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Sammandrag 

Filippinerna är ö-nation i Sydostasien beståendes av mer än 7 000 separata öar. Filippinerna är det landet i världen som oftast blir 
drabbat av tropiska stormar; varje år når mellan 6 och 9 tyfoner land i Filippinerna. I november 2013 slog super-tyfonen Haiyan till 
mot nationen, och lämnade 10 000 döda och massiv förstörelse av delar av infrastrukturen (inklusive det nationella elnätet). Det 
är särskilt viktigt med tillgång till elektricitet under de första månaderna som följer en katastrof av denna magnitud så att 
framgångsrik katastrofhjälp kan bedrivas (så att kylning av medicin, rent vatten, telekommunikation och ljus kan erbjudas). Stora 
delar av det Filippinska folket bor på landsbygden utan tillgång till det nationella elnätet, och förlitar sig främst på 
dieselgeneratorer för elproduktion. 
 
Det Svenska företaget InnoVentum har startat ett projekt som heter “Power to the Philippines” med syftet att förse en barnby 
driven av Barnmissionen i Filippinerna med förnybar energi från deras förnybara energi-lösning “Dali Powertower”. Dali 
Powertower är en förnybar hybrid som kombinerar vind- och solenergi. Denna studie avser att undersöka InnoVentums projekt 
“Power to the Philippines” om det realiseras i sin fullskaliga form - när barnbyn till fullo blir försedd med förnybar energi för att 
kunna utföra sina basala behov - och jämföra det med ett dieselgenerator-system (som är vanligt idag). En kombination av dessa 
två energiförsörjningssystem (en förnybar/diesel hybrid) undersöks även. Dessa tre energiförsörjningssytem undersöks och 
jämförs ur en ekonomisk och miljömässig synvinkel för att komma fram till vilka fördelar, och nackdelar, som projektet “Power to 
the Philippines” kan ha. 
 
Miljöpåverkan som dessa tre system har jämförs genom att en livscykelanalys (LCA) genomförs, som tar hänsyn till alla aspekter av 
energiförsörjningssystemen, vanligtvis hela vägen från råvaruutvinning till avfallshantering. LCA-studien kommer främst fokusera 
på miljöpåverkanskategorierna växthusgaserpåverkan och användning av primärenergi. Den ekonomiska analysen av de olika 
systemen görs med hjälp av annuitetsmetoden, vilket resulterar i ett pris per kilowattimme producerad energi. Denna analys görs 
för tre olika kalkylräntor (3, 8 och 13 %), för att simulera hur olika investerares avkastningskrav påverkar resultatet av den 
ekonomiska analysen. 
 
Resultatet från LCA-studien visade att Powertower-systemet hade den minsta miljöpåverkan per använd kilowattimme av de tre 
studerade systemen, både gällande växthusgaspåverkan (89 g CO2/kWh) och användning av primär energi (0.33 kWh/kWh). 
Dieselgenerator-systemet hade störst miljöpåverkan, då det hade ungefär 21 gånger högre miljöpåverkan (både gällande utsläpp 
av växthusgaser och användning av primär energi) jämfört med Powertower-systemet. Hybrid-systemet hade den näst lägsta 
miljöpåverkan, med ungefär 6 gånger högre miljöpåverkan (både gällande utsläpp av växthusgaser och användning av primär 
energi) jämfört med Powertower-systemet. 
 
Resultatet från den ekonomiska analysen visar att när all producerad energi används, så producerar Powertower-systemet den 
billigaste elektriciteten vid den låga och den mellersta kalkylräntan (0.31 respektive 0.44 $/kWh) medan dieselgeneratorn (med 
platt prisutvecklings-struktur) producerade den billigaste elektriciteten vid den höga kalkylräntan (0.57 $/kWh). Däremot, om 
enbart elektricitet som används av barnbyn utnyttjas, så blir hybrid-systemet det billigaste alternativet med ett elpris på 0.56 
$/kWh (att jämföra med 0.75 $/kWh för Powertower-systemet). Vid den mellersta nivån av kalkylränta blir dieselgenerator-
systemet det billigaste alternativet (0.53 $/kWh), tätt följt av Powertower- och hybrid-systemet som kostar ungefär 10 cent mer 
per kilowattimme. Vid den höga kalkylräntan blir dieselgenerator-systemet ännu billigare (0.57 $/kWh) i jämförelse med sina 
konkurrenter. 
 
Slutsatsen från studien var att hybrid-systemet är det bästa alternativet för barnbyn, då det kan producera billig energi med hög 
energisäkerhet och en relativt låg miljöpåverkan. Därför kan projektet “Power to the Philippines” anses vara av intresse för 
hjälporganisationer, så länge som deras energiförsörjning inte enbart kommer från Powertowers. En hybridisering av Powertowers 
med de dieselgeneratorer som används idag i barnbyarna kan sänka miljöpåverkan av det existerande energisystemet, samtidigt 
som det sänker kostnaden för elektriciteten (vid den låga och mellersta nivån av kalkylränta). 
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Abstract 

The Philippines is an island nation in South East Asia consisting of more than 7 000 separate islands. The Philippines is the country 

in the world that is most often struck by tropical storm; every year between 6 and 9 typhoons hit land in the Philippines. In 

November 2013 the super typhoon Haiyan hit the nation, killing 10 000 people and causing massive destruction to parts of the 

infrastructure (including the national electric grid). Especially in the first months following a disaster of this magnitude it is crucial 

for a successful disaster recovery to give the people access to electricity to enable refrigeration, clean water generation, 

telecommunication and lighting. Large portions of the Philippine people living in rural areas are left without access to the national 

grid, and are mostly relying on diesel generators for power generation.  

The Swedish company InnoVentum has started a project called “Power to the Philippines” which intends to provide humanitarian 

aid villages run by the Children’s mission that are active in the area with renewable energy using their power generation solution, 

the “Dali Powertower”. The Dali Powertower is a renewable hybrid power generation system combining wind and solar power. 

This study investigates InnoVentums project “Power to the Philippines” if realized in its full-scale form - being able to completely 

power a humanitarian aid village with renewable energy to meet its basic needs - and compares it to a diesel generator system (as 

is commonly used today). A combination of the two systems (a renewable/diesel hybrid system) is also studied. These three 

energy supply systems are studied and compared from an environmental and economic perspective to see what advantages, or 

disadvantages, there might be to the “Power to the Philippines”-project. 

The environmental impact of these three systems will be compared by conducting a life cycle assessment (LCA) study, which takes 

into account all aspects of the life cycles of the energy supply systems, usually ranging from raw-material acquisition to the end-

of-life treatment. The LCA study is mainly focusing on the environmental impact categories global warming potential (GWP) and 

primary energy demand. The economic performance of the different systems is assessed by using the equivalent annual cost 

method, which results in a price per kWh of produced energy. This analysis is done for three different discount rates (3, 8 and 13 

%) with the aim of simulating how different investors required rates of return affect the result of the economic analysis. 

The results of the LCA study showed that the Powertower system has the least amount of environmental impact per kWh of used 

energy out of the studied systems, both regarding GWP (89 gCO2/kWh) and primary energy demand (0.33 kWh/kWh). The diesel 

generator is the system with the highest amount of environmental impact, having about 21 times higher environmental impact 

(both regarding global warming potential and primary energy demand) than the Powertower system. The renewable/diesel hybrid 

system had the second lowest environmental impact, with about 6 times higher environmental impact (both regarding global 

warming potential and primary energy demand) than the Powertower system. 

The results from the economic analysis show that when the all the electricity is utilized, the Powertower system produces the 

cheapest electricity at a low and medium discount-rate (0.31 and 0.44 $/kWh respectively) while the diesel generator system 

(flat-rate diesel price) produces the cheapest electricity at a high discount-rate (0.57 $/kWh).  However, if only the electricity used 

by the humanitarian aid village is considered, the hybrid system becomes the cheapest alternative, costing 0.56 $/kWh compared 

to the 0.75 $/kWh of the Powertower system. At the medium discount-rate the diesel generator system produces the cheapest 

energy (0.53 $/kWh), closely followed by the Powertower and hybrid system costing about 10 cents more per kWh. At the high 

discount-rate the diesel generator system becomes even cheaper (0.57 $/kWh) compared to its competitors while the leap to the 

competitors simultaneously becomes larger. 

The conclusion is made that the hybrid system is the best alternative for the humanitarian aid village, as it can provide cheap 

energy with high energy security at a relatively low environmental impact. Therefore, the “Power to the Philippines” project can 

be deemed to be of interest to the humanitarian aid villages, as long as the energy load of the humanitarian aid village is not 

solely provided by Powertowers. A hybridization of Powertowers with the existing diesel generators can help lower the 

environmental impact of the existing energy system, while simultaneously lowering the cost of electricity. 
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1 Introduction 

1.1 Background 

1.1.1 The situation in the Philippines 

The Philippines is an island country situated in Southeast Asia consisting of more than 7 000 separate 

islands. The Philippines, with its population of about 100 million people, is the 12th most populated 

country in the world (CIA, 2014). The Philippines is the country in the world that is most often struck 

by tropical storms. Every year the Philippines are hit by 19 typhoons of which six to nine hit land 

(Wingard & Brändlin, 2014). In November of 2013 the super typhoon Haiyan hit the nation which led 

to the destruction of portions of society and its infrastructure, including parts of the electrical grid. 

Haiyan was one of the worst typhoons to ever hit the Philippines, with an estimated 10 000 people 

killed and 14.5 billion USD worth of property destroyed (Rupp, 2014).  

 

Figure 1. Example of the destruction following the super typhoon "Haiyan" (InnoVentum, 2014b) 

An integral part of rebuilding society after a disaster of this magnitude is establishing a reliable, long-

term supply of energy for the people. Especially in the first months following the disaster it is crucial 

for a successful disaster recovery to give the people access to electricity to enable refrigeration (of 

food, medicine and vaccines), clean water generation, telecommunication and lighting (among other 

services). Within the Philippine society there are big differences in living standards and the quality of 

infrastructure. The Philippines consists of 42 000 “barangays” which is one of the smallest 

administrative division in the Philippines (referring to a village or district). As of 2005, about 8 % of 

these barangays were without access to electricity. About half of these districts were in remote rural 

areas, leaving 1700 rural barangays unserved (Grewal et al, 2006). 

The main electrical grid of the Philippines is divided into three separate grids with a total installed 

capacity of 16.8 Gigawatts (World bank, 2002). It’s not an economically viable alternative to expand 

the grid to the more remote islands, where instead small diesel plants (run by a subdivision of the 

National Power Corporation) commonly are used for electricity generation. These diesel plants are 

economically inefficient, partly due to their small scale and the high diesel costs. This electricity is 
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then sold to local or regional electricity cooperatives which distribute it to its consumers (Grewal et 

al, 2006). The population in these remote rural areas are poorer than the general population, their 

income is less than 2 USD/day which is less than half of the national average. These conditions, 

coupled with poor management of the regional electricity cooperatives (World bank, 2002) has, 

despite implementation of subsidies, led to big financial difficulties for the National Power 

Corporation (Grewal et al, 2006). 

1.1.2 InnoVentums work in the Philippines 

InnoVentum is a Swedish small-scale wind turbine solutions manufacturer based out of Malmö, 

Sweden. InnoVentum has started the project “Power to the Philippines” with the aim of providing 

their renewable energy solutions to the Philippines. The project is a collaborative effort involving the 

Children’s Mission, a help organization active in 8 different countries around the world. The 

Children’s Mission runs humanitarian aid villages, called children’s villages, of varying sizes for 

children that come from exposed social backgrounds (Barnmissonen, 2014). These children’s villages 

are commonly powered by small-scale diesel generators (InnoVentum, 2014b).  

The project intends to set up energy supply systems utilizing InnoVentums renewable sun/wind-

hybrid the Dali Powertower that will be able to provide renewable energy to the Philippine children’s 

villages with no connection to the grid (InnoVentum, 2014b). As a first step of the project 

InnoVentum installed their first Dali Powertower in the Philippines in July of 2014 at the Hills of 

grace, a Children’s village situated outside of Manila, enabling the village to be run partly on 

renewable energy.  
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Figure 2. The PowerTower installed in Manila, the Philippines (InnoVentum, 2014b) 

Another potential location for installing the Powertower-solution is the “Scandinavian village” just 

outside of Tacloban on the island of Leyte, which is located in the mid-east part of the Philippines. It 

is the administrative headquarter of the island and inhabits around 220 000 inhabitants (Head, 

2013). This part of the Philippines was hit particularly hard by the typhoon and the area is in great 

need of humanitarian help and energy. After the typhoon the Scandinavian village lost their energy 

supply and is in need of a new stable energy solution. The village bought a 4,5 kW diesel electric 

generator which runs 4 hours a day to be able to light their LED-lights and charge cell phones, but it’s 

not able to keep fridges and freezers running (Daligault, 2014).  

 

This study will focus around a humanitarian aid village very similar to the Scandinavian village 

regarding population size, living standards, energy use patterns and currently used energy supply 

system (diesel generator). This study intends to investigate InnoVentums project “Power to the 

Philippines” if realized in its full-scale form - being able to completely power a humanitarian aid 

village with renewable energy - and compare it to a diesel generator system dimensioned to be able 

to provide the village with the same amount of energy. A combination of the two systems (a 

renewable/diesel hybrid system) will also be studied. These three energy supply systems will be 

studied and compared from an environmental and economic perspective to see what advantages 

and disadvantages there might be to the different alternatives. 
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Figure 3. The Scandinavian village (after being rebuilt after typhoon) (InnoVentum, 2014b) 

  



12 
 

1.2 Problem description 
After several disasters in the Philippines, large portions of the country’s infrastructure are damaged. 

Because of the geographic location of the Philippines, it is highly probable that more disasters will 

strike in the future. The national electric grid in the Philippines only reaches about 70 % of the 

population (World bank, 2002) which has created a demand for decentralized energy systems in 

order to supply the parts of the Philippine people with no connection to the electrical grid with the 

energy they need to meet their basic needs. The most common solution to this problem is using 

diesel generators for producing energy, mainly because of the simplicity of use and low initial 

investment cost.  

In the long term, it might be preferable for the Philippine society to restrict the dependence upon 

energy supply systems using fossil fuels for electricity generation. There are some negative aspects to 

the widespread use of diesel generators for off-grid energy generation. For example, it brings about a 

dependence on fossil fuels, which are expensive and have negative effects on both the local and 

global environment. Renewable energy technologies are viable alternatives to diesel generators that 

might help decrease both the cost and environmental impact of the off-grid power generation, but 

these alternatives are not utilized in any larger scale today. 

1.3 Aim 
The aim of this master thesis project is to study InnoVentums project “Power to the Philippines” and 

examine how economically and environmentally viable it is when realized in its full scale form (when 

the sun/wind-hybrid system is able to completely power a humanitarian aid village in a developing 

country inhabiting 500 people during 20 years). The sun/wind-hybrid system will be compared to a 

diesel generator system as well as a hybridization of the two aforementioned energy supply systems; 

a renewable/diesel hybrid system. All three systems will be dimensioned to be to be able to supply 

the humanitarian aid village with the same amount of energy for 20 years. A life cycle assessment will 

be carried out to examine and compare the environmental impact of the energy supply systems 

during their whole life cycle. An economic analysis will investigate which energy supply system is the 

most economically viable.  

Furthermore, the project intends to study where the conditions for a switch from diesel generator to 

sun/wind-hybrid is the most environmentally favorable. This will be done by studying 4 other 

humanitarian aid villages at different locations around the world, assumed to be similar to the 

Philippine humanitarian aid village, the Scandinavian village, regarding population size, living 

standards, energy use patterns and current energy supply system (diesel generator).  

1.4 Delimitations 
The life cycle assessment will only cover three different energy supply systems; the diesel generator 

system, the sun/wind-hybrid system and the renewable/diesel hybrid system, no alternative 

solutions will be investigated. The sun/wind-hybrid system investigated in the study will only be the 

Dali Powertower created by InnoVentum. We have chosen to delimit the studied energy systems to 

be able to supply a village inhabiting 500 people with energy. 
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2 Energy systems - description and calculations 

2.1 Description of the energy supply systems 

2.1.1 The sun/wind hybrid system 

 
Figure 4. The Dali Powertower with 6 PV cells (Innoventum, 2014a) 

The Dali Powertower is a renewable hybrid power generation system combining wind and solar 

power that is developed by InnoVentum. The wind turbine is mounted at the top of the 12 meter 

high wooden tower, while the 6 solar panels are mounted at the base of tower. The tilt and direction 

of the solar panels is adapted to the specific conditions of the location where the Powertower is to 

be used. Coupled to the Powertower is an off-grid cabinet containing the electrical components 

necessary for producing and storing electricity such as batteries, a solar charge regulator, a wind 

charge regulator, inverters and a DC to AC converter. The system has 4 different available turbine 

configurations, for this study the HY Energy IV Lite turbine is used. 

A factor that has to be taken into account when working with the Philippines is the previously 

mentioned destructive typhoons that are frequent in this area. In order to be able to withstand the 

rough meteorological conditions in the Philippines, the Dali Powertower has been designed to be 
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able to go into a “safe-mode”. This is achieved by pulling out one of the legs from the tower, causing 

it to go into a split, collapsing closer to the ground. In this position the Powertower will be able to 

handle high wind speeds better than in the upright operational position.  

The different components of the Dali Powertower are described in more depth in the following 

section. 

The wind turbine 

The Dali Powertower in this study uses the HY-3000 IV Lite turbine, which has a rated output of 3 kW 

at wind speeds of 12 m/s. The spec sheet of the HY-3000 Lite turbine can be seen in Table 1 and the 

Power curve of the turbine in Figure 5. 

Table 1. The specification sheet for the HYE IV lite turbine (Innoventum, 2014a) . 

 

 

Figure 5. The power curve of the HYE IV Lite turbine (Innoventum, 2014a) 
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The solar panels 

The type of solar panels used in the Dali Powertower is called EcoPlus and they are exclusively 

produced in Sweden by InnoTech Solar. Every Powertower will have 6 panels, each with a power of 

250 Wp mounted onto the tower in a row. Each panel contains 60 multi-crystalline Silicon cells with 

the dimensions 156 x 156 x 180 microns. It contains a special glass with an anti-reflective surface 

which allows for higher output power during scattered and low light conditions. InnoTech tries to 

make their solar panels as environmentally adaptable as possible. According to calculations by an 

independent institute, InnoTech Solar has a 50 % smaller carbon footprint than conventional 

producers. The EcoPlus solar panel has a 25 year “linear performance warranty” (Innotech Solar, 

2014). In the case of the Philippines, InnoVentum has decided to mount the solar panels as can be 

seen in Figure 6, rather than as in Figure 4. 

 

 

Figure 6. The photovoltaic cells (Innoventum, 2014a) 

The off-grid cabinet 

The off-grid cabinet contains the following components; batteries, maximum power point tracker 

(MPPT), solar charge controller, wind charge controller and inverter. The different components vary 

in quantity depending upon the amount of Powertowers in the system. InnoVentum dimensions the 

system so that there is one off-grid cabinet per 3 Powertowers (Innoventum, 2014a). One off-grid 

cabinet (for 3 Powertowers) contains the quantities shown in Table 2 below.  

Table 2. The components and their respective quantities contained in 1 off-grid cabinet (for 3 Powertowers) 

Component Quantity 

Batteries 8 

MPPT 3 

Inverter 1 

Solar charge controller 1 

Wind charge controller 3 

 

As can be seen in Table 2 the quantity of the MPPT and the wind charge controller are equal to the 

amount of Powertowers and the Inverter, and solar charge controller are equal to the amount of off-

grid cabinets (which can be seen in Figure 7). Since the amount of Powertowers are not always in 
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even 3’s, a method for dimensioning the amount of off-grid cabinets where the number of off-grid 

cabinets are rounded off to a third of the closest number that is dividable with 3 was chosen. As an 

example, a system with 10 Powertowers will have 3 off-grid cabinets, and a system with 11 

Powertowers will have 4 off-grid cabinets. This will affect the amount of batteries, inverters and solar 

charge controller, but not the amount of wind charge controllers and MPPTs (since these are 

dependent upon the amount of Powertowers). 

 
Figure 7. The off-grid cabinet (Innoventum, 2014a) 

The batteries. 

The type of batteries that is used in the Dali Powertower is Sonnenschein SB6/200A which is 

produced by Exide Technologies (Figure 8). It is a gel lead-acid battery, commonly known as a VRLA-

battery (Valve Regulated Lead-Acid battery). The VRLA battery technology has some advantages such 

as a low need for maintenance and it also needs less amount of electrolyte than other types of 

batteries (GS Battery, 2014). One battery has a storage capacity of 1.2 kWh, making the capacity of 

an off-grid cabinet containing 8 batteries 9.6 kWh. 

 
Figure 8. The Sonnenschein batteries (Innoventum, 2014a) 

Maximum power point tracker 

The maximum power point tracker used in the Powertower is Morningstar Tristar MPPT 60 (Figure 

9). The MPPT control the battery and prevent it from taking damage when system failures occur. It 

optimizes the charging process to maximize the battery’s life length.   
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Figure 9. The maximum power point tracker (Innoventum, 2014a) 

Solar charge controller 

The solar charge controller is made by Echelon and is called iLON smartserver 2.0 (Figure 10). The 

controller monitors the energy use and production and manages the system to prevent 

malfunctioning. 

 
Figure 10. The solar charge controller (Innoventum, 2014a) 

DC to AC converter / Inverter 

The DC to AC converter used in the Powertower is Studer XTender XTM 4000 – 48 (Figure 11). A DC 

to AV converter converts the electricity produced by the PV from DC to AC so the electricity is usable 

for electrical devices. 

 
Figure 11. The DC to AC converter (Innoventum, 2014a) 

Wind charge controller 

The wind charge controller is produced by HY energy in Guangdong, China (Figure 12). The wind 

charge controller helps control the production of the wind turbine by automatically braking so that 

electricity is produced safely without reaching over-current or over-voltage states. It also helps 

protect the battery against over-discharging or over-charging. 

  
Figure 12. The wind charge controller (Innoventum, 2014a) 
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2.1.2 The diesel generator system 

The diesel electric generator that is used today in the Scandinavian Village is a Navigator NDG5000SE 

with a rated output of 4500 Watts. This diesel generator alone will not able to provide the village 

with energy correspondent to the continuous energy load. Therefore a theoretical diesel generator 

system that is actually able to supply enough power to meet the load of the village. The diesel 

generator chosen is a Kohler Power systems 7EFKOZD generator with an effect of 7 kW, as can be 

seen in Figure 13. 

 

Figure 13. The Kohler 7EFKOZD diesel generator used in the theoretical diesel generator system (Kohler Co, 2014) 

2.1.3 The renewable/diesel hybrid system 

The renewable/diesel hybrid will be a combination of the sun/wind hybrid system and the diesel 

generator system. It will contain 1 diesel generator of the same type as described in chapter 2.1.2, a 

number of Powertowers and a battery tank. The system will also contain off-grid cabinets to regulate 

the energy produced by the Powertowers. The combination of diesel generator and Powertowers will 

allow for a reduction in consumed diesel, as well as a lower number of Powertowers required for 

meeting the load. Because of the lower number of Powertowers, the system will generate a lower 

amount of over-production. How the dimensioning of the renewable/diesel hybrid system was 

performed can be found in chapter 0.  
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2.2 Energy calculations 

2.2.1 Energy demand of the humanitarian aid village 

The village consists of 50 houses with 10 persons in each house. The inhabitants of the village need 

energy for everyday use such as charging cell phones and powering fans, fridges and lights which can 

be seen in Table 3. 

Table 3. The appliances of one household. 

Appliances Fridge Fan LED light Cellphone 

Quantity 1 1 3 1 

Power rating 29 60 10 5 

Hours of use 1-24 11-20 19-23 1-24 

 

All appliances, except for the refrigerator, continuously consume the amount of power that is stated 

in the power rating row in Table 3 above. The refrigerator has more of a variable energy 

consumption which causes the daily energy consumption to be less than what it would be if the 

power is multiplied by the number of hours per day (125 W * 24 h = 3 kWh). For this study, a 

refrigerator known to be used in a similar children’s village outside of Manila in the Philippines 

(Daligault, 2014) was used. This refrigerator consumes 0.69 kWh/day, making the hourly average 

power use 28.75 W.  This amount to a yearly energy consumption of the village is approximately 28.5 

MWh, which during the assumed 20 year life time of the system will amount to 570 MWh. This 

energy load is assumed to be the same during all days of the year. A graph of the energy load profile 

can be seen in Figure 14. 

 

Figure 14, Total energy load (in kW) for a typical day in the village with 500 inhabitants 

  

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

lo
ad

/k
W

 

hour 

Village energy load 



20 
 

2.2.2 Solar energy calculations 

The amount of electricity produced from the solar panels is calculated by gathering daily measures of 

insolation on the horizontal surface and diffuse insolation from the years 2001 to 2004 from a 

website owned by NASA (NASA, 2014). From these measures an average insolation value for each 

day of the year, later summed up to each month, were calculated. The solar energy resources can be 

seen below in Table 4.  

Table 4 Monthly average insolation in kWh/m
2 

in Tacloban, Philippines (NASA, 2014). 

Month J F M A M J J A S O N D 

Insolation, kWh 142 150 186 215 195 175 178 179 184 172 148 140 

 

The average monthly insolation values, G, are then put into the following equation to calculate the 

electricity generated the solar panels. 

𝐸 =  𝐴 ∗  𝑟 ∗  𝐺 ∗  𝑃𝑅     

The A is the area of the solar panels, r is the solar panels yield, G is the solar irradiation and PR is the 

solar panels performance ration. The yield from a solar panel with a Watt peak of 250 and an area of 

1.6 m2 is 15.6 % and the standard efficiency is 75 % (Photovoltaic-software.com, 2014). This is 

considered to be close enough the area of the solar panels used by the Powertower which is 1.67 m2. 

The total number of solar panels per Powertower is 6 which add up to an area of 10.02 m2. 

Table 5. Input values for electricity production of solar panels. 

  Value 

Area, A (m2) 10.02 

Efficiency, r 0.75 

Yield, PR 0.15 

 

The total amount of electricity produced by the solar panels of one Powertower is estimated to 

approximately 2060 kWh and the continuous production over the year can be seen in Figure 15. 

 

Figure 15. The electricity produced per month by the solar panels of 1 Power Tower over a year. 
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2.2.3 Wind energy calculations 

In order to calculate the amount of wind power that a Powertower is able to produce over a year an 

appropriate wind data resource has to be utilized. The ideal would be to have a dataset from 

Tacloban with hourly values of wind speed, but since this was not available another dataset had to be 

used. A dataset containing daily average wind speed measurements collected over the years 2005 to 

2012 from a weather station was found on the website Typhoon2000 (Padua, 2014). The website 

(and weather station) is driven by an individual in the Naga city region of the Philippines, about 400 

km from Tacloban. This dataset was deemed to be a good enough representative of the wind speed 

in Tacloban. The average of the daily measurements over the years 2005 to 2012 can be seen in 

Figure 16 below. The wind speed is measured at a height of 30 meters. 

 

Figure 16. Daily wind speed measurements over a year (Padua, 2014). 

These daily wind speed values are good, but in order to be able to perform a more advanced analysis 

of the energy system, hourly wind speed values are preferred. In order to convert the daily wind 

speed average into hourly values the following formula (where Wave is the daily average wind speed, 

and n is the hour of the day (ranging from 0 to 23)) was used; 

 

𝑊𝑛 = 𝑊𝑎𝑣𝑒 +
1

2
∗ 𝑊𝑎𝑣𝑒 ∗ 𝐶𝑂𝑆(

𝑛∗𝜋

12
) (Zhongling, 2005) 
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These hourly values where then matched against the power curve of the wind turbine, as is seen in 

Figure 5 in chapter 2.1.1 The sun/wind hybrid system. This produces a line of the continuous yearly 

production as is seen in Figure 17 below. The total production over a year using this dataset amounts 

to approximately 3.54 MWh. 

 

Figure 17. The wind turbine production over an average year 
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2.2.4 State of charge simulation 

In order to dimension the sun/wind-hybrid system in such a fashion that it continuously meets the 

load a simulation of the state-of-charge (SOC) was carried out. The SOC is a measure describing what 

amount of energy that is stored in the battery tank relative to its full storage capacity, and is 

expressed as a percentage (similar to a fuel gage in a car). The state-of-charge simulation intends to 

simulate how the energy supply system and the load interact with the battery tank. The simulation is 

set up so that It simulates the SOC over a year using hourly values of energy production, load and 

calculates what the hourly value of the SOC is (while taking the different efficiencies involved into 

consideration). Limitations are imposed on the SOC so that it can’t go below 0 % or above 100 %. 

Figure 18 below illustrates the system that the SOC simulation intends to simulate. 

 

Figure 18. An illustration of the system that the SOC-simulation intends to simulate (the sun/wind hybrid system) 

A self-discharge rate of the batteries of 0.2 % per day, as well as the following efficiencies were used 

in the simulation (Zhou, 2008); 

ƞInverter = 92 % 

ƞrectifier = 95 % 

ƞcharge = 90 % 

ƞdischarge = 100 % 
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One of the key figures is the percentage of time that the system is able to sustain the SOC above 0 %. 

Another key figure is the number of “deep discharges”. Having the state of charge level dip below 40 

% is considered as a deep discharge by the battery manufacturer. A high number of deep discharges 

are generally considered to lower the life-time of the battery. Also, the yearly amount of over-

production is displayed.  

 

The dimensioning process is dependent on the criterion that the state of charge of the battery tank 

shall stay above 0 % more than 95 % of the time. The number of Powertowers and the corresponding 

amount of batteries are increased until this percentage is above 95 %. At this point, the system is 

considered to be properly dimensioned to meet the load. 
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2.2.5 Dimensioning the sun/wind-hybrid system 

The sun/wind-hybrid system will supply power to a village of 500 inhabitants. To do that it must 

provide at least as much electricity as the village consumes, which over the year amounts to 

approximately 28.5 MWh. When the hybrid system does not produce electricity the batteries will 

provide the village with electricity. The batteries are charged when the hybrid system is producing 

more electricity than the village consumes. When charging and withdrawing electricity from the 

batteries, losses in efficiency are inevitable.  

 

In one year the solar cells of one Powertower in the Philippines produces approximately 2.32 MWh 

and the wind turbine produces approximately 3.54 MWh, giving a combined total of approximately 

5.86 MWh. According to the state-of-charge simulation that was carried out, the required number of 

Powertowers is 13 with a corresponding 4 off-grid cabinets containing a total of 32 batteries. The 

total quantities of the different components in the off-grid cabinets of the Powertower system in the 

Philippines are described by Table 6 below.  

Table 6. The quantity of the components in the off-grid cabinet of the Philippine Powertower system 

Component Batteries MPPT Inverter solar charge controller Wind charge controller 

Quantity 32 13 4 4 13 

2.2.6 Dimensioning the diesel generator system 

To be able to compare the current energy system in the village with the sun/wind-hybrid system the 

diesel generator system is assumed to produce enough energy to cover for the energy load of the 

village even if this is not the case today. The diesel generator currently used for electric production in 

the village has a rated output of 4.5 kW, but in order to match the load of the system a generator 

with a rated power output of 7 kW was instead chosen. The efficiency of the studied diesel generator 

at different loads can be seen in Table 7.  

Table 7. The diesel consumption at different loads. 100 % equals 7 kW of power output. (KohlerPower, 2014) 

Load (in %) Diesel consumption (in liters) 

100% 2,6 

75% 1,9 

50% 1,5 

25% 1,1 

 

In order to calculate the total amount of diesel consumed in one year the diesel consumption is 

calculated from the hourly values of the energy load (in %) which then is matched to the diesel 

consumption in Table 7. In order to get the diesel consumption at all the loads which are not stated 

in Table 7, an interpolation was performed, ranging from 0 -25 %, 25 % - 50 %, and so on. This results 

in a total amount of diesel needed to supply the village with energy for one year of approximately 12 

700 liters.  
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2.2.7 Dimensioning the renewable/diesel hybrid system 

The renewable/diesel hybrid system will be dimensioned to cover the yearly energy consumption of 

the village. This can be achieved with many different setups. Each set up will holds one diesel 

generator (the same type as in the diesel generator system) while the number of Power Towers will 

be varied between 1 and 5 and the capacity of the battery tank will be varied between 0-48 kWh. The 

different setups will lead to varying amounts of yearly diesel consumption, which also will be 

calculated.  

In order to find the most suitable setup both environmental and economic aspects will be taken into 

consideration, and the setup with what is deemed to be the best compromise between these two 

aspects will then be chosen. The environmental performance is calculated according to the 

procedure as described in Chapter 4 while the economic performance is calculated according to the 

procedure as described in Chapter 5. The environmental performance is measured in g CO2-eq/kWh 

and primary energy/kWh while the economic performance is measured in USD/kWh. How the 

dimensioning of the renewable/diesel hybrid system was performed can be seen in Appendix H. 
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3 Introduction to life cycle assessment 
“LCA addresses the environmental aspects and potential environmental impacts (e.g. use of resources 

and the environmental consequences of releases) throughout a product's life cycle from raw material 

acquisition through production, use, end-of-life treatment, recycling and final disposal (i.e. cradle-to-

grave)” (The Institute for Environment and Sustainibility, 2010) 

 

Life cycle assessment, LCA, is a method used for measuring the environmental impact that a product, 

system or service has during its whole life-cycle. It can help us increase the understanding of a 

product, system or service’s overall impact regarding different environmental aspects, such as the 

emission of greenhouse gases, acidification and eutrophication. By taking the product’s whole life 

cycle into account from “cradle to grave”, e.g. from raw material acquisition, transports, production, 

use to recycling and disposal, a holistic description of the impacts from the different stages of the life 

cycle is achieved. The results from a LCA can have many uses, for example it can be used for strategic 

planning, advertising and shaping public policy, as well as for developing and enhancing products. 

The guidelines for how a life cycle assessment should be performed are internationally standardized 

by the International Organization for Standardization organization (ISO), mainly governed by the 

standards ISO 14040 and 14044 (The Institute for Environment and Sustainibility, 2010). 

A life cycle assessment consists of four different phases, namely (Figure 19); 

- The goal and scope definition phase 

- The inventory analysis phase 

- The impact assessment phase 

- The interpretation phase 

 

Figure 19. The framework of life cycle assessment (The Institute for Environment and Sustainibility, 2010) 
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These 4 phases, along with some common concepts related to the life cycle assessment 

methodology, are described in the following section. 

Goal and scope definition 

The goal definition is the first part of a life cycle assessment, and it affects all subsequent parts. The 

goal definition shall explain what the purpose of the LCA is, what the results are to be used for, as 

well as the targeted audience. The limitations of the study stemming from the method, choice of 

assumptions and the impact categories that are included shall also be stated. Depending on if the 

results of the LCA for example are going to be used internally in a company or publicly as advertising, 

the LCA will have different requirements on the quality of data and execution of the study. 

 

The scope of the LCA shall identify and describe the system to be studied more in depth. In the scope 

section the requirements on methodology, quality and reporting and review shall be stated, and they 

must harmonize with the previously stated goals and the intended use of the LCA. The scope 

definition forms the framework for how the study will be performed in the latter stages of the LCA. 

The scope section shall define what type of results the study will produce as well as the systems 

function, functional unit and reference flow. It shall include a definition of the system boundaries, 

and what cut-off rules are used (if there are any). 

 

The scope should describe what environmental impact categories that are to be included in the life 

cycle impact assessment (LCIA) phase of the study and state what LCIA-methods that are to be 

applied. It shall also state which types of data are used for the life cycle inventory (LCI) phase, from 

what sources, what quality it is and also what the data quality requirements are from a technological, 

geographical and time-related perspective. 

Functional unit 

The functional unit is an important element of a life cycle analysis. It gives a quantitative description 

of the function of the studied system, which will make it easy to compare the result of the LCA with a 

different system that fulfills the same function. The functional unit is used as a reference to quantify 

the collected data of the in- and outflows of materials and energy so that they adequately fulfill the 

function of the system. A detailed functional unit shall answer the questions “what?” “how much?” 

“how well?” and “for how long?” regarding the function and its satisfaction. A common example is 1 

kWh of produced electricity. 

System boundaries 

The system boundaries defines which processes that are to be included in the LCA. The general 

system boundaries can be deduced from the goal and scope definition. A “perfect LCA” would have 

system boundaries that didn’t exclude any processes, but this makes the execution of the LCA study 

far too complex. Therefore, an assessment of what the relevant in- and outflows are, is carried out 

when defining the boundaries. This assessment must take into account the intended use of the 

study, the goal and scope, the assumptions that have been made and what delimitations there are 

concerning time and money. The system boundaries are commonly illustrated in a so called flow 

chart. 

Cut-off principles 

Using cut-off rules means excluding less relevant parts from the system, such as elementary flows, 

processes or complete life cycle stages. The cut-off criterion is a quantitative definition of the system 
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boundaries, usually defined as the percentage of the total environmental impact (or material weight) 

that is included. A cut-off criterion of 95 % therefore means that 5 % of the total environmental 

impact is excluded. A cut-off criterion can also state how large portion of the total weight that a 

material has to constitute in order to be included in the system boundaries. How much these 100 % 

of the environmental impact really are is just an approximation, as if this was known, no cut-off 

would be needed. The bigger the cut-off, the more incomplete the data is and the lower the 

environmental impact will be. A big cut-off decreases the adequacy of using the results of the LCA for 

comparisons. 

Life cycle inventory 

The life cycle inventory (LCI) phase includes identifying the processes included in the studied system 

and collection and calculation of data to quantify the relevant in and out flows to the functional unit. 

The results from the LCI phase are what is used as input data for the next phase, the life cycle impact 

assessment. The data collection is one of the most time-consuming activities involved in a LCA study. 

The data is collected continuously and the more that gets known about the system the more 

limitations of the data can be revealed. These limitations can force changes in the method to meet 

the conditions set up in the goal and scope definition. Sometimes the changes in the method don’t 

lead to an adequate satisfaction of the goal and instead the goals must be changed. In this way the 

LCA methodology enforces an iterative approach. 

Allocation 

Processes often produce more than one end product. Therefore their environmental impacts can be 

divided, or allocated, between the products. There are two different commonly used allocations; 

economic- and weight allocation. Economical allocation is made through weighting the products 

economic value to the environmental impact and the weight allocation is made through weighting 

the weight of the product to the environmental impact. If any allocation is used, the applied 

allocation method shall be described. System expansion is a method for avoiding the need to allocate 

processes in multi-functional system, and this is achieved by expanding the boundaries of the system 

so that all functions of the system are included. System expansion is generally the preferred method 

for dealing with multi-functional systems. 

Life cycle impact assessment 

In the life cycle impact assessment (LCIA) phase the elementary flow data of the product or service’s 

life cycle collected in the LCI phase are categorized into different impact categories. This process is 

known as classification. Next comes the characterization step, which leads to a unifying of the unit of 

the individual elementary flows relevant to an impact category. As an example, methane contributes 

25 times more to global warming than CO2, therefore it has to be multiplied by the impact factor 25 

in order to get the contribution measured in CO2-equivalents. Usually these steps are not performed 

by the LCA practitioners, as they have already been performed and built into the different LCA 

databases that are available.  

Life cycle interpretation 

The interpretation phase includes the interpretation of the inventory and the impact assessment 

phases. The interpretation phase should give results that are well matched according to the goals 

and scope, and also include conclusions, a description of limitations and recommendations. The 

interpretation phase is supposed to be a continuous process that ensures the harmonization of all 

parts of the study (see Figure 19. The framework of life cycle assessment), such as the goal definition, 
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intended use and data quality requirements. In that sense, the interpretation aspect of a LCA is 

included in all phases as a sort of self-controlling mechanism. The interpretation phase includes 

sensitivity analyses which can bring about a deeper understanding of the results. 
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4 Life cycle assessment of different off-grid energy supply systems 

4.1 Goal and scope definition 
Goal 

The aim of this study is to perform a life cycle assessment of three different energy supply systems 

along the lines of the requirements stated in ISO 14040-14044, but not strictly adhering to them. The 

study will be a comparative life cycle analysis, meaning its aim is to compare different systems 

performing the same function. It will compare the environmental impact that three different energy 

supply systems (supplying the same amounts of energy to a humanitarian aid village) have from the 

cradle-to-gate of their life cycle (including the operational phase). The three systems to be studied 

are a diesel generator system, a sun/wind hybrid system, and a combination of these two energy 

supply systems known as a renewable/diesel hybrid system. 

The study can be used to motivate the use of these sun/wind hybrid systems for off-grid use by 

illustrating what reductions in emissions a shift from a diesel generator to a either a sun/wind hybrid 

system or a renewable/diesel hybrid system will result in. More so, the study will help InnoVentum 

get a more in depth understanding of their Dali Powertowers regarding eventual hot spots in the 

products life cycle. This can help them in their work of making their products as environmentally 

adaptable as possible. The intended audience of the study is university students and professors, as 

well as InnoVentum and its potential customers. Since the study includes a comparative assertion, it 

is planned to be disclosed to the public.  

Scope 

The three studied energy supply systems are; 

1) The sun/wind hybrid system  

2) The diesel generator system  

3) The renewable/diesel hybrid system 

These three systems will be studied and compared by carrying out a cradle-to-gate life cycle 

assessment (including the operational phase) which means that the study will include the 

environmental impact caused by the systems during all the stages of their life cycle up to the 

operational phase, but excluding the end of life treatment. In order to also study the environmental 

impact of the systems from a cradle-to-grave perspective, a sensitivity analysis will be performed in 

the life cycle interpretation phase of this study. The studied energy supply systems will be 

dimensioned to supply equal amounts of energy to a humanitarian aid village. The main case is to 

perform this study for an off-grid energy supply system dimensioned to supply a Philippine 

humanitarian aid village in Tacloban, the Philippines.  

In order to deepen the analysis, 6 different sensitivity analyses will be performed, which include the 

following aspects; 

- Localization 

- End of life treatment 

- Higher wind turbine production 

- Different set up (8 solar cells) 

- Higher load  

- Utilization of 50 % of the over-production 
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The localization analysis will be carried out by performing the same study for 4 other locations 

around the world to investigate if an implementation of the Powertower solution is more (or less) 

environmentally beneficial in these places compared to the main case. All the 4 other studied 

locations are situated in developing countries with an actual humanitarian aid village operating in the 

area (not necessarily run by the Children’s mission) and a relatively low level of rural electrification. 

The 4 other locations are; 

1. Santo, Haiti 

2. Mogadishu, Somalia 

3. Santa Cruz, Bolivia 

4. Srinagar, Uttar Pradesh, India 

The end of life treatment sensitivity analysis will take end of life treatment into account, which is 

something that the main case of this study does not do. This sensitivity analysis will simulate what 

results this study would have had if it had been a cradle-to-grave study. The higher wind turbine 

production sensitivity analysis will account for the higher wind turbine production that the 

placement of the Powertower system on a hill close to the humanitarian aid village in Tacloban will 

lead to. The different setup sensitivity analysis will study how another setup of the Dali Powertower 

(containing 8 solar panels instead of the setup with 6 solar panels that is used in the main case) 

compares to the main case. The higher load sensitivity analysis will study how a higher load affects 

the environmental performance of the system. The utilization of 50 % of the over-production will 

study how utilization of 50 % of the over-production will affect the results. 

The function of the system 

The humanitarian aid villages that are run by the Children’s mission are in need of energy to care for 

the basic needs of their inhabitants (such as refrigeration, lighting and powering fans) and carry out 

their humanitarian activities. The energy load of the village in this study is assumed to be similar to 

the Scandinavian village regarding energy use patterns, but with a smaller population of 500 

inhabitants. It is estimated that the studied village needs approximately 78 kWh per day and 28.5 

MWh per year (see chapter 2.2.1 for these calculations). The function of the studied energy supply 

systems is to successfully supply the village with this amount of energy. 

Functional unit 

“The electricity needed to continuously supply a humanitarian aid village in a developing country, 

inhabiting 500 people, with the energy they need to meet their basic needs during 20 years.” 

In order to make the results easily comparable to other life cycle assessments, an alternate 

functional unit of “kWh electricity” will also be used. 

Cut off criterion 

In this LCA a cut-off criterion of 95 % (based on mass) is used.  
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Environmental impact categories 

The environmental impact categories that are to be included in the environmental impact 

assessment of this study are the following;  

- Global warming potential, GWP-100 (measured in CO2-equivalents) 

- Primary energy use (measured in Joule) 

- Eutrophication potential (measured in NOx-equivalents) 

- Acidification potential (measured in SO2-equivalens) 

- Photochemical ozone depletion potential (measured in C2H4-equivalents) 

 

The impact categories GWP-100 and primary energy use will be displayed in the results section of the 

main study, and the others can be found in Appendix E. This decision was made because these two 

impact categories are the most relevant when analyzing energy supply systems, and also in order to 

make the results of the study more comprehensive by limiting the amount of graphs displayed. 

System boundaries 

This life cycle assessment includes all the processes from cradle-to-gate. A full cradle-to-grave 

analysis is performed in the sensitivity analysis found in one of the sensitivity analyses. The energy, 

emissions and resources used for making or transporting process equipment or vehicles is not 

included in the study. Figure 20 illustrates the system boundaries. 

 

Figure 20. The system boundaries of the energy supply systems studied in the main case 

Data quality 

The data used in the environmental impact assessment were taken from EcoInvent version 2.2. 

When no data was available in the EcoInvent database other sources were sought out, such as other 

life cycle assessments. When no other sources were found, approximations were made. One example 

of this is for the diesel generator, where the material ‘plastics’ was assumed to be Polyethylene 

Terephthalate (PET), since this is a common plastic material.  

The data used in the life cycle inventory phase were collected from a multitude of sources. When a 

model-specific life cycle assessment was available for a component (such as for the photovoltaic cells 

used in the Powertower) that data was preferably used. If there’s no model-specific life cycle 

assessment available for a component, the next best approach is to find generic data for that type of 

component. This was done for the diesel generator where a life cycle assessment specifying the 
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weight distribution of the different materials used in the generator (in percent) was used. When 

there’s no generic data available, approximations were made in order to account for at least part of 

the environmental impact of the component. This was done for the solar charge controller, which 

was approximated to have the same material composition as the inverter. 

4.2 Life cycle inventory  
In this section of the life cycle assessment the different energy supply systems are inventoried with 

regards to the material composition and weight of the constituting materials. If data regarding the 

energy consumption associated with the production of the component is available, this is also 

presented. 

4.2.1 The Powertower system 

In the life cycle inventory phase data for the different components of the Dali Powertower is 

collected. The study includes raw material acquisition, material processing, transports and 

installation. The different components will be dimensioned according to the quantities described in 

Table 4. A schematic overview of the Powertower system inventory can be seen in Fel! Hittar inte 

referenskälla..  
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Figure 21. A combined flowchart of the Powertower system 
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Dali Tower 

The inventory data of the Dali Tower is received from a LCA studying the tower of the Dali 

Powertower (Stoica, 2014). The data regards the production of one impregnated wooden tower, 

including the steel billet for the PV support structure, but excluding the turbine. The wooden tower is 

made of pine which is taken from plantations in the south of Sweden. The pine is manufactured by 

Derome Träteknik located in the Scania region and then impregnated by Woodtech located in 

Varberg 19 km from Derome Träteknik.  

The production of the PV support structure is located in Prenzlau near Berlin in Germany by the 

company Hera Metall. The steel for the manufacturing is supplied by the local steel manufacturer, 

Thyssen Krupp, located 150 km from the PV support structure manufacturer. The bolts, washers, nuts 

and screws are from a company called SWEbolt located in Jönköping and Stockholm County. The 

energy used for the production of these components was not taken into consideration by the source 

because of data gaps (but the raw material production was). 

The metal foundation screws are produced in Canada by the company Techno Pieux which also 

secures the installation of the tower. The screws are made of Canadian steel which is produced by 

Canadian steel mill King in Hamilton, Ontario, Canada. The manufacturing of the screw parts takes 

place at two other locations by two other companies, Acier Nova, located in LaSalle, Québec, Canada 

and Megantic Metal, located in Thetford Mines, Québec. 

The components are then transported to InnoVentums storage in Malmö, except the screws from 

Techno Pieux which is directly transported to the customer, and packaged in a carton box on a 

wooden pallet. The material for the package is not taken in consideration since the environmental 

impact of this stage is very low. The installation of the tower, which is done by Techno Pieux, is done 

with the help of special equipment. The special equipment is run by a fuel generator. The assembly 

and erection of the tower can be done by manpower and electrical drills. 

The processed wood is transported by truck to InnoVentums warehouse from Varberg. The metal 

from Prenzlau is transported by truck to Copenhagen and from there by boat to Malmö. The bolts 

are transported from SWEbolt by truck. In the use phase maintenance is necessary every fifth year. 

The maintenance consists of applying a wood saturation to prevent the wood from injuries.  

The end of life treatment comprises the care of the components after the usage. The tower is taken 

down by manpower in the same way as the installation. The metal parts of the tower are handed 

over to the municipality for recycling as is the wooden tower. The wooden tower is impregnated with 

a water-copper solution and should ideally be treated to get rid of the water-copper solution before 

incineration.  

The weight of the raw materials that are required for the production of one Power Tower are shown 

in Table 8. 

.  
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Table 8. The materials and their respective quantity used in the production of 1 Dali tower (gross weights) (Stoica, 2014).  

Input Quantity 

Pine log 1590 kg 

Steel billet for PV support 100 kg 

Steel billet for foundation 242 kg 

Gasoline for installation machinery 3.29 kg 

Cutting and drilling lubricant for foundation 
pieces 4.62 kg 

Process water for steel manufacturing 0.115 kg 

Argon liquid 72.7 kg 

Carbon dioxide 2.99 kg 

Boric acid 1.2 kg 

Diethanolamine 4.8 kg 

Propiconazole 0.12 kg 

Copper carbonate 4.92 kg 

Surfactants 1.2 kg 

Tebuconazole 0.12 kg 

Water 5.64 kg 

Polyethyleneamine 4.8 kg 

Organic acid 1.2 kg 

Steel billet for Bolts/washers/nuts/wood screws 80 kg 

 

The turbine 

The turbine used in the studied Powertower is a HYE Lite turbine, produced in China by HY energy. 

The turbine consists of 5 blades made out of reinforced nylon fiberglass. Information about the 

weight of the different turbine parts was received through email correspondence with the producer 

in China (Daligault, 2014), but the exact details of the material distribution was not revealed due to 

company secrecy. In order to account for the material distribution of the generator approximations 

were made with the help of other information found about the turbine and mail conversation with 

the producer (Daligault, 2014). 

Table 9. The turbine weight and material distribution. (Daligault, 2014) 

Component Weight [kg] Material distribution 

Generator 27.5   

    50 % Copper 

    10 % neodynium magnet 

    30 % aluminium alloy 

    10 % Stainless steel 

Blades 22 Reinforced nylon glass-fiber 

Tail 11.6 Steel 

Hub 3.5 Steel 

Backseat 5 Steel 
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The solar panels 

The inventory data for the solar panels was collected from an existing carbon footprint evaluation 

examining the same solar panel that are used in the Powertower configuration, The InnoTech 

EcoPlus. This study was performed by the independent institute called Smart green scans (Wild-

Scholten, 2012). The EcoPlus solar panels are manufactured in Glava, Sweden, but the different 

components are produced in a wide range of countries. InnoTech performs an upgrade of their cells 

which improves their performance in Halle, Germany. This upgrade requires 0.45 MJ additional 

energy per cell. The 0.292 mm primer back sheet consists of Coveme dyMat PYE, 50 micron PET/125 

micron PET/100 micron primer (without flouropolymers). The energy used for production of the 

primer in the back sheet was estimated by using the approximation Chemicals organic, at plant, GLO. 

Cutting losses during production of EVA (1%) and PET (4%) were included. All the components of the 

PV panels and their respective country of production are illustrated in the flowchart in Fel! Hittar 

inte referenskälla. 

 

Figure 22. Flowchart of the PV production chain 

The inventory data gathered from the carbon footprint evaluation is presented in Table 10 below. 

Table 10. Weight distribution and energy consumption of the constituting parts of the PV module. (Wild-Scholten, 2012) 

Component/material Quantities for 6 modules (1.5 kWp) 

Poly-silicon [kg] virgin 5.99 

Wafers [numbers] 382 

Cells [numbers] 369 

Upgrading of cells [numbers] 369 

Modules [m2] 1665 mm x 991 mm 9.9 

Temp. glass [kg] 77.4 

EVA [kg] 11.4 

PET [kg] 2.36 

Primer backsheet [kg] incl. Loss 1.35 
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Battery 

As no specific life cycle data was found for the Sonnenschein SB6 - 200 A battery, generalized data 

for the weight distribution of materials used in lead-acid batteries was used instead (Rydh, 1999). 

This weight distribution can be found in Table 11 below.  

Table 11. The weight distribution of the constituting materials of the lead-acid battery. (Rydh, 1999) 

Material Component Weight % 1 battery (31 kg) 

Lead Active material, grids and poles 61.2 19.0 

Water Electrolyte (dilution to 1.295 s.g.) 13.3 4.1 

Sulphuric acid (pure) Electrolyte 9.6 3.0 

Polypropylene Cases and covers 8.2 2.5 

Sb,Sn, As Grid alloys 2.1 0.7 

Polyethylene, PET Separators 2 0.6 

Polyester Tubular mats 0.3 0.09 

Copper Connectors 0.3 0.09 

Others Expander and oxygen in PbO2 3 0.9 

Total   100 31 

  

Other electrical components 

The other electrical components featured in the Powertower are the inverter, the maximum power 

point tracker, the solar charge controller and the wind charge controller. For the inverter, data for a 

general 2500 W (weighing 18.5 kg) inverter was taken from EcoInvent and scaled up to the weight of 

the Studer XTender inverter used in the Powertower. Because good, specific LCA or material data 

was not found for the other electrical components in the off-grid cabinet, they were approximated to 

have the same composition and environmental impact as the inverter, but scaled to their respective 

weights.  

Table 12. The weights of the electrical components. 

 Weight (kg) Source 

Inverter 23 (Studer, 2014) 

Smartserver 0.42 (NEX-G Energy Ltd, 2012) 

MPPT 4.14 (Morningstar, 2010) 

Wind charge controller 16 (Listnewenergy, 2014) 
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4.2.2 The Diesel generator system 

As no specific life cycle data was found for the diesel generator, generalized data for the weight 

distribution of materials used in diesel generators was instead used. This weight distribution can be 

found in Table 13 below. 

Table 13. The weight distribution of materials in the diesel generator. (Bondesson, 2010) 

Material Weight % Weight (kg) 

Aluminium 0.32 80.8 

Copper 0.045 11.2 

Steel 0.54 135 

Plastic 0.090 22.4 

Total 1 249 
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4.2.3 Impact from transportation 

All the different components of the Powertower were assumed to be transported from their 

respective production facility to InnoVentums warehouse in Malmö, Sweden. From there the 

Powertower is transported by container ship to the port nearest to the location of use. The transport 

from the port to the actual place of use was neglected in order to make a fair comparison. Since the 

locations within the countries were randomly selected, the exclusion of this transport will negate the 

importance of the choice of location, but still include the freight by container ship to the country. 

Since the wind turbine and the wind charge controller are produced by the same company, they are 

assumed to be transported at the same time. In the case of the diesel generator it was assumed to 

be transported from Singapore where KohlerPower has a production facility. 

When the place of production was not known, locations where it is probable that the production may 

have taken place where instead used. This was the example in the case of the Echelon solar charge 

controller where specific data on where it is produced was unavailable. A production facility in 

Watford, UK where it might have been produced was therefore used as an approximation. These 

approximations can be motivated because the environmental impact from the transport of these 

components will have a relatively small impact on the overall result. The approximated components 

also constitute a relatively small portion of the total weight of the Powertower, which further 

decreases the importance of the approximation on the results.  

The port-to-port distance was calculated by using the SeaRates “port-to-port calculator” (SeaRates, 

2014). The environmental impact of the different transports was calculated by using the network for 

transport measures (NTM) basic freight calculator (NTM, 2014). The transports by road were all 

assumed to be carried out by truck with trailer able to carry 28-34 tonnes. The transports over sea 

were all assumed to be carried out by container ship.  

 

A table showing data for the different transports that take place during the life cycle of the two 

energy supply systems can be seen in appendix D. The overall results of the transport emissions of 

the two different energy supply systems have in the main case of this study can be seen below in 

Table 14. It is obvious that the Powertower System has a lot higher transport emissions than the 

Diesel generator system. 

Table 14. The total transport emissions of the two energy supply systems for the main case of the study 

 Environmental impact category 
Transport emissions of 
Powertowers 

 Transport emissions of Diesel 
generator 

Total CO2-eqv (kg) 8620 24.4 

Total energy (MJ) 113000 275 

Total acidification potential (kg 
SO2-eqv) 273 1.46 

Total eutrophication potential (kg 
NOx-eqv) 22.4 0.14 

Total photochemical oxidation 
potential (kg POCP-eqv) 0.31 0.002 
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4.3 Life cycle impact assessment 
In this section the environmental impact factors (that convert the life cycle inventory data into 

results regarding environmental impact) are displayed. Table 15 shows a list of the different 

materials that are found in the life cycle inventory phase and their respective environmental impact 

factors (displayed as impact per kg of material). These impact categories are the following; 

- Global warming potential, GWP-100 (measured in CO2-equivalents) 

- Primary energy use (measured in Joule) 

- Eutrophication potential (measured in NOx-equivalents) 

- Acidification potential (measured in SO2-equivalens) 

- Photochemical ozone depletion potential (measured in C2H4-equivalents) 

These impact categories are then multiplied with the quantities of the different materials used in the 

different energy supply systems in order to get a measure of the total environmental impact that the 

life cycles of the systems result in. The environmental impact factors used in this study can be seen in 

Table 15. 

Table 15. The life cycle impact assessment data used in this analysis. All data is expressed as kg emission / kg material 
(except for the inverter, smartserver, MPPT and wind controller). The data Is mainly gathered from EcoInvent 2.2 but also 
other sources such as LCA’s were used. 

Material 

GWP-
100 kg 
CO2-
eq/kg 

Eutrophicatio
n kg PO4

-3-
eq/kg 

Acidiphicatio
n kg SO2-
eq/kg 

Photochemic
al 
oxidation kg 
C2H4-eq/kg 

Primary 
energy 
MJ/kg Source 

Aluminum 11.97 
1822 487.2 39.8 

64.70 

Ecoinvent 2.2, 
Aluminium, 
primary, at 
plant 

Copper 1.86 
8587 546.9 15 

11.49 

Ecoinvent 2.2, 
Copper, 
primary, at 
refinery, RER 

Steel 1.60 
779 213.3 1.6 

19.6 

(World Steel 
Association, 
2011) 

Plastic 2.88 
353 93.3 14.3 

86.27 

Ecoinvent 2.2, 
PET, granulate, 
bottle grade, at 
plant 

Argon liquid 0.31 
11 1.4 0 

6.86 
Ecoinvent 2.2, 
Argon, liquid 

Boric acid 0.71 
17 17.9 0.2 

13.01 

Ecoinvent 2.2, 
Boric acid, 
inorganic 
chemicals 

Diethanolamin
e 3.65 

48 14 2.2 
96.59 

Ecoinvent 2.2, 
Diethanolamine
, organic 
chemical 
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Propiconazole 10.56 
253 49.8 4.1 

201.96 

Ecoinvent 2.2, 
fungicides, at 
regional 
storehouse 

Copper 
carbonate 1.88 

1032 88.7 1.2 
34.48 

Ecoinvent 2.2, 
Copper 
carbonate, at 
plant 

Tebuconazole 10.56 
253 49.8 4.1 

201.96 

Ecoinvent 2.2, 
Fungicides, at 
regional 
storehouse 

Organic acid 2.49 
34 9 1.4 

64.97 

Ecoinvent 2.2, 
Formic acid, at 
plant 

Concrete 0.12 
0 120.1 0 

0.67 
(Sjunnesson, 
2005) 

Diesel 3.52 
1 3515.9 0.2 

46.98 
(Gode, o.a., 
2011) 

Gasoline 3.73 
1 8.2 2.1 

48.12 
(Gode, o.a., 
2011) 

Impregnated 
pine 0.14 

3760 109.7 10.7 
3.63 (Jildestedt, 2007) 

Neodynium 
magnet 27.00 

190 440 17 
0.00 

(Sprecher, o.a., 
2014) 

Reinforced 
nylon fibre 
glass 2.63 

45 15.5 0.5 
45.87 

EcoInvent 2.2, 
Glass fibre, at 
plant, RER 

Inverter 869.01 
92348 7649.8 845.7 

15923.69 

Ecoinvent 2.2, 
Inverter, 
2500W, at plant 

Smartserver 7.59 
807 66.8 7.4 

139.07 

Ecoinvent 2.2, 
Inverter, 
2500W, at plant 

MPPT 670.92 
71297 5906.1 652.9 

12293.92 

Ecoinvent 2.2, 
Inverter, 
2500W, at plant 

Wind 
controller 

1973.3
0 

209698 17370.8 1920.3 
36158.59 

Ecoinvent 2.2, 
Inverter, 
2500W, at plant 

Lead, Primary 2.12 
137 48.5 0.8 

42.49 

Ecoinvent 2.2, 
Lead, primary, 
at plant 

Lead, 
Secondary 0.66 

16 14.1 0.3 
11.94 

Ecoinvent 2.2, 
Lead, 
secondary, at 
plant 

Water 0.00 
0 0 0 

 0.00 

Ecoinvent 2.2, 
Tap water, at 
user, RER 
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Sulphuric Acid 0,12 
3 13.5 0 

2,12 

Ecoinvent 2.2, 
Sulphuric acid, 
liquid, at plant 

Polypropylene 1,97 
7 6.2 1.8 

75,12 

Ecoinvent 2.2, 
Polypropylene, 
granulate, at 
plant 
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4.4 Life cycle interpretation 

4.4.1 Results of the LCA study 

Table 166 shows a summary of the results from the main case of this study, expressed as impact per 

used kWh. The results presented in Table 16 are only regarding global warming potential and primary 

energy use as these impact categories are most relevant for energy supply systems.   

As can be seen two alternatives named Powertower- and renewable/diesel hybrid system 100 % are 

included. These alternatives are included in order to make a fair comparison of the different 

alternatives. Because of the model used in this study where the energy supply systems are 

dimensioned to meet the load of the humanitarian aid village, portions of the electricity will be 

considered as “over-production”, and therefore will not be utilized. These two other alternatives are 

included in order to simulate what the environmental impact would be if the energy supply systems 

were used for regular power generation.  

Table 16. A summary of the results, expressed as impact per kWh electricity. 

Energy supply system Global warming potential (g CO2-eq) Primary energy use (kWh) 

Powertower system 89 0.33 

Diesel generator system 1867 6.94 

Renewable/diesel hybrid system 549 2.05 

Powertower system 100 % 35 0.13 

Renewable/diesel hybrid system 100 % 423 1.58 

 

Global warming potential 

Figure 23 shows the total amount of CO2-equivalents (GWP-100) that are emitted during the life 

cycles of the three different energy supply systems. It can be seen that the Powertower system has 

about 21 times lower emissions of greenhouse gases compared to the diesel generator system, and 

about 6 times lower compared to the hybrid system (regarding global warming potential). 

 

Figure 23. The total GWP emissions over 20 years for the three different energy supply system 
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Figure 24 illustrates how the GWP emissions are distributed between the different components of 

the Powertower system. The tower is the component that has the highest amount of emissions, and 

has about 25 % higher amount of greenhouse gas emissions compared to the concrete portion of the 

Powertower system (which has the second highest environmental impact). 

 

Figure 24. The distribution of the GWP emissions between the different components of the Powertower system 

Primary energy consumption 

Figure 25 shows the total amount of primary energy use that is required during the life cycles of the 

three different energy supply systems. The two best alternatives (PT and hybrid) have significantly 

lower primary energy use than the worst alternative (diesel generator). It can be seen that the 

Powertower system has about 21 times lower primary energy use compared to the diesel generator 

system, and about 2 times lower compared to the hybrid system. 

 

Figure 25. The total primary energy use over 20 years for the three different energy supply system 
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Other environmental impact categories 

Regarding the eutrophication potential the diesel generator system had the lowest amount of impact 

with a total of about 600 kg NOx-equivalents. The hybrid system had the second lowest amount of 

impact with about 4 times higher emissions than the diesel generator system. The Powertower 

system had the clearly highest emissions with 20 tonnes of NOx-equivalents emitted (about 33 times 

higher than the diesel generator system). 

Regarding the acidification potential the hybrid system had the lowest amount of impact with a total 

of about 680 kg SO2-equivalents. The diesel generator system had the second lowest amount of 

impact with about 3.5 times higher emissions than the hybrid system. The Powertower system had 

the highest acidification potential with about 6 times higher emissions than the hybrid system. 

Regarding the photochemical oxidation potential the diesel generator- and hybrid system had the 

lowest impact with about 60 and 80 kg C2H4-equivalents emitted respectively. The Powertower 

system clearly had the highest amount of impact with about 12 times higher than the diesel 

generator system. 

The results regarding the other environmental impact categories are presented in more detail with 

graphs in appendix E. 
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4.4.2 Identification of significant issues 

Contribution analysis 

The contribution that the different stages in the life cycle have out of the total impact varies between 

the different energy supply systems. The percentage of contribution that the different stages have 

can be seen in Figure 26 below. The end of life treatment stage is excluded from this analysis. 

 

 

Figure 26. Life cycle emissions of each systems life cycle stage. 

Figure 26 above shows that the production phase of the Powertower system contributes the most to 

the total impact, amounting to more than 80 % of the impact regarding both GWP and primary 

energy use. The rest of the impact is caused by the transport phase of the life cycle. As can be seen in 

Figure 26, the components of the Powertower system that have the highest environmental impact is 

the tower, followed by the concrete and then the transport (in decreasing order). Since the amount 

of emissions due to transport is highly dependent on the location where the system is to be used 

(and the Philippines is far away from Sweden) this might be a bit misleading. Therefore, in other 

cases (concerning other, closer locations) the third most emitting part could instead be the batteries. 

The component which contributes most to the total emissions is the steel billet that contributes 

about 85 % of the impact. Therefore the steel billet can be considered the main contributing 

elementary flow in the Powertower system.  
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Regarding the diesel generator system, the diesel fuel clearly contributes to the highest amount of 

environmental impact (amounting to more than 99 % of the total impact) making it the main 

contributing elementary flow and causing the operational phase to be the dominant phase (as can be 

seen in Figure 26 above). This also explains the very high contribution of the operational phase of the 

diesel generator. Regarding the renewable/diesel hybrid, it can be seen in Figure 26 that the use 

phase of the system is the one causing the highest amount of environmental impact (amounting to 

89 % of the total impact). The production phase contributes to 10 % of the impact and the transport 

phase 1 %.  

This shows that the diesel fuel is the main contributor, even in a hybrid system containing 5 

Powertowers. As the diesel generator system has about 20 times more environmental impact it is 

easy to understand how about 90 % of the impact comes from the diesel portion of the hybrid 

system. This conclusion is in line with that of (Bondesson, 2010), which came to the same conclusion 

that the diesel generator portion of these systems clearly has the highest environmental impact.  
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4.4.3 Discussion on the need for further data collection or data quality improvement 
This study has some limitations regarding the inventory data completeness and quality. A majority of 

the components are included in the life cycle inventory phase, with the exclusion of the actual off-

grid cabinet and the cables connecting the Powertowers to the off-grid cabinets. This exclusion can 

be motivated by the 95 % cut-off rule (based on mass). The tower and solar cell portion of the 

Powertower system can be deemed to be quite accurate to reality as specific LCA data were used. 

The lead-acid batteries and diesel generator data were not specific to the actual components used in 

the system, but of a more general nature describing common weight distributions in these 

components. The data quality of these components is acceptable, but leaves room for improvement. 

 

The composition of the turbine is one of the most speculative, as the manufacturer didn’t provide 

very specific information and assumptions had to be made. The other electrical components are also 

not that accurate, as they were approximated to have the same material composition as the inverter. 

Therefore the data quality of the turbine and the other electrical components (excluding the 

inverter) leaves room for improvement. Surely, the mass has been accounted for, but how this mass 

is distributed between the composing materials is only speculative. The non-conformity of data 

sources and their quality might also limit the reliability of the study. Table 17 lists the sources of the 

different LCI data and an evaluation of the accuracy of the data in relation to the studied system. 

Table 17. The sources of the life cycle inventory data of the components in the study (evaluation of accuracy included) 

Component Source Accuracy 

The Dali tower  Anca Stoica High 

The solar cells  (Wild-Scholten, 2012) High 

The batteries  (Bondesson, 2014) Mid 

Inverter  EcoInvent 2.2 High 

Other electrical components  Approximation Mid 

The turbine  (Daligault, 2014) + Approximation Low 

The diesel generator  (Bondesson, 2014) Mid 

 

Regarding end of life treatment, this phase was not included in the main case, but instead studied in 

one of the sensitivity analyses. In this sensitivity analysis the choice of a 100 year perspective 

concerning the emissions from the material placed in landfill will lead to an exclusion of emissions 

from the end of life treatment from the three studied energy supply systems.  

4.4.4 Discussion on the choice of sensitivity analyses  

This section will discuss some of the methodological choices that have been made in this study. Some 
important factors of uncertainty affecting the results were identified. These are the geographical 
conditions, the load profile, the height at which the wind speed is measured, the amount of solar 
cells that is used, the end-of-life treatment phase and the use of over-production. These factors are 
described in the following section. 

 
The geographical conditions 
The main case of this study was to study the implementation of Powertowers in the Philippines. This 

choice was made due to the recent activities of InnoVentum in the Philippines (the “Power to the 

Philippines” project). It is not clear however if the conditions in the Philippines are ideal for the 

implementation of Powertowers for electricity generation. This is why a geographical sensitivity 
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analysis, with the aim of investigating what other potential locations might be more appropriate for 

this setup, is performed.  

The load profile 

The load profile that is used in the main case of this study can be deemed to be quite accurate to that 

of the Scandinavian village in Tacloban, the Philippines. However, the appliances (and their 

respective quantities) that have been chosen to constitute the load of one house (inhabiting 10 

people) is on the lower end of the standard of living scale. The “higher load sensitivity analysis” 

intends to perform the same analysis as in the main case, but for an increased load. 

The wind speed 

When modelling the main case in Tacloban one factor was changed; the height at which the wind 

speeds were measured. In actuality, the Powertowers that potentially will be mounted in the 

Scandinavian village will be placed on a hill about 130 meters above sea height. As this is a highly 

specific condition which will give unreasonably high production it will make the results of the study 

less comparable to other studies. Instead a height of 30 meters was used, so as to not overestimate 

the result. In order to account for higher production that the placement of the Powertower system 

on a hill will lead to, the sensitivity analysis “higher wind turbine production” was performed. 

The amount of solar cells 

When looking at production at different locations for the Powertower system it might show various 

ratios of production between the wind turbine and the PV-cells due to different external conditions. 

The fact that the external conditions differs makes it uncertain that the setup of the main case is the 

optimal to apply at other locations. Because of this uncertainty a sensitivity analysis is made with 8 

PV-cells instead of 6 which is the main case.     

End of life treatment 

The choice was made to exclude the end of life treatment phase from the main case of this study, 
making it a cradle-to-gate analysis (including the operational phase). This choice was made due to 
the uncertainties of the closed-loop recycling model that was intended to be used. In order to make 
an attempt at performing a cradle-to-grave analysis, a study including end of life treatment was 
performed in the end-of-life treatment sensitivity analysis instead. 
 

Utilization of over-production 

It is clear from the main case of this study that the studied energy supply systems including 

Powertowers lead to high amount of electricity that is not utilized (over-production). There are many 

ways to make us of this energy, such as for heating or cooling water, powering mills and more. In 

order to investigate how the environmental performance is affected if a portion of this “over-

produced” energy is utilized, a sensitivity analysis is performed (where 50 % of the electricity is used). 
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4.4.5 Sensitivity analyses 

In order to examine the dependence of the result upon certain factors, a couple of sensitivity 

analyses will be conducted. The different analyses include the following aspects; 

 

- Localization 

- End of life treatment 

- Higher wind turbine production 

- Different set up (8 solar cells) 

- Higher load  

- Utilization of 50 % of the over-production 

4.4.5.1 Geographical sensitivity analysis 

This geographical sensitivity analysis will research how the environmental impact of the Powertower 

system differs depending upon where in the world it is deployed. All of the locations chosen have 

humanitarian aid villages present in the area, and the magnitude and variance of the load of these 

villages are assumed to be the same as the one in Tacloban.  

 

The first step of the geographical sensitivity analysis is calculating the amount of energy that one 

Powertower can produce under the different local conditions. As no continuous values were 

available for the other locations studied in this geographical sensitivity analysis, a continuous data-

set of actual wind speeds was modified and used instead. The dataset was collected during a year at 

Kriegers Flak in Denmark. In order to make the dataset applicable to the different locations, the 

annual average of the location was divided with the annual average of the Danish dataset. This factor 

was then multiplied with each hourly wind speed value, so that the annual average of the dataset 

becomes that of the location.  

In order to get the hourly wind turbine production each hourly wind speed value was matched to the 

power curve of the turbine which can be seen in Figure 5. The average insolation values and the 

annual average wind speeds and the corresponding wind turbine production these calculations are 

based upon can be found in Appendix C. The results of the individual and combined production of 

the wind turbine and solar cells of one Powertower in the different locations can be seen in Figure 27 

below.  
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Figure 27. Comparison between the annual production of one Powertower in the different locations 

The next step is performing the state of charge simulation to determine what amount of 

Powertowers are needed to supply the annual load to the village (28.5 MWh) so that the state of 

charge stays above zero more than 95 % of the time. The amount of Powertowers and the 

corresponding amount of batteries will be raised until the percentage of time above 0 % SOC crosses 

the 95 % limit. The results of this simulation can be seen in Table 18. 

Table 18. The result of the state of charge simulation 

Location 
The 
Philippines Haiti Somalia Bolivia India 

Number of PT's 13 8 9 8 10 

Time above 0% SOC 95.3% 95.5% 96.2% 96.8% 96.4% 

Nbr of battery deep discharges (below 40 % 
SOC) 129 135 145 89 107 

Yearly over-production (in MWh) 44.4 54.3 50.6 79.7 65.0 

 

Since the numbers of Powertower are in uneven 3’s the amount of off-grid cabinets and their 

respective components will vary between the different locations. These quantities are illustrated in 

Table 19. 
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Table 19. The amount of off-grid cabinets and their respective components in the different locations 

  Off-grid cabinets Batteries MPPT Inverter 
Solar charge 
controller 

Wind charge 
controller 

Philippines 4 32 13 4 4 13 

Haiti 3 24 8 3 3 8 

Somalia 3 24 9 3 3 9 

Bolivia 3 24 8 3 3 8 

India 3 24 10 3 3 10 

 

The transportation impact for the different locations can be seen below in Table 20 

Table 20. The total transport emissions of the two (fully dimensioned) energy supply systems 

  
Transport emissions 
of Powertowers   

Transport emissions 
of Diesel generator   

Location Total CO2-eqv (Mg) Total Energy (GJ) Total CO2-eqv (kg) Total Energy (MJ) 

Philippines 12.1 153 20.3 260 

Haiti 4.18 508 22.4 287 

Somalia 7.64 967 50.4 646 

Bolivia 5.65 713 30.8 394 

India 6.69 843 4.10 52.6 
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Results 

Figure 28 and Figure 29 shows the results of the geographical sensitivity analysis. It can be seen that 

the main case in the Philippines has the highest amount of emissions and therefore is the worst 

alternative (because of the low renewable resources found here compared to the other locations). 

The best location is Haiti, followed by Bolivia, Somalia and India. 

 

Figure 28. Global warming potential for each location. 

 

Figure 29. Primary energy demand for each location. 

The results regarding the other three environmental impact categories are very similar to each other 

as they all are relative to the amount of Powertowers that were needed for meeting the load of the 

humanitarian aid village. The results are also slightly affected by the difference in impact from the 

transportation of the energy supply systems. The two localizations with the lowest amount of impact 

therefore were Haiti and Bolivia, followed by Somalia, India and the Philippines. The results regarding 

the other environmental impact categories for the geographical sensitivity analysis are presented in 

appendix F.  
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4.4.5.2 End-of-life treatment sensitivity analysis 

In the main case no recycling is being accounted for, making the study a cradle-to-gate analysis. This 

sensitivity analysis intends to take the recycling of materials into account, in order to make the study 

into a cradle-to-grave analysis. The recycling of materials will lead to a lower total environmental 

impact of the product system. There are different ways of modelling the recycling of materials. The 

two main methods are closed- and open-loop recycling (The Institute for Environment and 

Sustainibility, 2010).  

 

In this sensitivity analysis, a modified version of the simple closed-loop recycling is used in order to 

account for some of the reduced environmental impact. Closed-loop recycling means that the 

recycled material is assumed to not be downgraded in quality during the recycling process, and can 

therefore be replacing virgin material within the product system, hence creating a closed-loop 

system. Open-loop recycling means that the properties of the recycled material are assumed to be 

downgraded (or changed) to such an extent that it cannot be directly replaced by virgin material 

within the product system. The recycled material instead goes into another product system, creating 

an open-loop recycling (The Institute for Environment and Sustainibility, 2010). 

 

The portions of materials that are not recycled (by closed-loop recycling) are assumed to be 

landfilled. A 100-year perspective is assumed for the landfilled material and it is assumed to be no 

emissions from the landfilled material during this period. This is of course not very realistic, as the 

landfilled material will be completely released to the environment seen from a long enough time-

perspective, but these assumptions are made anyway in order to simplify calculations.  

 

The location of the recycling facility was assumed to be in Europe and the location of the landfill was 

assumed to be in the Philippines. The material that is to be recycled is shipped by container ship to 

Europe (equal distance as the transport to the Philippines) and thereafter are transported 250 km by 

truck, which is an estimate of the average distance to a recycling facility in Europe (EeBGuide, 2012). 

The material that is to be landfilled is assumed to be transported 250 km by truck to a landfill. The 

environmental impact of the transport of the materials that are to be recycled or landfilled is then 

subtracted from the environmental benefit that the recycling of material bring about. 

 

The materials that are to be recycled in this sensitivity analysis (and their respective recycling rates) 

can be seen in Table 21. These are some of the major constituting materials of the different energy 

supply systems. As can be seen not all recyclable materials were included here. Some materials were 

excluded as their recycling rates were not as easy to find as for the materials in Table 21. 
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Table 21. Recycling rates of some common materials found in the energy supply systems 

Material Recycling rates  Source 

Steel 0,8 (Sundqvist, 1999) 

Aluminium 0,6 (Sundqvist, 1999) 

Copper 0,5 (Sundqvist, 1999) 

Lead 1 (Bondesson, 2014) 

Plastics 0 (Bondesson, 2014) 

Wood 0  (The City of Calgary, 2014) 

Silicone plates 0,7  (Davidsson, 2014) 

Other electrical components 0,3  Assumption 

Concrete 0  (The City of Calgary, 2014) 

 

The respective quantities of recycled material within the product systems that the recycling rates 

stated in Table 21 give rise to can be found in Appendix I. 

Results 

Table 22 shows the emissions and the reductions compared to the main case of the study in % of 

both GWP-100 and primary energy use. It can be seen that the Powertower system has the highest 

amount of reduction, about 25 % for both the studied impact categories. Since the end of life 

treatment only takes the materials found in Table 21 (where diesel fuel obviously is not included) the 

most material intensive energy supply system, the Powertower system will be most affected by the 

recycling of materials. The diesel generator system is barely affected by the recycling of materials 

(0.2 % reduction), as the materials involved in the diesel generator has such a minor importance to 

the overall results when compared to the diesel fuel. The hybrid system has a slightly higher 

reduction of 2 %, which further shows what big portion of the environmental impact that the diesel 

generator stands for in the hybrid, as the 25 % decrease in the environmental impact of the 

Powertower doesn’t amount to more than a reduction of 2 %.  

Table 22. Emissions of CO2-eq/kWh and primary energy use/kWh (and reductions in % compared to the main case of the 
study) for the sensitivity analysis including end-of-life treatment. 

 Energy supply system 
g CO2-
eq/kWh 

Reduction in 
% (GWP-
100) 

Primary 
energy use 
kWh/kWh 

Reduction in 
% (Primary 
energy use) 

Diesel generator 1864 0.2 6.9 0.6 

PowerTower used electricity 67 24.6 0.3 23.6 

Power Tower use of 50 % over production 38 24.6 0.1 23.6 

Hybrid 537 2.1 2.0 2.1 

Hybrid use of 50 % overproduction 468 2.1 1.8 2.1 
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4.4.5.3 Higher wind turbine production sensitivity analysis 

This sensitivity analysis intends to simulate the actual characteristics of the humanitarian aid village 

in Tacloban, where the Powertowers are intended to be placed on a hill that is estimated to be about 

130 meters above sea level (compared to the 30 meters where the wind data for the main case were 

collected from). By increasing the height at which the annual wind average is gathered a higher wind 

turbine production will be achieved. In this sense, the main case includes a bit of an underestimation 

in terms of the amount of available wind resources in Tacloban, and this sensitivity analysis is 

therefore an attempt to make the analysis more accurate. The results of this sensitivity analysis will 

be compared to the results of the main case to see what difference the increased wind turbine 

production might cause in terms of environmental impact. The wind speed at a certain height can be 

converted by using the wind profile power law (WebMET, 2014) which is seen below; 

𝑈𝑥 = 𝑈𝑟 ∗ (
𝑍𝑥

𝑍𝑟
⁄ )𝛼 

 

In the wind profile power law the r denotes the reference height at which the wind speed is 

measured and x denotes the height to which you want to convert the wind speed data. The 

exponent, α, is an empirically derived coefficient that mainly is dependent upon the surface 

roughness and the stability of the atmosphere. In this sensitivity analysis a standard value of 0.147 

(neutral stability) is used. By using the wind profile power law each hourly wind speed value is 

converted. This gives a higher total wind power production of 5.47 MWh (compared to 3.54 MWh for 

the main case). By running the state of charge simulation with this increased wind turbine 

production, a Powertower system consisting of 12 Powertowers will be used (instead of 13 in the 

main case). 

Results 

The results of the higher wind turbine sensitivity analysis can be seen in Table 23 below. In short the 

sensitivity analysis leads to a reduction of about 6 % in environmental impact regarding GWP and 3 % 

regarding primary energy use. The higher wind production scenario led to a higher annual wind 

production of 5.47 MWh (compared to 3.54 MWh for the main case) which equals an increase of 

about 35 %. This is about 2 MWh more energy produced per Powertower. In that sense it is quite 

surprising that this scenario only needed 1 less Powertower to meet the load. This probably has to do 

with the seasonal variation of the wind resource which has two low points around June and October. 

During these low points the SOC drops below the 0 % limit for long periods of time, and not even the 

general increase in wind turbine production that this sensitivity analysis brings about can help sustain 

the SOC above 0 % during these periods. It can be argued that this criterion for dimensioning the 

system (the SOC should be above 0 % 95 % of the time) matches poorly with the wind speed 

variation in the Philippines, as an increase of 35 % in production can’t reduce the amount of needed 

Powertowers more than 1. 

Table 23. Comparison of global warming potential and primary energy per used kWh by the village. 

Impact category Main case Higher wind production 

g CO2-eq/kWh 89 84 

kWh/kWh 0.33 0.32 
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Figure 30. Global warming potential comparison between the main case and higher wind turbine production. 

 

Figure 31.Copmarison of the primary energy consumed between the main case and higher wind production. 
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4.4.5.4 Different setup of Dali Powertower (8 solar panels) sensitivity analysis 

The Dali Powertower comes in various different setups with varying types of wind turbines and 

amounts of solar cells (6 or 8). In this study, the HY-3000 IV Lite turbine is set as the wind turbine. In 

the main case, the setup with 6 solar panels is used. This sensitivity analysis intends to compare what 

difference in results there might be when instead using the setup with 8 solar panels, which will 

amount to a 33 % higher solar power production. This 33 % increase simply stems from the increase 

from 6 to 8 solar panels (8/6=1.33). 

A state of charge simulation was run which concluded that a lower number of Powertowers was 

needed, 10 instead of 13. The battery tank was increased by 1 battery (to 30 kWh) in order to get the 

appropriate percentage of time that the SOC is over 0 without increasing the amount of 

Powertowers. 

Results 

As can be seen in Table 24, the setup with the solar panels emits about 17 % less GWP and uses 21 % 

less primary energy. This is due to the higher production of the Powertower setup containing 8 solar 

panels which creates a lower required number of Powertowers, resulting in a lower total 

environmental impact. This setup can therefore be deemed to be superior to the one used in the 

main case as the increase in solar cells decreases both the amount of Powertowers and the 

environmental impact about 20 %. 

Table 24. Comparison of global warming potential and primary energy per used kWh by the village. 

Impact category Main case 8 solar panels 

g CO2-eq/kWh 89 74 

kWh/kWh 0.33 0.26 
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Figure 32. Global warming potential comparison between the main case and the 8 solar panels case. 

 

Figure 33. Comparison of the primary energy consumed between the main case and the 8 solar panel case 
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4.4.5.5 Higher load sensitivity analysis 

This sensitivity analysis intends to simulate how the environmental performance of the Powertower 

system changes when a higher load is supplied. The same analysis as in the main case will be 

performed but with a different load profile, which will affect the state of charge simulation. This 

higher load has the aim of reflecting a higher standard of living than that of the Scandinavian village 

for an increased load. The appliances (and their respective quantities) that each household are 

assumed to use is found in Table 25. 

Table 25. The appliances and their respective quantities (per household) used in the higher load scenario 

Appliance fridge fan lamps cellphone Tv Neon type light 

Quantity 1 3 12 2 1 6 

Load (in Watts) 29 50 8 5 60 28 

 
This amounts to an annual load of 49.0 MWh for the village (instead of 28.5 MWh for the main case). 

The daily load profile looks as in Figure 34 below. 

 
Figure 34. The higher load case displayed. 

A state of charge simulation was run which concluded that 28 Powertowers (with a battery tank with 
a storage capacity of 90 kWh) were needed in order to properly supply the village with the higher 
load.  
 
To supply the village with proper amount electricity with a diesel generator system are three diesel 
generators needed of the same capacity as the one in the main case. The diesel consumption is 
calculated in the same way as in the main case and results in 27 000 liters a year. 
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Results 

As can be seen in Figure 35 and Figure 37  the higher load scenario leads to about a higher amount of 

environmental impact per kWh for the Powertower- system than the main case. This is also true for 

the diesel generator system which can be seen in Figure 36 and Figure 38. The difference for the 

power tower system can be related to the higher amount of over production that a larger system 

(dimensioned for a higher load) leads to. In the case of the diesel generator system, the difference of 

environmental impact can be related to the lower efficiency of the diesel generator when running at 

a higher capacity, and also the higher number of diesel generators required.  

 

Figure 35. Comparison of emissions of CO2-eq/kWh for the Powertower between higher load sensitivity analysis and main 
case. 

 

Figure 36. Comparison of emissions of CO2-eq/kWh for the diesel generator system between higher load sensitivity analysis 
and main case. 
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Figure 37. Comparison of use of primary energy per used kWh for the Powertower between higher load sensitivity analysis 
and main case. 

 

Figure 38. Comparison of use of primary energy per used kWh for the diesel generator system between higher load 
sensitivity analysis and main case. 
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4.4.5.6 Utilization of 50% of the over-production sensitivity analysis 

Renewable energy solutions often give rise to over-production of energy that may or may not be 

utilized. This sensitivity analysis intends to simulate how the emissions will change if 50 % of the 

energy that is not used (the over-production) can be utilized. Since this increases the amount of used 

energy, the emissions per kWh will be lower. This analysis will only consider the Powertower and 

renewable/diesel-hybrid system since these are the only systems that bring about over-production. 

Results 

When comparing the emissions of the Powertower system it can be seen in Figure 39 and Figure 40 

that the GWP is decreased by 44 % and the primary energy use is decreased by 43 % when 50 % of 

the over-production is utilized. The emissions and primary energy use of the hybrid system are 

decreased by 13 % when 50 % of the over-production is utilized. This decrease in environmental 

impact is related to a decrease in the number of Powertowers in the Powertower system and a 

decreased need for diesel fuel in the hybrid system. 

 

Figure 39. The results from the over-production sensitivity analysis regarding the GWP of the PT system 
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Figure 40. The results from the over-production sensitivity analysis regarding the primary energy use of the PT system 

 

Figure 41. The results from the over-production sensitivity analysis regarding the GWP of the hybrid system 

 

Figure 42. The results from the over-production sensitivity analysis regarding the primary energy use of the hybrid system 

 

 

  

0

100

200

300

400

500

600

Hybrid main case Use of 50 % over-production

g 
C

O
2

-e
q

/k
W

h
 

Hybrid system 

0,00

0,50

1,00

1,50

2,00

2,50

Hybrid main case Use of 50 % over-production

kW
h

/k
W

h
 

Hybrid system 



67 
 

5 Economic analysis 

5.1 Description of method and assumptions used in the economic analysis 
This section intends to describe the procedure of how the costs of the different energy supply 

systems are calculated. In order to make a fair comparison between the different systems the 

equivalent annual cost per kWh is calculated for each system. The input values for the energy 

systems are shown in Table 26 and Table 27. 

Table 26.Input values for the Powertower system for the economic analysis.  

Powertower system Cost per unit [USD] Quantity Life length [years] 

Powertower (InnoVentum, 2014b) 22 000 13 20 

Battery (Off Grid Europe, 2014) 300 32 5 

 

The life-span of the battery tank for the Power Tower system is assumed to be 5 years which means 

that it has to be replaced with new batteries every fifth year. With a life span of 20 years for the 

system the replacements will result in a total of 4 setups of the battery tank (3 replacements). The 

cost for each battery tank is assumed to occur at the same time as the initial investment of the 

Powertowers; therefore it is included in the investment cost. 

Table 27. Input values of the diesel generator system for the economic analysis. 

Diesel generator system Cost per unit [USD] Quantity Life length [years] 

Diesel generator (AMP, 2014) 10 800 3 7 

Diesel (Globalpetrolprices.com, 2014) 0.96/liter 12 700 l /year - 

 

The diesel generator is assumed to have a life-span of 7 years which means that a total of 3 diesel 

generators are needed during the 20 year period of this study. As for the Powertower case, the costs 

of all the diesel generators are included in the initial investment.  

Table 28. Input data for the renewable/diesel hybrid 

Renewable/diesel hybrid system Cost per unit [USD] Quantity Life length [years] 

Powertower (InnoVentum, 2014b) 22 000 5 20 

Diesel generator (AMP, 2014) 10 800 3 7 

Battery (Off Grid Europe, 2014) 300 16 5 

Diesel (Globalpetrolprices.com, 2014) 0.96/liter 4 800 l/year - 

 

In the economic analysis for the renewable/diesel hybrid the life span of the system itself, the diesel 

generator and the battery tanks are assumed to be the same as for the other systems. The costs of 

the Powertowers and the diesel generators are included in the initial investment cost.  

The basic formula for the equivalent annual cost (EAC) per kWh is; 

EAC =
NPV ∗ k

E
 

Where NPV is the net present value which is described further down 

k is the factor of annuity which is also described further down 

E is the electricity produced 
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The basic formula for the net present value (NPV) is; 

𝑁𝑃𝑉 = ∑
𝑅𝑡

(1 + 𝑖)𝑡

𝑡

𝑡=0

 

Where t is the time of the cost 

Rt is the cost at the time 

I is the discount rate 

𝑘 =
𝑖

1 − (1 + 𝑖)−𝑛 
 

Where n is the economic life length of the system    

The discount rate is varied between 3 %, 8 % and 13 % to see how the cost varies due to different 

investors required rate of return. The maintenance cost for each system is neglected. The cost of the 

consumed diesel is calculated with the equation of net present value divided by the economic life 

length of the systems which is 20 years. 

In order to get the results in the unit USD/kWh the yearly cost of the energy supply systems are 

divided by the yearly amount of used energy (no over-production included). The total amount of 

used energy will be the load of the village during a year, which is 28.5 MWh (or 570 MWh during the 

whole 20-year life cycle). Table 29 shows the amount of energy that the two systems produce during 

their life cycles. The values differ because of the over-production that the systems utilizing 

Powertowers give rise to. 

Table 29. The electricity produced during the life cycle of each system. 

 

 

 

Three different scenarios are created for the Powertower and the hybrid system where 0, 50 and 100 

% of the over-produced electricity is utilized (Scenario 1, 2 and 3 respectively). For scenario 3 this 

means that 1 390 MWh is utilized (instead of the 570 MWh utilized in scenario 1). The three 

scenarios are created with the aim of comparing the differences that comes from making use of the 

over-production of electricity compared to not making any use of it.   

Scenario 2 coincides with the sensitivity analysis “Utilization of 50 % of the over-production” which is 

described in chapter 7.1.6. Two other sensitivity analyses will also be studied from an economical 

perspective, the geographical sensitivity analysis and the higher load sensitivity analysis.  For the 

diesel generator and hybrid system two scenarios are created with the aim of taking the 

uncertainties of the future increase of diesel price into account. Both scenarios of the diesel 

generator system include inflation, but one scenario also includes a yearly increase of the diesel price 

by 2 % (Scenario B).  

 Powertower Diesel generator Renewable/diesel hybrid 

Production 1390 MWh 570 MWh 738 MWh 
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5.2 Results of the economic analysis 
Table 30 shows the result of the economic analysis, as described in chapter 5.1 Description of 

method and assumptions used in the economic analysis. The box below describes the conditions for 

the systems that are used in the economic analysis. 

 

 

 

 

 

 

Table 30. The cost of electricity for the three different power supply systems expressed as USD/kWh. 

Discount rate 3% 8% 13% 

PT 1 0.75 1.08 1.45 

PT 2 0.42 0.61 0.81 

PT 3 0.31 0.44 0.59 

Diesel A 0.60 0.63 0.67 

Diesel B 0.50 0.53 0.57 

Hybrid A1 0.56 0.73 0.90 

Hybrid B1 0.53 0.69 0.87 

Hybrid A2 0.49 0.63 0.79 

Hybrid B2 0.46 0.60 0.75 

Hybrid A3 0.44 0.56 0.70 

Hybrid B3 0.41 0.53 0.67 

 

As can be seen in Table 30 it seems to be important to take care of as much electricity as possible to 

be able to keep the cost of electricity low. Since the amount of over-production is large for the 

Powertower system the cost is less than half when taking care of 100 % over-production compared 

to when not. 

 

  

1 – No utilization of overproduced electricity  

2 – 50 % of the over-produced electricity is used 

3 – 100 % of the over-produced electricity is used 

A – The cost of diesel increase by 2 % per year 

B – Flat rate (No increase in diesel cost) 
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5.2.1 Geographical sensitivity analysis 

The input values and results of the economic analysis of the geographic sensitivity analysis can be 

seen in Table 31. 

Table 31. The results from the geographical economic analysis. 

  PT:s 
Investment 
cost [USD] 

Yearly electricity 
demand [MWh] 

Discount rate 
3% [USD/kWh] 

Discount rate 
8% [USD/kWh] 

Discount rate 
13% [USD/kWh] 

Haiti 8 206100 28.5 0.47 0.68 0.91 

Somalia 9 228300 28.5 0.52 0.76 1.01 

Bolivia 8 206100 28.5 0.47 0.68 0.91 

India 10 250500 28.5 0.57 0.83 1.11 

5.2.2 Higher load sensitivity analysis 

The input values and results of the economic analysis of the geographic sensitivity analysis can be 

seen in Table 32 and Table 33. 

Table 32. The input for the higher load economic analysis. 

  PT:s 
Battery 
tanks 

Cost 
[USD] 

Produced electricity 
per year [MWh] 

Yearly electricity 
demand [MWh] 

No use of over production 28 9.33 710235 176 49.0 

Use of 50 % of over 
production 28 9.33 710235 

 
176 113 

 
Table 33. The results for the higher load economic analysis. 

  
Discount rate 3% 
[USD/kWh] 

Discount rate 8% 
[USD/kWh] 

Discount rate 13% 
[USD/kWh] 

No use of over production 0.95 1.37 1.83 

Use of 50 % of over production 0.41 0.59 0.79 

 

As can be seen in Table 33 it seems to be important to take care of as much electricity as possible to 

be able to keep the cost of electricity low. Since the amount of over production for the higher load 

sensitivity analysis is very large the cost is less than half when taking care of 50 % over production 

compared to when not. 
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6 Discussion 
Discussion regarding what alternative is the best for powering the humanitarian aid village 

The life cycle assessment showed that the best alternative regarding environmental performance is 

the Powertower system, followed by the hybrid system and lastly the diesel generator system. The 

Powertower system had about 21 times lower environmental impact (both regarding global warming 

potential and primary energy demand) compared to the diesel generator system. When compared to 

the hybrid system, the Powertower system has about 6 times lower global warming potential and 

about 2 times lower primary energy use.  

Regarding the three other environmental impact categories the results differed a lot from the result 

regarding global warming potential and primary energy use. Regarding eutrophication the diesel 

generator system had the lowest impact (with 600 kg NOx-equivalents emitted). The hybrid system 

had about 4 times higher emissions while the Powertower system had about 33 times higher 

emissions. Regarding acidification the hybrid system had the lowest amount of impact (with 680 kg 

SO2-equivalents emitted). The diesel generator system had about 3.5 times higher acidification 

potential while the Powertower system had about 6 times higher. Regarding the photochemical 

oxidation potential the diesel generator- and the hybrid system had the lowest impact, with 60 and 

80 kg C2H4-equivalents emitted respectively. The Powertower system had the highest amount of 

emissions (about 12 times higher than the diesel generator system). 

 

The results of this study regarding the environmental impact of the Powertower system came to the 

conclusion that it emits 35 g CO2-eq/kWh (if all energy is utilized). In order to put this result into 

some sort of context, it needs to be compared to relevant LCA-sources. The results of the PV panels 

and the wind power will be weighed according to the percentage of the total energy that they 

contribute in the main case of this study, namely 40 % for PV and 60 % for wind power. 

A study collecting and harmonizing data from 13 studies of silicone PV-systems (Hsu, et al., 2012) 

came to the conclusion that the median environmental impact is 45 gCO2-eq / kWh (for a lifetime of 

30 years and an assumed annual production of 1700 kWh/m2/year). These assumptions are for PV 

panels with both higher production and lifetime than that of the solar panels in the main case of this 

study, but either way it’s a good enough study to compare with due to the quality and quantity of the 

used studies. A LCA study investigating the environmental impact of a steel 2.5 kW turbine (with 

storage included) came to the result that the wind power system emits 42 gCO2-eq/kWh (Lenzen & 

Munksgaard, 2002).  

By weighing these results according to the percentages stated above, a GWP potential of 43.2 gCO2-

eq/kWh is achieved, which is about 23 % higher than for the Powertower system. One source of error 

is the lack of LCA studies investigating the environmental impact of small-scale wind turbines that 

were found. Anyway, the results of this basic analysis show that the environmental performance of 

the Powertower system is slightly better than similar technologies for energy production. This is 

probably due to the implementation of the wooden tower which reduces the environmental impact 

that the Powertower system has compared to its steel counterparts.  

Another factor making the comparison uneven is the amount of batteries included in the results. The 

Powertower system has a large number of batteries, while the number of batteries used in the LCA 

of the wind turbine is unknown. This discrepancy will cause unfairness in the comparison, probably 
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not in favor of the Powertower system. This difference might negate some of the lower 

environmental impact that the wooden tower may achieve when compared to a steel tower. 

Regarding the results of the economic analysis, it is important to note one thing; the way the analysis 

of the main case is set up will actually disfavor the systems using the Powertower solution. This is 

due to over-production resulting from dimensioning the energy supply systems to be able to supply 

the load of the humanitarian aid village. If instead the energy supply systems where used purely for 

power production (where all the energy is utilized) the cost of the electricity from the Powertowers 

will be lowest at all discount rates, except for 13 % discount rate were diesel B is slightly cheaper, as 

can be seen in Table 30. This is the cost of electricity that should be considered as the “real price”, 

unaffected by the assumptions made in this study. In this comparison it can be seen that the 

electricity from the Powertower system is the cheapest (about 0.1 USD/kWh cheaper than the hybrid 

B option which also utilizes all the energy produced). 

However, the results change a bit when the economic analysis is performed according to the main 

case of this study (where the energy supply systems are dimensioned to supply the load of the 

village) which can be seen in Table 30. The Powertower system is still the system producing the 

cheapest electricity, costing 0.42 USD/kWh at 3 % discount-rate (the alternative with 50 % use of 

over-production). The Powertower system is however closely followed by the Hybrid system (with 

flat-rate and 50 % use of over-production) which costs 0.46 USD/kWh. 

The use, or non-use of the over-production is an important factor for the Powertower system, but 

less important for the hybrid system. If no over-production is utilized the energy cost of the 

Powertower system goes up to 0.75 USD/kWh. Even if the economically worst circumstances are 

chosen for the hybrid, A1, are chosen (2 % increase in diesel price and no use of over-production) the 

hybrid system is still a relatively cheap alternative at 3 % interest-rate, costing 0.56 USD/kWh. 

Therefore, if no over-production is utilized, the hybrid system produces the cheapest electricity. 

When the discount-rate is increased to 8 % the flat-rate diesel system produces the cheapest energy 

at 0.53 USD/kWh. At this discount-rate the Diesel B system is closely followed by both PT 2, Diesel A 

and hybrid A2 and hybrid B2 (which all costs about 0.1 USD more per kWh than the cheapest 

alternative). When the discount-rate is further increased to 13 % the flat rate diesel system still 

produces the electricity at the clearly lowest cost of 0.57 USD/kWh, and it increases the leap to its 

closest competitors. 

This trend of the diesel generator system becoming cheaper as the discount-rate gets higher is due to 

the low capital cost of the system. As the discount-rate gets higher, the alternatives with high capital 

costs (such as the alternatives incorporating Powertowers) become much more expensive. The diesel 

generator is characterized by low capital cost but high operational cost (mainly related to the 

purchase of diesel fuel). As the discount-rate gets higher, these operational costs have less and less 

relative importance to the total costs. So it’s easy to understand that the economic analysis is highly 

dependent upon what parameters are chosen for the calculation. What discount-rate is chosen 

depends upon who the operator of the energy supply system is, and what their required rate of 

return is. 

For a humanitarian aid village run by a non-profit organization the required rate of return will be 

lower than for profit-driven company, why a 3 % discount-rate can be assumed. If one were to decide 
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which energy supply system is the most suitable for the humanitarian aid village in the Philippines, a 

third factor also has to be taken into account; the energy security of the system. Even if the 

Powertower system is dimensioned to be able support the load of the village, it’s possible that the 

supply won’t meet the demand during a string of windless and cloudy days. The alternatives also 

incorporating a diesel generator (the renewable/diesel hybrid system) will be able to ensure the 

energy security of the system while still providing partially “green energy”, why these alternatives 

can be deemed to have an edge compared to the pure Powertower system. 

Taking all the above factors into account, the renewable/diesel hybrid system is deemed to be the 

best alternative for the humanitarian aid village in the Philippines as it can provide cheap energy with 

high energy security at a relatively low environmental impact. Therefore, the “Power to the 

Philippines” project can be deemed to be of interest to the humanitarian aid villages, as long as the 

energy load of the humanitarian aid village isn’t solely met by Powertowers. A hybridization of 

Powertowers with the existing diesel generators can help lower the carbon footprint of the existing 

energy system, while simultaneously lowering the cost of electricity (at the 3 % discount-rate since 

no energy is to be sold). 

Comparing the results of the economic analysis 
The Ren21 global status report (Ren21, 2014) states some typical energy costs of renewable power 

generation, stated as levelized cost of energy (LCOE). Small-scale wind power (ranging from 0.1 to 3 

kW capacity) costs 0.15-0.35 USD/kWh and solar PV (rooftop mounted, non OECD country) costs 

0.28-0.55 USD/kWh. If one were to compare these prices to a hybrid between the two energy 

sources, such as the Powertower, one possible way could be to multiply the prices with the 

percentages out of the total production of the Powertower that the PV and wind portions constitute. 

In the case of the production in the Philippines, the solar panels contribute approximately 40 % of 

the total production, while the wind power constitutes approximately 60 %. Since the price per kWh 

are stated in a range, three different prices are to be calculated; a low, mid and a high estimate 

(where the mid estimate is the price in the middle of the lowest and highest price).  

This calculation produces a hybrid cost per kWh of 20.1 (low), 31.5 (mid) and 42.9 US¢/kWh (high). 

These costs are to be compared with the costs of the power generated by the Powertower, that are 

0.31 (3%), 0.45 (8%) and 0.59 (13%) USD/kWh. It can be seen that the electricity generated by the 

Power tower (with 3 % discount-rate) is more or less in line with the mid-price. If comparing the cost 

of the Power generated at 8 % discount-rate this is more or less in line with the high price (as stated 

in the REN21 report), and the 13 % discount-rate price is even more expensive (outside of the range). 

Since the premises of the calculation of the prices stated in the REN21 report are unknown, it is not 

known how accurate this comparison is, but it however hints that the power generated by the 

Powertower system is quite expensive. The Philippine electricity price is 0.22 USD/kWh (KPMG, 2013) 

which is more or less equal to the low price estimate of the Powertower system, but about half of 

the high estimate. 

Choice of wind energy calculation method 

The dataset of the daily wind speeds used in the main case of this study is has both positive and 

negative aspects to it. The dataset is accurate in terms of the seasonal variation in wind speed, and 

also in terms of the total amount of wind resource that is available. Some sources of error are the 

location of the weather station (Naga city) and the conversion from daily average values into hourly 

values. Despite these sources of error the dataset is deemed to be quite accurate to that of Tacloban. 
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A certain year’s wind profile is unique and therefore uncertainties occurs when predicting the 

electricity generated from the wind turbine for a typical year. Since the electricity production has a 

cubical relationship with the wind speed the amount of electricity generated is extremely sensitive to 

the wind speed. In order to perform a realistic dimensioning of the renewable energy system 

(including a state of charge analysis) hourly data is generally preferred. As there was a lack of hourly 

data of the wind speeds in the geographical sensitivity analysis a special approach was therefore 

undertaken in order to generate hourly data for the other locations. The calculation of the produced 

electricity from the wind turbine was based on wind speed data gathered during a year in another 

location, but scaled to the average wind speed of the investigated locations.  

Since the wind profile was gathered from Kriegers Flak, the seasonal weather variations will be equal 

to that of the location in Denmark and not to the investigated locations. The amount of electricity 

generated over a year will not be affected though, only when the electricity is generated. This may 

affect the results of the state of charge analysis and indirectly also affect the dimensioning of the PT-

systems at the locations in ways that can have big impacts on the final results. It is not probable that 

the wind profile used looks like the actual wind profile for each location. For example the wind 

profile may have longer or shorter periods of time with low wind speeds which will impact the 

discharge rate of the battery. In defense of using the wind profile from Kriegers Flak, it is a method 

allowing for a quite realistic calculation of the state of charge of the battery tank (and the 

dimensioning of the Power Tower system following that calculation). 

 

One source of error of the geographical sensitivity analysis is the difference in wind speed data sets. 

The geographical sensitivity analysis showed that the Philippine case had the lowest annual 

production per Powertower. The annual production is highly linked to the amount of wind energy 

that is produced. The main case used site-specific data which can be assumed to quite accurate to 

“reality”, but the 4 other locations used the modified hourly data series from Kriegers Flak. A 

comparison between the 4 other location is defendable since they used the same type of dataset, 

but the comparison between the main case and these other locations is a bit skewed because they 

didn’t use the same type of datasets. The difference in seasonal variance of wind energy resource 

between the two datasets may give a competitive advantage in a state of charge simulation to the 

type of dataset that is most suitable for sustaining a SOC without deep discharges.  

 

The state of charge simulation and the subsequent dimensioning is highly dependent on the variation 

of the wind data. The minimum criterion for a “successful” dimensioning is that the state of charge 

stays above 0 more than 95 % of the time. The data from Kriegers flak has its lowest wind speeds in 

the period of June to October, which of course will translate to the production of the studied 

locations. This is a long period with low production, which is not necessarily common for the wind 

pattern of other locations, where the months of low production might be more scattered over the 

year, rather than strung together. A long consequent period of low production will generally lead to 

lower state of charge levels, which coupled with the criteria of a state of charge above zero 95 % of 

the time, might mean that the choice of wind data sets will lead to an over-dimensioning of the 

Powertower system. 

Energy security of the three systems.  

The state of charge simulation allows for a dimensioning of the renewable energy system where the 

predicted energy security can be controlled. It’s important to note that this prediction is just that, a 
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prediction. Of course, every year will vary regarding both the quantity and the temporal distribution 

of the load and renewable energy resources available to the Powertower system. When comparing 

the energy security of the Powertower system to the diesel generator system, the diesel generator 

has some advantages. If the diesel generator system is properly sized and run correctly, the diesel 

generator will be able to provide energy with a close-to-perfect energy security. Also, the diesel 

generator system will over-produce much less than the Powertower system.  

 

The renewable/diesel hybrid system is an interesting option to its both constituents individually. The 

hybrid can increase the energy security without leading to excessive over-dimensioning of the 

amount of Powertowers, as the diesel generator could “fill up the holes” when the renewable energy 

production falters. This renewable/diesel hybrid is especially relevant if the user can’t tolerate lack of 

electricity for longer periods of time, such as a hospital. Even if the system is correctly sized in 

relation to the load, invariably there will come a string of “bad” days, causing the load to not be met. 

In these cases a diesel generator would be able to ensure the energy security of the system.  

Ways to make use of the over-production 

In every purely renewable off-grid energy supply system, there will be over-production of energy due 

to the variability of the renewable energy sources. The wind and the sun doesn’t exactly follow the 

energy use patterns of the renewable energy consumers, and in order to make sure that the load is 

met at a high level, a system dimensioned for over-production is necessary. One way to solve this 

problem is to increase the battery tank, but this method can be quite expensive and increase the 

environmental impact of the system a lot. Another way to tackle this predicament would of course 

be to instead vary the energy use patterns according to the variations of the renewable energy 

sources, so called load management. There are many different strategies for load management.  

One proposed strategy for load management is to incorporate smart meters that can guide the 

energy use patterns of the user by telling them when energy is the cheapest (when the supply is the 

highest and the demand is the lowest). This of course requires that the location in question has a 

variable energy price, which is not yet true for the majority of the world today. If done properly 

though, this could lead to a system that doesn’t have to be dimensioned for less over-production. 

This type of load management reduces the flexibility of use for the energy consumer, but will 

simultaneously result in other benefits. Since the energy supply system can be dimensioned for less 

over-production, it will lead to a reduction in both the cost and environmental impact of the system. 

A good predictor for the success of the load management is the amount of “manual” actions that are 

needed by the user. The less manual action that is needed, the more successful the load 

management (Nylén, 2011). 

The energy that stems from the over-production of energy doesn’t have to be considered as wasted 

energy. There are several ways to make use of the energy that is produced when the load is met and 

the battery-tank is full. One common way to make use of the energy is to either heat or cool water. 

Another possible use of the over-produced energy is powering a mill that continuously provides flour 

to the community. This is especially viable in communities centered around agriculture. 
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History of rural electrification in the Philippines 
In 1960 the government of the Philippines introduced total electrification policy which intended to 

electrify the nations’ whole population. A national agency called Electrification Administration, EA, 

was established to implement the electrification. The first 9 years the EA had established 217 smaller 

systems, with a capacity lower than 500 kW, but because of technical and financial problems many of 

the systems were forced to shut down. This led to that EA was replaced by a new agency called 

National Electrification Administration, NEA. At this point 18 % of the population had access to 

electricity. 

In a second wave of implementing the electrification strategy 36 rural electric cooperatives (RECs) 

were established, with the help of loans from the NEA. The regional electricity cooperatives buy 

electricity from larger plants (generally diesel plants) which they in turn distribute to their consumers 

(Grewal et al, 2006). Each REC was planned to provide 100 000 people with electricity. The RECs were 

controlled by the NEA but managed by the local communities due to the cooperative approach. The 

RECs tariffs were to cover the operation costs and the repayment of the loan to the NEA.  

The strategy led to a rapid expansion thanks to financial help from the government, international 

banks and donor agencies but this led to major problems. Questionable political actions coupled with 

tariffs set too low by the RECs for a long period of time led to poor maintenance of the electrical 

systems. Since the tariffs were kept to low were the RECs unable to pay for their loans to the NEA 

which ultimately led to the bankruptcy of the NEA in 1989.  

 

The situation forced the Philippine government and World Bank to intervene. They investigated the 

financial conditions of the RECs and it showed that only 18.8 % were viable and as many as 60.7 % 

needed immediate financial help or were beyond rescue. The intervention from the government and 

the World Bank forced the NEA to reconstruct their way of running the RECs with the aim of making 

them more viable. Despite the reconstruction the financial and maintenance problems are still 

present and a clear solution is yet to surface (World bank, 2002). 

Different strategies for rural electrification 

A rural area is defined as a geographic area outside of cities and towns. The population in the rural 

areas are generally poorer and less educated than people living in urban areas. Rural areas generally 

have a lower population density than urban areas, lower electrification rate and a lower energy 

demand potential (National Geographic, 2014). Because of these factors it is seldom economically 

viable to extend the national electrical grid to these areas. There are several benefits that come 

along with rural electrification and the services it enables. Electricity enables basic services like for 

example lighting, possibilities for tele-communication (such as access to the internet) and cheaper 

irrigation which can increase farm productivity.  

 

All of these services that electricity can provide help drive the socio-economic development of the 

area. Rural electrification has been found to improve both living standard and quality of life of the 

people affected by it (World bank, 2002). Regarding the economic benefits of rural electrification in 

the Philippines, a study attempting to quantify these benefits for a typical household into monetary 

terms (World bank, 2002) came to the conclusions that Table 34 illustrates; 
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Table 34. An estimation of the economic benefit of rural electrification. (World bank, 2002) 

Benefit category 
Benefit value (USD/month) 
per consumer Consumer type 

Less expensive and expanded use of lighting 36.75 Household 

Less expensive and expanded use of radio and 
television 19.6 Household 

Improved returns on education and wage 
income 37.07 Wage earner 

Timesavings for household chores 24.5 Household 

Improved productivity of home business 
34.00 (current business) ; 

 75.00 (new business) Business 

 

As grid-extension generally is not economically viable in rural areas, other strategies has to be 

undertaken in order to enable the people living in these areas to take part of the aforementioned 

benefits of rural electrification. According to the mini-grid policy tool-kit (Franz, 2014) there are three 

main ways of providing electricity in rural areas; national grid-extension, mini-grids and stand-alone 

system. These three strategies can be divided into centralized (grid-extension) and decentralized 

strategies (mini-grids and stand-alone systems). Decentralized systems (such as mini-grids) generally 

don’t provide the same amount of energy as is possible through grid extension. Which strategy to 

apply is highly dependent on the characteristics of the area in question. 

 

Stand-alone systems are small electricity generation systems (such as diesel generators or 

photovoltaic systems) directly connected to the end-user without any network for distributing the 

electricity. Stand-alone systems are small in terms of the energy output (and corresponding loads) 

that they can supply. Mini-grids are larger than stand-alone systems regarding the amount of energy 

they can produce and the amount of energy consumers it can supply. They also include a network for 

distributing the electricity within the mini-grid. A mini-grid can be defined as follows; 

“Mini-grids involve small-scale electricity generation 
(10 kW to 10MW) which serves a limited number of 
consumers via a distribution grid that can operate in 
isolation from national electricity transmission networks.” (Franz, 2014) 
 

The most common energy source for mini-grids in the world today are diesel generators. 

Hybridization has been found to be a good method for developing and improving mini-grids and it 

has huge potential. There are high quantities of mini-grids (and stand-alone systems) spread around 

developing countries, mainly fueled by diesel. Hybridization means coupling these diesel mini-grids 

with renewable technologies such as hydro, solar, biomass or wind energy. Coupling diesel and 

renewable technologies in this fashion can help reduce cost and environmental impact, while 

improving energy security of the mini-grid (Franz, 2014). 
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Mini-grids versus grid-extension 

Developing the national electricity grid is an expensive, long term process. Grid extension to the 

areas that lie closest to the existing grid will be the least expensive. The cost effectiveness of the 

different projects has to be taken into account when deciding upon a strategy for rural electrification. 

Several factors have to be taken into consideration when making a decision regarding grid extension. 

These can be factors such as the distance to the centralized grid, the population size and density, and 

socio-economic factors such as the energy demand potential of the area. In areas with low 

population density and urbanization rate, the option of grid extension is most likely not the most 

cost-efficient option for providing access to electricity for the population. Spatial analysis using GIS 

can be used when analyzing the cost-effectiveness of different projects (Franz, 2014).  

The question whether it’s best to invest money in a centralized or decentralized strategy is 

complicated and the answer is not an either or. Grid extension and decentralized electrification 

projects can be seen to complement each other since they both fulfill the same purpose; a higher 

rate of public electrification. One important factor to take into consideration when planning 

decentralized electrification projects is the possibility to incorporate the mini-grids into the national 

electricity grid in the future. If this possibility is accounted for, in the long run both the centralized 

and decentralized strategy can be seen as contributing to the process of grid-extension. In the 

shorter time perspective the strategy of building mini-grids is more effective in providing rural 

electrification as mini-grids can be deployed much quicker than the grid can be extended. 

The economy of mini-grids 

Financing is a necessary part of introducing a mini-grid. Like all other business the operation of a 

mini-grid must be economically attractive and the price of electricity should be somewhere around 

the electricity price of the grid. Therefore it is important when setting up a mini-grid for a 

municipality to have an understanding of how the energy demand is at the moment and how it will 

develop over time. The future energy demand can be difficult to foresee if the municipality is not 

used to use electricity.  

The fixed costs of a mini-grid stem from generation and distribution of electricity while the variable 

costs stem from maintenance, operation and management. For general grids the income comes from 

connection fees, electricity sales and grants or subsidies and it is usually the same for mini-grids but 

for a mini-grid it is even more important to have an accurate prediction of the energy demand and 

match it with the energy supply.  

A mini-grid which is entirely based on renewable energy sources have high fixed costs and its energy 

supply is more insecure than for example a diesel based mini-grid. A renewable energy based mini-

grid also needs a costly storage system to make it viable. The aforementioned hybridization between 

fossil based and renewable energy sources can counter these negative aspects of a mini-grid entirely 

based on renewable energy as it can help counter the high fixed costs and the low energy security. 

As was previously mentioned, the possibility to incorporate the mini-grid into the “big grid” is 

important. In the case of absorption of this sort, it is important that the mini-grid operator is properly 

compensated. If no legislation regarding this exists there will be huge economic insecurities in 

creating and operating mini-grids, which probably will result in less mini-grids, and therefore less 

rural electrification. 
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7 Conclusions 
 The Powertower system has the lowest environmental impact of the three studied energy 

supply systems studied in the main case, both regarding global warming potential (89 

gCO2/kWh) and primary energy use (0.33 kWh/kWh). 

 The diesel generator system has about 21 times higher environmental impact compared to 

the Powertower system. The hybrid system has about 6 times higher global warming 

potential and twice the amount of primary energy use compared to the Powertower system 

 If all the produced energy is utilized the environmental impact of the Powertower-system 

goes down to 35 gCO2/kWh. When comparing this number to that of LCAs studying similar 

systems it is found that the Powertower system has about 20 % lower GWP emissions. 

 The hybrid system is deemed to be the most economically viable system at the 3 % discount-

rate as it can produce relatively cheap electricity even if the worst circumstances are 

considered (2 % yearly increase in diesel price and no use of over-production). 

 The alternatives incorporating diesel generators are able to provide energy with high energy 

security compared to the pure Powertower system. This is due to the intermittency of 

renewable resources and the possibility to regulate the diesel generator according to the 

load. 

 The hybrid is deemed to be the most suitable energy supply system for the humanitarian aid 

village as it can provide cheap electricity with high energy security and relatively low 

environmental impact. 

 The “Power to the Philippines” project can be deemed to be of interest to the humanitarian 

aid villages, as long as the energy load of the humanitarian aid village isn’t solely met by 

Powertowers. A hybridization of Powertowers with the existing diesel generators can help 

lower the carbon footprint of the existing energy system, while simultaneously lowering the 

cost of electricity (at the 3 % discount-rate since no energy is to be sold). 

 As the discount-rate increases the diesel generator system becomes cheaper while the 

Powertower system simultaneously becomes more expensive. This trend is due to the low 

fixed cost and the high operational costs related to the diesel generator system, and the high 

fixed costs and low operational costs of the Powertower system. As the discount-rate 

increases the alternatives with low fixed costs will be favored. 

 When comparing the cost of electricity of the Powertower system is more or less in the 

middle range if compared (and weighed) to the typical energy costs as stated in the global 

status report of Ren21 (Ren21, 2014). 

 The differences in wind data series for the other locations in the geographical sensitivity 

analysis are a major source of error. Site-specific data would have been preferred but were 

hard to find. 

 Mini-grids involve small-scale electricity generation (10 kW - 10 MW) and serve a limited 

amount of customers through its distribution network (that’s separate from the national 

grid) 

 Rural electrification has been found to improve both living standard and quality of life of the 

people affected by it. Grid-extension is often not economically viable in rural areas, where 

the creation of mini-grids can be a viable alternative. If the mini-grid are designed to be able 

to connect to the “big grid” when it comes, both strategies for rural electrification (grid-
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extension and mini-grids) can be seen to fulfill the same purpose – a higher rate of public 

electrification. 

 Hybridization of existing diesel generators with renewable technologies is a viable method 

for creating and improving mini-grids, and it has huge potential.  
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Appendix A – Solar energy calculations 
The amount of electricity produced from the solar panels is calculated by gathering daily measures of 

insolation on the horizontal surface and diffuse insolation from the years 2001 to 2004 from a 

website owned by NASA (NASA, 2014). From these measures an average insolation value for each 

day of the year, later summed up to each month, were calculated. 

The average monthly insolation values, G, are then put into the following equation to calculate the 

electricity generated the solar panels. 

𝐸 =  𝐴 ∗  𝑟 ∗  𝐺 ∗  𝑃𝑅     

Table 35. Input values for electricity production of solar panels. 

  Value 

Area, A (m2) 10.02 

Efficiency, r 0.75 

Yield, PR 0.15 

 

Table 36. Insolation per month for Tacloban, Philipipnes. 

Month J F M A M J J A S O N D 

Insolation, kWh 142 150 186 215 195 175 178 179 184 172 148 140 

 

Table 37. The results of the calculation of electricity production of the sola panels. 

Month J F M A M J J A S O N D 

Production, kWh 161 169 210 242 219 197 200 202 207 194 167 158 
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Appendix B – Wind energy calculations 
The complete formula for converting the wind speed into the turbine power output is found below; 

 

𝑃 =  ½ ∗  𝜌 ∗  𝐴 ∗  𝑣3 ∗  𝐶𝑝 ∗  𝐾𝑒    14 

Where 

P - Turbine power output 

ρ - The density of air 

A - The rotor swept area 

v -  The wind speed 

Cp - The power coefficient 

Ke - Rayleigh probability density function 

Here follows a section with a more in depth description of the different parameters and how the 

values used for calculation of the turbine power output, P, were achieved. 

Rayleigh probability density function, Ke 

As the available wind data is given as average wind speed, a Weibull factor was used to spread out 

the wind distribution according to a Weibull (k = 2) curve.  The mean wind speed doesn’t accurately 

depict the way the wind blows, most of the time the wind blows more or less than the mean wind. 

Since the turbine power output formula is very dependent on the wind speed (since it is raised to the 

power of 3), this aspect has to be accounted for. This is what the Rayleigh probability density 

functions accounts for. Ke= 6 / π = 1,909 

 

The density of air, ρ 

ρ = 1,225 kg/m3 

The rotor swept area, A 

A Dali Powertower with the Lite configuration has a rotor diameter of 3 meters (= a radius of 1,5 

meters) giving a rotor swept area of; 

A = π * r2 = 7,068 m2   

The power coefficient, Cp 

The power coefficient, Cp, specifies how large portion of the wind’s energy that the wind turbine can 

absorb, Cp = Pturbine/Pwind. The maximal theoretical limit of this absorption is 16/27 (=0,593), and 

it is called the Betz limit. In reality, the how close the power coefficient gets to the Betz limit varies 

with the wind speed and from turbine to turbine. A good estimate of the Cp over time is; 

Cp = 20 % 

 

The wind speed, v 

The monthly wind speed in Tacloban can be seen in Table 38. 

Table 38. Monthly average wind speeds over the year in Tacloban (source: NASA) 

J F M A M J J A S O N D 
Annual 
average 

9.09 8.26 7.64 6.09 4.59 5.24 5.29 6.8 5.31 5.72 7.25 8.69 6.66 
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Then, all average wind speed values were put into the turbine power output formula to get the 

produced electricity (in kWh). The result can be seen below in Figure 43. The electricity produced by 

the wind turbine of one Powertower during the year. 

 

Figure 43. The electricity produced by the wind turbine of one Powertower during the year 
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Appendix C – Geographical sensitivity analysis 
 
Table 39. The annual wind speed average and wind turbine production of the different locations 

Location Annual wind speed average (m/s) Annual wind turbine production (kWh) 

Haiti 6.37 7585 

Somalia 5.63 5942 

Bolivia 8.42 11253 

India 6.16 7052 

 

Table 40. The average monthly insolation over the year for the 5 different locations (given in kWh/m2/day) 

 
J F M  A M J J A S O N D 

The 
Philippines 142.47 149.71 186.27 

 
214.99 194.50 175.12 177.61 179.38 183.72 171.89 148.09 139.72 

Haiti 176.31 180.54 213.07  211.95 224.67 237.56 235.52 236.00 201.26 190.46 171.37 167.00 

Somalia 230.17 222.04 250.38  207.72 213.71 186.85 196.04 201.97 211.50 206.02 192.91 202.55 

Bolivia 205.34 169.09 171.90  150.67 127.11 121.77 136.43 168.67 187.06 199.79 194.07 181.50 

India 107.68 114.08 167.52  180.87 234.27 230.08 227.66 206.43 185.56 168.65 126.03 86.67 
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Appendix D – Transport calculations 
Table 41. A compilation of all the different transports involved in the Powertower systems’ life cycles 

Component 
Origin of 
transport 

Destination 
of transport 

Transport 
type 

Length 
(km) 

Weight 
(kg) / 
PT 

Weight 
(kg) / 10 
PT 

CO2-
eqv 
[kg] 

Energy 
(MJ) 

Steel billet for 
foundation 

Quebec, 
Canada 

Halifax, 
Canada 

Truck w/ 
trailer 28-
34 ton 1016 242 2420 201.6 70.41 

Steel billet for 
foundation 

Halifax, 
Canada 

Malmö, 
Sweden 

Container 
ship 5509 242 2420 400.9 5140 

Steel billet for 
bolts/washer/nuts 

Tranås, 
Sweden 

Malmö, 
Sweden 

Truck w/ 
trailer 28-
34 ton 245 80 800 16.07 236.4 

Pine-log 
Scanian 
woods 

Varberg, 
Sweden 

Truck w/ 
trailer 28-
34 ton 150 1590 15900 195.6 2877 

Impregnated 
wood 

Varberg, 
Sweden 

Malmö, 
Sweden 

Truck w/ 
trailer 28-
34 ton 205 1073.14 10731.4 180.4 2654 

Metal parts 
Prenzlau, 
Germany 

Malmö, 
Sweden 

Truck w/ 
trailer 28-
34 ton 445 100 1000 36.49 536.8 

Solar cells 
Glava, 
Sweden 

Malmö, 
Sweden 

Truck w/ 
trailer 28-
34 ton 511.38 114 1140 47.8 703.3 

Turbine 
Guangdong, 
China 

Malmö, 
Sweden 

Container 
ship 18900 70 700 425.1 5450 

Wind charge 
controller 

Guangdong, 
China 

Malmö, 
Sweden 

Container 
ship 18900 16 160 

  

MPPT 
Heiligenberg, 
Germany* 

Malmö, 
Sweden 

Truck w/ 
trailer 28-
34 ton 1157.51 1.81 18.13 1.518 22.33 

Inverter 
Sion, 
Switzerland* 

Malmö, 
Sweden 

Truck w/ 
trailer 28-
34 ton 1416.66 7.67 76.67 8.907 131 

Solar charge 
controller Watford, UK* 

Malmö, 
Sweden 

Truck w/ 
trailer 28-
34 ton 1337 0.42 4.2 0.46 6.77 

Battery 
Büdingen, 
Germany* 

Malmö, 
Sweden 

Truck w/ 
trailer 28-
34 ton 839.76 82.67 826.67 50.88 748.5 

Non-assembled 
PT 

Malmö, 
Sweden 

Tacloban, 
the 
Philippines 

Container 
ship 18834 1550 17746 10050 128900 

Non-assembled 
PT 

Malmö, 
Sweden 

Port-au-
prince, Haiti 

Container 
ship 8533 1550 10934 2805 35960 

Non-assembled 
PT 

Malmö, 
Sweden 

Merca, 
Somalia 

Container 
ship 11688 1550 12291 6235 79940 

Non-assembled 
PT 

Malmö, 
Sweden Arica, Chile 

Container 
ship 13343 1550 10934 4386 56230 

Non-assembled 
PT 

Malmö, 
Sweden 

Mumbai, 
India 

Container 
ship 12484 1550 13657 5127 65730 
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Appendix E – Main case results - Other environmental impact 

categories 

E.1 Eutrophication 

Figure 45 shows the comparison of the Power Tower and the diesel generator’s effects regarding 

eutrophication emissions. 

 

Figure 44. The results from the main case of the study regarding the eutrophication impact 

E.2 Acidification 

Figure 45 shows the comparison of the Power Tower and the diesel generator’s effects regarding 

acidification emissions. 

 

Figure 45. The results from the main case of the study regarding the acidiphication impact 

Figure 45 shows that the acidification effect is the highest for the Powertower system, about 31 % 

higher than for diesel generator system and about 6 times higher than the renewable/diesel hybrid 

system. 
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E.3 Photochemical oxidation 

Figure 46 shows the comparison of the Power Tower and the diesel generator’s effects regarding 

photochemical oxidation emissions. 

 

Figure 46. The results from the main case of the study regarding the photochemical oxidation impact 

The effects on photochemical oxidation is about 12 times higher for the Power Tower than the diesel 

generator system and the renewable/diesel hybrid system. This is mainly because of the Power 

Tower’s solar panels. 
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Appendix F – Geographical sensitivity analysis – Other environmental 

impact categories 

F.1 Eutrophication 

 

Figure 47. The results from the geographical sensitivity analysis regarding the eutrophication impact 

F.2Acidification 

 

Figure 48. The results from the geographical sensitivity analysis regarding the acidification impact 
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F.3 Photochemical oxidation 

 

 

Figure 49. The results from the geographical sensitivity analysis regarding the photochemical oxidation impact 
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Appendix G – Economical analysis 
In this appendix are the input values for the economic analysis presented.  

G.1 Powertower equivalent annual cost 
Table 42. The values of the calculations of equivalent annual cost  for the Powertower. 

Powertower       

Investment cost [USD] 326567     

Economic life [years] 20     

Used electricity 20 years [kWh] 28470     

Use of 50% over-production [kWh] 50635     

Use of 100% over-production [kWh] 69500     

Discount rate 3% 8% 13% 

k 0.067 0.10 0.14 

NPV [USD] $21,311 $30,798 $41,140 

Used electricity 20 years [USD/kWh] $0.75 $1.08 $1.45 

Use of 50% over-production [USD/kWh] $0.42 $0.61 $0.81 

Use of 100% over-production [USD/kWh] $0.31 $0.44 $0.59 

G.2 Diesel generator equivalent annual cost 
Table 43. Diesel cost per liter and consumption of the diesel generator. 

Litres Diesel per year 12700 

Diesel price/litre 0.96 

 

Table 44. The yearly diesel cost with 2 % increase of diesel price for the diesel generator.  

A 2% inc 
 

Yearly diesel cost [USD] 

y1 1 12366.66 

y2 2 12613.99 

y3 3 12866.27 

y4 4 13123.60 

y5 5 13386.07 

y6 6 13653.79 

y7 7 13926.87 

y8 8 14205.40 

y9 9 14489.51 

y10 10 14779.30 

y11 11 15074.89 

y12 12 15376.38 

y13 13 15683.91 

y14 14 15997.59 

y15 15 16317.54 

y16 16 16643.89 

y17 17 16976.77 

y18 18 17316.31 
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Table 45. The values of the calculations of equivalent annual cost  for the diesel generator. 

Investment cost [USD] 32400     

Diesel cost flat rate B 
[USD/year] 12124     

Discount rate 0.03 0.08 0.13 

k 0.067 0.10 0.14 

NPV flat rate $14,239 $15,180 $16,206 

[USD/kWh] $0.50 $0.53 $0.57 

NPV 2 % inc $17,126 $18,047 $19,055 

[USD/kWh] $0.60 $0.63 $0.67 

 

  

y19 19 17662.63 

y20 20 18015.89 

Total   300477.26 
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G.3 Renewable/diesel hybrid equivalent annual cost 
Table 46. Diesel cost per liter and consumption of the renewable/diesel hybrid. 

Litres Diesel per year 4780 

Diesel price/litre 0.96 

 

Table 47. The yearly diesel cost with 2 % increase of diesel price for the renewable/diesel hybrid. 

5,2   Yearly diesel cost [USD] 

y1 1 4670.80 

y2 2 4764.22 

y3 3 4859.50 

y4 4 4956.69 

y5 5 5055.83 

y6 6 5156.94 

y7 7 5260.08 

y8 8 5365.28 

y9 9 5472.59 

y10 10 5582.04 

y11 11 5693.68 

y12 12 5807.56 

y13 13 5923.71 

y14 14 6042.18 

y15 15 6163.02 

y16 16 6286.28 

y17 17 6412.01 

y18 18 6540.25 

y19 19 6671.06 

y20 20 6804.48 

 

Table 48. The values of the calculations of equivalent annual cost  for the renewable/diesel hybrid. 

Hybrid       

Investment cost 159433     

Diesel cost flat rate [USD/year] 4579     

Used electricity 20 years [kWh] 28470.00     

Use of 50% over-production [kWh] 32688     

Use of 100% over-production [kWh] 36897     

Discount rate 3% 8% 13% 

k 0.067 0.10 0.14 

NPV flat rate $14,984 $19,615 $24,664 

Used electricity 20 years [USD/kWh] $0.53 $0.69 $0.87 

Use of 50% over-production [USD/kWh] $0.46 $0.60 $0.75 

Use of 100% over-production [USD/kWh] $0.41 $0.53 $0.67 

NPV 2 % inc $16,074 $20,698 $25,740 
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Used electricity 20 years [USD/kWh] $0.56 $0.73 $0.90 

Use of 50% over-production [USD/kWh] $0.49 $0.63 $0.79 

Use of 100% over-production [USD/kWh] $0.44 $0.56 $0.70 
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Appendix H – Dimensioning the renewable/diesel hybrid 
 

The comparison showed that the best choice, environmental aspects regarded, was to have 5 Power 

Towers and a battery tank capacity of 19.2 kWh (2 tanks). As this setup will not fully meet the load, 

the diesel generator will need to combust 4 780 liters annually in order to cover the remaining 

electricity demand.  

Table 49. The resulting emissions of CO2-eqper used kWh of different setups of the renewable/diesel hybrid dimensioning. 

g CO2-eq/used kWh 
     Battery 

tank/PT 0 1 2 3 4 5 

1 1169 1158 1162 1166 1170 1174 

2 1070 1025 1008 1005 1010 1016 

3 937 869 839 834 838 844 

4 810 720 690 688 693 699 

5 684 584 562 564 569 574 

 

Table 50. The resulting demand of primary energy per used kWh for different setups of the renewable/diesel hybrid 
dimensioning. 

kWh/used kWh 
     Battery 

tank/PT 0 1 2 3 4 5 

1 4.32 4.29 4.31 4.33 4.35 4.37 

2 3.96 3.80 3.74 3.74 3.76 3.79 

3 3.47 3.22 3.12 3.11 3.13 3.16 

4 3.00 2.67 2.57 2.57 2.59 2.62 

5 2.53 2.17 2.10 2.11 2.14 2.16 

 

Table 49 and Table 50  shows that the set up including 5 Powertowers and 2 battery tanks (19.6 kWh) 

is the one with lowest environmental impact, therefore it was chosen as the renewable/diesel hybrid 

set up.   
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Appendix I – End-of-life treatment sensitivity analysis 
The amount of material recycled is shown in Table 51. The amount of recycled materials  

Table 51. The amount of recycled materials. 

  Powertower   Hybrid   Dieselgenerator   

  Total mass [kg] 
Recycled 
mass [kg] 

Total 
mass [kg] 

Recycled 
mass [kg] Total mass [kg] 

Recycled 
mass [kg] 

Steel 5783 4626 2628 2102 404 323 

Aluminum 358 215 380 228 242 145 

Copper 188 94 221 111 34 17 

Lead 2428 2404 902 893 0 0 

Plastics 31 0 79 0 67 0 

Wood 20670 0 7950 0 0 0 

Kiselplattor 78 55 30 21 0 0 

Electrical 
components 45 14 17 5 0 0 

Concrete 90870 0 34950 0 0 0 

 

 


