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Abstract 

Renewable energy is gaining increasing importance in the generation of power due to the finite 

existence of fossil fuels and concerns about climate change. As its demand grows financial 

interest from investors’ increases, thus it is important to find the most effective way of 

quantifying the risk of the renewable energy market.  Furthermore as renewable energy can be 

viewed as an economic substitute for other energy sources such as crude oil - a commodity that 

has been known to have a significant impact on financial markets - an empirical relationship is 

likely to exist between the two resources. This paper will assess the best way of measuring the 

risk of the renewable energy market by using one of the most common risk measurement tools 

Value-at-Risk.  Using daily data of the return observations of five renewable energy indices 

between the 1st of January 2004 and the 12th of June 2015 a total of 2987 observations, the VaR 

will be estimated for each of these indices.  This is achieved using both parametric and non-

parametric methods, and then backtesting these using the two-sided Kupiec test to determine 

which method provides the best estimate of VaR.  The non-parametric methods employed in this 

paper are the Basic Historical Simulation (BHS) and the Exponentially Weighted Moving 

Average (EWMA) model. The parametric methods applied are the Generalized Autoregressive 

Conditional Heteroskedasticity, or GARCH (1, 1) model and the Threshold-GARCH, or 

TGARCH, using both the normal and Student-t distribution.  The sample period is split into an 

in-sample period of 522 days and an out-of-period of 2465 days, where the 522 days will be used 

as the size of the “rolling-window” which is used to calculate the VaR throughout this paper.  

After determining which model provides the best estimate of VaR a regression will be run using 

this VaR estimate as the dependent variable, and the oil price and the three-month rate of a US 

Treasury bill - taken as the interest rate – as the explanatory variables.  The results show that the 

parametric methods outperform the non-parametric methods with the GARCH (1, 1) model 

under the Student-t distribution in particular providing the best estimate of VaR.  In general they 

show that the models which can account for heavy-tailed distributions perform better, with all 

models using the Student-t distribution giving better estimates than the normal distribution.  

Furthermore a statistically significant relationship between the VaR estimate of any given 

renewable energy index and the oil price was identified, with a rise in the price of oil causing a 

decrease in the VaR estimate of the given renewable energy index.   
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1. INTRODUCTION 

 

A central characteristic of any modern industrial economy is its reliance on energy resources as 

inputs to production.  Most developed economies are fossil fuel dependent to some degree with 

petroleum and other liquids being the primary sources of energy consumption at 36% compared 

to just 8% for renewables between 1990 and 2013 globally (EIA, 2015).  However, in the past 

decade renewable energy investment has increased significantly growing from $45billion in 2004 

to $270billion in 2014 (Bloomberg New Energy Finance, 2015) and renewables are expected to 

account for 10% of energy consumption between 2013 and 2040 (EIA, 2015).  This could be due 

to advances in renewable energy technology that has seen the cost of solar energy, at approximately 

13 cents per kilowatt-hour, almost reaching price parity with state-of-the-art coal plants at 12 cents 

per kilowatt-hour (Helman, 2014). This information is of considerable interest for investors 

choosing to invest in renewable energy.   

Of particular interest in this paper, and for stakeholders is the risk associated with the renewable 

energy market.  Risk management for non-financial firms is said to contribute towards a firm’s 

value:  risk management being the process through which various risk exposures are identified, 

measured, and controlled for (Jorion, 2001). There are two important types of risk: credit risk 

which is the risk that a firm or individual will default on their loan payment, and market risk which 

is the risk that market prices may move.  The most convenient and common measure of risk, for 

example, is the standard deviation of returns over one year, however this measure has the tendency 

to not capture total risk as returns are seldom normally distributed, meaning it assumes equal 

probabilities of the return being below or above the mean, an unlikely situation.  Other measures 

of market variables that quantify the risk produced daily can be time consuming to interpret due 

to the sheer quantity of variables to examine.  As a result, JPMorgan in 1994 produced a single 

aggregate risk measure for a 24 hour period across a bank’s entire trading portfolio now known as 

Value-at-Risk (VaR) (Hull, 2012).  VaR has become the benchmark measure for quantifying 

market risk (Manganelli & Engle, 2001) and can be defined as a way of assessing risk using typical 

statistical techniques. Formally it “measures the worst expected loss over a given horizon under 

normal market conditions, at a given confidence level.” (Jorion, 2001, p.xxii). This interpretation 

of risk is advantageous due to its simplicity as a means of monetary measurement and risk 
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aggregation providing a summary of market risk; this may explain why it quickly became the 

standard for financial institutions and some non-financial firms, even becoming required by law 

as a result of the Basel committee regulation authority in the 1996 amendment (Hull, 2012) 

An additional aspect of focus in this thesis, although to a lesser extent, is the impact that the oil 

price may have on the risk of the renewable energy market.  Numerous research studies have 

indicated a significant relationship between the price of oil and renewable energy companies’ share 

prices, with the general consensus that increases in the price of oil result in a rise in renewable 

energy share prices (Sadorsky and Henriques, 2008). Further studies have examined the 

determinants of renewable energy company risk, estimating the impact the oil price has on these 

companies’ risk profile.  However, few studies exist that have investigated the VaR of renewable 

energy indices with none having looked at the effect the oil price has on the VaR of these renewable 

energy indices: rather the research has measured other forms of risk, such as systematic risk 

measured by the market beta. Furthermore, to the best of the author’s knowledge there has been 

no analysis regarding finding the best methods of estimating the VaR for renewable energy indices. 

Thus it is of some interest to analyze the VaR of the renewable energy market and determine 

whether a relationship between the VaR of renewable energy indices and the oil price exists, with 

these topics being the main focus of this paper.  

This paper looks to build upon the previous literature and to address two key questions: 

1) Which method for estimating the VaR of renewable energy indices provides the best estimate? 

2) Do fluctuations in the oil price impact on the VaR of these renewable energy indices? 

The former is carried out by implementing both parametric and non-parametric methods and 

subsequently backtesting these to determine which is best.  The latter will apply a regression using 

the VaR estimate of a specific index as the dependent variable, and oil price returns and the risk-

free rate as the explanatory variables, so as to determine whether a relationship exists between the 

VaR of the renewable energy market and the oil price.  

1.1 THE RENEWABLE ENERGY MARKET AND OIL PRICES 

 

The use of renewable energy existed long before the discovery of fossil fuels, early examples 

including the sails that powered ships or windmills for crushing grains.  However, renewable 
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energy developments tended to stagnate in the wake of the widespread use of fossil fuels through 

the course of the industrial revolution. The Standard Oil Company was the first energy company 

to go public on the stock market in the early 1900s, and it wasn’t until 1984 that the first renewable 

energy company, SunEdison Incorporated, did the same.  Renewable energy growth has remained 

fairly steady ever since.  It was the arrival of the new millennium that saw real growth in the 

industry with more companies going public in the first decade of the 21st century than had in all 

the previous years with renewable energy capacity growing 120% between 2000 and 2014 (IRENA, 

2015).  The explosion of growth after the year 2000 is likely to be attributable to advances in 

technologies which helped to increase the efficiency of power generation, lowering costs.  It now 

plays a major role in electricity generation for homes and businesses as efforts to move towards 

cleaner forms of energy increase and will continue to do so in the future, with some countries such 

as Scotland targeting to generate 100% of its electricity demand from renewables by 2030 (Nichols, 

2015).  Due to the increasing role played by renewables in the energy sector it is important to 

understand how best to measure its risk and examine the relationship it has with oil and other fossil 

fuels. 

Oil prices are subject to significant volatility and the effect these shocks have on the economy are 

extensively documented, thus it is crucial to analyze these when investigating renewable energy 

VaR as not only do they derive from a related sector, but they also create risk in the economy as a 

whole.  Increases in the price of oil are held accountable for recessions, periods of excessive 

inflation, falls in productivity and decreased GDP growth and, in the case of the 1970s oil shock, 

stagflation (Barsky & Killian, 2004) although whilst increasing oil prices generally affect 

economic activity negatively, falling oil prices may fail to stimulate the economy.  Prior to the 

1970’s oil crises, oil prices were fairly stable, then they experienced a sharp increase beginning in 

1973 when OPEC countries imposed an oil embargo which limited the supply of oil, and raised its 

price from $3 to $12 per barrel.  Since then, oil prices have been considerably volatile with the rise 

of competition and deregulation creating relatively free energy markets which are subject to high 

price movements (Sadeghi & Shavvalpour, 2005), and especially to major political events with oil 

price increases arising in 1979 due to the Iranian Revolution, and similar increases occurring in 

1990 and 2003 as a result of both the Gulf war and Iraq war (Barsky & Killian, 2004).   
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Particularly significant is the relationship between oil prices and the stock market, with Sardosky 

(1999) finding that positive shocks to oil prices depress real stock returns.  Jones & Kaul (1996) 

identified a similar relationship between aggregate stock returns and oil prices.  So, given that oil 

price volatility contributes to stock market volatility, and previous research has shown a positive 

relationship between oil prices and renewable energy stock prices, it is interesting to investigate 

the relationship between oil price changes and VaR in renewable energy.   

1.2 MOTIVATION 

There appears to be a shortage of literature regarding the VaR of renewable energy indices.  Earlier 

research papers in related areas have tended to focus on the financial risks involved in investing in 

renewable energy; how the price of oil affects the share price; or the systematic risk associated 

with renewable energy companies.  This paper aims to evaluate the VaR of renewable energy 

markets and determine the best method for quantifying this risk, as well as investigating whether 

oil price fluctuations impact the VaR of the renewable energy indices.  While there is a significant 

amount of literature involved in finding the best estimate of VaR by applying a number of different 

models, few have adopted the Threshold GARCH to estimate VaR that will be used in this paper. 

This subject is of considerable significance in the current financial economic environment due to 

growing concern over climate change, with BP’s annual energy outlook forecasting global energy 

demand to increase by almost 40% and CO2 emissions by 25% by 2035, a demand that BP claim 

can only be satisfied by use of fossil fuels (BP, 2015).1  These increases are bound to have negative 

effects on the environment and with a knock on impact on the economy.  This has led to increased 

financial investment in renewable energy such as the decision made by the Rockefeller Brothers 

Fund and other global investors to divest $50billion in fossil fuel assets over the next five years, 

and instead invest in clean energies (BBC, 2014).  Thus the current financial significance of 

renewable energy is evident.  

Moreover climate change and renewable energy risk is important for policymakers’ decision 

making processes as political pressures arise from groups wanting to see a reduction in CO2 

emissions and fossil fuel dependence.  The inability to meet a binding legal contract on climate 

                                                 
1 However this report could be subject to bias due to a conflict of interests on behalf of BP one of the largest oil 

producers in the world.  
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change at the 2009 United Nations (UN) Copenhagen climate conference was deemed a 

catastrophic failure by Dubash (2009).  Revelations of the US National Security Agency spying 

on communications between key countries prior to and during the conference has only heightened 

this pressure (Goldenberg and Vidal, 2014).  This has culminated in the 2015 UN Climate Change 

Conference in Paris being billed as the ‘last chance’ to limit global warming to below 2 degrees 

Celsius with the goal of moving to zero carbon emissions by 2050.  Any rises above this 

temperature are expected to have disastrous impacts on the environment (Briggs, 2015).  To help 

address the concerns expressed by pressure groups policymakers need to understand the effect oil 

prices have on the investment and VaR of the renewable energy industry.  Specifically, which 

policies can help decrease dependence on fossil fuels and encourage additional investment in 

renewable energy, and which policies have an impact on the VaR within the renewable energy 

sector.  

1.3 LITERATURE REVIEW 

 

The first five papers examined here look at cases where risk has been measured for renewable 

energy firms and whether or not the oil price exhibits any relationship with this, while the 

remaining papers attempt to find the best VaR estimate for fossil fuels. 

Henriques and Sadorsky (2008) using weekly data on the Wednesday closing prices for one clean 

energy index, one technology index and the West Texas Intermediate crude oil future prices - from 

January 3rd, 2001 to May 30th, 2007 - implemented a four variable vector auto-regression (VAR) 

model to determine the empirical relationships between alternative energy stock prices, technology 

stock prices, oil prices, and interest rates. These VAR models were then used to test Granger 

causality, whereby the lag of one variable is used to explain the current value of some other 

variable.  Their Granger causality tests indicate that alternative energy stock prices can be 

explained by past movements in all the previously stated variables. However, despite oil prices 

having some power in explaining movements in alternative energy stock prices, they unexpectedly 

found that a one standard deviation oil price shock has no statistically significant, impact on 

alternative energy stock prices.  This implies oil price shocks are not as important as shocks to 

technology stock prices which are both positive and statistically significant, being felt up to a 

minimum of ten weeks in the future. Furthermore, in terms of risk, they find that the WilderHill 
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Clean Energy index of alternative energy companies holds a market beta of approximately 2, thus 

for a one percentage point change in the U.S. market the index moves by 2%, which is more 

comparable to technology companies than energy companies, with oil firms exhibiting a beta of 

around 0.7.  However, the general consensus is that renewable energy is sensitive to events in the 

oil market, with higher oil prices stimulating interest in renewable energy companies, and vice 

versa, as well as persistently high oil prices manifesting incentives to find substitutes for oil.  

Sadorsky (2012) using data from a sample of renewable energy companies, the closing price of 

WTI future contracts, and firm level data such as company size, from 2001-2007, constructed a 

variable beta model to investigate the determinants of renewable energy company risk.  The model 

is an extension of the CAPM which, in this case, incorporates several different factors on 

systematic risk - the aim being to model the relationship between systematic risk and return for 

some publicly traded renewable energy companies, accounting for time varying risk.  He finds 

similar results to the Henriques and Sadorsky (2008) study with renewable energy companies 

having a market beta of approximately 2, implying they are twice as risky as the market standard.  

Moreover he finds a negative relationship between company sales growth and systematic risk, and 

a positive relationship between oil price returns and systematic risk, implying risk increases as oil 

price returns increase, although when oil price returns are positive and moderate, increases in sales 

growth can offset the effect of oil price returns, resulting in lower systematic risk.  

Kumar et al (2012) analyze weekly data from three clean energy indices, the price of technology 

indices, oil price and the carbon price from April 22nd, 2005 to November 26th 2008  using a five-

variable VAR model to study the relationships between clean  energy companies’ stock prices, 

technology companies’ stock prices, oil prices, carbon prices and interest rates.  They find that 

fluctuations in the three clean energy indices can be explained by past movements in the oil price, 

stock price of technology firms, and interest rates, but not by the carbon price, with a positive 

relationship between oil prices and the clean energy indices, in addition to the oil price creating a 

significant risk factor for these indices.  Furthermore, by conducting a forecast error variance for 

the models used in this study, they find that volatility in oil price, technology stock prices and 

interest rates, contribute the main source of shock, accounting for 30% of total variability in the 

clean energy stock price.  
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Wen et al (2014), using daily samples taken from August 30th 2006 to September 11th 2012, study 

the return and volatility spillover effects between the stock prices of new energy and fossil fuel 

firms in China, using a bivariate, asymmetric BEKK model that captures the time-varying 

volatility of the return series and volatility clustering to model these spillovers.  They concluded 

that new energy and fossil fuel stock spillovers are significant and asymmetric. Furthermore they 

found that new energy and fossil fuels are perceived as competing assets and positive news about 

new energy stocks may affect the appeal of fossil fuel stocks, while new energy stock investment 

is more speculative and riskier than fossil fuel stock investment, showing a distinct interaction 

between fossil fuels and new energy.  

Reboredo (2015) applying daily data for six clean energy stock price indices and Brent oil between 

December 20th, 2005 and December 12th, 2013 set out to study systematic risk and dependence 

across the price of oil and renewable energy markets. By implementing copulas to determine the 

dependence structure between crude oil and clean energy share prices, and then studying the 

impact the co-movement between crude oil and clean energy share prices has on the systematic 

risk for these two variables, he was able to calculate the conditional VaR (CoVAR) and measure 

the systematic risk.  The results show that extreme upward or downward oil price movement 

contributed to around 30% upside or downside risk, meaning an extreme oil price movement 

increased the VaR of the renewable energy indices by 30% over the VaR when oil prices took 

normal values. Similar, to some extent, to the analysis in this paper, Roboredo, first has to 

determine which copula produces the best estimate, before calculating the CoVaR.  By the use of 

parametric and non-parametric methods, as well as an array of distributions for estimating the 

copulas, he finds, by comparing the AIC specifications of these different copula models, that the 

time-varying parameter Student-t copula provides the best fit for all the variables, and thus 

calculates the CoVaR for each series using this copula.   

Research that attempts to find the best models for estimating VaR has tended to focus on the energy 

markets of fossil fuels. One such example, by Sadeghi and Shavvalpour (2005), uses weekly OPEC 

oil prices from January 1997 to December 2003; they applied Historical Simulation ARMA 

forecasting (HSAF) and Variance-Covariance models based on GARCH methodologies and found 

that the HSAF method produced the most efficient results when compared to the Variance-

Covariance method.   Cabedo and Moya (2003) found comparable results using daily spot Brent 
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prices from January 1992 to December 1999.  They reported that the HSAF approach provides a 

better VaR estimation than the standard HS, as the former allows a more flexible VaR 

quantification which models continuous price movements more accurately.  Furthermore, they 

found the HSAF delivers a more efficient risk quantification estimate than those given by the 

GARCH (1, 1) model that overestimated the maximum probable oil price changes.   

Fan et al (2008) estimated the upside and downside VaR of returns for WTI and Brent crude spot 

prices and its spillover effects using GARCH models under the Generalized Error Distribution 

(GED) over the period 1987 to 2006.  Contrary to the findings of previous papers, their results 

show the GED-GARCH-based VaR method produces better estimates than the HSAF.  Aghayeva 

and Rizvanoghlub (2014) also prefer the GARCH (1,1) with the GED finding it to provide better 

estimates of the VaR than the TGARCH and EWMA models in their study on the Azeri Light 

Crude Oil price from the 17th June, 2002 to 18th June 2013.  Sadorsky (2006) analyzed different 

univariate and multivariate ARCH statistical models to assess forecasts of daily volatility in 

petroleum futures price returns between February 5th 1988 and January 31st 2003 and found that 

non-parametric methods outperform parametric models in relation to the number of violations in 

the backtests, concluding that the simple, single equation GARCH outperforms techniques like the 

moving average and other more complicated models such as the bivariate GARCH. Brooks and 

Persand (2003) also prefer simpler models such as the autoregressive volatility or historical 

average models to provide better VaR estimates than their GARCH parametric counterparts. 

Andriosopoulos and Nomikos (2012) evaluated data on spot prices from eight energy markets that 

trade future contracts on NYMEX and the Spot energy index, including propane, natural gas and 

oil.  They assessed several VaR models to capture the dynamics of energy prices and quantify the 

energy price risk by calculating VaR and ES measures. Comparing a variety of techniques to 

estimate the VaR such as ARCH models, a Monte Carlo simulation and a Hybrid Monte Carlo 

Historical Simulation, which they developed by combining the advantages of both the Monte Carlo 

and Historical Simulation methods, they found this Hybrid method to provide the best VaR 

estimate. Studies by Huang (2010) indicate that Monte Carlo Simulations provide the most 

accurate estimates due to its flexibility and its ability to model key aspects of energy markets’ 

behaviour such as seasonality, fat-tails, skewness and kurtotsis. 
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One issue relating to parametric methods, such as the variance-covariance technique, concerns 

assumptions about return distributions as these methodologies tend to assume normal or Student-

t distributions (Huang, 2010).  However, many scholars2 mention the possibility of fat-tails which 

are common in return distributions and the normal distribution does not account for this.  

Symmetry and asymmetry are other prominent features in the literature. Reboredo (2015) identifies 

positive and symmetric dependence between oil and renewable energy prices, as well as displaying 

symmetry between the VaR of renewable energy companies and extreme oil price movements for 

all indices, except the solar index, which was affected asymmetrically. Wen et al (2014) also find 

significant evidence of asymmetric return spillovers between Chinese new energy and fossil fuel 

stock prices, with negative (good) news about new energy causing higher (a fall in) returns to spill 

over into fossil fuel returns, while positive news about fossil fuel stock returns causes a rise in new 

energy returns the next day. Specifically they find negative news about the stock returns of either 

of the energy sources results in larger changes in their opposing asset than is the case with positive 

news, displaying clear asymmetric effects. Regarding their volatility spillovers they also find that 

both energy sources spill over into the variances of each other, with increases in fossil fuel stock 

return volatiles being higher for negative fossil fuel return shocks, than for positive ones. 

Andriosopoulos and Nomikos (2012) note additionally that volatility clustering is another 

characteristic displayed by energy market returns. 

Similar features are likely to be encountered in this study.  It is therefore expected that the GARCH 

(1, 1) model under the Student-t-distribution will provide the best estimate of VaR as it can account 

for volatility clustering and fat-tails.  However it should be noted that, despite most of the literature 

suggesting the oil prices do have some part in explaining movements in the prices of renewable 

energy shares, with high oil prices leading investors to look for alternative energy sources, 

Sardosky (2012) finds the effect is not considerably statistically significant.  Nonetheless, one 

thing the literature does seem consistently to agree upon is that fluctuations in the oil price do 

impact upon the risk of renewable energy companies.  Intuitively it seems likely that fluctuations 

in the oil price will have a significant impact on the VaR of these indices. 

                                                 
2 Roberedo (2015), Andriosopoulos & Nomikos (2012), Huang (2010), Sadorsky (2006), Fan et al (2008) and Wen 

et al (2014) all mention the common occurrence of fat-tails in the return distributions. 
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This paper follows a similar path to the research outlined above with the first part investigating the 

risk of the renewable energy companies in the manner of Sadorsky’s work, together with an 

attempt to find the best method of estimating VaR in the manner of Sadeghi and Shavvalpour 

(2005) and subsequent papers, by using both parametric and non-parametric methods to determine 

the VaR and backtesting them to determine their accuracy.  The latter part of the study aims to 

determine whether the price of oil impacts on the VaR of renewable energy indices in a manner 

similar to Reboredo’s (2015) work.   
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2. THEORETICAL FRAMEWORK 

This section defines the concept of VaR, the various methods that are used for calculating it, 

either non-parametric or parametric, the distributions used, and the backtests for determining the 

VaR estimates’ accuracy.  It also describes how the regression of the VaR on the oil price and 

the risk-free rate will be carried out.  

2.1 VALUE-AT-RISK 

 

The VaR is an attempt to provide a single value that summarizes the total risk in a portfolio.  

According to Hull (2012) it is defined as “the smallest loss 𝑙 such that the probability of a future 

portfolio loss 𝐿 that is larger than the loss 𝑙, is less than or equal to 1-𝛼” within a specific holding 

period (Nilsson, 2014, p.2).  It can be expressed more formally as: 

𝑉𝑎𝑅𝛼 = min⁡{𝑙: Pr⁡(𝐿 > 𝑙) ≤ 1 − 𝛼}   (1) 

When perceived statistically VaR is the quantile of the loss distribution, being the distribution of 

stochastic variable⁡𝐿.  The analysis in this paper will use the most common confidence level, 𝛼 =

0.99.⁡⁡The confidence level allows statements to be made regarding the probability of observing a 

loss, for example, at a 99% confidence level, the probability of observing a loss greater than 𝑙 is 

less than or equal to 1%.  This confidence level is chosen as it is the standard choice in risk 

management and is the one required by the Basel regulation for market risk.  The analysis will also 

use a holding period of 1 day, this is because shorter holding periods are better suited for 

backtesting procedures to determine a model’s reliability (Dowd, 2005).  This thesis will focus on 

the probability distribution of the loss where gains are negative losses, meaning positive values 

are losses, so evaluation will occur in the right tail of the distribution.  

There are many advantages of using value-at-risk, the first being that it provides a common reliable 

measure of risk across different positions and risk factors, meaning it can be applied to all asset 

classes, allowing for comparisons of risk between different portfolios, improving on the constraints 

of other traditional risk measures (Dowd, 2005).  Secondly, it allows for risk aggregation by adding 

observed losses from an individual asset, together with other assets to get loss observations for a 

whole portfolio.  Thirdly, VaR is holistic, in the sense it considers all of the influential risk factors 

and focuses its evaluation on a complete portfolio at a firm-wide level (Dowd, 2005).  Furthermore, 
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VaR is probabilistic, giving information about the probability of losses larger than VaR.  Finally, 

it offers a simple interpretation measurable in terms of monetary units, which is clearer than some 

alternative risk measures.  To sum up, “VaR can help provide for a more consistent and more 

integrated approach to the management of different financial risks, and so lead to better risk 

management overall” (Dowd, 2005 p13). 

However, VaR also has its drawbacks: a key limitation being it only provides evidence of the 

maximum loss if a tail event does not occur. However, it is silent about the size of loss if a tail-

event does occur, meaning that the loss could exceed the VaR.  Therefore, there is the potential for 

traders to manipulate the risk limits imposed by the bank, by constructing a portfolio that meets 

the bank’s requirements of having only a 99% chance of losing $1 million a day, but a 1% chance 

of losing $100 million a day, pursuing high risks for high returns (Hull, 2012).  This has been 

evident in the media on a number of occasions. Moreover, the VaR is sensitive to incorrect 

assumptions regarding the loss distribution, as the VaR uses assumptions, such as normality, that 

applies the central limit theorem showing that, as the number of observations increases, the mean 

converges to a normal distribution.  While appropriate for physical sciences, this is not so 

applicable to the social science of economics where agents can act irrationally in response to the 

market environment and can thus cause significant errors in the VaR estimates.  VaR also has the 

potential to destabilize the financial system during a crises because if everyone operates under the 

same VaR constraints and a crises ensues everyone will simultaneously start trying to sell stock to 

reduce risk, making uncorrelated risks become correlated (Dowd, 2005).  Finally, VaR fails to 

satisfy the sub-additivity3 condition that states the risk measure for two portfolios, once combined, 

should not exceed the sum of their individual risk measures; this condition is one of four principles 

that a good risk measure should adhere to and was suggested by Artzner et al (1999). 

 

 

 

                                                 
3 Subadditivity states the risk measure for two portfolios once combined should not exceed the sum of their 

individual risk measures. 
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2.2 DISTRIBUTIONS 

NORMAL DISTRIBUTION 

The normal distribution is a continuous distribution and is paramount to statistical analysis as it 

has a closed form for the quantile as a function of the mean and volatility, assuming market 

variables are normal therefore allows for calculation of a confidence interval from daily volatilities.  

This is key when calculating the models that take account of the weighting of volatilities such as 

the EWMA, GARCH and TGARCH methodologies employed in this paper. The normal 

distribution is derived from the mean 𝜇  and the standard deviation 𝜎,  the probability density 

function of which is a bell shaped curve (see Figure 1) and is described by: 

      𝑓(𝑥) =
1

𝜎√2𝜋
exp⁡[−

1

2
(
𝑥−𝜇

𝜎
)2]⁡  

where 𝑋~𝑁(𝜇, 𝜎), meaning the stochastic variable denoted by 𝑋  is normally distributed with 

mean⁡𝜇 and standard deviation 𝜎.  The VaR estimate for this type of distribution is calculated from: 

    𝑉𝑎𝑅𝛼(𝐿) = 𝜇 + 𝜎𝑧𝛼      (2) 

where 𝑧𝛼 is the critical value for the standardized normal distribution at the confidence interval 𝛼, 

which, at the 99% and 95% confidence levels, have the corresponding values of 2.326 and 1.960; 

here VaR is always estimated one period out of sample (i.e. for the next day). 

Figure 1:  Normal Distributions. (dplot, 2015).  Examples of normal distributions are shown here 

using different means 𝜇 which determine the center of the distributions and the standard deviations 

𝜎 which quantify the amount dispersion over the set of data, the closer 𝜎 is to zero the closer the 

data points will be to the mean, like the red curve, and the higher the standard deviation the more 

spread out is the curve like the blue curve. 
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However, it should be kept in mind that financial variables are frequently subject to greater 

movements than the normal distribution would suggest, with return distributions exhibiting fat-

tails, particularly in the energy markets, which the following distribution will look to model. 

STUDENT-T DISTRIBUTION 

The Student-t distribution is often better suited to financial models than the normal distribution as 

it can account for excess kurtosis or fat-tails often found in return distributions by placing more 

probability in its tail ends (see Figure 3). If 𝑍~𝑁(0,1)  and 𝜉~𝜒𝐽
2 , then if and 𝑍  and 𝜉  are 

independent the Student-t ratio is: 

𝑡 =
𝑍

√𝜉/𝐽
⁡, 

meaning it has a Student-t distribution with 𝐽 degrees of freedom, and as 𝐽 → ∞ the t-distribution 

tends to the normal distribution (Verbeek, 2008).  Similar to the normal distribution, it is 

symmetric around 0 but with fatter tails, as depicted on the next page.  The probability density 

function of a Student-t distributed variable with volatility, 𝜎 and degress of freedom 𝑣 can be 

written in the following way: 

𝑓(𝑥) = ⁡
Γ[(𝑣 + 1)/2]

𝜎√(𝑣 − 2)𝜋Γ(𝑣/2)
[1 +

1

𝑣 − 2
(
𝑥 − 𝜇

𝜎
)
2

]
−(𝑣+1)/2

⁡𝑓𝑜𝑟⁡𝑥 ∈ (−∞,∞) 

 

 For the Student-t distribution the VaR is calculated by: 

 

𝑉𝑎𝑅𝛼(𝐿) = 𝜇 + √
𝑣−2

𝑣
𝜎𝑡𝛼,𝑣⁡,    (3) 

where the respective 0.99-quantiles were calculated in Excel4  

 

                                                 
4 Using the function T.INV(). 
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Figure 2:  Student-t distribution. Source (Otexts, 2015).  The blue curve shows the normal 

distribution and the red curve shows the Student-t distribution, it can be seen that the Student-t 

distribution places more probability in its tails, which is why it is higher than the normal 

distribution curve’s tails. 

 

2.3 NON-PARAMETRIC METHODS 

Non-parametric methods of estimating VaR are exactly those that do not require parameters to be 

estimated from the sample of observed losses; rather, they rely on the empirical loss distribution, 

using recently observed loss values to forecast risk in the future. The non-parametric methods 

adopted in this thesis, are the Basic Historical Simulation and Exponentially Weighted Moving 

Average methodologies. In this thesis, a sample size of 2987 is used with an in-sample size of 522 

and an out-of-sample size of 2465 so a rolling window of 522 days is applied.  The rolling window 

methodology involves calculating the returns from the historical prices of each index, and then 

converting these into equally weighted losses and gains by multiplying by negative one.  This 

rolling window uses the first 522 days of loss observations to estimate the VaR for the first day in 

the out-of-sample period then, keeping the window size fixed at 522, it begins at the second loss 

observation, to find the second day’s VaR estimate for the out-of-sample period and so on5.  It is 

this rolling window methodology that will be applied to all of the models in this paper 

                                                 
5 The VaR calculation, in this case, involves using the PERCENTILE.INC() function in Excel that requires inputting 

the chosen array, 522, and chosen confidence level: in this case, 99%. 
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BASIC HISTORICAL SIMULATION 

This methodology uses the history of past returns to determine the losses and the possible 

distribution of future returns; it is the simplest tool for evaluating VaR assuming that this historical 

data can explain the future (Hull, 2012).  In this thesis a sample size of 2987 is used with an in-

sample size of 522 and an out-of-sample size of 2465.  Assuming a sample of 𝑁 losses and gains 

it follows that there will be approximately (1 − 𝛼)𝑁 losses that are greater than VaR if the VaR 

model is correct; here it is the (1 − 𝛼)𝑁 + 1 largest loss in the sample that will be used as the 

estimate of VaR.  As the rolling window is 522 it is expected, at the 99% confidence level, that 

there will be 5.22 losses larger than VaR in the sample every two years or 522 days, so the 6.22 or 

6th largest lost in the sample will be the chosen estimate of VaR.    

VOLATILITY WEIGHTED HISTORICAL SIMULATION 

First proposed by Hull and White (1998) it suggests that historical simulation can be improved by 

considering the volatility changes experienced during the sample period of historical data, as the 

probability distribution of a market variable, when scaled by its volatility, is discovered to be 

approximately stationary.  The inference being that if volatility is lower (higher) than average in 

the current period then it is expected to be lower (higher) than average in the next period, as a 

result of the volatility clustering phenomenon (Nilsson, 2015). Essentially, VWHS involves 

rescaling the losses by assigning each loss a weight that takes into account current market 

conditions i.e. volatility.  Assume a sample of  𝑇6 losses 𝑙1, 𝑙2, . . , 𝑙𝑇 is observed these are rescaled 

by: 

𝑙1
∗ =

𝜎𝑇+1
𝜎1

𝑙1 

𝑙2
∗ =

𝜎𝑇+1
𝜎2

𝑙2 

⋮ 

        

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑙𝑇
∗ =

𝜎𝑇+1

𝜎𝑇
𝑙𝑇     (4)  

                                                 
6 Sample size is denoted by 𝑇 as this is considered a time-series method. 
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where 𝜎1, 𝜎2. . , 𝜎𝑇 are the volatilities corresponding to the observed losses and 𝜎𝑇+1 is a forecast 

of the volatility for the next holding period.  For the purposes of this paper, rather than calculate 

𝜎𝑇+1 for every day of the out-of-sample test period, which would take a considerable amount of 

time, each 𝜎𝑇+1 is, instead, updated for the first day of every year in the out-of-sample test period.  

It should be noted that one implication of this approach is that it can be detrimental to the volatility 

estimates, as if the volatility is high on the first day of the year it will continue to affect the volatility 

for the remainder of that year, even if the volatility is actually much lower over this period.  A 

more accurate methodology would therefore be to update the volatility on a monthly basis. 

The particular VWHS used in this thesis is the exponentially weighted moving average, or EWMA 

model which uses the following formula to update volatility estimates: 

𝜎𝑡
2 = (1 − 𝜆)𝑒𝑡−1

2 + 𝜆𝜎𝑡−1
2  for t=1.2,…2987     (5) 

where the estimate 𝜎𝑡
2 for day 𝑡 is calculated from the previous day’s conditional variance 𝜎𝑡−1

2    

and 𝑒𝑡−1
2  are the residuals constructed by subtracting the mean from the sample of losses.  The 

parameter 𝜆 acts as the weight and determines how sensitive the estimate of 𝜎𝑡
2 is to 𝑒𝑡−1

2 ,  a low 

value of 𝜆 results in more weight being given to 𝑒𝑡−1
2  when calculating 𝜎𝑡

2 meaning these volatility 

estimates are more sensitive, as they decay quicker, while a high value (close to 1) causes the 

estimates of daily volatility to respond slower to changes in 𝑒𝑡−1
2 .  Here 𝜆 is set to equal 0.94 as is 

commonplace in RiskMetrics database because it was found this value gave forecasts of the 

variance rate similar to that of the realized variance rate (Hull, 2012). 

Once the daily conditional variance has been calculated, the square root is taken to give the 

standard deviation which is used to rescale the losses as shown in equation 4; these volatility- 

scaled losses are then calculated for each year of the test period.  The basic historical simulation 

is then implemented on these rescaled losses, using the rolling window of 522 days which is 

updated every year, so that the corresponding year of estimation coincides with the rolling window 

for that year, once again using Excel7.  VaR can then be calculated using equations (2) and (3) for 

the normal and Student-t distribution. 

                                                 
7 The PERCENTILE.INC() function as applied previously. 
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ADVANTAGES & DISADVANTAGES OF NON-PARAMETRIC METHODS 

There are a number of advantages and disadvantages that are important to keep in mind when using 

non-parametric methods. Firstly, they are intuitive and relatively simple to implement as there are 

no restrictive parametric assumptions that need to be made about the profit / loss distribution, and 

so they can account for the fat-tails and skewness that raise concerns in parametric techniques. 

Secondly, they can be applied to accommodate any financial instrument as it directly uses the loss 

distribution, using data that is readily available. Finally, they are absent from the curse of 

‘dimensionality’ as they automatically take the correlations between portfolio components into 

account and any problems that are experienced are capable of improvement through semi-

parametric methods such as EWMA (Dowd, 2005). 

Concerning the disadvantages, their greatest weakness is their results are almost completely 

dependent on the historical data set.  If the dataset is gathered over a fairly calm period there is the 

potential for the estimates of VaR to be too low, while if the dataset is too volatile it can produce 

VaR estimates that are too high. Secondly, they are relatively slow in reflecting changing market 

conditions even despite the aid of volatility weighting. They are also constrained by the largest 

loss in the sample, unlike their parametric counterparts, meaning that they perform badly during 

volatile periods.  Finally, they are subject to ‘ghost effects’ whereby a big loss is mistakenly 

removed that, if included, would have had a large effect on the VaR estimate. 

In general, they are useful for the estimation of VaR with a reasonable amount of evidence to 

support this, often outperforming parametric methods that assume normality.  Moreover, they 

allow for adaptations to the measures that increase performance.  However, when market 

conditions are volatile their accuracy decreases; this could prove to be a problem as the sample 

size used in this thesis includes the 2007/08 financial crisis. 

2.4 PARAMETRIC METHODS 

Parametric methods are an alternative way of measuring VaR that require the specification of 

particular statistical distributions from which data observations are pooled; these distributions 

include the normal and Student-t outlined earlier (Dowd, 2005).  They are deemed parametric as 

they involve the estimation of parameters such as the standard deviation and tend to provide the 

most accurate measures of VaR.  Some concerns have been raised (Jorion, 2000) over the correct 
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selection of distribution as they do not always fit the data.  One example of this being Reboredo’s 

(2015) study that found high values of kurtosis consistent with fat-tails for all of the energy series 

leading to a rejection of the normal distribution.  Dowd (2005) stresses that when implementing 

parametric methods, assumptions are consistent with the characteristics of the empirical process, 

such as skewedness or excess kurtosis, which is why the Student-t distribution has been employed 

as fitting a distribution to data unconditionally – i.e. disregarding information that suggests 

volatility clustering is present - will lead to excess kurtosis.  Thus, to account for volatility 

clustering, it is important to fit a model that is conditional on the fact that there may be volatility 

clustering, such as fitting a Student-t distribution conditional on a GARCH volatility process, that 

would take account of the fat-tails and volatility clustering often found in the return distributions 

of energy markets.  It is the GARCH (1, 1) model and the Threshold GARCH that will be applied 

here. 

GARCH (1,1) 

 The GARCH (1, 1) model proposed by Bollerslev (1986) built on the earlier work of Engle’s 

(1982) ARCH methodology; it aims to model the conditional variance to be dependent upon its 

own previous lags, placing more weight on recent information, by allowing for past conditional  

variance  to be included in the current conditional variance equation.  It is based on a mean equation 

and a variance equation, the former of which is interpreted as a first-order auto-regression process 

it can look like: 

𝑦𝑡 = 𝑎 + 𝛾𝑦𝑡−1 + 𝑒𝑡 

where 𝜀𝑡 is a white noise process with mean zero and variance 𝜎2, while the conditional mean of 

𝑦𝑡 is 𝛾𝑦𝑡−1 and the unconditional mean is zero. The (1, 1) in the GARCH model tells us that the 

conditional variance 𝜎𝑡
2 is based on the most recent observation of the error 𝑒𝑡−1

2  and the most 

recent estimate of the variance rate 𝜎𝑡−1
2 , it is specified by: 

     𝜎𝑡
2 = 𝜔 + 𝛼𝑒𝑡−1

2 + 𝛽𝜎𝑡−1
2     (6) 

where the conditional variance is a one-period ahead estimate for the variance calculated, and 𝜔, 

𝛼and 𝛽 are parameters that need to be estimated (Brooks, 2008).  For the unconditional variance 

to be defined  𝛼 + 𝛽 < 1 because 
𝜔

1−𝛼−𝛽
> 0. The GARCH (1, 1) model is useful for our anlaysis 
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as it can account for volatility clustering, where high variance last period results in high variance 

next period and is leptokurtic meaning it is heavy-tailed, thus allowing to unconditionally account 

for fat-tails (Bollerslev, 1986).   

THRESHOLD-GARCH (1, 1) 

Previous ARCH and GARCH models assumed that a shock at 𝑡 − 1 whether positive or negative, 

would have the same effect on present volatility when, in fact, there is evidence of asymmetry in 

the correlation between present volatility and past volatility (Zakoian, 1994). The Threshold-

GARCH or TGARCH, aims to model these asymmetries in volatility by making positive and 

negative parts of the innovation process have different impacts on the conditional variance 

(Glosten et al, 1993) it is described by:   

    𝜎𝑡
2 = 𝜔 + 𝛼𝑒𝑡−1

2 + 𝛾𝑒𝑡−1
2 𝐼𝑡̅−1 + 𝛽𝜎𝑡−1

2    (7) 

where 𝐼𝑡̅−1 = 1 if 𝑒𝑡−1
2 < 0 and 0 otherwise, this allows good news where 𝑒𝑡−1

2 > 0, and bad news 

where 𝑒𝑡−1
2 < 0 to have different effects on the conditional variance.  Good news has an impact of  

𝛼 while bad news has an impact of 𝛼 + 𝛾, and if 𝛾 > 0 then bad news increases volatility more 

than good news, and we say there is a leverage effect (Glosten et al, 1993).   

ADVANTAGES & DISADVANTAGES OF PARAMETRIC METHODS 

The biggest advantage of parametric methods is they are not dependent on the sample as the 

distributions are fitted to the data, meaning that the VaR can be calculated at very high confidence 

levels.  For example, with a Student-t-distribution that has higher probability for large losses due 

to its fat-tails, as well as higher probability for losses close to the mean, it must therefore have 

lower probability for immediate losses. Therefore, the VaR does not care about the distribution of 

losses larger than VaR.  This means they can account for VaR observations being greater than the 

largest loss in the sample, by choosing a higher confidence level as the tails stretch to infinity 

(Nilsson p.5, 2015).  Another important advantage is that they are more powerful than their non-

parametric counterparts, due to the fact they include additional data within the distribution function 

(Dowd, 2005).  This allows them to model the heavy-tails and skewness found in most return 

distributions and explains why they often provide more accurate estimates of VaR than non-

parametric estimates that are subject to more uncertainty, especially at the 99% confidence level 
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(Miazhynskaia and Aussenegg, 2006). However, these parametric methods can be subject to 

considerable error where models are specified incorrectly.  They are also much more complex in 

their calculations than non-parametric methods as certain parameters need to be calculated; this 

can increase the chances of misspecification as evident in this study.  

2.5 BACKTESTING 

To determine the accuracy of the VaR estimates produced by each of the outlined models a number 

of statistical tests can be implemented which can rank a group of models against each other in an 

attempt to determine which is best. 

KUPIEC FREQUENCY TEST  

The Kupiec frequency test is the chosen backtesting procedure for this study; it is the standard 

frequency test used to determine the accuracy of the VaR estimates.  Developed by Kupiec (1995) 

it compares the actual or observed frequency of VaR violations with the expected or predicted 

frequency of VaR violations over the test period, in order to determine whether the number of 

violations exceeds the number of expected violations.  When the observed frequency of violations 

deviates significantly from the predicted frequency of violations, the methodology used to evaluate 

the VaR estimate, is statistically rejected.  

A violation occurs when a loss in the sample exceeds the VaR estimate for that specific day, in the 

event that a violation occurs it is denoted by one (1) and a non-violation by zero (0).  Summing all 

these observations together gives the number of violations over the sample period, it is thus a 

binomial test, where the cumulative probabilities are calculated by: 

Pr(𝑋 ≤ 𝑥) = ∑(
𝑁

𝑥
)𝑝𝑥(1 − 𝑝)𝑁−𝑥

𝑥

𝑖=0

 

where 𝑥 represents the number of observed violations, 𝑝 is the expected relative frequency of VaR 

violations derived from⁡𝑝 = 1 − 𝛼, where 𝛼 is the chosen confidence level, and 𝑁 is the number 

of observations in the test period. 

A two-sided Kupiec test was chosen for the purpose of this paper.  To carry out this test a 

confidence interval of 99% is used to determine the number of expected VaR violations at the 



22 

 

upper and lower bounds, (𝑥𝑙𝑜𝑤, 𝑥ℎ𝑖𝑔ℎ).  Using the function in Excel BINOM.INV, this requires 

the size of the test sample, 2465, the probability 𝑝 found from 1 − 𝛼  in this case 1%. The chosen 

significance levels here are 99% and 95%. As the distribution looks to the left 0.5% of the 

probability is to the left of 𝑥𝑙𝑜𝑤 and 99.5% of the probability is to the left of 𝑥ℎ𝑖𝑔ℎ.  The results are 

shown in Table one below. 

Table 1: Two-sided Kupiec test 

 
Statistical 
Significance level 
 
Confidence level 

 
95% 
 
 
99% VaR 

 
 
99% 
 
 
99% VaR 

   

𝑥𝑙𝑜𝑤 15 13 

𝑥ℎ𝑖𝑔ℎ 35 38 
 

For clarification, the first column of the above Table shows the two-sided Kupiec test for the 99% 

VaR at the 95% statistical significance level, while the last column shows the 99% VaR at the 99% 

statistical significance level. The first columns was calculated using: 

⁡𝑥𝑙𝑜𝑤 = 𝐵𝐼𝑁𝑂𝑀. 𝐼𝑁𝑉(2465, 𝑝, 0.025)⁡𝑎𝑛𝑑⁡𝑥ℎ𝑖𝑔ℎ = 𝐵𝐼𝑁𝑂𝑀. 𝐼𝑁𝑉(2465, 𝑝, 0.975) 

Where p=1-α corresponds to the chosen VaR confidence level. While the latter column was 

calculated using: 

𝑥𝑙𝑜𝑤 = 𝐵𝐼𝑁𝑂𝑀. 𝐼𝑁𝑉(2465, 𝑝, 0.005)⁡𝑎𝑛𝑑⁡𝑥ℎ𝑖𝑔ℎ = 𝐵𝐼𝑁𝑂𝑀. 𝐼𝑁𝑉(2465, 𝑝, 0.995) 
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2.6 REGRESSING THE VALUE-AT-RISK ON THE OIL PRICE AND RISK-FREE RATE 

After the backtests have determined which model provides the best estimate for VaR a regression 

of VaR on the oil price returns and the risk-free rate will be carried out in order to determine 

whether a relationship exists between the VaR and the two explanatory variables.  The relationship 

between the VaR and the oil price returns is of most interest for the purpose of this paper as the 

nature of the oil price has been proven to influence renewable energy investment because 

renewable energy and oil are considered to be economic substitutes.  Evidence of changes in the 

oil price affecting the risk of renewable energy markets has also been outlined in the literature 

review. The interest rate is also included; as this was noted by Managia and Okimotoc (2013) to 

have an effect on renewable energy risk, as well as the stock price of the renewable energy market, 

as stated previously by Henriques and Sardosky (2008).  The particular risk-free rate chosen is the 

three-month US Treasury bill rate. 

There are five regression models estimated using Ordinary Least Squares (OLS), one for each 

renewable energy index.  These will be specified as follows: 

   𝑉𝑎𝑅𝑖,𝑡 = 𝛼𝑖 + 𝛿1𝑜𝑖𝑙𝑡−1 + 𝛿2𝑟𝑡 + 𝜀𝑡 ⁡⁡⁡𝑡 = 1….2465  (8) 

where 𝑖, will denote the name of the index, and 𝑡 is the time parameter.   
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3. APPLICATION AND RESULTS 

This section will begin by describing the data used to carry out the analysis and how it was applied 

to each of the VaR methodologies and regressions; it will then present the empirical results of the 

four methods used to calculate VaR from this data, based on the results of the backtests and the 

finally the results of the regressions. 

3.1 DATA 

The renewable energy market is to some extent a still emerging one.  However, despite renewable 

sources not being traded on the commodity market there exists a number of renewable energy 

companies that have been publicly traded over the course of the past three decades. Moreover, 

there are number of renewable energy indices that began to appear in the late nineties and early 

noughties that focus on renewable energy companies and clean energy technologies; these can be 

interpreted as representations of the price of renewable energy for the purpose of this paper. 

Additionally, there are alternative energy indexes that include renewable energy and natural gas. 

However, these are excluded from analysis as this paper is concerned only with renewable energy.  

Most of the indices in question were started in the early noughties and there are now approximately 

12 global indices and 10 regional indices.  Due to restrictions on the availability of several of the 

indices and further problems obtaining an appropriate sample size, only five indices have been 

selected here, four global and one regional.  

The four global indices are; the Ardour Global Energy Index which tracks 111 companies that 

focus only on the renewable energy sector (Ardour Global, 2015); the S&P global clean energy 

index which track 30 companies whose business is clean energy related, and is a modified 

capitalization-weighted index (S&P  Dow Jones Indices, 2015); the FTSE ET50 index which 

measures the performance of the 50 biggest companies in the world where 50% of their business 

is in the development and deployment of environmental technologies (FTSE, 2015); and the 

WilderHill New Energy Global Innovation Index, which is a modified, dollar-weighted index 

tracking 86 companies that focus on renewable energy technologies and processes of clean power 

and energy efficiency (WilderHill New Energy2015).  The one regional index that will also be 

analyzed is the WilderHill Clean Energy Index which is the oldest of the indexes; it focuses on 42 
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clean energy companies on the U.S exchanges, and is a modified, equal-dollar weighted index that 

has become a benchmark index for renewable energy (WilderHill Clean Energy Index, 2015).  

The West Texas Intermediate spot price measured in U.S Dollars is one of the most referenced 

commodities and a benchmark for the U.S.  As the sample size for this analysis is limited, due to 

the relatively new emergence of renewable energy indices, the time period considered is a 

restricted one from the 1st of January 2004 to the 12th of June 2015.  There is a significant amount 

of fluctuation in the oil price to evaluate over this period which includes the impact of the 2007/08 

financial crisis and the more recent price decline that started in 2014. WTI crude oil peaked on 

June 20th at approximately $107 and has since fallen to approximately $50 as of the 8th April 2015.  

This resulted partly from the failure of OPEC to reach an agreement on production curbs on 

November 27th 2014 (Economist, 2014) but was also due to the fact that China one of the largest 

consumers of crude oil has reduced its demand for the commodity falling 2.5% in September 2014; 

this reduction, coinciding with the slowing of growth in its economy, has influenced the falling oil 

price (Stephen, 2014) which has also been impacted by the increased consumption of shale gas in 

the US which is an economic substitute for crude oil (Macalister, 2014).   The risk-free rate chosen 

is the three-month rate on a US Treasury bill following Managia and Okimotoc (2013) so as to 

investigate the relationship between the VaR of renewable energy companies and the interest rate.  

This data was sourced from DataStream and totals 2987 daily observations of closing prices, which 

have been split into an out-of-sample period of 2465 days and an in-sample period of 522 days.  

Alexander (2008) stated that approximately ten years of daily observations are required for the 

results to be powerful enough to validate a rejection of any inaccurate VaR models, a condition 

which has been met in this paper. The daily observations of the WTI crude oil price were also 

collected from DataStream along with the three-month rate on a US Treasury bill, taken to be the 

risk-free rate that will be used in the regression analysis.  The descriptive statistics of these 

variables can be found in Table five (see appendix). 

3.2 APPLICATION 

For the non-parametric methods a rolling window of 522 days was used.  For the BHS this involves 

calculating the quantile using Excel8, beginning on the first trading day of 2006 and using the 522 

                                                 
8 Applying the PERCENTILE.INC() function in Excel to the column of losses over the sample. 
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previous daily observations from 1/1/2004 to 12/30/2005, and ending at 12/6/2015 in the manner 

described in section 2.3.  For the EWMA model, this rolling window is instead applied to each 

individual column of the estimation period using the rescaled losses, this means that of the 2987 

rescaled losses for the year 2006, the first 522 are used to estimate the VaR for the year 2006, then 

for the VaR estimates of 2007 the rolling window continues the same as in the BHS but is switched 

to the corresponding year of rescaled losses and so forth.  

The parameters required for implementation of the GARCH and TGARCH models were estimated 

in Eviews.  The first parameters used for 2006 were estimated from the beginning of 2004 to the 

end of 2005, with the parameters for 2007 estimated from the beginning of 2005 to 2006 and so 

on, continuing the rolling window of 522 in the same way as the EWMA model.  Different 

parameters were estimated for the normal and Student-t distribution which were then put into the 

GARCH or TGARCH equations, updated for every year of the test period, and then estimated in 

the same manner as the EWMA model.   

3.3 NON- PARAMETRIC RESULTS 

Table two shows the results of the non-parametric methods for estimating VaR at the 99% 

confidence level.  Observing these results it can be clearly seen that the EWMA model with the 

Student-t distribution gives the best estimates of VaR out of the three models, with the number of 

violations lying between the expected number at both the 95% and 99% statistical significance 

level. The results, highlighted in bold, indicate they have passed the two-sided Kupiec test.  As the 

EWMA model with the Student-t distribution produces the least violations9 it could be implied 

that there is evidence of fat-tails in the empirical return’s distributions that the normal distribution 

was unable to model for; this may explain the normal distributions higher number of violations. 

The exception in the Student-t distribution model is the Wilderhill clean energy index, this is due 

to problems with the data that resulted in very large and sometimes negative estimates of the 

degrees of freedom, making it impossible to calculate the VaR for the t-distribution. Instead, the 

degrees of freedom was set to 100 to assume a normal distribution which may explain why the 

                                                 
9 While the best estimates are those that fall between the lower and upper bounds of the two-sided Kupiec test, it can 

be taken as a general rule of thumb, that a lower number of violations is better when both fail the test following 

Sardosky (2006). 
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EWMA N-dist and EWMA t-dist have the same number of violations. This assumption is held 

throughout the rest of the paper. 

 

Table 2:  Non-parametric VaR violations at 99% confidence level 

99% Confidence Level BHS EWMA N-dist EWMA t-dist 

Ardour global energy 43 53 35 

FTSE ET50 41 47 33 

S&P global clean energy 43 45 31 

Wilderhill clean energy  43 59 59 

Wilderhill global energy 40 58 38 

 

Figure three illustrates the non-parametric methods of VaR estimation for the Ardour Global 

Energy index; it can be clearly seen that the EWMA t-dist outperforms the other models as it 

consistently lies above the losses to a greater extent than the other models.  The HS method with 

VaR at the 99% confidence level is clearly the worst performer persistently passing through the 

loss distribution. Perhaps the most evident feature in the graph is the HS curve which is flat due to 

the lack of volatility updating involved in this procedure, this is highlighted during the financial 

crisis where volatility was high and the HS curve barely adjusts to account for this, whereas the 

EWMA models experience shifts. 

Figure 3:  Non-parametric VaR estimates 
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3.4 PARAMETRIC RESULTS 

It was expected that the parametric methods would outperform most of the non-parametric models 

as most of the literature suggests, with Carbedo and Moya finding the GARCH (1, 1) model to 

outperform the BHS.  However, Ding and Meade (2010)10 found that the EWMA models provided 

more accurate forecasts of the VaR than the GARCH (1, 1) model, and Sardosky (2006) found 

evidence of non-parametric methods outperforming parametric methods in relation to the number 

of violations in the backtests, as noted in section one.  This evidence could explain why, when 

observing Table three and two, the GARCH N-dist has more violations than the EWMA N-dist, 

furthermore this is in line with earlier theory that implied non-parametric methods tend to 

outperform parametric methods when the latter assume normality.  

Observing Table three the TGARCH N-dist clearly produces the worst estimates in comparison to 

all of the models; this might suggest that there is no asymmetry in the renewable energy market, 

or simply that accounting for asymmetries has little effect on the model’s accuracy. This 

contradicts studies by Kumar et al (2008) and other researchers which suggest an asymmetric effect 

is present between renewable energy markets and the oil price, however Kumar et al (2008) use 

an asymmetric BEKK model that included the oil price to measure this.  Furthermore, estimation 

of the TGARCH in Eviews produced a number of negative 𝛼 parameters11 for some of the periods, 

which resulted in a negative variance, thus meaning the VaR could not be calculated.  This negative 

𝛼 problem has been noted by Goldman and Wang (2013), and to overcome this, the negative 𝛼 

parameters were replaced with their corresponding GARCH (1, 1) 𝛼 parameters in the periods of 

concern12.  This parameter replacement could help explain why the Wilderhill Clean energy index 

has such a high number of violations, although the other indexes that had their parameters 

replaced13 actually produced less violations in some cases, and the S&P and FTSE ET50 TGARCH 

t-dist models both passed the Kupiec two-sided frequency test producing better results than the 

GARCH N-dist in terms of less violations.  Nonetheless, it should be noted that these models may 

not be as reliable due to their parameter replacement.   

                                                 
10 Although it should be noted this paper was not based on the energy market. 
11 All parameter estimates and their corresponding significance values can be found in the appendix. 
12 These negative α parameters can be seen in the Appendix along with the other parameters estimated for each 

models index and period. 
13 FTSE ET50 t-dist; Wilderhill clean energy N-dist and t-dist; Wilderhill global energy N-dist and t-dist. 
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The GARCH (1,1) t-dist model clearly produces the best estimates with almost all indices passing 

the two-sided Kupiec test with the exception of Wilderhill clean energy index; this is due to the 

earlier assumption made regarding the degrees of freedom, although it does still produce a lower 

number of violations than the GARCH (1, 1) N-dist, perhaps because it was estimated using the t-

distribution. Nonetheless, it once again supports evidence of a heavy-tailed distribution, as 

violations decrease significantly when using the t-distribution that models this. Most of the 

literature regarding the models selected for this study would support this result. However it does 

run contrary to the conclusions of Aghayev and Rizvanoghlu (2014) who found the TGARCH 

estimation to produce the least violations.  As the GARCH t-dist clearly produces the best estimates 

of VaR in relation to the two-sided Kupiec test, these are the VaR estimates that will be used to 

run the regression of VaR on the oil price and risk-free rate.  

Table 3:  Parametric VaR violations at the 99% confidence level 

 GARCH N-dist GARCH t-dist TGARCH N-dist 

TGARCH t-

dist 

Ardour global energy 57 37 66 43 

FTSE ET50 57 32 43 25 

S&P global clean energy 50 30 58 38 

Wilderhill clean energy  55 51 205                         53 

Wilderhill global energy 53 32 50                         39 

 

Figure four displays the models estimated using the normal distribution for the S&P Global 

energy index, here it looks as if the TGARCH and GARCH models perform the best as they 

closely  replicate the trend of the losses; this is because they can accommodate for volatility 

clustering. The EWMA model produces a relatively flat volatility forecast in comparison to the 

other two models as it ignores recent adjustments in the data, which explains the lag in 

adjustment at the start of the financial crisis the smoothed downward trend during the financial 

crisis, even though it does produce the least violations.  The GARCH model appears to 

marginally outperform the TGARCH, with the latter passing through the losses more often than 

the former, especially during the financial crisis. Similar arguments hold for Figure five which 

shows the same models but this time using a t-distribution. 
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Figure 4:  Parametric and Non-parametric VaR estimates using the Normal distribution 

 

 

Figure 5:  Parametric and Non-parametric VaR estimates using Student-t distribution 

 

Figure six produces the ARCH family models for the S&P Global Energy index.  All of these 

models capture the volatility well especially the GARCH t-dist and TGARCH t-dist, with the 

former performing slightly better. Figure seven produces the same set of models but for the 

Ardour Global Energy index; this illustration gives a clearer picture than the previous figures of 

the GARCH t-dist modelling volatility better than the other models, consistently lying above the 

other models’ curves, with less movement inside the loss distribution and thus fewer violations.  
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Most noticeable in this figure is the random jump at around 2013; this is likely to have been 

caused by the parameter replacement producing inefficient estimates. 

Figure 6:  Parametric VaR estimates using both the Normal and Student-t distributions 

 

 

Figure 7:  Parametric VaR estimates using both the Normal and Student-t distributions 
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3.5 REGRESSION APPLICATION 

After determining that the GARCH model with Student-t distribution produced the best VaR 

estimates these estimates were imported into Eviews.  Augmented Dickey-Fuller tests for a unit 

root were first carried out to determine whether the explanatory variables were stationary.  While 

the Oil price returns were stationary they identified the Treasury bill as not stationary so this 

variable was first differenced.  Then, using equation (8), regressions were run for each of the five 

renewable energy indices.  The results can be seen in Table four.  The estimated coefficients are 

marked with one, two or three stars to determine their statistical significance at the 0.01, 0.05 and 

0.1 levels and their corresponding standard errors are the values in brackets. Once the regressions 

had been estimated a number of tests were applied to determine the results. 

3.6 REGRESSION RESULTS 

Observing Table four (on the next page) the results suggest that explanatory variables, 𝑂𝑖𝑙𝑡−1 

and the risk-free rate have a statistically significant effect on the VaR estimates of all the 

renewable energy indices.  Thus, an increase in the price of oil or the risk-free rate causes a 

decrease in the VaR estimate of the renewable energy indices, in the case of the Ardour index, 

for example, in percentage terms an increase in the price of oil by 1% will decrease the VaR 

estimate by -0.067851%.  The F-statistic is also important to note as this explains whether the 

two explanatory variables can jointly explain the dependent variable, as all are significant it 

could be said that the two explanatory variables may have some influence on the dependent 

variable.  The fact that the oil price and risk-free rate are able to explain VaR to an extent implies 

that these three markets are interrelated, and so the two explanatory variables may contain some 

information about the risk in the renewable market as the regression shows.  Thus it could be 

argued that both the explanatory variables should be included in a VaR model for renewable 

energy indices as conditioning information i.e. the VaR model for renewable energy indices 

could possibly be improved by including the oil price and risk-free rate in the VaR model 

directly, for example, by including them as explanatory variables in the GARCH (1, 1) model. 

The first five regressions run were then tested for heteroskedasticity as this results in the error 

terms of these models not being independently and identically distributed.  They are therefore 

mutually uncorrelated, with the error terms no longer having identical variances over 

observations, meaning the diagonal elements of the covariance matrix are not the same.  
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Therefore, the variance it computes will be based on the wrong expression, and although the 

OLS estimator is still unbiased it is no longer the best under the BLUE statement of the Gauss-

Markov assumptions (Verbeek, 2008).  Table 25 (see appendix) shows the results of White’s test 

for hetereoskedasticity, where the null hypothesis states that the error terms are homoskedastic, 

as the p-values are lower than the 5% significant level the null is rejected and the alternative 

hypothesis of heteroskedasticity is not rejected meaning the models have heteroskedastic error 

terms.  

Table 4:  Regression Results, * p<0.1; ** p<0.05; *** p<0.01 

 _cons 𝑶𝒊𝒍𝒕−𝟏 Risk-free rate F-statistic 

Ardour  0.043531*** 
(0.000553) 

-0.067839*** 
(0.020003) 

-0.002081*** 
(0.000255) 

39.56487*** 

FTSE ET50 0.036400*** 
(0.000487) 

-0.054303*** 
(0.017637) 

-0.001072*** 
(0.000225) 

16.37157*** 

S&P 0.049659*** 
(0.000681) 

-0.080154*** 
(0.024651) 

-0.003161*** 
(0.000314) 

56.49289*** 

Wilderhill Clean 0.049928*** 
(0.000496) 

-0.051335*** 
(0.017942) 

-0.003116*** 
(0.000229) 

97.62798*** 

Wilderhill Global 0.039133*** 
(0.000485) 

-0.047856*** 
(0.017565) 

-0.001907*** 
(0.000224) 

40.39472*** 

Ardour NWSE 0.043531*** 
(0.001750) 

-0.067839* 
(0.036829) 

-0.002081*** 
(0.000417) 

39.56487*** 

FTSE ET50 NWSE 0.036400*** 
(0.001515) 

-0.054303* 
(0.031980) 

-0.001072*** 
(0.000413) 

16.37157*** 

S&P RSE 0.049659*** 
(0.002183) 

-0.080154* 
(0.047356) 

-0.003161*** 
(0.000534) 

56.49289*** 

Wilderhill Clean NWSE 0.049928*** 
(0.001598) 

-0.051335* 
(0.032323) 

-0.003116*** 
(0.000398) 

97.62798*** 

Wilderhill Global 

NWSE 

0.039133*** 
(0.001512) 

-0.047856* 
(0.031041) 

-0.001907*** 
(0.000437) 

40.39472*** 

 

Testing for autocorrelation is also important as the presence of this can cause the covariance 

matrix to be non-diagonal meaning different error terms are correlated so they are no longer 

independent (Verbeek, 2008).  Similar to heteorskedasticity the OLS estimator is still unbiased. 

However, it is no longer BLUE as the standard errors are estimated in the wrong way.  Applying 

Breusch-Godfrey’s test for Serial Correlation to each index and observing the p-values of the 

results in Table 26 (see appendix) it can be seen that the null hypothesis of no serial correlation is 

rejected, meaning the alternative hypothesis of serial correlation is not rejected and thus 

autocorrelation is present in regression outputs of these indices.  



34 

 

To account for the heteroskedasticity and autocorrelation that is present in the original 

regressions it is recommended that the regression is estimated again but this time using the 

Newey-West Standard Errors (NWSE) specification; this particular specification is preferred to 

White’s Robust Standard Errors as the former is more appropriate when using time series data, as 

is the case here.  NWSE accounts for this by adjusting the variance-covariance matrix to produce 

a consistent OLS estimator in the presence of heteroskedasticity and autocorrelation, this is why 

the coefficients do not change as OLS does not use any covariances to estimate its parameters. 

The results of these can be seen in the lower half of Table four denoted NWSE.  It can be noticed 

that the statistical significance of these estimated coefficients has decreased and they are now 

only significant at the 10% level.  Nevertheless, their statistical significance still implies that a 

valid relationship between the VaR of the renewable energy market and the oil price exists.  It is 

also noticeable that the standard errors of these NWSE regressions have changed to account for 

the heteroskedasticity and autocorrelation that was found to be present in the original 

regressions. 

Interpreting the economic intuition behind the relationship that, when the oil price rises, VaR 

decreases, supports the theory in the literature review because to an extent higher oil prices are 

said to lead to higher share prices of renewable energy companies, creating more interest and 

investment in these companies.  This increased investment increases the value of renewable 

energy companies and reduces the risk associated with investing in them as it can be expected 

that companies increased revenue streams allow them to increase their capital, so for example in 

the case of a potential default on a loan, they would have more capital to cover any costs.  A 

similar relationship is backed by Kumar et al (2012) who find that increases in the oil price 

increase renewable energy companies’ share prices as well as Managi and Okimoto (2013) after 

a structural break in 2007.   

There is also evidence to support the relationship that when the oil price falls VaR increases, as 

renewable investment will decrease as demand for oil increases because the two energy sources 

are perfect substitutes.  Governments, in particular, will continue to buy cheaper oil to power the 

grid rather than invest in expensive renewable energy development, especially in developing 

Asian countries like Indonesia (GBG Indonesia, 2013) and the Philippines (KPMG, 2013) where 

oil is the second largest fuel type used for electricity generation. This fall in renewable energy 
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investment will lead to share prices of renewable energy companies to fall and thus their risk will 

increase. Reboredo (p.33, 2015) supports these argument stating “incentives to encourage 

development of the renewable energy sector are effective when oil prices are high, as the 

economic viability of renewable energy projects is enhanced; however, low oil prices discourage 

renewable energy investments and reduce the value of renewable energy companies”. 

However the empirical relationship between the risk of renewable energy companies and oil 

price are mixed with Henriques and Sardosky (2008) finding that while oil price can explain past 

movements in renewable energy companies’ share prices, an oil price shock has no statistically 

significant impact on renewable energy companies’ share prices suggesting there is no impact on 

risk.  Furthermore, Sardosky (2012) finds a positive relationship between rises in the oil price 

and renewable energy companies’ risk contradicting the findings in this study.  Also, it should be 

noted that while some developing countries still rely on oil for electricity generation, the vast 

majority of countries use of coal, natural gas, and even renewable energy for electricity 

generation, outweighing that of oil which only makes up 5% of world electricity generation in 

2012 in comparison to hydropower alone contributing 16.2% (IEA*, 2014).  In reality the 

markets for renewable energy and oil are rather different, with the former used mostly for 

powering the grid while the latter is used for transportation and the manufacturing industry.  The 

demand for these energy sources comes from two different markets and it can be argued that the 

two are not perfect substitutes, as when the price of one decreases the demand for the other does 

not also decrease.  Rather the demand for renewable energy has kept growing in light of the 2014 

fall in oil prices (Rojas and Stinson, 2015), so it is reasonable to assume there is no relationship 

between the two.   

The relationship between the interest rate and the VaR of renewable energy indices is harder to 

explain.   Economic intuition would suggest that a rise in the interest rate will reduce investment 

as the cost of borrowing increases meaning projects become more expensive to fund, and so 

more investors choose to save their money.  This results in a fall in investment for renewable 

energy companies’ and thus a fall in their share price and firm value both of which are likely to 

increase the risk of these indices.  Henriques and Sardosky (2008) and Kumar et al (2012) argue 

that the interest rate does have some effect on renewable energy share prices and risk, although 

they do not state explicitly whether this relationship is positive or negative only that they use 
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impulse response functions to simulate standard deviation shocks of the interest rates.  

Arguments to justify this negative relationship between the VaR of renewable energy indices and 

the oil price found in this paper are difficult to find.  
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4. CONCLUSION 

 

This paper looked to answer two questions: 

1) Which method for estimating the VaR of renewable energy indices provides the best estimate? 

The answer to this involved implementing a number of parametric and non-parametric methods to 

estimate the VaR, and then backtesting these using Kupiec’s two-sided test to determine which 

model provided the best estimate.  This paper found that the GARCH (1, 1) Student-t distribution 

model provided the best estimates as it had four of the five indices number of violations fall 

between Kupiecs 𝑥𝑙𝑜𝑤 and 𝑥ℎ𝑖𝑔ℎ bands, while this equals the number that the EWMA Student-t 

distribution found, the former model was chosen as it is taken as a proxy that less violations are 

better which applied to the Wilderhill Clean Energy index. The results are consistent with findings 

that suggest return distributions of the energy market tend to be fat-tailed, this explains why the 

models that use Student-t distributions provide the best estimates of VaR.  Furthermore, it could 

be argued the parametric methods outperform the non-parametric methods with the GARCH and 

TGARCH models passing the Kupiec test more so than the BHS and EWMA models, however 

this is subject to criticism due to the negative 𝛼 parameters in the TGARCH model that had to be 

replaced, creating bias estimates.  Asymmetry in the renewable energy market is also present to an 

extent but this can also be discredited using the parameter replacement argument. The second 

question asked: 

2) Do fluctuations in the oil price impact on the VaR of these renewable energy indices? 

This paper found that the oil price does impact the VaR of these renewable energy indices.  More 

specifically, it found that a negative relationship between the oil price and the VaR of the 

renewable energy indices existed that was significant at the 10% level suggesting that a rise in the 

price of oil causes a fall in the VaR of the renewable energy indices. While this is supported by 

some studies others have found either a positive relationship, or that no relationship exists 

whatsoever. It is important to question this effect as studies tend to contradict the findings of others 

and the fact that renewable energy demand and oil demand essentially apply to two different 

markets raises the question: Why does a relationship between the two variables exist at all?  One 

argument made by Rojas and Stinson (2015) suggests that it is a problem of perception, whereby 
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the public believe that the price of oil represents the price of energy in general, and it is this belief 

that energy is cheap because oil is cheap that manifests disincentives for investors, policymakers 

and customers to back renewable energy. This in turn impacts upon the financial markets and may 

play a part in creating the negative correlation between the price of oil and the VaR of renewable 

energy indices as found in this study.  

Future research regarding the VaR of the renewable energy market could be improved in a number 

of ways, first of all the study could evaluate the VaR at the 95% confidence level as this is the 

second most popular confidence level, and allows for the analysis of more losses. Second, 

additional models could be used that may better capture the VaR such as the wide range of ARMA 

models or the Exponential-GARCH model.  Third, these models could be estimated using other 

distributions that may be able to account for more than just fat-tails.  Fourth, different backtesting 

approaches could be used to determine the accuracy of VaR such as the Christoffersen frequency 

test. Fifth, as the two explanatory variables do play some part in explaining the VaR an 

improvement of the VaR model for renewable energy indices is possible, future research could 

include these variables directly in some of the other ARCH family models.  Finally, whilst this 

research has yielded some evidence that the price of oil does have an impact on the VaR of the 

renewable energy indices in the current research sample, and is supported by the results of some 

other studies, it is recommended that further research would need to be carried out to help 

determine that a relationship between the two does exist and to clarify, more precisely, the nature 

of any such relationship.  To reach a more definitive set of conclusions the research would require 

to take account of additional variables and perhaps to use a wider set of regression models. 
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8.  APPENDIX 

 

Table 5:  Descriptive Statistics for Renewable energy indices 

Descriptive 

Statistics 

Ardour FTSE 50 S&P Wilderhill 

Clean 

Wilderhill 

Global 

Oil Price Treasury Bill 

Mean 

-3.06E-06  0.000195 -0.000128 -0.000303  9.92E-05  0.000205  1.353217 

Median 

 0.000804  0.000843  0.000743  0.000303  0.000684  0.000000  0.160000 

Maximum 

 0.142012  0.123529  0.180929  0.145195  0.120705  0.164137  5.050000 

Minimum 

-0.124123 -0.126472 -0.149728 -0.144673 -0.104854 -0.128267  0.000000 

Std. Dev. 

 0.017679  0.014705  0.019589  0.020987  0.015025  0.023133  1.764691 

Skewness 

-0.442817 -0.614668 -0.535385 -0.365226 -0.498392 -0.032762  1.012776 

Kurtosis 

 12.07383  12.72500  15.73905  8.140906  10.89450  8.226797  2.434785 

Jarque-Bera 
 10344.82  11958.81  20340.22  3355.704  7880.284  3400.662  550.3961 

Probability 

 0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

Sum 

-0.009149  0.581170 -0.383761 -0.906213  0.296313  0.612128  4042.060 

Sum  of Sq. Dev. 

 0.933220  0.645689  1.145828  1.315203  0.674108  1.597915  9298.804 

Observations 2987 2987 2987 2987 2987 2987 2987 
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Table 6:  Ardour Global Energy Index GARCH Normal Distribution, * p<0.1; ** p<0.05; *** p<0.01 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000313 0.001556*** 0.002517*** 0.002012*** 0.000357 0.000238 -0.000436 -0.000380 0.000967** 0.001009* 0.000340 

Omega 0.000001 0.000014*** 0.000014*** 0.000015*** 0.000005 0.000003 0.000004 0.000002 0.000006 0.000018* 0.000004 

Alpha 0.016787* 0.115897*** 0.137595*** 0.162588*** 0.106029*** 0.068481*** 0.090856*** 0.069405*** 0.051511** 0.078154** 0.058779** 

Beta 0.976589*** 0.778702*** 0.794180*** 0.814567*** 0.888573*** 0.919771*** 0.898149*** 0.920749*** 0.901287*** 0.797067*** 0.911721*** 

 

Table 7:  FTSE ET50 Index GARCH Normal Distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000664* 0.001245*** 0.002483*** 0.001551** 0.000268 0.000668 0.000136 0.000052 0.000912** 0.000770** 0.000314 

Omega 3.75E-06* 3.78E-06** 0.000009*** 0.000011*** 0.000003 0.000003* 0.000004* 0.000003 0.000002 0.000014** 0.000010 

Alpha 0.059132*** 0.104797*** 0.123411*** 0.142725*** 0.095510*** 0.066346*** 0.099907*** 0.077336*** 0.031494* 0.100437** 0.079614* 

Beta 0.881063*** 0.854000*** 0.829324*** 0.834183*** 0.899935*** 0.918536*** 0.884682*** 0.908120*** 0.944378*** 0.709232*** 0.777438*** 

 

Table 8:  S&P Global Clean Energy Index GARCH Normal Distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011      20112012 20122013 20132014 20142015 

Mean 0.000986 0.001711*** 0.002387*** 0.001601* -0.000420 -0.000311 -0.000490 -0.000983 0.000307 0.000607 0.000724 

Omega 4.90E-06* 8.25E-06** 0.000012** 0.000016*** 0.000009* 0.000004 0.000010** 0.000007** 0.000003 0.000018 0.000128*** 

Alpha 0.069884*** 0.115883*** 0.107078*** 0.140667*** 0.112132*** 0.067060*** 0.102287*** 0.070434*** 0.029052** 0.053293* 0.216009*** 

Beta 0.877496*** 0.819130*** 0.842609*** 0.838676*** 0.881790*** 0.920484*** 0.869905*** 0.904452*** 0.948808*** 0.794448*** 
-
0.386760*** 
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Table 9:  WilderHill Clean Energy Index GARCH Normal Distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000672 0.000884 0.001228* 0.000339 -0.000321 0.000585 -0.000388 -0.001242 0.000338 0.000542 -0.000253 

Omega 0.000012 0.000020** 0.000018*** 0.000016*** 0.000011* 0.000005 0.000010** 0.000007* 0.000040 0.000034* 0.000003 

Alpha 0.060570* 0.115530*** 0.117843*** 0.137811*** 0.097893*** 0.071552*** 0.114289*** 0.088717*** 0.103465* 0.094820** 0.053917*** 

Beta 0.867666*** 0.782663*** 0.822170*** 0.842431*** 0.891688*** 0.916910*** 0.867234*** 0.893643*** 0.739015*** 0.786029*** 0.932762*** 

 

Table 10: WilderHill New Energy Global Innovation Index GARCH Normal Distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000938*** 0.001538*** 0.001987*** 0.001182** -0.000005 0.000319 -0.000181 -0.000323 0.000868* 0.000810* 0.000480 

Omega 0.000002 0.000003** 0.000007*** 0.000008** 0.000005 0.000002 0.000004*** 0.000003*** 0.000001 0.000015 0.000012 

Alpha 0.049513*** 0.124435*** 0.153592*** 0.171717*** 0.105652*** 0.062891*** 0.091313*** 0.060887*** 0.020313** 0.058323* 0.044716 

Beta 0.920407*** 0.835038*** 0.805078*** 0.816479*** 0.887338*** 0.925645*** 0.894566*** 0.925911*** 0.969307*** 0.773701*** 0.818333*** 

 

Table 11:  Ardour Global Energy Index GARCH Student-t distribution parameters  

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000312 0.00134*** 0.002427*** 0.002012*** 0.000374 0.000489 -0.00031 -0.000378 0.001128** 0.00156*** 0.000757 

Omega 7.15E-07 7.54E-06 1.12E-05* 1.30E-05* 4.94E-06 2.36E-06 4.36E-06 2.47E-06 5.40E-06 1.28E-05 2.99E-06 

Alpha 0.016746 0.078464*** 0.121372*** 0.166848*** 0.103517*** 0.070979*** 0.088461*** 0.064322*** 0.055126* 0.105417** 0.068693** 

Beta 0.976640*** 0.861935*** 0.82549*** 0.817238*** 0.89207*** 0.919146*** 0.898586*** 0.924958*** 0.904666*** 0.816044*** 0.912571*** 
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Table 12:  FTSE ET 50 Index GARCH Student-t distribution parameters 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000691** 0.001153*** 0.002529*** 0.001795*** 0.000421 0.000785 0.000199 7.25E-05 0.001117*** 0.001060*** 0.000487 

Omega 3.37E-06 3.12E-06* 8.92E-06** 9.51E-06* 3.61E-06 2.59E-06 3.90E-06 2.48E-06 1.89E-06 1.09E-05 8.50E-06 

Alpha 0.049915* 0.082341*** 0.138942*** 0.153875*** 0.095770*** 0.067887*** 0.097371*** 0.074398*** 0.040924** 0.112877** 0.091836* 

Beta 0.896632*** 0.884584*** 0.819337*** 0.833895*** 0.899913*** 0.918158*** 0.886820*** 0.911081*** 0.936784*** 0.740304*** 0.788649*** 

 

Table 13:  S&P Global Clean Energy Index GARCH Student-t distribution parameters 

 

Table 14:  WilderHill Clean Energy Index GARCH Student-t distribution parameters 

 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.001053 0.001666*** 0.002572*** 0.001948*** -0.000222 -9.73E-05 -0.000533 -0.001071 0.000450 0.000877* 0.000756 

Omega 4.87E-06 7.83E-06** 1.10E-05* 1.33E-05* 8.08E-06 3.66E-06 9.85E-06 6.46E-06 1.63E-06 1.34E-05 0.000131*** 

Alpha 0.073212 0.110218*** 0.118908*** 0.152756*** 0.104581*** 0.063987*** 0.094127*** 0.059097*** 0.027372* 0.046525 0.199438*** 

Beta 0.875861*** 0.827759*** 0.834016*** 0.837434*** 0.890397*** 0.923692*** 0.878790*** 0.917521*** 0.960511*** 0.842485*** -0.379797** 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000672 0.000890 0.001624 0.000838 -0.000149 0.001271 0.000120 -0.001100 0.000387 0.000990 0.000466 

Omega 1.22E-05 1.88E-05* 1.47E-05 1.34E-05** 8.06E-06 3.88E-06 9.24E-06 6.31E-06 3.88E-05 3.09E-05 3.94E-06 

Alpha 0.060584* 0.112316*** 0.119034*** 0.142226*** 0.099238*** 0.084823*** 0.106559*** 0.073789*** 0.105309* 0.100095** 0.059164** 

Beta 0.867688*** 0.793259*** 0.835365*** 0.845957*** 0.895430*** 0.909422*** 0.877559*** 0.909471*** 0.740841*** 0.792359*** 0.925681*** 
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Table 15:  WilderHill New Energy Global Innovation Index GARCH Student-t distribution parameters 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000935*** 0.001400*** 0.002234*** 0.001481** 4.12E-05 0.000581 3.18E-05 -0.000310 0.001045** 0.001172*** 0.000546 

Omega 1.82E-06 3.53E-06** 7.08E-06** 8.51E-06** 5.64E-06 1.83E-06 4.03E-06 2.56E-06 6.21E-07 1.20E-05 5.30E-06 

Alpha 0.048353** 0.111967*** 0.146638*** 0.172833*** 0.102642*** 0.065447*** 0.094455*** 0.056218*** 0.023477* 0.083432* 0.046829 

Beta 0.919521*** 0.843596*** 0.811298*** 0.813284*** 0.889044*** 0.925465*** 0.893442*** 0.932039*** 0.968793*** 0.790511*** 0.891582*** 

 

Table 16: Ardour Global Energy Index TGARCH Normal Distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000306 0.001392*** 0.002378*** 0.001477** -0.000358 -0.000119 -0.000962 -0.001380*** 0.000864* 0.000939* 0.000176 

Omega 4.81E-06* 3.17E-05*** 2.56E-05*** 1.90E-05*** 6.56E-06** 2.48E-06 6.57E-06*** 3.34E-06*** 8.67E-06 2.08E-05*** 6.42E-06** 

Alpha -0.004159 0.002477 0.049102 0.023680 0.019212 0.025439 0.004491 -0.059551*** 0.017303 -0.039444 -0.025944 

Resid(-
1)^2*(Resid(-
1)<0) 0.061072** 0.268585*** 0.238486*** 0.219631*** 0.124366*** 0.061234** 0.124908*** 0.119708*** 0.057534 0.172092*** 0.146665*** 

Beta 0.934210*** 0.605162*** 0.698919*** 0.819370*** 0.906767*** 0.931353*** 0.904086*** 0.982063*** 0.886832*** 0.799445*** 0.902320*** 
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Table 17:  FTSE ET50 Index TGARCH Normal Distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000596* 0.001134*** 0.002276*** 0.001079* -0.000384 7.57E-05 -0.000422 -0.000418 0.000690* 0.000666* 0.000245 

Omega 7.49E-06** 5.30E-06*** 1.55E-05*** 1.40E-05*** 4.01E-06** 1.24E-06 4.48E-06*** 2.31E-06*** 1.10E-06 1.11E-05*** 7.31E-06*** 

Alpha -0.008239 0.063662** 0.039503 0.010819 0.000717 -0.004267 -0.013027 -0.013936 -0.016305* -0.082563*** -0.086712*** 

Resid(-
1)^2*(Resid(-
1)<0) 0.117847*** 0.079586** 0.183259*** 0.190457*** 0.120999*** 0.094533*** 0.153286*** 0.097815*** 0.048785*** 0.257847*** 0.251559*** 

Beta 0.823669*** 0.835194*** 0.776334*** 0.848328*** 0.927160*** 0.947868*** 0.910674*** 0.947133*** 0.976469*** 0.790358*** 0.852191*** 

 

Table 18: S&P Global Clean Energy Index TGARCH Normal Distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000876** 0.001530*** 0.002283*** 0.001049 -0.001257 -0.000621 -0.001087 -0.001192* 0.000311 0.000608 0.000611 

Omega 1.69E-05*** 1.40E-05*** 1.59E-05** 2.00E-05*** 6.55E-06* 3.53E-06 1.35E-05*** 7.08E-06*** 3.84E-06 1.71E-05 0.000126*** 

Alpha -0.001299 0.050530 0.061180** 0.029433 0.016623 0.033731 0.011488 0.020098 0.036874* 0.043831 0.119854** 

Resid(-1)^2*(Resid(-
1)<0) 0.179074*** 0.135104** 0.091113** 0.170141*** 0.119399*** 0.041395 0.128512*** 0.059357*** -0.010332 0.021879 0.133945 

Beta 0.725326*** 0.767017*** 0.818659*** 0.843377*** 0.915936*** 0.932382*** 0.879603*** 0.922970*** 0.941464*** 0.797094*** -0.364985** 
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Table 19:  WilderHill Clean Energy Index TGARCH Normal Distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000610 0.000699 0.001153** -0.000160 -0.001363 0.000092 -0.001159 -0.002723*** 0.000378 0.000444 -0.000459 

Omega 1.61E-05 3.28E-05** 2.14E-05*** 1.91E-05*** 7.51E-06 0.000005* 1.73E-05*** 0.000002*** 4.19E-05 3.63E-05* 4.02E-06 

Alpha 0.028785 0.057958 0.105099*** 0.055654 0.003891 -0.036155 -0.009689 -0.043507*** 0.125515* 0.050981 0.025105 

Resid(-1)^2*(Resid(-
1)<0) 0.056593 0.137953** 0.036386 0.116722*** 0.132336*** 0.070592*** 0.187071*** 0.102314*** -0.035969 0.062376 0.039614 

Beta 0.845737*** 0.704013*** 0.804016*** 0.852181*** 0.919367*** 0.927123*** 0.867584*** 0.988451*** 0.726563*** 0.784751*** 0.935533*** 

 

Table 20: WilderHill New Energy Global Innovation Index TGARCH Normal distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000753** 0.001286*** 0.001831*** 0.000758 -0.000631 -0.000137 -0.000816 -0.000873 0.000855* 0.000894* 0.000904** 

Omega 4.72E-06*** 
7.26E-
06*** 1.05E-05*** 1.18E-05*** 4.85E-06* 7.97E-07 4.35E-06*** 2.70E-06*** 1.05E-06 1.88E-05* 6.40E-05*** 

Alpha -0.042018* 0.035960 0.095851** 0.037887 0.017402 0.009573 -0.009621 -0.012119 0.020313 -2.68E-05 -0.078415* 

Resid(-1)^2*(Resid(-
1)<0) 0.156092*** 0.250560*** 0.119316** 0.171540*** 0.116113*** 0.064110*** 0.128039*** 0.080648*** 0.004062 0.081559* 0.413723*** 

Beta 0.877295*** 0.752110*** 0.774188*** 0.833060*** 0.914498*** 0.951226*** 0.921764*** 0.955876*** 0.968323*** 0.749449*** 0.094380 
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Table 21:  Ardour Global Energy Index TGARCH Student-t distribution 

 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000306 0.001317*** 0.002281*** 0.001512** -0.000253 0.000200 -0.000724 -0.001154** 0.001050** 0.001391*** 0.000526 

Omega 4.81E-06* 3.09E-05*** 2.04E-05*** 1.67E-05*** 6.66E-06* 2.22E-06 7.23E-06** 3.30E-06*** 7.66E-06 1.70E-05** 5.82E-06* 

Alpha -0.004161 -0.016034 0.043211 0.022067 0.014381 0.024848 -0.000622 -0.061677*** 0.017423 -0.018780 -0.024131 

Resid(-
1)^2*(Resid(-
1)<0) 0.061082** 0.282924*** 0.203507*** 0.229653*** 0.126691*** 0.063164** 0.134494*** 0.119686*** 0.063325 0.176806** 0.157190*** 

Beta 0.934204*** 0.626604*** 0.747921*** 0.824020*** 0.909699*** 0.931350*** 0.900059*** 0.983161*** 0.890861*** 0.805477*** 0.898518*** 

 

Table 22: FTSE ET50 Index TGARCH Student-t distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000669** 0.001112*** 0.002341*** 0.001413** -0.000110 0.000301 -0.000313 -0.000360 0.000939** 0.000937*** 0.000370 

Omega 7.12E-06** 5.11E-06** 1.40E-05*** 
1.20E-
05*** 4.29E-06* 1.26E-06 4.67E-06*** 

2.30E-
06*** 1.19E-06 

9.56E-
06*** 6.32E-06*** 

Alpha -0.013640 0.054654 0.060927 0.015832 -0.002744 -0.004715 -0.016710 -0.016764 -0.010654 -0.076762** -0.086372*** 

Resid(-
1)^2*(Resid(-1)<0) 0.117086** 0.072622 0.174676** 0.197453*** 0.124274*** 0.096103*** 0.157776*** 0.100111*** 0.054808** 0.258332*** 0.245587*** 

Beta 0.835584*** 0.851340*** 0.773759*** 0.847655*** 0.927230*** 0.946644*** 0.910067*** 0.948601*** 0.965592*** 0.802383*** 0.866733*** 
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Table 23:  S&P Global Clean Energy Index TGARCH Student-t distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000948** 0.001517*** 0.002402*** 0.001414* -0.000919 -0.000358 -0.000982 -0.001238* 0.000456 0.000893** 0.000777 

Omega 1.62E-05** 1.39E-05*** 1.47E-05** 
1.64E-
05*** 6.61E-06 3.48E-06 

1.40E-
05*** 6.54E-06** 1.87E-06 1.40E-05 0.000117*** 

Alpha -0.003147 0.050118 0.062774 0.032284 0.009414 0.028333 0.004278 0.015418 0.031971* 0.032776 0.057973 

Resid(-
1)^2*(Resid(-1)<0) 0.186782*** 0.135164** 0.110485* 0.185252*** 0.121691*** 0.047330 0.137156*** 0.054870*** -0.006056 0.032496 0.282176 

Beta 0.730975*** 0.768194*** 0.812834*** 0.843767*** 0.920576*** 0.934378*** 0.880152*** 0.931734*** 0.957564*** 0.832935*** -0.242130* 

 

Table 24:  WilderHill Clean Energy Index TGARCH Student-t distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000617 0.000712 0.001558** 0.000432 -0.001101 0.000980 -0.000474 -0.002462*** 0.000404 0.000900 0.000274 

Omega 1.62E-05 3.04E-05** 1.75E-05** 1.58E-05** 7.18E-06 4.39E-06 1.53E-05*** 1.71E-06** 4.09E-05 3.40E-05* 5.86E-06 

Alpha 0.028083 0.055984 0.104661** 0.061575 0.004309 0.031730 -0.006766 -0.039233*** 0.122760* 0.041353 0.018300 

Resid(-1)^2*(Resid(-
1)<0) 0.059307 0.137600* 0.040325 0.119014 0.131879*** 0.079370* 0.181015*** 0.098541*** -0.029439 0.082297 0.059227 

Beta 0.844579*** 0.718950*** 0.818359*** 0.852854*** 0.919051*** 0.915790*** 0.870460*** 0.985299*** 0.730006*** 0.792222*** 0.923507*** 
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Table 25:  WilderHill New Energy Global Innovation Index TGARCH Student-t distribution 

Parameters 20042005 20052006 20062007 20072008 20082009 20092010 20102011 20112012 20122013 20132014 20142015 

Mean 0.000754** 0.001195*** 0.002047*** 0.001072* -0.000501 0.000215 -0.000362 -0.000737 0.001029** 0.001207*** 0.000909** 

Omega 4.72E-06*** 7.93E-06*** 1.07E-05*** 1.22E-05*** 5.40E-06* 7.22E-07 5.88E-06** 2.60E-06*** 7.73E-07 1.46E-05* 6.47E-05*** 

Alpha -0.042067* 0.027022 0.054983 0.009529 0.011522 0.011560 -0.003571 -0.010540 0.020142 0.024599 -0.070890 

Resid(-
1)^2*(Resid(-
1)<0) 0.156101*** 0.254993*** 0.174338** 0.220869*** 0.123421*** 0.069326** 0.156007*** 0.077322*** 0.005695 0.090739 0.444660*** 

Beta 0.877222*** 0.750329*** 0.781923*** 0.832641*** 0.914849*** 0.946433*** 0.893492*** 0.956040*** 0.967643*** 0.770158*** 0.072476 

 

Table 26:  The White test for Heteroskedastiscity 

 F-statistic Probability 

Ardour 129.8239 0.0000 

FTSE 109.7052 0.0000 

S&P 145.5397 0.0000 

Wilderhill Clean 171.7394 0.0000 

Wilderhill Global 111.7517 0.0000 

 

Table 27:  Breusch-Godfrey test for Autocorrelation 

 F-statistic Probability 

Ardour 30200.00 0.0000 

FTSE 30817.88 0.0000 

S&P 35758.49 0.0000 

Wilderhill Clean 27274.55 0.0000 

Wilderhill Global 27368.61 0.0000 

 

 

 


