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Abstract

In this thesis a framework for real-time model predictive control has been developed
for JModelica.org, which is an open-source platform for simulation and analysis of
dynamical systems. Model predictive control (MPC) is an advanced optimization-
based control method that uses a model of the process being controlled to optimize
control. The framework was tested on three different processes, real and simulated,
and its performance was compared with that of an linear-quadratic regulator (LQR),
which is a simpler type of controller that uses multiplication with a pre-calculated
matrix to calculate the control signal from the state vector. The MPC controller was
found to perform as well as or better than the LQR controller in all cases, with the
main improvements being seen in the MPC controller’s ability to handle process
constraints or when far from the LQR controller’s linearization point; however, the
LQR controller was much faster in calculating the control signal. This also served as
a first test of using JModelica.org to perform MPC on real processes, and although
it performed well on the two it was tested on, further work will be needed if the
MPC framework should be able to handle processes that are much faster or more
complex.
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1
Introduction

1.1 Aim of the thesis

Model predictive control is an advanced control method that uses a model of the
process that should be controlled to optimize control. It has several advantages over
less complex control methods: most notably, it can easily handle constraints in the
process. However, it is also computationally demanding, and therefore it is impor-
tant to implement it as efficiently as possible so as to allow it to work on as many
processes as possible.

In this thesis, a framework for running real-time model predictive control has
been developed using JModelica.org, which is an open-source platform for simu-
lation and optimization of dynamic systems. JModelica.org already has an existing
class for MPC; however, it has been developed for usage with simulated processes
and does not have support for real-time control. The framework was built around
the existing MPC class, handling communication with the process and making sure
that the timing of the control is correct. Additionally, the framework should be eas-
ily extendable to work with any type of process, both real and simulated.

To test the real-time MPC framework, it was used to control three different
processes: two real and one simulated. A linear-quadratic regulator was also used
to control the same processes, so that the results from the two controllers could be
compared for correctness and performance.

Lastly, the work in this thesis also served as a first test of using JModelica.org
to perform MPC on real processes. An important goal was to evaluate how well it
performs in this context, as well as what needs to be improved.

1.2 Outline

Chapter 2 describes the basics of model predictive control and the linear-quadratic
regulator, as well as briefly describing JModelica.org. Chapter 3 describes the im-
plementation of the real-time MPC framework, showing the different methods of the
base class as well as the class for running real-time MPC on simulated processes,
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Chapter 1. Introduction

and provides an example of how to use it. Chapter 4 contains results obtained by
applying the MPC controller to three different processes, comparisons with LQR
control, and notes on performance. Finally, Chapter 5 provides some concluding re-
marks and describes additional improvements that could be made to the framework.
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2
Background

2.1 Model predictive control

Model predictive control (MPC) is a collection of methods for optimal control, char-
acterized by using a model to predict the behaviour of the process being controlled
and optimize control over a moving time horizon. Its usage was first described in a
1978 paper where "Model Predictive Heuristic Control" was used to control several
industrial processes using impulse response models [Richalet et al., 1978], and it
has been used for industrial applications ever since. In particular, it has been very
well recieved in the chemical process industry, due to its ability to easily handle
constraints in the processes it is used for while still keeping the operating point
close to the constraints to maximize effectiveness. [García et al., 1989] Due to be-
ing rather computationally demanding compared to other control methods, it has
traditionally mostly been used for controlling linear processes with low required
sample rate. However, with computer performance improving with time, along with
more efficient types of MPC controllers such as advanced-step model predictive
control [Zavala and Biegler, 2009] being developed, applications of MPC to more
complex processes have started to see use.

All methods of model predictive control use a model of the process to be con-
trolled in order to optimize control over a set time horizon from the current time,
given an objective function to minimize. In its most general formulation, given a
continuous system of differential algebraic equations

F(ẋ(t),x(t),u(t)) = 0 (2.1)
x(0) = x0 (2.2)

where x is the state vector, u is the control signal, h is the time step, F is a arbitrary
function, and x0 is the initial state of the system, in addition to an objective function

J =
∫ t+T

t
G(x(t),u(t))dt (2.3)

where T is a given time horizon for the optimization and G is another arbitrary func-
tion (often the square of the deviation of the state vector from a reference vector),
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Chapter 2. Background

and a set of constraints

Hk(x(t),u(t))≥ 0, k ∈ [1,n] (2.4)

the controller for each time step performs the following three tasks in order:

1. Calculate the optimal control sequence up to the optimization horizon, given
the current state values.

2. Extract the first step of the optimal control sequence and apply it to the pro-
cess.

3. Move the optimization horizon one step forward.

Figure 2.1 shows an example of how this works: 2.1 (a) shows the optimal control
sequence calculated in the first time step, then (b) and (c) shows how in each time
step the control signal for the first time step of the optimal control sequence from
the last time step is applied, the optimization horizon is moved forward one step,
and a new optimal control sequence is calculated over the new horizon. This allows
the controller to optimize the control for the current time while still taking the future
into account. The moving horizon gives MPC the alternate name receding horizon
predictive control.

All methods of model predictive control follow this same basic three-step strat-
egy. The main difference between them lies in what kind of model is used to rep-
resent the process; one of the most popular in the industry is the impulse response
model, while the research community often uses the state space and transfer func-
tion formulations. [Camacho and Bordons, 2007, ch. 1.1] Other differences between
methods include the type of objective function and optimization solver used.

Model predictive control has a number of advantages over other methods of con-
trol. The main advantage is that solving the control problem as a series of optimiza-
tion problems means that it is easy to take constraints on the process into account,
since they can just be passed on as constraints to the optimization solver. Addition-
ally, optimizing control over a time interval rather than just the current time step
means that an MPC controller can take future events, such as changes in the refer-
ence values or in system parameters, into account before they happen, which stands
in contrast to more simple control methods like PID only using past events when
calculating their control signals. MPC also has no trouble handling non-minimum
phase, unstable, or multivariable systems, and is further made attractive by being a
rather intuitive method of control, not requiring much knowledge of control theory
to understand the basic ideas behind it.

MPC is not without its drawbacks, however. Having to solve an optimization
problem each time step in order to calculate the control signal means that it is a
computationally intensive method, which limits what processes it can be used on:
if the time taken between acquiring the state values from the process and sending
the control signal to the process (i.e. the time used by the optimization solver) is
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2.1 Model predictive control

0 2 4 6 8 10 12 14
Time

0

2

4

6

8

10

Co
nt

ro
l s

ig
na

l

(a) First time step

0 2 4 6 8 10 12 14
Time

0

2

4

6

8

10

Co
nt

ro
l s

ig
na

l

(b) Second time step

0 2 4 6 8 10 12 14
Time

0

2

4

6

8

10

Co
nt

ro
l s

ig
na

l

(c) Third time step

Figure 2.1 An example of model predictive control. The blue line in each figure is
the optimal control sequence calculated in that time step, the red line is the control
signal applied to the process, and the vertical black lines denote the beginning and
end of the current optimization horizon.

too long, then the values of the state vector may have changed significantly from
the ones used to calculate the control signal, resulting in worse control. Another
drawback is that it requires a good model of the process to exist; the less accurate
the model, the worse the control will inevitably be. This is not much of a problem for
simple processses where the process equations can be derived directly, but can prove
troublesome for more complex processes. And while MPC has been very successful
in practice, analyzing its stability and robustness has proven very difficult in many
cases, and the theoretical results that have been obtained only apply to a small subset
of MPC problems. [Camacho and Bordons, 2007, ch. 1.3]
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Chapter 2. Background

2.2 Linear-quadratic regulator

The linear-quadratic regulator (LQR) is a control method that is based on using a
quadratic cost function to optimize control for a linear system. For a discrete time
system

x(k+1) = Φx(k)+Γu(k) (2.5)

where x is the state vector and u is the control signal, given a quadratic cost function

J =
∞

∑
k=0

(
x(k)T Q1x(k)+u(k)T Q2u(k)+2x(k)T Q12u(k)

)
(2.6)

it can be proven [Åström and Wittenmark, 1997] that the cost is minimized by using
the control signal uk =−Lxk, where

L = (Q2 +Γ
T SΓ)−1(ΓT SΦ+QT

12) (2.7)

and S is a symmetric positive semidefinite matrix that can be obtained by solving
the discrete-time algebraic Ricatti equation

S = Φ
T SΦ+Q1− (ΦSΓ+Q12)(Γ

T SΓ+Q2)
−1(ΓT SΦ+QT

12) (2.8)

The controller is designed for a linear process, but it can still be used on some non-
linear processes as long as they are sufficiently close to linear around the working
point. In this case, a linearization is needed to acquire the Φ and Γ matrices.

Due to calculating the control signal only requiring a single matrix multiplica-
tion (since the L matrix can be pre-calculated), LQR is a very fast control method.
However, it can not be made to take constraints into account; the closest thing to
doing so would be clamping the control signal to a certain bound, but even then the
controller itself will not be able to take this into account. This can cause problems
when controlling real processes, since they usually have a given range for their in-
puts; however, it can be worked around by changing the Q matrices to increase the
penalty on the control signal. There is no simple way for an LQR controller to han-
dle state constraints, though, a problem which has been explored in [Balandat et al.,
2012].

The reason that LQR in particular was chosen for providing a comparison is
because of its similarities to MPC. It, too, uses a model of the process to optimize
control; although while MPC does so for any process using any horizon length, LQR
only works on a linear (or linearized) process with an infinite prediction horizon.

2.3 JModelica.org

JModelica.org is an open-source platform for simulation, optimization and analysis
of dynamical systems. A recent master’s thesis project [Axelsson, 2015] has devel-
oped a class for working with nonlinear model predictive control in JModelica.org;
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2.3 JModelica.org

however, this class is built to work with simulating processes through FMUs (Func-
tional Mock-Up Units), and is not directly applicable to real processes. The class
uses the non-linear solver IPOPT for solving the optimization problems. [Wächter
and Biegler, 2006]

JModelica.org uses Modelica to describe process models and Optimica to de-
scribe optimization problems. Modelica is a modeling language designed to de-
scribe the behaviour of dynamic systems through their governing equations, and
Optimica is an extension to Modelica for using Modelica models to specify opti-
mization problems for dynamic systems. [Åkesson et al., 2010] For usage examples
of Modelica and Optimica, see Chapter 3.6.1.

2.3.1 Code generation
JModelica.org uses the CasADi symbolic framework for handling optimization. The
optimization solvers use CasADi Function objects to describe the mathematical
functions needed for the optimization problem: the function to be optimized as well
as some of its derivatives. These Function objects have a method that allows them
to generate C code for the functions they represent, which can then be compile and
used to replace them. [Andersson et al., 2015] This will be used in this thesis to
investigate whether or not using pre-compiled code in this way has any noticable
effect on performance.
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3
Implementation

The real-time MPC framework implemented in this thesis consists of a base class
RealTimeMPCBase that needs to be extended by the user. This class is described in
Chapter 3.2. For the sake of convenience, a version of this class extended to work
with simulated processes was also created: this MPCSimBase class is described in
Chapter 3.3. Finally, two classes similar to the first two ones, but for LQR control
rather than MPC, were created in order to compare the two methods of control:
RealTimeLQRBase and LQRSimBase. A brief overview of these can be found in
Chapter 3.5.

Initially, the only requirements for the framework were being easily usable to to
run MPC on multiple different real and simulated processes, as well as being able
to use pre-compiled code in order to see how much it would improve performance.
During testing, one of the real processes was found to have stationary errors, which
prompted the addition of a function to enable integral action for the solver in order
to attempt to get rid of the error. Additionally, in order to be able to change the
control point during an experiment so that more complex tests could be run, a data
structure containing model parameters and the times they should be applied had to
be created. Since the rest of the JModelica.org interface is coded in Python, that is
also the language used for the framework.

3.1 Theory

3.1.1 Integral action
Integral action is a method for counteracting stationary errors. By calculating an
estimate of what the state vector ought to become in the next time step for the given
control signal and then comparing the estimate with the actual value, an estimate of
the error in the process input can be obtained. After running it through a high pass
filter, this error estimate can then be subtracted from the calculated control signal
before it is sent to the process to counteract the error.

The way the integral action is implemented in the real-time MPC framework
is that each time step, after getting the state values from the process, they are
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3.2 Base real-time MPC class

compared with values predicted from the state and control signal values from the
last time step, and the difference is used to estimate the input error using a lin-
ear approximation of the process dynamics provided by the matrix M provided to
enable_integral_action.

The process being controlled can be seen as discrete, since it is only sampled
and the control signal only changes at set time points. Thus, a linear approximation
of it can be given as

xk+1 = Axk +Buk (3.1)

where x and u are the state and input vectors respectively. Adding a stationary input
error ue and using an estimate of the error ûe,k to attempt to cancel it out then gives
us the actual next state vector

xk+1 = Axk +B(uk +ue− ûe,k) (3.2)

as well as the predicted one

x̂k+1 = Axk +B(uk) (3.3)

The state error is then the difference between the two state vectors:

ek+1 = xk+1− x̂k+1 = B(ue− ûe,k) (3.4)

This can be rewritten to solve for the error:

BT ek+1 = BT B(ûe− ûe,k) (3.5)

⇒ (BT B)−1BT ek+1 = ûe− ûe,k (3.6)

⇒ ûe = (BT B)−1BT ek+1 + ûe,k = Mek+1 + ûe,k (3.7)

where M = (BT B)−1BT is the matrix that should be given as an argument to
enable_integral_action. Note that this is only possible if (BT B)−1 is invert-
ible, which requires the process has more states than inputs. Finally this calculated
input error is used to update the input error estimate using a first order high pass
filter:

ûe,k+1 = µ ûe,k +(1−µ)ûe (3.8)

3.2 Base real-time MPC class

In this section the various methods of the RealTimeMPCBase class are described.
This base class contains an MPC solver and the code needed for the control loop,
as well as some additional functions for enabling use of pre-generated code and
integral action, and for plotting and saving result data from a successful run. The
only functions needed to be provided by the user are the ones that are specific to
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Chapter 3. Implementation

the process that should be controlled: that is sending a control signal to the process,
getting the values of the states from the process, and (if necessary) estimating the
states of the process that cannot be directly observed.

Once a process-specific class has been created by extending the base class, it
is used by first creating an instance of the extended class through the constructor,
enabling code generation and/or integral action if desired, and then calling the run
method. Once the experiment has been run, the results can be plotted, saved to disk,
or extracted from the solver for further processing. See Chapter 3.6 for a full usage
example.

3.2.1 Initialization
In order to use the base class, the following arguments need to be passed to the
constructor. The first nine are mandatory, and the last four have default values and
are as such optional. The class is abstract and cannot be instantiated directly, but
classes that extend it can still make use of its constructor via super.

file_path File path of the .mop file that contains the optimization
problem to be solved.

opt_name Name of the Optimica optimization class to be solved,
in the file specified by file_path.

dt Time between samples.
t_hor Horizon time to use for the MPC solver. Must be a mul-

tiple of dt.
t_final Time to run the MPC control experiment.

start_values A dictionary containing starting values for the states.
par_values A dictionary containing values for any model param-

eters that should be different from their values in the
.mop file.

output_names A list of the names of the output states of the process.
input_names A list of the names of the inputs to the process.
par_changes A ParameterChanges object (see Chapter 3.4) deter-

mining the reference points to follow. Default value: an
empty ParameterChanges object.

mpc_options A dictionary containing the options to pass on to the
MPC solver. See the documentation of the MPC class
for more details. Default value: an empty dictionary.

constr_viol_costs A dictionary determining the cost the MPC solver
should use for violating constraints. See the documen-
tation of the MPC class for more details. Default value:
an empty dictionary.

noise A floating point number determining the standard de-
viation of the noise to add to the input signals, using a
Gaussian distribution. Default value: 0.

18



3.2 Base real-time MPC class

The constructor for the class is not particularly complex. All it does is set up the
MPC solver to be used, initialize the data structures used for saving results and
statistics, and save the arguments needed for running the control loop later.

3.2.2 Methods
enable_codegen

enable_codegen(self, name=None):

"""

Enables use of generated C code for the MPC solver.

Generates and compiles code for the NLP, gradient of f, Jacobian of g,

and Hessian of the Lagrangian Function objects, and then replaces

the solver object in the solver's collocator with a new one that makes

use of the compiled functions as ExternalFunction objects.

Parameters::

name --

A string that if it is not None, loads existing files

nlp_[name].so, grad_f_[name].so, jac_g_[name].so and

hess_lag_[name].so as ExternalFunction objects to be used

by the solver rather than generating new code.

Default: None

"""

Calling this method takes the internal NlpSolver object from the MPC solver, ex-
tracts all of the relevant attributes (bounds, initial values, options) from it, takes
the four Function objects described in the docstring from the solver and calls
the generateCode methods on them, compiles the generated code into .so files
(using the -O3 flag to make the code as efficient as possible) and loads them as
ExternalFunction objects, and then creates a new solver object with the resulting
ExternalFunction objects and the other attributes. If name is given, the function
searches for the four .so files with the suffix given by the parameter; if all four files
exist, those are used instead and new code is not generated.
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Chapter 3. Implementation

enable_integral_action

enable_integral_action(self, mu, M, error_names=None, u_e=None):

"""

Enables integral action for the inputs.

If integral action is enabled, in each step the input error is

calculated and used to update the estimation of the error. By

default, the input error is calculated as the matrix M times the

difference between the current state vector as predicted by the

solver in the last time step and as measured from the process

in the current time step; however, this can be changed by

overriding the estimate_input_error method.

The formula used to update the estimate is

[new estimate] = mu*[old estimate] + (1-mu)*[current estimate]

Parameters::

mu --

Controls the convergence rate of the error estimate.

See above.

M --

Used for calculating the input error from the state error.

See above.

error_names --

A list containing the names of the model variables for

the input errors. If set to None, it is assumed be the

same as the list of input variables with the prefix '_e'

appended to each one.

Default: None

u_e --

A list containing a set of values to be applied as

stationary errors to the input signals. Used for

simulating a stationary error where there otherwise wouldn't

be one. If set to None, no stationary error is applied.

Default: None.

"""

Calling this method enables integral action for the inputs. See Chapter 3.1.1 for a
detailed description on how this works.
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3.2 Base real-time MPC class

run

run(self, save=False):

"""

Run the real time MPC controller defined by the object.

Parameters::

save --

Determines whether or not to save data after running. If set

to False, the same data can still be saved manually by using

the save_results function.

Default: False

Returns::

The results and statistics from the run.

"""

This is the function that runs the main control loop for the time specified when
creating the object. Each time step it goes through these steps in order:

1. Update solver parameter values if necessary (see Chapter 3.4)

2. Update the MPC solver with the current state values

3. Have the MPC solver calculate the next control signal

4. Apply noise and simulated stationary error to the control signal (if enabled)

5. Send the control signal to the process

6. Wait for the next sample time

7. Get measurements from the process

8. Calculate state values from measurements (if not all states are observable)

9. Update the estimate of the stationary error (if integral action is enabled)

10. Save the results from the last time step

The reason that the current state values are retrieved at the end of the control loop
rather than the beginning is that for simulated processes, the current values are got-
ten as the result of the simulation of the last time step, which cannot be done if no
time steps have passed yet. This means that the initial state needs to be provided in
the constructor, which is not an issue when starting in a stationary point, but may
prove problematic otherwise. However, this can easily be worked around when ex-
tending the class to work with a real process, by making the run method start by
reading the current state from the process.
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Chapter 3. Implementation

get_results

get_results(self):

"""

Return the results from the run.

Returns::

A dictionary where the keys are variable names and the values are

lists of values.

"""

This method returns a dictionary containing the results from running the control
loop.

print_stats

print_stats(self):

"""

Print statistics from the run.

The times printed are the sums of the corresponding

statistics from the NLP solver over all time steps.

"""

The statistics printed by this method are gotten from the getStats function of the
MPC solver’s internal NlpSolver object, summed over all of the time steps.

save_results

save_results(self, filename=None):

"""

Pickle and save data from the run to a file name either passed

as an argument or entered by the user. If an empty string is

entered as the file name, no data is saved.

Parameters::

filename --

The file name to save as. If it is not provided, the

user will be prompted to input it.

Default: None

"""

This method uses Python’s builtin pickle module to save data from running the
control loop. The data saved by the function is a dictionary containing the following:
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3.2 Base real-time MPC class

Key Value
results The results from the run.

stats The statistics from the run. Same as the ones printed by the
print_stats method.

ptime Total processor time taken for the run, as provided by Python’s
time.clock function.

rtime Total real time taken for the run, as provided by Python’s
time.time function.

noise The standard deviation of the noise added to the control signal.
Same as the constructor parameter of the same name.

late_times A list of how late the sampling was in each time step.
´wait_times A list of long the solver had to wait for the next sample each

time step.
solve_times A list of how long it took between sampling and sending the

control signal each time step.
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Chapter 3. Implementation

plot_results

plot_results(self, outputs=None, inputs=None, var_labels={},

title="", cols=1):

"""

Plot the results of the run.

Parameters::

outputs --

A list containing the names of the output variables to be

plotted. If set to None, plots all outputs.

Default: None

inputs --

A list containing the names of the input variables to be

plotted. If set to None, plots all inputs.

Default: None

var_labels --

A dictionary containing variable names as keys and the

labels to use for their plots as values. If a variable

name to be plotted isn't present in the dictionary, its

name is used as the label.

Default: {}

title --

The title of the plot.

Default: ""

cols --

The number of columns to divide the subplots into.

Default: 1

"""

This method uses the matplotlib library to plot the results from the run. Each
variable defined in the outputs and inputs arguments is plotted in its own subplot,
which are divided into cols columns in the final plot.
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3.2 Base real-time MPC class

3.2.3 User-provided methods
The methods in this section are all ones that need to be overridden by the user when
extending the class.

send_control_signal

send_control_signal(self, u_k):

"""

Dummy method for sending a control signal to the process.

In order to use this class, this method needs to be overridden.

The override method should take take the control signal, convert

it to a format understandable by the process if necessary, and

pass it on to the process that shouldbe controlled.

Parameters::

u_k --

The control signal. It consists of a pair where the

first element is a list of input names, and the second

is a function that takes the time and returns a Numpy

array of values corresponding to those inputs.

"""

As the name suggest, this function should take the control signal calculated by the
controller and pass it on to the process. Note the format of the control signal: while
it can be passed on to an FMU directly, it will most likely need to be processed in
some way before it can used in a real process. The reason for the format is that it is
the one used by both the MPC solver and the FMU.

get_measurements

get_measurements(self):

"""

Dummy method for getting measurements from the process.

In order to use this class, this method needs to be overridden.

The override method should get measurements from the process and

return them in the form of a dictionary, where the keys are

names of output variables prefixed by '_start_' and the values

are their values.

"""

This function should communicate with the process being controlled to extract mea-
surements of the observable states, and then package them in a dictionary to be used
by the solver.
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estimate_states

estimate_states(self, x_k, x_k_last):

"""

Estimate the full output state dictionary.

This method takes the measurements gotten from the process in this

time step and the full state dictionary from the last step, and uses

them to calculate an estimate of the full state vector for this

time step. In the base class, all it does is return the measurement

vector from the process, but if your process has non-observable

states, you should override this method and use it to calculate

those states.

Parameters::

x_k --

The measurement dictionary gotten from the process with

get_measurements(). The keys are variable names prefixed

with '_start_', and the values are the values of those

variables.

x_k_last --

The full state dictionary from the last time step. The

format is the same as for x_k.

Returns::

An estimate of the full output state dictionary. The format is

the same as for the inputs.

"""

This function should estimate the values of any non-observable states in the process.
Note that as opposed to send_control_signal and get_states this is not an
abstract function; if the process is completely observable, this function does not
need to be overridden.

3.3 MPC class for simulated processes

For convenience, a version of the real-time MPC base class set up specifically for
usage with simulated processes has also been developed. This MPCSimBase class
has the send_control_signal and get_states methods already defined, so the
only method that needs to be provided by the user is estimate_states, and then
only if it is required that any of the states in the simulated process should be treated
as non-observable. As opposed to the RealTimeMPCBase class, this class does not
run in real time, since doing so for a simulated process is unnecessary.
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3.3 MPC class for simulated processes

The constructor for this class looks slightly different than the one for the base
class; it has additional arguments for the process model (model_name), simula-
tion options (sim_options), and which states should be considered observable
(obs_var_names). It takes the following arguments:

file_path File path of the .mop file that contains the optimization
problem to be solved.

opt_name Name of the Optimica optimization class to be solved,
in the file specified by file_path.

model_name Name of the Modelica model class to use for simulat-
ing the process, in the file specified by file_path.

dt Time between samples.
t_hor Horizon time to use for the MPC solver. Must be a mul-

tiple of dt.
t_final Time to run the MPC control experiment.

start_values A dictionary containing starting values for the states.
par_values A dictionary containing values for any model param-

eters that should be different from their values in the
.mop file.

output_names A list of the names of the output states of the process.
input_names A list of the names of the inputs to the process.

obs_var_names A list of the names of the states that should be treated
as observable. If set to None, all states are treated as
observable. Default value: None.

par_changes A ParameterChanges object (see Chapter 3.4) deter-
mining the reference points to follow. Default value: an
empty ParameterChanges object.

mpc_options A dictionary containing the options to pass on to the
MPC solver. See the documentation of the MPC class
for more details. Default value: an empty dictionary.

sim_options A dictionary containing the simulation options to pass
to the FMU. See the documentation for the FMU class
for more information. Default value: an empty dictio-
nary.

constr_viol_costs A dictionary determining the cost the MPC solver
should use for violating constraints. See the documen-
tation of the MPC class for more details. Default value:
an empty dictionary.

noise A floating point number determining the standard de-
viation of the noise to add to the input signals, using a
Gaussian distribution. Default value: 0.
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3.4 Handling changing reference points

In order to handle changing reference points at certain points during a run, a class
ParameterChanges has been created. This class is little more than a wrapper
around a dictionary, where the keys are times and the values are dictionaries contain-
ing the parameter values to use from that point onwards. The class has the following
methods:

Constructor
The constructor takes up to two arguments:

par_change_dict A dictionary containing times as keys and parameter
name/value dictionaries as items. Default value: empty
dictionary.

tol The tolerance for time discrepancies when fetching a
change. Default value: 10−10.

The first argument allows for building the entire object in the constructor, rather than
using the add_change method. The second one exists due to floating point errors
sometimes causing the time sent into the get_change method to not be exactly
equal to the expected one; it determines how big the difference between the two
values can be while still treating them as the same.

add_change

add_change(time, par_dict):

"""

Adds a parameter change.

Parameters::

time --

The time when the parameter change should be applied.

par_dict --

A dictionary containing the names of parameters to be

changed as keys, and their new values as values.

"""

This function allows the user to build up the data structure piece by piece, rather
than doing it all in the constructor.
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get_change

get_new_pars(self, time):

"""

Fetches the new parameter values for a given time.

Parameters::

time --

The time for which to fetch the parameter changes.

Returns::

A dictionary containing the parameter changes for the given

time if it was found (within the tolerance set in the

constructor), and None otherwise.

"""

This function gets the parameter changes to be applied at a certain time. As stated
earlier, it allows for a difference (given in the constructor) between the time sent
into the method and the time it finds.

3.5 Real time and simulation LQR classes

Similar to the RealTimeMPCBase and MPCSimBase classes, two classes
RealTimeLQRBase and LQRSimBase have also been created for controlling real
and simulated processes with LQR. These are used very similarly to their MPC
counterparts, with a couple of important differences:

• Due to the differences in how the two control methods work, the constructors
of the LQR classes do not take arguments for optimization file name, class
name or horizon, but does take the matrix L to be used in the control law.
Additionaly, they also take an argument for a dictionary containing the state
values for the initial linearization point.

• The reference trajectory is handled a bit differently for the LQR classes. The
values of the ParameterChanges object, rather than names and values for
model parameters, should contain names and values of states corresponding
to the linearization point to control around.

The states and control signal of the LQR controller are the deviations of the
normal states and control signal from their linearization point values. The solver
handles this by subtracting the linearization point state values from the state values
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acquired from the process prior to calculating the control signal, and then adding
the linearization point control signal values to the calculated control signal:

∆xk = xk− xre f (3.9)
∆uk = −L∆xk (3.10)

uk = ure f +∆uk (3.11)

where xk is the state vector, uk is the control signal vector, xre f and ure f are their
respective values in the linearization point, and L is the control law matrix (see
Chapter 2.2).

3.6 Usage example

In this section an example will be given of extending the MPCSimBase class for
usage on a specific simulated process. The process to be used for this example is the
ball and beam process, as described in Chapter 4.1.1.

3.6.1 The .mop file
The first thing that needs to be done is setting up the file containing the model and
optimization to be used. For this process, the file can be seen below:
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3.6 Usage example

package Ball_Beam

model Ball_Beam "ball and beam"

parameter Real k_phi = 4.4;

parameter Real k_v = -10.0;

Input Real u "Input voltage";

Real phi "Beam angle";

Real v "Ball velocity";

Real z "Ball position";

equation

der(phi) = k_phi*u;

der(v) = k_v*phi;

der(z) = v;

end Bar;

model Ball_Beam_MPC_Model

extends Ball_Beam;

parameter Real Q_11 = 0.0;

parameter Real Q_22 = 0.1;

parameter Real Q_33 = 1.0;

parameter Real rho = 1.0;

parameter Real z_ref = 0.0;

end Ball_Beam_MPC_Model;

optimization Ball_Beam_MPC(

objectiveIntegrand = Q_11*phi^2+Q_22*v^2+Q_33*(z-z_ref)^2+rho*u^2,

startTime = 0.0, finalTime = 60.0)

extends Ball_Beam_MPC_Model(

phi(min = -5, max = 5),

z(min = -10, max = 10),

u(min = -5, max = 5));

end Ball_Beam_MPC;

end Ball_Beam;

Here Ball_Beam is the basic model of the process dynamics, Ball_Beam_MPC_Model
is the extended model to be used for simulating the process, and Ball_Beam_MPC

is the optimization to use in the solver. The main Modelica model Ball_Beam
consists of two main parts: one that defines the model variables (model parame-
ters, inputs, and states), and one that describes the system equations. This model
is then extended into Ball_Beam_MPC_model, adding a few extra parameters to
be used in defining the cost function. Notice in particular the parameter z_ref; it
is what will be used to set up the reference trajectory. The Optimica optimization
Ball_Beam_MPC then finally describes the optimization problem, as well as any
constraints to be used. Other than the basic range constraints on the states and input
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that can be seen in the example, more complex constraints can be added using the
constraints keyword.

3.6.2 The solver class
Next, the RealTimeMPCSim class is extended to work with the specific process.
Since in the real process the velocity of the ball is not observable, it will not be
treated as such here either, and it will be estimated using a simple first order high
pass filter.

class MPCSimBallBeam(MPCSimBase):

def __init__(self, dt, t_hor, t_final, noise=0.,

par_changes=ParameterChanges(), mpc_options={},

sim_options={}):

super(MPCSimBallBeam, self).__init__(

'ball_beam.mop', 'Ball_Beam.Ball_Beam_MPC',

'Ball_Beam.Ball_Beam_MPC_Model', dt, t_hor, t_final,

{'_start_phi': 0, '_start_v': 0, '_start_z': 0}, {},

['phi', 'v', 'z'], ['u'], ['phi', 'z'], par_changes,

mpc_options, sim_options, {}, noise)

def estimate_states(self, x_k, x_k_last):

_lambda = 0.3

phi_k = x_k['_start_phi']

z_k = x_k['_start_z']

z_k_last = x_k_last['_start_z']

v_k_last = x_k_last['_start_v']

v_k = _lambda*v_k_last + (_lambda)*(z_k - z_k_last)/self.dt

x_k = {'_start_phi': phi_k, '_start_v': v_k, '_start_z': z_k}

return x_k

def plot_results(self, title='Ball and beam'):

super(MPCSimBallBeam, self).plot_results(

outputs=['phi', 'z'], var_labels=var_labels_bar,

title=title)

3.6.3 Running the experiment
Finally, the ParameterChanges object for the desired reference trajectory is set
up, and the object of our class is created and run.
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3.6 Usage example

>>> par_changes = ParameterChanges()

>>> par_changes.add_change(15, {'z_ref': 5})

>>> par_changes.add_change(30, {'z_ref': -5})

>>> par_changes.add_change(45, {'z_ref': 0})

>>> mpc = RealTimeMPCSimBallBeam(0.05, 1, 60, 0.1, par_changes)

Creating JVM

Created JVM, JNI version 1.6

Default blocking factors have been applied to all inputs.

The prediction horizon is 1.0

>>> _ = mpc.run()

[solver output cut out]

>>> mpc.plot_results()

The resulting graph can be seen in Figure 3.1.
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Figure 3.1 The beam angle, ball position and control voltage for a simulated run
of the ball and beam process.
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4
Results

To test the real-time MPC framework, it was applied to three different processes
(two real and one simulated) with different properties. For each of them, an LQR
controller was also used for comparison.

4.1 Ball and beam

4.1.1 Process description

Figure 4.1 The ball and beam process.

The first process consists of a ball balanced on a beam that can rotate around
an axis through its middle where the angular velocity of the beam can be controlled
by a motor, as described in [Hägglund, 2011]; see Figure 4.1. The input for this
process is a reference angular velocity φ̇re f , with an internal controller making sure
that this reference value becomes the actual angular velocity, and the process states
are the ball position z, the ball velocity v and the beam angle φ ; while z and φ can
be observed, v cannot, which means that it needs to be estimated. This is done by
using a simple difference quotient to estimate the derivative of z, and then taking a
weighted mean of the new estimate and the one from the previous step. The process
provides measurements of the states as voltages between −10 and 10 V, which is
also the unit that will be used in the graphs for it.
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4.1 Ball and beam

For small angles of the beam, the process is almost completely linear; it is this
linear version that is used both as the model for the MPC solver and for calculating
the LQR control matrix. There is one exception that is not included in the model,
though: if the vertical acceleration of the ball becomes too big, the ball gets flung off
of the beam. The MPC controller can avoid this through constraints, though more
care needs to be taken when using LQR: it means that the LQR controller can not
be used to control the ball too far from the center of the beam. Additionally, in the
actual process setup the axis that the beam pivots around is located slightly below
the beam itself, something that the model does not take into account.

The cost function used for both the MPC and LQR controllers is a weighted
sum of the squares of the control signal and the deviation of the ball position from
its reference value. Since the MPC and LQR controllers use the same linear model
and the same cost function, both controllers should give the same result.

4.1.2 Results
Figure 4.2 shows experimental results of letting the MPC controller first having the
ball stay at the middle of the beam, then moving it to one side, then to the other,
and finally back to the middle for a few different values for the sample time and
horizon, and Figure 4.3 shows the same for the LQR controller.

Comparing Figure 4.2 (a) with Figure 4.3 (a) and (b) with (b), the results look
very similar. The amplitude of the control signal is a bit higher for the LQR con-
troller than for MPC, but the resulting trajectories show barely any differences. Fur-
thermore, comparing the (a) figures to the (b) ones shows that decreasing the sample
time by half does not affect the control of the process very much either; however,
halving the sample time once more resulted in the MPC controller taking too long
to calculate its control signal and dropping the ball off the edge within a matter of
seconds.

Additionally, shortening the optimization horizon for the MPC controller from
one second to half a second results in slightly worse control, as comparing Figure
4.2 (a) and (c) shows: the oscillations of the ball position are larger, and the station-
ary error seems to be slightly larger. Halving the horizon once again then results in
the process becoming unstable, as seen in (d).

As mentioned earlier, giving the ball too large of a vertical acceleration will
result in it getting thrown off the beam, which is why all of the previous examples
have shown the ball being controlled close to the center of the beam. This can be
circumvented in the MPC controller by the use of additional constraints, showing
one of its advantages to the LQR controller. The vertical acceleration of the ball is
approximately proportional to the product of the beam angular acceleration φ̈ and
the position of the ball z for small angles of the beam, and the angular acceleration
is proportional to the derivative of the control signal u, so limiting the change in
the control signal ∆u from one time step to the next allows for controlling the ball
further from the middle of the beam without the ball getting thrown off.
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(a) Sample time 0.05 s, horizon 1 s
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(b) Sample time 0.025 s, horizon 1 s
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(c) Sample time 0.05 s, horizon 0.5 s
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(d) Sample time 0.05 s, horizon 0.25 s

Figure 4.2 Results of applying the MPC controller to the ball and beam process for
different sample times and horizon lengths. The red dashed line shows the reference
value.

Figure 4.4 (a) shows this strategy, along with an additional constraint on the
beam angle to slow down the movement of the ball (since the controller was too
slow to react otherwise, resulting in the ball falling off the edge), being used suc-
cessfully to place the ball three-quarters of the way from the center of the beam.
An unsuccessful attempt to get the LQR controller to follow the same trajectory
can be seen in Figure 4.4 (b). While clamping the LQR control signal to a certain
voltage prevents the ball from getting flung off of the beam, it also makes the LQR
controller unable to stop the ball in time for it to not fall off the ledge, since it still
attempts to control the process as if it had an infinite range for its control signal.
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4.2 Quadruple tank
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(a) Sample time 0.05 s
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(b) Sample time 0.025 s

Figure 4.3 Shows the results of applying the LQR controller to the ball and beam
process for different sample times.
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(a) MPC
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(b) LQR

Figure 4.4 Shows the result of applying the MPC and LQR controller to the ball
and beam process with a different reference trajectory. The MPC controller has the
additional constraints |φ |< 1 and |∆u|< 0.9, while the LQR controller has the con-
trol signal clamped so that |u|< 1.

4.2 Quadruple tank

4.2.1 Process description
The second process consists of four water tanks and two pumps, as described in
[Cervin, 2013], set up as in Figure 4.5. Water can flow from the upper tanks into
the lower ones and out of the lower ones, and the pumps are connected crosswise to
the tanks so that one pump is connected to the upper left and lower right tanks and
the other to the upper right and lower left ones. The states that are to be controlled
are the water levels of the lower tanks. The process has two modes of operation:
a minimum phase mode where 70% of the flow from a pump goes into the lower
tank and 30% goes into the upper one, and a non-minimum phase mode where the
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Figure 4.5 A diagram of the quadruple tank process.

percentages are reversed. The non-minimum phase mode has slower dynamics than
the minimum phase mode, and requires a longer prediction horizon, in particular
when changing the difference between the water levels in the lower tanks.

Since the water flow from a tank is proportional to the square root of the water
level of the tank, this process is nonlinear. Since the LQR controller is designed
to work with a linear system, this means that the MPC controller ought to perform
better, since the LQR controller will be operating on a linearized approximation of
the actual process dynamics. The cost function for the MPC controller is the sum of
the squares of the differences between the actual and reference values of the water
levels in the lower tanks and the derivatives of the control signals. The MPC class
has built-in functionality to apply a quadratic cost to the derivative of the control
signal, but since this cannot be done easily in LQR, the cost function for the LQR
controller uses the squares of the differences between the control signal values and
what those values would be at the reference point instead.

4.2.2 Results
Figure 4.6 shows using the MPC controller to get the system from a starting point
where both tanks are empty to an operating point where both tanks are half full for
both modes, and Figure 4.7 shows doing the same using the LQR controller instead.
The behaviour for both controllers are very similar, with the main differences being
that the stationary error for the tank 1 is noticably larger for both modes when using
the LQR controller than when using the MPC one.

Even though the MPC controller seems to perform better at eliminating sta-
tionary errors, there is still a noticable error in the level of the tank 3 in the non-
minimum phase mode, as seen in Figure 4.6 (b). Figure 4.8 shows the effect of
enabling integral action for the same problem. Comparing the two figures shows
that enabling integral action reduces the stationary error significantly, as expected.
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(a) Minimum phase, horizon: 30 s
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(b) Non-minimum phase, horizon: 60 s

Figure 4.6 Results of applying the MPC controller to the quadruple tank process.
The sample time used is one second.
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Figure 4.7 Results of applying the LQR controller to the quadruple tank process.
The sample time used is one second.

As stated earlier, the non-minimum phase mode of operation requires a longer
optimization horizon than the minimum-phase mode. Figure 4.9 (a) shows the ef-
fects of halving the horizon length from 60 to 30 seconds. As can be seen, this sig-
nificantly decreases the quality of control. In order to get around this, an additional
cost term can be introduced into the optimization: the predicted cost of running
the process with LQR control from the end of the optimization horizon to infinity,
which can be written as (x− xre f )

T S(x− xre f ) where x is the state vector, xre f is
the reference state vector, and S is the matrix that solves the discrete-time algebraic
Ricatti equation (see Chapter 2.2). Adding this final cost to the optimization gives
the result in 4.9 (b), which is a significant improvement over (a).

Finally, Figure 4.10 shows simulations using a working point close to the maxi-
mum capacity of the lower tanks in non-minimum phase mode using both MPC and
LQR controller. The MPC controller respects the constraints of not overflowing the
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Figure 4.8 Results of applying the MPC controller to the non-minimum-phase
quadruple tank process with integral action enabled. Sample time: 1 s, horizon: 60 s.
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(b) With final cost

Figure 4.9 Results of applying the MPC controller to the non-minimum-phase
quadruple tank process with and without final cost. Sample time: 1 s, horizon: 30
s.

upper tanks (which have a mazimum capacity of 20), while the LQR controller is
unable to do so.

4.3 Crane

4.3.1 Process description
The last process is a three-dimensional crane, with a trolley that can move freely in
the horizontal plane and a load hanging from it by a variable-length rope, as shown
in Figure 4.11 and as described in [Lee, 1998]. Due to insufficient documentation it
was not possible to get the real process working in time, so all results in this section
are from a simulated version of it.

The process is non-linear, as its governing equations involve trigonometric func-
tions. However, much like a simple non-elastic pendulum, it can be approximated
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Figure 4.10 A simulation of trying to almost fill the lower tank in non-minimum
phase mode with both MPC and LQR controllers. The maximum capacitiy of both
the upper and lower tanks are 20.

Figure 4.11 A diagram of the crane process.

with a linear system when the angle of the load is small, although this requires the
length l of the rope holding the load to be constant. This means that the LQR con-
troller should be able to be used to decent effect as long as the change in l is small.
The cost function for the process is, similarly to the one for the ball and beam, a
weighted sum of the squares of the control signal and the distance from the current
position of the load to its desired position.

4.3.2 Results
Figure 4.12 shows using the MPC and LQR controllers to move the load of the
crane between the points (0.0,0.0,−1.0), (0.5,1.0,−0.9), and (1.0,−1.0,−1.1).
As can be seen in the figure, there is not much of a difference between the per-
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formance of the two controllers. However, in Figure 4.13, where the reference
points are more spread out along the z axis, the MPC controller is vastly superior to
the LQR controller. In this figure, the reference points are instead (0.0,0.0,−1.0),
(0.5,1.0,−0.5), and (1.0,−1.0,−1.5). Since the linearization of the crane process
depends on the length of the rope holding the load, changing this length significantly
makes the LQR controller not work very well; in order for the LQR controller to
work in this case, a whole new controller with a different gain matrix would need
to be calculated for each time the reference point is changed.

Something that can be done with the MPC controller with the help of constraints
but that cannot be done with the LQR controller is making the load avoid obstacles.
Figure 4.14 shows moving the load from the point (0,0,−1) to the points (1,0,−1),
while avoiding the elliptic cylinder 25(xl−0.5)2 +16(zl +1.0)2 ≥ 1. The reason a
cylinder was choosen as the obstacle is that the optimization solver does not handle
discontinuities very well, such as the edges of a cuboid. Due to the constraint only
applying at the sample points, the load does pass through the cylinder briefly; if this
method was to be used in control of a real crane, the margin of error ought to be
larger than it otherwise would need to be to take this into account..
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Figure 4.12 Results of applying the MPC and LQR controllers to the crane pro-
cess, with reference points that don’t require the load to move very much vertically.
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Figure 4.13 Results of applying the MPC and LQR controllers to the crane pro-
cess, with reference points that require more vertical movement of the load.
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Figure 4.14 Results of applying the MPC controller to the crane process, with the
additional constraint that the load should never be inside the red ellipsoid.
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4.4 Performance

Figure 4.15 compares the time used by the solver and the total time for each process
for the LQR controller and the MPC controller with and without using generated
code. It can be easily confirmed that LQR is a much faster control method than
MPC, and it can also be seen that using pre-generated code for the MPC solver does
not result in any noticable speedup for any of the computations.

Solution time

16.51 %

Waiting time

83.49 %

MPC with generated code

Solution time

17.03 %

Waiting time

82.97 %

MPC without generated code

Solution time0.30 %Waiting time 99.70 %

LQR

(a) Ball and beam

Solution time3.87 %
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LQR

(b) Quadruple tank
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Solution time0.02 %Waiting time 99.98 %
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(c) Crane

Figure 4.15 Total percentage of time taken for calculating the control signal for
the three processes, using MPC with and without generated code and LQR.

Table 4.1 shows the average time taken to calculate the control signal each sam-
ple for the MPC solver. The ball and beam is by far the fastest, followed by the
crane and the quadruple tank. This fits with the number of variables used by the
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optimization solver for these runs, which is 323 for the ball and beam, 1324 for the
crane, and 1193 for the quadruple tank.

Total time Solver time Solver time/sample
Ball and beam (sample time 0.05 s, horizon 1 s)

MPC with generated code 60.32 s 9.96 s 8.3 ms
MPC without generated code 60.32 s 10.27 s 8.6 ms
LQR 60.47 s 0.18 s 0.15 ms

Quadruple tank (sample time 1 s, horizon 30 s)
MPC with generated code 60.35 s 2.34 s 39 ms
MPC without generated code 60.39 s 2.58 s 43 ms
LQR 60.31 s 0.012 s 0.20 ms

Crane (sample time 0.2 s, horizon 4 s)
MPC with generated code 40 s 4.87 s 24 ms
MPC without generated code 40 s 5.39 s 27 ms
LQR 40 s 0.0082 s 0.041 ms

Table 4.1 Times measured from controlling the three processes.

Table 4.2 shows data obtained from running ipython’s profiler on a simulation
of the crane process. The main points of interest here are sample (the function of
the MPC class that calculates the next control signal), and time.sleep (a Python
standard library function that just makes the program execution wait). Studying the
time spent in these three function shows that the whole simulation took 10.298 s,
5.513 s of which was spent waiting, which leaves 4.766 s. Out of this time, 3.285
s or 68.9% was spent in the solver, with most of the rest (1.349 s or 28.3%) being
spent simulating the process. This only leaves 0.151 s (1.5%) spent on framework
overhead. Overall, this means that it would not be possible to save much time just
by optimizing the code of the framework; in order to improve performance, other
methods would need to be sought.

Figure 4.16 shows that the total time taken by the MPC solver increases linearly
with the number of samples in the optimization horizon. This of course means that
decreasing the sample time while keeping the horizon constant will increase the
computation time needed; however, it also means reducing the time available for
computation each sample, meaning that trying to improve control by just increasing
the sample rate can easily backfire by rendering the solver unable to calculate the
control signal fast enough.
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cumtime filename:lineno(function)

10.298 <string>:1(<module>)

10.298 testassets.py:797(run)

10.298 testassets.py:245(run)

5.532 testassets.py:383(wait_and_get_states)

5.513 {time.sleep}

3.285 mpc.py:802(sample)

2.853 __init__.py:138(foo)

2.843 casadi_collocation.py:536(solve_nlp)

2.808 casadi_core.py:18964(evaluate)

2.807 {_casadi_core.Function_evaluate}

1.349 testassets.py:674(send_control_signal)

1.345 {method 'simulate' of 'pyfmi.fmi.FMUModelME1' objects}

0.767 fmi_algorithm_drivers.py:663(solve)

0.766 {method 'simulate' of 'assimulo.ode.ODE' objects}

0.387 casadi_collocation.py:4187(get_result)

Table 4.2 Profiling data from running a ten-second simulation of the crane process.
The first column is cumulative processor time in seconds (all time spent in a function
and all functions called from it), and the second is the function name and where the
function is located.

10 15 20 25 30
Horizon (number of samples)

5

6

7

8

9

10

11

12

To
ta

l s
ol

ut
io

n 
tim

e 
(s

)

(a) Ball and beam (sample time: 0.05 s)

10 15 20 25 30 35 40 45 50
Horizon (number of samples)

0.4

0.6

0.8

1.0

1.2

To
ta

l s
ol

ut
io

n 
tim

e 
(s

)

(b) Quadruple tank (sample time: 1 s)
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Figure 4.16 Time taken by the MPC solver as a function of the horizon length in
number of samples.
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5
Conclusion

In this thesis, a framework for real-time model predictive control has been imple-
mented, and with that the fact has been demonstrated that it is possible to use the
optimization toolchain of JModelica.org for MPC on real processes. The framework
has been applied to controlling two real processes (one fast and linear, one slow and
non-linear) as well as a simulated one (fast and non-linear). Comparisons with an
LQR controller have shown that while LQR is much faster, MPC has features which
LQR lacks, such as the ability to adhere to constraints. Additionally, the LQR con-
troller has trouble controlling non-linear processes when the reference point moves
far from the linearization point, a problem that does not exist for the MPC controller
since it does not need a linear problem to work.

Profiling of the real-time MPC framework shows that it does not have any sig-
nificant inefficiencies. The vast majority of the time between getting the state val-
ues from the process and sending the next control signal is spent inside the MPC
solver, with not much time spent on framework overhead. While it would probably
be possible to optimize it further, doing so would most likely not result in any major
improvements. Instead, speedups would have to be sought by improving either the
solver or the problem formulation.

5.1 Further work

The main thing that still needs to be done is testing the real-time MPC framework
on a real process that is at least as fast as and more complex than the ball and
beam, to study if it is able to control the process or if it needs further improvements
in terms of time taken by the solver. The crane process was supposed to fill this
slot, but as it was not possible to get working in time tests were only done on the
simulated version. While the framework was able to control the simulation, the
documentation that does exist for the real process suggests that it might require
a sample frequency of 100 Hz, which is twenty times faster than what was used
for the simulation and beyond what the current version of the framework can do.
Since the speed of the current framework does not seem to be able to be improved
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much by simple optimization, this would require looking into ways of speeding up
the MPC or optimization solvers used by it. One way that this might be possible
to do would be by using advanced-step MPC, where a parametrized version of the
optimal control problem is solved while waiting for the next sample, decreasing
the computation time needed for calculating the control signal after getting the new
state vector. [Zavala and Biegler, 2009]

Additionally, a feature that might improve performance a bit would be the ability
to set a new initial trajectory when switching reference points. The MPC solver uses
the optimization results from the last time step as an initial guess, which means
that when the reference point changes, the initial guess can be very far from the
actual solution, which causes the solver to take longer or even in some cases fail to
converge. The former is not necessarily much of a problem if the current state is a
stationary point, but can be troublesome otherwise. Another possible way to handle
this would be having the solver be aware of the reference trajectory for the entire
horizon rather than just the current reference point, so that it can take reference
changes into account before they happen; however, this is not something that the
MPC solver currently supports.

Finally, if the framework is to be used for more serious control of real processes,
some sort of error handling needs to be implemented. As it is, if the solver runs
into an error during control the process needs to be shut down manually. The bare
minimum to be done would be to just have the controller send a control signal of
zero in case of errors, but even better would be switching to another controller that
could gracefully bring the process to a desired shutdown state.
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