them out of resonance with the pulse. The result is fidelity below 100%, or that full
excited state population is not obtained. Note that this figure merely illustrate an example
of how EFS can occur and is not intended to give the full picture. In reality, ions of all
ensembles will be distributed randomly, and without preference to ions of similar resonance
frequency as might be tempting to conclude from the figure.

1.3 Scope of the Thesis

The goal for this work, as set out at the beginning of the diploma work course, was
to incorporate EFS due to dipole-dipole interaction into an existing simulation of the
optical Bloch equations (2.4), introduced in chapter 2, for a single RE qubit in order
to investigate whether dipole-dipole interaction could be the cause of the reduced qubit
fidelity as found by experiment compared to the fidelity of the simulated qubit. How to
model the interaction was not decided at that time, so naturally considerable time was
spent trying to understand and adapt the chosen model to the physical system at hand.

Necessary background information is covered in chapter 2. The original MATLAB
simulation and the incorporation of EFS effects is introduced in chapter 3. The model of
EFS used is the sudden-jump model as described by Graf [2] but for a single laser pulse,
and the implementation in MATLAB follows the example of Burr et al. [3].



Chapter 2

Background

The first part concerns quantum information and quantum computing at a general level.
Section 2.1.1 introduces the qubit and other fundamental concepts in quantum information
and quantum computing. The following sections 2.1.2 through 2.1.4 are intended to
give a brief overview of how a quantum computer could operate, and some common
examples of physical realisations are given in section 2.1.5. The second part provides the
experimental background in the group’s experiments. The physical system and methods
for manipulating it are briefly introduced in sections 2.2.1 and 2.2.3. Section 2.2.2 discuss
the Bloch equations in some detail as they provide the main tool for understanding the
two-level quantum systems considered.

2.1 Quantum Computing

2.1.1 The Qubit

The fundamental unit of classical information — the bit — is the computational basis
for all classical computation. It is a binary unit having either the value 0 or 1 and is
easily represented physically, for example on the hard drive of a modern computer or
the mechanical switches of the earliest realisations of a computing machine. By analogy,
a similar fundamental information unit known as a qubit can be defined for quantum
information. Qubits differ fundamentally from classical bits due to curious properties
stemming from their representation in a two-level quantum mechanical system. In a
system with two basis states, where the eigenfunctions represent 0 and 1 respectively, the
system can by the superposition principle of quantum mechanics take on a state |¢)) that
is any linear combination of the two basis functions,

) = al0) +B]1). (2.1)

The complex amplitudes o and 8 represent the probabilities of finding the system in either
of the respective states upon measuring, and can be arbitrary as long as they satisfy
the normalisation condition |a|> + [8]*> = 1. The quantum states in equation 2.1 are
given in Dirac notation, which will be used throughout this text. Using this probabilistic
fundamental unit of information to perform computing tasks may seem cumbersome at
first glance, but the application of basic principles of quantum mechanics opens new
possibilities for carrying out computations. Notable examples of such applications are
given in section 2.1.3.



The superposition property of a single qubit described above is one of the fundamental
resources of quantum information, meaning that the creation and manipulation of states
with the property can be thought of as "fuelling” quantum information processing. Another
crucial resource of quantum information is entanglement, which can be thought of as an
inseparable superposition of two or more qubits. For example,

_|00) +|11)

\/§ )
where |i7) represents the combined two-qubit system. This feature of quantum mechanical
systems have historically been the subject of much debate as its interpretation contradicts
our intuitive understanding of the physical world. Even if the qubits of the entangled pair
are separated by a very large distance, a measurement on either qubit will automatically
collapse the other qubit into the same state. Thus the shared state of the pair must be a
non-local property.

V) (2.2)

2.1.2 Quantum Gates

Classical computation can be described using a circuit model, which turns out to be
equivalent to the important Turing model, where the latter will not be further discussed in
this text. Please refer to for example [1] or other standard textbook in quantum computing
or classical computer science. The circuit model describes how binary bitwise operations
constitute algorithms for performing some computational task. These bitwise operations
are represented as logical gates, named after what logical operation they perform on the
input bits. An analogous circuit model using quantum gates is the standard model for
describing quantum computation, and is easily represented graphically. Figure 2.1 show
examples of symbols representing classical and quantum gates respectively.
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Figure 2.1 Examples of (a) classical logical gates operation on the bits a and b, and (b)
single qubit quantum gates where the matrices are all unitary and represent transformations
of the qubit. The Hadamard gate takes a state |0) or |1) to an equal superposition thereof,
and vice versa. The pictured Pauli gates perform rotations an angle = about the u and
v axes of the Bloch sphere in figure 2.3 respectively. Based on figures from Nielsen and
Chuang [1, pp. 131, 177].

Conveniently, it can be shown for both classical and quantum computation that there
exist sets of gates that are universal, meaning they can be put together such that they
perform any computable task with arbitrary accuracy. In the case of quantum gates,
some tasks may require polynomially or even exponentially many gates. The universality
however, only means that the computation is in principle possible using the universal set;
the solution may not be efficient. The concept of efficiency of a solution to a computational



problem is further discussed in section 2.1.3. In classical computation, the NAND gate
is universal, providing that fixed work bits and copying of bits are available. Quantum
computation requires a bigger set of gates generally consisting of both single and multiple
qubit gates.

2.1.3 Quantum Algorithms

As mentioned in chapter 1, the quantum computer has to show some significant advantage
over its classical counterpart to be of any relevance. There are a few notable algorithms
where a quantum computer could have such an advantage over a classical computer in
terms of time complexity, or how the time needed to solve the problem scales with the
size of the input. Common notation is O(x), where x is some function describing how
the execution time of some algorithm scales the number of input bits or qubits n. If the
function x is some exponential 2" or higher order, the solution is said to be inefficient.
Common for these quantum algorithms is that their inefficiency for solving certain prob-
lems classically is either a limiting factor, when simulating quantum systems for example,
or an exploited characteristic, in the case of public key encryption. There are three classes
of such algorithms [1, p. 37|, algorithms based on the quantum Fourier transform, quan-
tum search algorithms and simulation algorithms, where a quantum computer is utilised
for simulation a quantum system.

2.1.4 The DiVincenzo Criteria for a Quantum Computer

There is a set of criteria for a quantum computing machine commonly referred to as
the DiVincenzo criteria in honour of the author. These define what characteristics are
required of a computing machine operating in the quantum regime. DiVincenzo stated
[4] the following requirements:

1. The qubits are well characterised and the physical system is scalable.

2. It is possible to prepare a known initial state of a computation.

3. The coherence time of the system is much longer than the gate operation time.
4. It is possible to construct the set of universal quantum gates.

5. It is possible to read out the result of the computation.

These criteria state only a bare minimum of requirements. The requirements on a com-
puting machine able to perform the algorithms discussed in section 2.1.3 will for example
require a large number of qubits in addition to the above requirements. Criteria 2, 4 and
5 hardly require further discussion. However, criteria 1 and 3 are less obvious and deserve
some explaining.

The first of the DiVincenzo criteria concerns how well the two-level system constituting
the qubit is known. Generally, the internal Hamiltonian, any couplings to external fields
or other states of the qubit as well as the interaction with other qubits have to be known
with some accuracy. The system also has to be scalable to a certain extent in order to
be of any practical use, meaning it is possible to create and operate on a qubit register of
the size required for the task.



The third criterion concerns the coherence of the quantum system. All quantum
systems considered until this point have been assumed to be infinitely coherent. In reality
however, this is never the case as the outside world will interact with the system thus
causing it to change into some for us unknown state, or decohere. This will inevitably
also be the case for any qubit implementation. On the other hand, infinite coherence is
not required as this criterion states; the lower bound on the time during which the system
evolves in a predictable way is the time it takes to operate on the state with a quantum
gate.

2.1.5 Physical Qubit Realisations

The following section summarises the content of chapter 7 in Nielsen and Chuang [1], and
is intended to provide a brief overview of what types of schemes have been proposed and
tested as possible systems for realising a quantum computer.

Coherent photons One obvious candidate for a coherent quantum system is the pho-
ton, which has in principle infinite coherence time even in the presence of other photons.
Various schemes using either photon polarisation or cavity modes as qubits have been pro-
posed. Quantum gates can be constructed from phase shifters, beamsplitters and some
devise to mediate a photon-photon coupling, cavities containing a few atoms to which the
light couples in the case of a cavity scheme. The photon-photon coupling poses difficul-
ties to implement multi-qubit gates needed however required to fulfil the fifth DiVincenzo
criterion.

Nuclear spin Nuclear spin qubits utilising nuclear magnetic resonance (NMR) tech-
niques differs from the other schemes presented here, as the qubits consist of ensembles
of around 10'® molecules. The molecules are placed in a strong magnetic field and then
manipulated using magnetic field pulses. The coupling between qubits is provided by the
chemical bonds within the molecules. However, the efficiency of the readout decreases
exponentially with the number of qubits making scaling of the system very limited.

Trapped ions One of the most successful schemes so far uses hyperfine ground state of
trapped ions at low temperature. By applying suitable laser pulses the state of single ions
can be manipulated, and shared low phonon modes can be used for multi-qubit operations.
However, the phonon coherence time is short which limits the scalability of the scheme,
and cooling the ions down to their motional ground state is difficult.

Semiconductor-based schemes Maybe the more promising class of schemes for the
future are schemes based on semiconductor materials. For example quantum dots, con-
fined Cooper pairs in superconductors and magnetic flux through superconducting loops
has been proposed as qubits. Although being limited by their short coherence time, these
types of schemes have the great advantage of already existing infrastructure for semicon-
ductor research and large scale manufacture, making them yet promising for the future.



2.2 Rare-Earth ion Quantum Computing

The quantum computing scheme discussed in the rest of this work is rare-earth metal
dopant ion in a crystal, and is maybe closest related to the NMR scheme mentioned in
section 2.1.5. The two-level system is two hyperfine ground state levels of rare-earth ions
(RE) as in the case of trapped cold ions. But as the RE ions sit in a crystal, ensembles
of ions are addressed using tailored laser pulses. Multi-qubit operations are mediated
by ion-ion interactions, which are, however, believed to ultimately limit the coherence.
Understanding the influence and nature of decoherence due to ion-ion interactions lie at
the heart of this thesis.

2.2.1 Ensemble Qubits in RE Doped Crystals

Rare-earth ion doped crystals are attractive materials for quantum computer hardware
for a number of reasons, mainly related to their coherence properties. First of all, Eu and
other rare-earth metals have partly filled 4f shells which are shielded from the environment
by 5s and 5p shells, spatially located outside the 4f shells. Long lifetimes T and coherence
times Ty of states within the 4f shell are maybe largely due to being shielded by the 5s and
5p shells. Therefore, ground state hyperfine levels in the 4f shell pose a good two-level
candidate for a qubit.

Ions of rare-earth elements can be used as a dopant in inorganic transparent crystals,
like yttrium silicate YoSiOs where it can replace any of the two inequivalent yttrium sites.
At cryogenic temperatures of a few K, there are few phonons and thus low probability
of phonon interactions and there is no Doppler broadening as the ions are fixed in space.
There are other broadening mechanisms however. The crystal lattice is not ideal as the
dopant ions and other impurities distort the symmetry of the crystal and thus the local
environment of the individual ions, which results in broadening of the dopant ions’ spectral
line. When discussing absorption and emission by ions in a crystal, there is the need to
distinguish the inhomogeneous linewidth I';,, from the homogeneous I'j,. The first is due
to static interactions, such as inhomogeneities in the electric field within the crystal, and
depend on the absorber species at hand. The second is due to relaxation and dynamical
processes, and will be the same for all ions in the crystal [5, p. 9]. For our purposes, the
inhomogeneous linewidth can be seen as the sum of the homogeneous linewidths, as shown
by figure 2.2. An ensemble of ions in the crystal resonating at some frequency within the
inhomogeneous linewidth constitutes a qubit, and thus the maximum number of qubits
in the crystal is limited by the ratio I';,; /I, as this is the number of distinguishable
frequency channels addressable by the laser. Furthermore, it is also possible to filter out
and address ensembles of ions within I';,, that are located spatially close to each other,
and therefore interact strongly, to perform multi-qubit operations.
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Figure 2.2 The relatively narrow homogeneous linewidth T'j;, caused by relaxation and
other dynamical processed, is the same for all ions. The inhomogeneous linewidth I';,; is
due to distortions in the crystal lattice (a) and can be seen as the sum of the homogeneous
linewidths (b). Figure from [6].

2.2.2 The Optical Bloch Equations

In order to prepare and read out the state of a qubit, one needs to be able to predict the
time evolution of the two-level system. From the time dependent Schrédinger equation for
a two level quantum system in an electromagnetic field, a set of three coupled equations
describing the evolution of the system can be derived. By taking into account that the
upper state has a finite life time 7}, and that the system has a finite coherence time T,
during, the optical Bloch equations (2.4) are obtained. The results of the derivation is
summarised below, see for example Foot [7] for a detailed treatment.

For a coherent light pulse with electric field component E, the Rabi frequency is given
by

(gler-Ele)
h

for two levels' labelled g and e respectively and with r being the electron’s distance from

the atom’s centre of mass, making er the energy of the dipole. The Rabi frequency is in

general complex so with €2,.. and §2;,, representing the real and complex parts respectively,

the optical Bloch equations for the evolution of a two-level system read

Q= (2.3)

ou 1

A Ut Av+ 2.4
T T2u + Av + Q;pw, (2.4a)
ov 1

E = Au — ’_ZTQU + Qrew, (24b)
ow 1

— = Qi — Qe — — . 2.4
at imU rel Tl (WO + w) ( C)

where wy is the atomic resonance frequency and w is the frequency of the light field. Here
w is interpreted as the difference in population between the two levels, and u and v as
how the population difference u of a superposition between the two levels will oscillate in
time.

To illustrate the meaning of the Bloch equations, the Bloch vector is defined as

IThese two levels will be between one of the qubit levels 0 or 1 and an intermediate excited state, not
between 0 and 1 as 4f-4f dipole transitions are generally forbidden.



R = Uél + Uég + UJég, (25)

which is a vector on the unit sphere, or Bloch sphere, since |R|? = |u|? + |v|? + |w|? = 1.
The Bloch equations can then be restated as

R=Qr xR (2.6)

where € is analogous to a torque vector[6, p. 22| of the form

Qr = —Q,c€1 + Qi€ + Aés. (2.7)

Thus the coherent evolution of a two-level system can be understood pictorially as the
movement of the Bloch vector on the Bloch sphere. It is also straightforward to illustrate
the concept of pulse area assuming the envelope of the pulse varies slowly[6, p. 24],

O(t) = /0 t Qo (t)at, (2.8)

in terms of the Bloch formalism. A pulse area of 7/2 rotates the Bloch vector the same
angle about the €; axis, and similar for ® = 7 and © = 27 as shown in figure 2.3.

However, the trace of the Bloch vector over the surface of the Bloch vector for a
particular pulse may not be in a plane as shown in figure 2.3. A commonly used pulse in
the context of REQC is the complex hyperbolic secant pulse, or sechyp for short, where
the Rabi frequency is given by

Q(t) = Qo {sech [B(t — o))} (2.9)

for some Rabi frequency 2y at the mid-time ¢y, width parameter 5 and real constant pu.
This pulse has a an effect on both ions on resonance with the light field and those slightly
detuned while leaving ions resonating outside some frequency range unaffected, which is
an advantage when performing operations on an inhomogeneously broadened system. The
trace of the Bloch vector when a system interacts with a sechyp pulse will be a circulating
trace as shown in figure 2.4, although slightly varying depending on the detuning.

lg) +ile)

Figure 2.3 Rotation of the Bloch vector about the é; axis, starting from the ground state,
for different values of the pulse area ©. Figure from [6, p. 24].
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Figure 2.4 (a) Pulse envelope, (b) frequency sweep and (c) traces on the Bloch sphere
for slightly different detunings A. Typically, the frequencies are of the order of MHz and
the time of us. Based on figures from [6, pp. 30-31].

2.2.3 Qubit Preparation Using Spectral Hole Burning

Eu:YSO, being a material with inhomogeneously broadened optical transitions, also ex-
hibit a hole burning mechanism. Consider the hyperfine structure of the "Fy and °D,
levels shown in figure 2.5. The separations of the excited state levels are smaller than
those between the ground state levels, so the excited state can be considered to be a single
level for now. By tuning a laser to the resonance frequency of the level labelled |0), the
absorbers in that levels are excited, after which they decay to either of the three ground
states. By cycling the transition for some time the level can be emptied of absorbers
which will all have gone to the other two levels, a method known as optical pumping.
Now a laser is scanned in frequency over the spectral region of the |0) resonance fre-
quency, where decreased absorption at the resonance frequency will create a spectral hole
in the inhomogeneous absorption profile.

g

However, the existence of several excited

> state levels will also cause side holes at dis-
tances from the centre hole corresponding to

) e the excited level separations. Furthermore, the
)

MW NI

ground state separation, of the order of tens

of MHz, is smaller than the inhomogeneous

linewidth, of the order of GHz, so any ab-

sorbers decaying to the other ground states will

result in increased absorption at their respec-

) tive resonance frequencies. When scanned over,

) this mechanism will have created anti-holes at

9} frequencies resonant with transitions between

) these levels and the excited state levels. The

result from burning at a single frequency will

thus be a complicated structure of holes and
anti-holes.
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Figure 2.5 The level structure of Eu?t.
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Figure 2.6 Two spectral pits, around wy and w; respectively, have been prepared within
the inhomogeneous absorption line. An ensemble of ions that could represent a qubit has
been prepared at w;. Figure from [5, p. 24].

By widening the frequency range of the burning pulse, a wider spectral region known
as a spectral pit such as around wy in figure 2.6 can be created. The pit is a region close to
empty of absorbers, which will all have been pumped to levels resonant with frequencies
outside the pit. The pumping to other ground state levels is also what limits the pit
width. The hyperfine splitting of the states is the same for all homogeneous ensembles,
and a single burning pulse can neither excite absorbers in the highest ground state level
to any of the exited levels nor excite to the lowest excited state levels from any of the
ground state levels. The width is thus limited by the difference between the ground and
excited hyperfine splittings. By clearing the regions around the resonance frequencies
of the |0) and |1) levels followed by limiting the burning to a narrower frequency range,
some specific homogeneous ensemble can be transferred back into any of the two pits, or a
superposition thereof, by the methods described in section 2.2.2. Thus an ensemble qubit
has been prepared in a state such as around w; in figure 2.6 that can be manipulated and
read out.

2.2.4 Dipole-dipole Interaction Between RE Ions

There are several ways for ions in a crystal to interact, but only the type of interaction
involving static electric dipole moments will be considered in this work. Ions with a
difference in static electric dipole moment du between the ground and some excited state
will influence its environment when it absorbs a photon. When the dipole field surrounding
the ion changes due to the excitement of the ion, the energy levels of spatially neighbouring
ions acquire a shift ov, known as an excitation-induced frequency shift (EFS), in resonance
frequency as illustrated by in figure 2.7. This shift can be toward lower or higher frequency;,
and the magnitude of the shift should scale as 1/r®, where r is the separation, since this
is how the strength of a dipole field scales. The result on an absorption peak as in figure
2.8 for example, is broadening, so the ions having their resonance frequency shifted will
longer belong to the same homogeneous ensemble. The broadening effect is proportional
to the density of excited ions. If the impact of EFS is strong, as for a high excitation
density, a qubit cannot undergo many operations before the coherence of the ensemble,
and thus the information, has been lost. Therefore, understanding of whether EFS is
a major cause of lower-than-expected experimental fidelities is crucial for assessing the
prospects of the REQC scheme.

12



s P
7 \./’ \

o
® —_ / '"\\“ + b N
] 1
Vi@ ® - v1+6v1|.v - \ .
Yo
vﬁ‘.d—b. Vi |r :rl, 4—'—3 |V2+8V2
° I'z Vi Va | . /“\/ ? ,l
‘ \ \ l/ \\ ,’ l .
o y i ". = ’/

Figure 2.7 The excitation of the middle ion changes it’s electric dipole moment, causing
excitation-induced frequency shifts (EFS) dv; in it’s neighbours. The magnitude of the
shifts decrease with separation alike the strength of the dipole field, which decreases as

1/r3. Figure from [5, p. 15].
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Figure 2.8 EFS cause broadening of spectral features, such as the absorption peak pic-
tured here. The broadening is proportional to the density of excited ions. Figure from [5,

p. 16].

Absorption

Frequency

13



Chapter 3

Implementation of Dipole-Dipole
Interaction in the Bloch Simulation

This chapter presents a model for describing EFS and how this model is implemented in
the MATLAB simulation constituting this thesis. To keep the discussion at the general
level, definitions and algorithms are placed in appendices A and B. For the same reason, all
program code is placed in appendix C, where it has been split up in sections corresponding
to their function in the simulation for ease of reading.

The first part 3.1 describes in detail how the EFS can be modelled by assuming
stochastic jumps in resonance frequency of each homogeneous ensemble of Eu ions, based
on the overall excitation at each point in time. The last part 3.2 describes how the EFS
model discussed in the previous section can be incorporated into the solving of the Bloch
equations using convolution.

3.1 Stochastic frequency jump model of EFS

To simplify the modelling of EFS, dipole-dipole interaction between detuned ions only is
considered in the following treatment. It has been shown analytically[8] that the probabil-
ity distribution for obtaining a shift in resonance frequency due to a random distribution
of dipoles has a Lorentzian shape,

1 Fbr
Lia) = 2m A2 + T2 /4

where 'y, is the FWHM. As mentioned in section 2.2.4 the broadening by EFS is propor-
tional to the density of excited ions in the crystal,

(3.1)

Ly, = Fefs<w>Aa (32)

where (w)a is the population difference w from the Bloch equations (2.4) averaged over
detuning A and I'cs, is the strength of the dipole-dipole interaction. The strength of
the interaction can be derived from first principles [2, pp. 121-125], by assuming that
the time-dependent resonance frequency of some ion is given by the sum of the intrinsic
resonance frequency and the dipole-dipole interactions with ions at all other lattice sites in
the crystal occupied by a dopant ion. The broadening I'y,. of each homogeneous ensemble
at some time can be obtained from the macroscopic polarisation in the crystal, averaged
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over site occupations, stochastic excitations of the ions, and relative angular distribution
of the ions’ dipole moments. The strength I'.ys" is found to be[9]

s
Tegs = Zp(l4]) Do (33)

where p in equation (3.3) is the probability that a lattice site in the host crystal is replaced
by a dopant ion, and (|x|) is a geometrical factor due to the relative orientation of the
dipoles, ranging from 4,//27 when the dipoles are all parallel and 2/7 when perpendicular
with respect to the origin [10]. The dipole-dipole interaction Dy at the lattice unit distance
ro is given by

(6p)* _  hGE
dreghry  2e0e(0)rd

for interaction ions with difference in permanent dipole moment du between ground and
excited states. Here h and A are the Planck and reduced Planck constants respectively,
€o is the permittivity in vacuum and €(0) is the dielectric constant of the crystal. As
expected, the interaction scales as 1/r3. The last equality of equation (3.4) is a result of
replacing op with the expression containing the Stark coefficient (g in equation (7.27) of
[2, p. 129], which also reduces the dielectric correction [11] 1(0) to 1/¢(0).

In the context of incorporating EF'S into the solving of the Bloch equations, the broad-
ening effect of excitations at one point in time on the next is of interest. Therefore, the
broadening I'y, can reformulated as a width increment I', - between two discrete points in
time[3],

Dy = 1(0) (3.4)

I = Fefs/ lw" — w'™g(A)dA. (3.5)
A

where the integral returns the excitation density accumulated between time steps ¢ and
t — 1, averaged over detuning and the inhomogeneous line profile g(A), which is another
Lorentzian.

3.2 Simulating population transfer in the presence of
EFS

The model of EFS described in section 3.1 requires the computed Bloch component w
from both the current and the previous time steps in order to calculate the integrand of
equation (3.5), and for all detuning steps in order to compute the integral. This prohibits
the use of built-in MATLAB functions such as ode45, which returns the full solution to
the input differential equation over the entire range of the variable. The only way to
use such a function would be to incorporate the integral (3.5) into the Bloch equations
(2.4) but, since the integrand contains the difference in the Bloch component w between
two consecutive time steps, this is not so easily done. Therefore, the Bloch equations
are solved using a standard fourth order Runge-Kutta method (RK4), as described in
appendix A, thus allowing the width of the Lorentzian I} to be calculated in each time
step during the solving of the Bloch equations.

!Note that the notation here differs slightly from that in Graf [2]. The I'y, stated here is equivalent

to the 'grs_p given in Graf. Here I'c¢s corresponds to the factor 022" in Yan [9].
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Figure 3.1 (a) The smoother r * s(¢) is the convolution of some function s(t) with the
kernel r(¢). Figure from [12, p. 641]. (b) Extending the sequence to be convolved with zeros
that are discarded after the convolution prevents leakage of the kernel into the convolved
sequence. Figure from [12, p. 644].

The effect of EFS on spectral features, such as the absorption peak in figure 2.8, is
broadening and flattening. By convolving the solutions to the Bloch equations in a given
time step with the probability distribution L(A) for obtaining some shift in resonance
frequency A, the Bloch components u, v and w are smoothed in accordance?. The principle
is shown in figure 3.1a, where a some function s(t) is convolved with a kernel r(t) and
the result is the convolution r % s(¢) which has smoother and broader features than s(t).
Furthermore, in order not to distort the scale of the Bloch components, the probability
distribution L(A) has to be appropriately normalised. In a computer simulation, the
detuning range is always discrete and finite, why L(A) has to sum to 1 over the detuning
range. This is achieved by dividing each element of the discrete sequence by the sum of
the sequence.

A fast way to compute a discrete convolution is using discrete Fourier transforms
(DFT), in particular the Fast Fourier Transform (FFT) algorithm which is implemented
in the £ft function in MATLAB. The discrete convolution and the DFT are defined in
appendix B. The inverse convolution theorem states that the convolution of two functions
is equivalent to the inverse Fourier transform of the product of the respective forward
transforms. However, the theorem puts constraints on the functions we wish to convolve.
First, the sequences have to be of the same length, and second, the kernel is presumed to
be a periodic function [12, p. 643]. The kernel used for this simulation has a profile much
narrower than detuning range that is being simulated, but equal length of the respective
sequences is easily achieved by defining the kernel L(A) over the entire detuning range of
the Bloch components. Neglecting the second constraint would have the kernel ’leaking’
into the end-points of the convolved signal as a consequence. Therefore, one end of the
functions to be convolved can be padded with a number of zeros equal to the half the

2Since EFS also has a smoothing effect on the inhomogeneous spectral line g(A) which is used to
compute the integral 3.5, g(A) too has to be convolved with L(A). This is precisely the case shown in
figure 2.8. However, in the present case this effect is very small.
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non-zero extent of the kernel. To maintain equal lengths of the sequences, the zero-valued
region of the kernel is extended with the same number of elements. The extension is
distorted by the convolution, and discarding the padded region leaves the convolution
undistorted and restores the length of the original sequence. The principle is illustrated
in figure 3.1b. See [12, pp. 643-44] for a more in-depth treatment of the issue.

In the simulation, the number of zero-pads is determined by setting a tolerance for
considering an element of the convolution kernel defined by L(A) to be non-zero and
counting the number of non-zero elements. All sequences to be convolved are in total
padded with the half number of non-zero elements. The kernel L(A) with half the number
of pads in both beginning and end, and the Bloch components u,v and w as well as g
with all the pads at the end, thus equal length of the sequences is maintained. Lastly,
the Bloch components are cut off at the end, restoring the original length for use of the
result as input for solving the Bloch equations in the nest time step. No cutting is needed
for the kernel as a new kernel is defined in each time step. See lines 14 through 16 in
appendix C for reference.

Before the simulation, a matrix for each of the Bloch components u, v and w, with
dimension corresponding to the simulated time and detuning ranges, is initialised. The
u and v matrices with all elements set to 0 and the w matrix with all elements set to -1
corresponds to the ensemble qubit being in a ground state |g). The use of the RK4 method
is easily implemented as two nested loops; the outer loop stepping in time and the inner
in detuning in this case. In each step of the outer loop, time step, the Bloch equations
are solved by stepping in detuning (the inner loop) for the fixed time. The zero-padding
and convolution described above is carried out at the end of the inner, detuning, loop.
The result after the convolution is stored along the detuning dimension of the matrix and
used as input for solving the Bloch equations in the next step of the outer, time, loop.
The implementation of this procedure is found in program code 1 in appendix C.
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Chapter 4

Results

The convolution as described in section 3.2 was introduced in the simulation and the
efficiency for a pulse used experimentally for single qubit state transfers is presented in
section 4.2. The scaling of the transfer fidelity with the size of the time step is of interest
as the EFS model would not be valid unless the fidelity converges for smaller time step
sizes. This is verified in section 4.3. Some numerical artefacts were observed which are
mentioned in section 4.4. Some comments on the performance of the simulation conclude
the chapter.

4.1 The Sechyp Pulse and Typical Population Curve
Shape
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Figure 4.1 The simulated pulse, with the same parameters as used in the single qubit
transfer experiments in Eu:YSO. Pulse parameters are specified in table 4.1.

The pulse chosen for the simulation is one that was used in the preceding experiments
carried out by the quantum information group. The pulse envelope, where the amplitude
is 510 kHz, and corresponding sweep over the frequency domain are plotted in figure
4.1. Both plots show the full pulse duration of 7 ps. The parameters determining the
pulse are presented in table 4.1. For reference, a typical population curve (without the
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effects of EFS) resulting from the 7 ys pulse is provided in figure 4.2, and the width of
the population curve agrees with the inversion stated in table 4.1 as well as the range of
the sweep in figure 4.1b. In the results presented in the following sections, only the most
relevant parts of the curve will be shown.

’ Parameter \ Value ‘
Pulse duration [ps] 7
Pulse centre [ps] 3.5
FWHM [ps] 2.6
Width of population inversion [kHz] | 960
Rabi frequency € [kHz] 510

Table 4.1 Parameters for the experimental pulse used in the simulation. The plots in
figure 4.1 show the full duration of the pulse.
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Figure 4.2 A typical population curve obtained for the pulse in figure 4.1.

4.2 Simulation of a Single Sechyp Pulse

The excited state population immediately after the pulse, with and without the impact of
EFS, are plotted in figure 4.3. It shows the population in a range around its maximum,
corresponding to the plateau of the curve in figure 4.2 outside which the population de-
creases rapidly. The upper curve corresponds to the RK4 solution the Bloch equations
(2.4) only, and the lower to the solution including the effect of EFS, for the calculated
interaction strength I'c;s of 4.34 MHz. The input parameters for determining the con-
volution kernel L(A) and the strength of the dipole-dipole interaction I'.ys are given in
table 4.2.
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\Parameter \ Value \ Comment \

Cinn [GHZ] 2.5 For Eut at site I [2, p. 117]
€(0) 7 2, p. 129]

ro [nm] 0.24 2, p. 133]

Cs [kHz/(V cm™!)] 35 2, p. 117]

P 1.25-107% | for 0.1% Eu®" [2, p. 133]
(|k]) 0.7 see section 3.1 and [10]

Table 4.2 Parameters specific to the Eu:YSO crystal, used to determine the width of the
convolution kernel Fir and the interaction strength I'cf, in the simulation.

The upper curve in figure 4.3 has a maximum at 99.56% and the lower at 99.41%.
This is to be compared to the experimental value of around 98% for the corresponding
state transfer using the same pulse. However, the exact peak fidelities vary somewhat
with the choice of time and detuning step sizes used in the simulation. The step sizes
in the case presented here, given in table 4.3, are chosen to optimise the runtime while
keeping the obtained fidelity in a range where it is roughly constant with changes in the
time step size.

\ Fidelity \ Value \ Comment ‘
RK4 solution (no EFS) | 99.55% | 4.7 ns time steps, 20 kHz detuning steps
With EFS 99.41% | T'.ps = 4.34 MHz, step sizes as above
Experimental 98% lg) — |e) transfer

Table 4.3 Comparison of fidelities obtained in simulation and experiment using the pulse
described in section 4.1.

4.3 Fidelity Scaling With Time Step and Dipole Mo-
ment Magnitudes

A greater time step will result in a greater population difference from one time to the next
in the integral (3.5) and thus a wider kernel with a greater smoothing effect from the EFS
convolution, and vice versa. For the output of the simulation to be physical however, the
absolute value of the population difference w has to converge towards some value smaller
than or equal to 1, even though the smoothing effect decreases with the time step size.
Assuming that the step size of the detuning grid is small enough to resolve the narrow
convolution kernel L(A), the obtained fidelity is expected to vary very little with the time
step size.

The fidelity was investigated for varying time step sizes, using the same sechyp pulse
of duration 7 ps and amplitude 2y = 510 kHz, as specified in table 4.1. The maximum
excited state population for a few different time step sizes are plotted in figure 4.4.

In order to further verify that the model behaves physically, the impact of varying
difference in dipole moment between the ground and excited states was investigated. One
would expect the EFS effects to be larger for increased dp as the resulting changes in
local electric field are increased, leading to larger frequency shifts. The difference in
dipole moment dyu is proportional to the Stark coefficient (g [2, p. 129], the value of (s
was varied in 5 kHz/(V em™!) increments, and the result is shown in figure 4.5.
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Figure 4.3 Simulated excited state population for a pulse of duration 7 pus and amplitude
Qo = 510 kHz, specified by the parameters stated in table 4.1, with and without the effect
of EFS. The upper curve has a maximum at 99.56% and the lower at 99.41%.
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Figure 4.4 The maximum population obtained for the pulse in figure 4.1 in the presence
of EFS when increasing the number of time steps, or equivalently decreasing time step size.
Here the detuning step size is 25 kHz so the obtained maximum fidelity for 1500 time steps
(approx. 4.7 ns steps) is not in agreement with the fidelity presented in section 4.2, where
20 kHz steps were used.
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Figure 4.5 The centre of the population curve have been plotted for varying values of
the Stark coefficient (g is shown, corresponding to varying difference between the dipole
moments of the ground and excited states. The legend displays the interaction strength
Icfs, and the 4.34 MHz line is the same as the blue line in figure 4.3.

4.4 Possible Numerical Artefacts

A few potential numerical artefacts were

noted during the work with the simulation. 100
The first one to appear was leakage of the
convolution kernel into the end-points of
the simulation, as illustrated by figure 4.6,
despite the zero-padding described in sec-
tion 3.2. This effect is absent for the pulse
considered above (see figure 4.2), however.
Nevertheless, it could be of importance for
other pulses one might want to investigate
in the future. 0

As visible in figure 4.2, the excited state
population dpes not‘ fall off smoothly to Figure 4.6 The population obtained for a
zero but oscillate slightly. A close-up of pulse of higher amplitude, shorter duration and
this pattern is shown in figure 4.7, the wider inversion than that considered in the text.
curves being from the same simulations as
presented in section 4.2. Whereas the curves with and without EFS in figure 4.3 differ
significantly around their maxima, they are seemingly equal around the end points of the
population peak.

Furthermore, one can note that the population plateau is asymmetric and that the
effect seem to increase with the interaction strength as apparent from figure 4.5. The
effect is present although barely noticeable in the results without EFS, see the dashed
curve in figure 4.3. Regardless of whether this effect is physical or a numerical artefact,
it is amplified by the EFS convolution.
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Figure 4.7 Oscillations was observed around one of the population end points. The same
pattern can be observed towards the negative detuning end as well, see figure 4.2. Note that
the result with and without EFS seem to be the same.

4.5 Comments Regarding Performance

The simulation was run on a 2.80 GHz Intel Core i7 CPU with 6 MB RAM. The simulation
ran slowly at first before running out of memory for too small detuning steps (the time
step size limit was never hit). The size and run time of the simulation have thus far been
a limiting factor in investigating the model more thoroughly. As apparent from figure
4.4, the obtained excited state population are still increasing with the number of time
steps. Of course, this limits the accuracy of the results from the simulation. The time
and detuning step sizes used to obtain the results presented in this chapter are chosen
somewhat arbitrarily, but such that sufficiently accurate results could be obtained in
reasonable time.
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Chapter 5

Conclusion

The comparison between the solution to the Bloch equations with and without the effects
of the EFS in figure 4.3 shows only a small difference in population. This implies that the
experimental loss of fidelity may not, for the most part, be due to EFS as described by the
model discussed in section 3.1. The EFS convolution decreases the population transfer
efficiency but too little to explain the experimental fidelity for the equivalent pulse, which
is clear from comparing the experimental value of 98% with the loss from 99.55% without
to 99.41% with EFS in the simulation. This is an interesting result, but there is reason
to question some of the parameters used in and assumptions made or the simulation.

Chapter 6 of [2] compares experimental values of the Stark coefficient (5. The text
presents the result of 33.5 + 1.5 kHz/(V cm™!) whereas literature states 45.5 kHz/(V
cm™!). By inspecting the differences in population for varying (s shown in figure 4.5,
it becomes obvious that such a difference in (¢ has a large impact on what fidelity in
presence of EFS the simulation predicts. The value used was (¢ = 35 kHz/(V cm™!),
corresponding to the I'crs = 4.34 MHz graph in figure 4.5. The other graphs in the figure
was obtained by varying (s in increments of 5 kHz/(V ¢cm™!) and thus the 7.15 MHz
graph corresponds to roughly the literature value stated in [2], predicting an excited state
population slightly higher than 99%. Furthermore, the inaccuracy of the Eu concentration
of the crystal used in the quantum information group’s experiments is fairly large. If the
dopant concentration happens to be higher than the 0.1% stated, thus increasing the
dipole-dipole interaction, this in combination with the uncertainty in (g could bring the
fidelity predicted by the simulation much closer to the 98% found in the experiments,
implying that EFS due to dipole-dipole interaction may very well be causing the low
experimental fidelity.

There are of course other factors in how both the experiment and simulation were
carried out that have an impact on the respective obtained fidelities. For an optimal
pulse, the solution to the Bloch equations without EFS should predict the fidelity to be
very close to 100%, only limited by relaxation during the pulse. As apparent from figure
4.3 however, this is not the case for the pulse considered here. Therefore, the appropriate
value with which to compare the experimental fidelity is the 99.55% as predicted by the
simulation without EFS. The effects relaxation could be minimised using pulse of higher
Rabi frequency and shorter duration with the same pulse area, however requiring a more
powerful laser set-up. Moreover, the experiment was designed to transfer a narrow en-
semble of ions in their ground states, placed in an otherwise emptied spectral region, to
the excited state. This structure was illustrated in figure 2.6. The actual shape of the
ensemble in the ground state has not been taken into account by the simulation, where
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ions within the range of the frequency sweep of the pulse are assumed to be distributed
according to the inhomogeneous line shape g(A), without the preparation of a spectral
pit. This distribution makes off-resonant excitations and interactions between the par-
ticipating ions more probable. The effect of this should be a stronger decrease in the
population obtained in the simulation with EFS included, thus making the EFS effects
appear somewhat larger here than they would if a distribution of ions in the ground state
more true to experiment had been assumed.

The asymmetrical shape of the populations in figure 4.3, amplified by the increased
strength of the interaction considered in figure 4.5, have several possible physical expla-
nations. A likely process that could explain why the population curve is lower towards
negative detuning as is the case here, is that ions with resonance frequencies originally
in the lower range are first excited, where the ones spatially close to an ion with higher
resonance frequency could then be shifted towards higher frequencies as the pulse sweeps
(see figure 4.1b). When the pulse sweeps through the even higher frequency range, the
ions that were first excited could be in resonance once again and then driven back to
the ground state, leaving the low-frequency population noticeably lower than for higher
frequencies. This could also explain why the asymmetry is amplified with increased inter-
action strength; as it causes more ions to shift while in the excited state, more ions will be
driven back as the pulse sweeps. Another explanation could be that the ions excited early
relax during the sweep of the pulse, although the effect of this should be much smaller.

The oscillations seen in figure 4.7 is most likely a numerical artefact as there is nothing
in the Bloch equations nor the EFS model suggesting this behaviour. Furthermore, the
pulse, as plotted in figure 4.1a is cut off before reaching 0. This truncation is likely to
cause the ringing pattern, which is a common error in algorithms based on FF'T methods.
As already mentioned in section 4.4, leaking of the kernel into the convolved population
was not observed for the pulse considered in this text. However, running the simulation for
a pulse of much higher intensity showed significant leakage as in figure 4.6. As this should
have been corrected for by the zero-padding described in section 3.2, there is clearly a bug
in the code performing the padding. For future use of the simulation, it is important to
keep in mind that this bug may have a noticeable effect for other pulses. Also, this effect
is largest in the end-points of the frequency range, so the wider the population inversion
relative the simulated range is, the larger the impact on the population shape.

The result seem to converge toward some maximum fidelity for decreased size of the
time step, as figure 4.4 shows. However, the obtained fidelity should also depend on the
detuning step size but this dependence was not investigated. Decreasing the detuning
step had a large impact on the runtime of the simulation, making such an investigation
too time-consuming to be in scope of this thesis. It is nevertheless of great importance to
know what the conditions are on the detuning step for the results of the simulation to be
the foundation of more certain conclusions. A kernel much narrower than a detuning step
could cause the smoothing effect to be too small, but as the increasing of the width of
the kernel (see figure 4.5) seems to have a quadratic decrease of the maximum population
as expected, it is likely that the detuning steps used are sufficiently small. The actual
width of the kernel varies during the pulse however, why the smoothing effects may have
been to small at the minimum widths for all widths considered. So although the relative
scaling seems to be correct, it cannot be excluded that the magnitudes are shifted.

To summarise, it is an important piece of information that the effects of EFS seem
to be small. To draw more certain conclusions however, the results need to be verified.
Suggestions for further investigation and improvement is discussed in chapter 6.
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Chapter 6
Outlook

It was concluded that broadening due to EFS as it is modelled here may not be the main
cause of the lower-than-expected experimental fidelity results, but that further work is
needed to verify the results presented in this thesis. Before other improvements however,
fixing the most limiting bugs will be needed. First, the zero-padding bug mentioned in
the section 4.4 would of course have to be fixed. As the work presented in this thesis is an
extension to existing code, some design choices made in order to maintain compatibility
has made it a little difficult to keep track of what secondary adjustments that may be
needed when changing some parameter. This adds some degree of instability to the code,
so it would be ideal to put some work into improving such issues as well.

To gain further insight in the fidelity losses through the model presented here, a more
thorough understanding of the requirements on the time and detuning step sizes are for
obtaining the correct simulation results is crucial. Too large step sizes will naturally be
beyond the validity of the model, but smaller step sizes requires increasingly longer time
for the simulation to run. Knowing the conditions for what sizes are small enough is
necessary to determine what results are good enough and whether greater computational
power is needed to obtain such results.

With the above mentioned bugs sorted out and the validity conditions for the simula-
tion known, it could be interesting to investigate the fidelity of sequential state transfers.
The transfer from ground to excited state considered here only constitutes part of a single
qubit quantum gate. Several such transfers and transfers from the excited state to the
other information-carrying ground state, is needed to construct a full quantum gate in the
REQC scheme. Comparing the transfer-by-transfer loss of fidelity from simulation and
from experiment could reveal further information about the performance of the scheme.

It possible that experimental work on single qubit transfers in Eu:YSO, as well as
further analysis of existing data, could contribute to further understanding of the fidelity
losses. One possibility is to investigate how the fidelity scales when varying the excitation
density (w). This could verify whether the broadening effect I'y, in equation (3.2) scales
linearly with (w), or if there are additional processes contributing to the loss that need
to be taken into account. Further, provided that the excitation density is related to the
fidelity as the model predicts, one could try to verify the magnitude of I'¢¢; by measuring
Iy and (w) to get a hint whether the analytic expression (3.3) yields a similar magnitude.

In summary, the results found from this work suggest that the low fidelity, although at
the time lower than needed for a working single qubit gate, does not necessarily mean the
end for the REQC qubit. The results also provide hints for further work towards deeper
insight into the physics and possible improvements of the implementation.
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Appendix A

4th Order Runge-Kutta Solution to
the Optical Bloch Equations

In the original code the optical Bloch equations were, for each A, solved with respect
to t using the build-in MATLAB function ode45. Although this function is based on a
Runge-Kutta method, it chooses its own time step size and prohibits the step-by-step
access to the solution as required to model EFS as described in section 3.1. Also, as
ions interact in the same way regardless of whether the excited ones were excited by a
resonant or off-resonant frequency, the optical Bloch equations need to be solved for all
detunings A in each time step. Therefore, the ode45 function was replaced by a classical
4th order Runge-Kutta (RK4) method, as described in section 17.1 in [12] for example,
but for solving three coupled equations of the form y; = fi(t,y1,y2, ys3, A). The value of
the 2:th function y; for the next time step ¢ + 1 was given by

1

where the coefficients a; through d; for a time step h are given by

a; = hfz (tv Y1,Y2, Y3, A)

h 1 1 1
bi=hfi|t+ =, 1+ =a1,y2 + za2,ys + —as, A

2 2 2 2

h 1 1 1 (A2)
Z:hZ t a) _bv _ba _b7A
& f(+2y1+21y2+22y3+23 )

di =hfi(t+h,y1+c1,92 + co,y3 +c3,A) .

The somewhat unconventional naming and indexing of the coefficients are chosen in order
to be consistent with the variable names in the simulation code, where the roles of names
and indices were swapped for ease of implementation.
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Appendix B

Convolution Using Discrete Fourier
Transforms

The convolution of a discrete signal s with some finite response function is mathematically
defined as[12, p.642]

M/2

(s*r1); = Z Si—kTks (B.1)

k=—M/2+1

where M is the number of points in the response function. The discrete convolution
theorem states that the discrete Fourier transform (DFT) of the convolution of a peri-
odic function with a response function of finite duration [12, p. 642] correspond to the
respective DFTs multiplied. This gives a way to compute convolutions fast, namely by
taking the forward transforms of the functions, multiplying them, then taking the inverse
transform to obtain the convolution'. The DFT X of a discrete sequence x of length N
can be defined as

x(j) exp(—2im(k —1)(j — 1)/N), (B.2)

||Mz

where the indices j and j have been shifted to account for MATLAB’s one-based indexing
of arrays. Conversely, the inverse counterpart becomes

N = %Z Jexp(2in(k — 1)(j — 1)/N), (B.3)

I This is a result of applying the definition of the inverse DFT to the convolution theorem.
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Appendix C
The Bloch Simulation Code

1 function [u,v,w] = Bloch_simulate(t,delta,u,v,w,T1,T2,...)
2 4l see program code 2 ]
3 for time_count = 1:(length(t)-1)
4 for delta_count = 1:length(delta)
5 4L see program code 3 ]
6 end
7 AConvolution with scrambing Lorentzian freq. shift
8 dw = w(time_count+1,:)-w(time_count,:);
0 integrand = 2*abs(dw) .*g;
10 gamma_br (time_count+1) =
< gamma_efs*trapz(delta,integrand); swtdth of
— scrambler
1 HWHM = gamma_br(time_count+1)/2;
12 scrambler = HWHM./(pi.*((delta. 2)+(HWHM"2)));
o /smoothing kernel
13 scrambler = scrambler./sum(scrambler) ;
. snormalisation for convolution
14 tol = 0.0001e-5; spadding with #elements larger
- than this
15 response = scrambler (abs(scrambler) >= tol);
16 K = ceil(length(response)/2); inbr of pads/2
17 scrambler = padarray( scrambler, K , ’both’ )’;
18 scrambler = ifftshift(scrambler);
19
20 upad = padarray( u(time_count+1,:), 2%¥K , ’post’)’;
21 vpad, wpad, gpad = ..."...;
22
23 uconv = ifft( (fft( scrambler ) ).x( fft( upad ) ) );
24 vconv, wconv, gconv = ..."...;
25
26 u(time_count+1,:) = uconv(l:length(delta));
27 v(time_count+1,:), w(time_count+1l,:), g = ..."...;
28 end
29 4l see program code 4 ]
30 end

Program code 1 The smoothing of the Bloch equation solutions at the end of the time
loop.
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11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Z#Physical constants

gamma_inh = 2.5e9%2x%pi; /#Hz inhomogeneous
- linewidth Graf p. 117

epsilon_vac = 8.8b4e-12; AAs/Vm

epsilon_0 =7; 4As/Vm Graf p. 129

r0 = 2.4e-10; sm, Graf p. 133

planck = 6.626e-34; AiJs

zeta = 3bel; #Hz/(Vm-1), Graf p. 117
occ_prob = 1.25e-4; sat 0.1] Eu3+ (Graf p 133)
ave_kappa =0.7;

DO =

< planck*(zeta”2)/(2*epsilon_O*epsilon_vac*(r0~3));

gamma_efs = pikocc_prob*D0*(1/3)*ave_kappa;  /Hz

/Defintition of a half-step time for evaluating the Rabti frequency
tstep = t(2) - t(1);
t_half = (t(1):tstep/2:t(end));
/svector of same range as t in steps of
— tstep/2, odd-incided elements
— equal to t
whole_ind = (1:2:length(t_half));
/sodd-indices mapping to elements in
— t_half corresponding to points in
- t
half_ind = (2:2:length(t_half));
/seven—-indices mapping to elements in
— t_half corresponding to
— 1intermediate midpoints of t

/#Evaluating the Rabi frequency at in half steps for usen in RKY
f = fcnchk(pulse{1});

OmegaRcomplex = f(t_half, pulse{2:end});

OmegaRre real (OmegaRcomplex) ;

OmegaRim imag (OmegaRcomplex) ;

sInitialising inh profile for EFS convolution

g = gamma_inh./(2+pi*(delta. 2+(gamma_inh/2)"2));

— Joriginal inhomogeneous profile, function of delta
g = g./trapz(delta,g);

gamma_br = zeros(size(t(l:end-1)));

Program code 2 Definition of physical constants and initialisation of the vectors
OmegaRre, OmegaRim and g. g is normalised such that it’s integral over the detuning range
is equal to 1.
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28

function [u,v,w] = Bloch_simulate(t,delta,u,v,w,T1,T2,...)
4l see program code 2 ]
for time_count = 1:(length(t)-1)

whole_count = whole_ind(time_count);

half_count = half_ind(time_count) ;

for delta_count = 1:length(delta)
current_delta = delta(delta_count);

/#RK4 soln to Bloch egns

A = tstep*bloch_eq([u(time_count,delta_count),
— v(time_count,delta_count),
o w(time_count,delta_count)],
T1,T2,current_delta,OmegaRre(whole_count),
< OmegaRim(whole_count));
B = tstep*bloch_eq([u(time_count,delta_count)+(1/2)*A(1),
— v(time_count,delta_count)+(1/2)*A(2),
w(time_count,delta_count) + (1/2)*A(3)],
< T1,T2,current_delta,OmegaRre(half_count),
< OmegaRim(half_count));
C = tstep*bloch_eq([u(time_count,delta_count)+(1/2)*B(1),
— v(time_count,delta_count)+(1/2)*B(2),
w(time_count,delta_count) + (1/2)*B(3)],
-~ T1,T2,current_delta,OmegaRre(half_count),
< OmegaRim(half_count));
D = tstep*bloch_eq([u(time_count,delta_count)+C(1),
— v(time_count,delta_count)+C(2),

w(time_count,delta_count) + C(3)],

—

—

u(time_count+1, delta_count) = u(time_count, delta_count) +

—

v(time_count+1, delta_count) = v(time_count, delta_count) +

—

w(time_count+1, delta_count) = w(time_count, delta_count) +

—

end

T1,T2,current_delta,OmegaRre(whole_count+1),
OmegaRim(whole_count+1));

(1/6)*(A(1) + 2+B(1) + 2*C(1) + D(1));
(1/6)*(A(2) + 2xB(2) + 2%C(2) + D(2));

(1/6)*(A(3) + 2*%B(3) + 2%C(3) + D(3));

#[ see program code 1 ]

end

Program code 3 The RK4 solution to the Bloch equations of the form (A.1) with co-
efficients as in equation (A.2). The function bloch_eq (see program code 4) returns three
vectors containing the respective evaluations of the Bloch equations (2.4) for the passed

input arguments. For definition of the pulse variables OmegaRre and OmegaRim, see program
code 2
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function dy = bloch_eq(y,T1,T2,Delta,OmegaRre, OmegaRim)
dy = zeros(3,1);

dy(1) = -1/T2xy(1)-Delta*y(2)+0OmegaRim*y(3) ;

dy(2) = Deltaxy(1)-1/T2*y(2)+0megaRre*y(3);

dy(3) = -OmegaRim*y(1)-OmegaRre*xy(2)-1/T1x(1+y(3));
end

Program code 4 The function returning the evaluation of the Bloch equations, as defined
in equation (2.4), called when calculating the RK4 coefficients (A.2) in program code 3.
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