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Abstract

This thesis explores the Nearest Neighbour recommender algorithm and a
proposed way of recomputing the elements of a set, containing values from
a similarity metric. In essence, this extends the neighbourhood used in the
algorithm by making use of close neighbours’ neighbours. This proposal is
motivated by the hypothesis that high user preference similarity is transitive.
A programme was implemented in Matlab, and one of the MovieLens data
sets was used. Three experiments were run. These indicated that further ex-
ploration of this property and the proposed methods could be of interest. The
final experiment was run on the simplest form of a Nearest Neighbour rec-
ommender, with the added re-computational step, and suggests that there is a
small, but statistically significant, improvement due to this new step (for one
of the proposed methods) confirming the hypothesis. The improvement of the
errors of estimated rating predictions were in the order of magnitude 0.1 %.

Keywords: Recommender systems, Recommender algorithms, kNN, Nearest Neigh-
bour, MovieLens, Collaborative Filtering.
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Chapter 1
Introduction

Two roads diverged in a wood, and I-
I took the one less traveled by,
And that has made all the difference.

- Robert Frost, The Road Not Taken

"Recommender Systems are software tools and techniques providing suggestions for
items to be of use to a user" [2].

Recommender systems are found on numerous websites on the Internet. Companies
like Amazon, CDON, Youtube, Google, and Netflix use recommender systems. Whenever
you see a "people who bought this also bought: " or "you might also like this: " on a web
page those are recommendations based on your previous actions; may it be a view on
Youtube or a deal on Amazon. By incorporating what a user already has seen, bought or
rated (referred to as a user having consumed an item) the system is designed so that it can
predict what a person will watch next, wants to buy or will rate.

Recommender Systems are mostly implemented to:

• increase user satisfaction,

• better understanding what a user wants,

• increase the number of items consumed,

• exploit the full inventory [2].

This chapter introduces recommender systems as a concept. What makes a recommen-
dation good or bad is discussed, as well as an overview of neighbourhood based methods.
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1. Introduction

1.1 Introduction to thesis
Chapter 1 introduces what a recommender system is, with an explanation of notations,
some history and older techniques. The Nearest Neighbour algorithm is also described in
this chapter.

In the next chapter, chapter 2, a new algorithm is proposed that explores the possi-
bilities of making use of the property of preference similarity transitivity in the Nearest
Neighbour algorithm. The chapter describes different alterations of the new proposals that
will be explored. Chapter 3 focuses on experiments conducted on the new proposals ex-
plained in chapter 2, also covering the data used in the process. In chapter 4 conclusions
are drawn from the outcome of the experiments. In chapter 5 future work is discussed as
to what could be further explored down this path.

1.2 Recommender systems
1.2.1 General definition of recommender systems
A recommender system’s purpose is to make inference about the level of appreciation by
a user of an item, that has not had any previous interaction, typically by generating useful
personalised suggestions of some kind of items to users, based on the users’ preferences
[6]. The items in question could be songs, news articles, restaurants, movies, or as they
often are: consumable products. A user is a human individual. The input to the recom-
mender system is information of previous interactions between users and items, consisting
of implicit consumption behaviour or explicit ratings. The outputs are lists, one for each
user, of items that by a heuristical justification is believed to be appreciated by the users.
Alternatively, or equivalently, the output can be a prediction of the consumption behaviour
or ratings made by the users on the items. The focus in this thesis is rating estimation.

1.2.2 Notation
Items is the general term which denotes what the system recommends to users, e.g. books,
songs, wines etc, and Users simply correspond to the individuals that receive recommen-
dations, e.g. a personal account on a web based music streaming service. Ratings refers to
what some of the users thinks of some of the items, in terms of appreciation, e.g. number
of times a song has been played by a user or number of "stars" given as a rating to a movie
by a user (implicit and explicit ratings respectively).

LetU be a set of users and I a set of items. We are given a set of ratings R ∈ {S}|U|×|I|
where S is the set of possible values a rating can take (scores). As the ratings r ∈ R exists
for pairs of user and item, a rating by a user u ∈ U on an item i ∈ I is denoted rui.

To identify the subset of users that have rated an item i, we use the notation Ui .
Likewise, Iu represents the subset of items that have been rated by a user u. The similarity
weight between a user u and user v, calculated by applying a similarity metric s(u, v), is
denoted wuv or alternatively w(u, v).

When designing a recommender algorithm, we essentially seek to create a function
f : U × I → S that is trained on the set R and will be able to create a set of predicted
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1.2 Recommender systems

ratings, R̂, for those pairs (u, i) for which rui does not exist.
The ratings are often most represented as a matrix, where each column corresponds to

an item, and each row a user. Typically this matrix is sparse, as it only has entries in those
places that correspond to an already made rating,

R =

Items︷ ︸︸ ︷
ru1i1 ru1i2 ru1i3
ru2i1 ru2i2 ru2i3
ru3i1 ru3i2 ru3i3

Users (1.1)

1.2.3 History of recommender systems
The earliest recommenders that were made, back in the early 90s, utilized information
retrieval techniques [6]. Information retrieval was considered as a large database, with
text based items, which was queried. By investing a lot of time indexing the database for
meta information and content occurrence, the most adequate items could be returned. This
demanded static content, or information that did not change often, which today could be
considered more or less a search engine. Term frequency - inverse document frequency;
the frequency by which a term appears in a text given the number of times it appears in
the corpus, was often used to establish how relevant an item was [2].

Recommenders evolved from there into handling non static content, i.e., handling
content changing from day to day such as newspaper articles [6]. To adapt to this, rec-
ommenders built preference profiles for the users that were static instead of the content.
Thereby the cost changed from indexing the data to creating the profiles. These profiles
could be matched with the new information, filtering the content. At first these profiles
were done by hand, but as time passed it turned into a machine learning process where the
algorithm created the profiles. This is a way of making recommendations using meta data
and are thus content based recommenders, which is discussed below in section 1.2.4.

In turn this development of recommenders lead to what today is known as collaborative
filtering; where a user’s preferences are more elaborate than just a few key words. As it
easier to know if content belongs to a topic but harder if it belongs to a certain taste, profiles
thus became better at screening the data. Today collaborative filtering is the dominating
method in the recommender system industry [2].

1.2.4 Techniques
Content-based recommenders
Content based filtering is the most intuitive approach to giving recommendations to a
user [2]. This works by finding items with similar characteristics to that of those already
rated by a user. This approach can predict fairly accurate recommendations to a user by
simple mathematics. One way of doing this is by constructing a vector xi for an item an
informative schema is set up for that item describing its characteristics and the nature of
that item. Similarly a vector xu is set up and is assumed to contain information about each
user, seen as a preference profile. The profile for a user can be updated whenever a new
rating becomes available to the system.
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1. Introduction

Essentially content based methods need some human made classification and profiling
of what an item is and creates a personality-containing vector of how these profiling ele-
ments are perceived to a user. Alternatively, this classification could be made by specific
machine learning algorithms, for instance using audio analysis when classifying music.

Collaborative filtering

Where as content based algorithms are useful, these only pick up on the characteristics of
a user and thus will recommend items similar to what has already been consumed [7]. A
user will not ever be recommended non-related items. Another approach is preferred in
order to increase the diversity, and the serendipity 1, of the recommender system.

Collaborative filtering algorithms, in their simplest form, presume nothing about the
characteristics of the items or the users in the system [2]. The only input is a set of rat-
ings and the output is personalised recommendations. This is the core purpose of a rec-
ommender system, that it can tailor suggestions depending on the receiver, aiming to do
better than an unpersonalised top list.

Collaborative filtering essentially takes into account how items are rated by different
kinds of users, and fills in the gaps by predicting the scores of the missing ratings so that
these fit into the model. For collaborative filtering there are two main methods that are
used, the neighbourhood- and the model-based methods. This thesis will focus on the
neighbourhood based method and how to improve the existing algorithms.

The nearest neighbour is one of the earliest collaborative filtering algorithms [2, 7].
It is still popular due to its simplicity and sufficiently good performance. It is also cost
efficient in terms of computations [2]. Furthermore, it has some additional benefits such as
being able to justify its recommendations: "others also looked at". The nearest neighbour
algorithm is discussed in detail in the next section.

1.3 The Nearest Neighbour-algorithm
One collaborative filtering algorithm, central to this thesis, is the Nearest Neighbour al-
gorithm (kNN). Neighbourhood based algorithms work much in the same way as peoples
own intuitive way of creating recommendations [2]. To create predictions for a user’s ap-
preciation of an item, one finds a neighbourhood of users that are similar in preference to
the user in question, based onmutually rated items. The ratings made by the neighbours on
the item in question can then be used to make a prediction. These algorithms filter through
all the rating data and create predictions without knowing anything about the properties of
the items, or anything about the user’s preferences. The aim is to create recommendations
that are better than just suggesting overall popular items - i.e., recommending items that
would be rated highly, specific to a user.

1Serendipity refers to a user finding an interesting item, through a recommendation, that she or he would
not have discovered otherwise.[2]
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1.3 The Nearest Neighbour-algorithm

1.3.1 The standard algorithm
There are two main steps to creating recommendations in the kNN-algorithm. The first
step is to calculate similarity values between users (or items, if it is item based) using
the existing ratings. The next step is to create rating predictions, commonly using those
similarity values together with the existing ratings. These steps are described in detail
below. A user-based system is described, which is what is used in this thesis work (see
section 1.3.2).

Similarity measure

To be able to choose a neighbourhood when estimating ratings, one needs a similarity mea-
sure. The similarity measure is used to compute a value that is an estimation of how similar
two users are in preference personality (or items are in similarity, if the recommender is
item-based).

There are several commonly used measures: cosine vector, Pearson correlation and
inverse root mean squared difference (IRMSD) [2]. The cosine vector similarity (1.2),
considers users’ ratings as vectors in a high dimensional space, where the items are the
dimensions, and calculates an (almost) analogous angle between these users in a subspace
of mutually rated items. The similarity calculation becomes:

s(u, v) =
ru · rv

‖ru‖2 ‖rv‖2
=

∑
i∈Iuv

ruirvi√∑
i∈Iu

r2
ui
∑

j∈Iv

r2
v j

, (1.2)

where ‖·‖ is the L2-norm.
The Pearson correlation is the linear correlation between two users taking the effects of

mean and variation into consideration (1.3), the Pearson correlation will give a similarity
range between -1 and 1. This is different from the other metrics mentioned here, which
could potentially have an improving effect on the prediction results.

s(u, v) =

∑
i∈Iuv

(rui − r̄u)(rvi − r̄v)√∑
i∈Iu

(rui − r̄u)2 ∑
j∈Iv

(rv j − r̄v)2
, (1.3)

where r̄ is the mean value of all ratings by user r.
The final metric, IRMSD (1.5), is the inverse of the root mean squared difference, with

the alteration that only the common items are considered.
The root mean squared difference, is defined in (1.4). The similarity metric used in

most of the work in this thesis is the inverted root mean squared difference with a slight
modification (1.5),
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1. Introduction

d(u, v) =

√√√ ∑
i∈Iu∩Iv

(rui − rvi)2

|Iu ∩ Iv|
, (1.4)

s(u, v) =
0 if |Iu ∩ Iv| = 0

1
d(u,v)+ε else

. (1.5)

A term, ε , is added in the denominator, to avoid computational problems should the
distance be zero. The value of ε was set to 1. This introduces a bias in the estimation of
"true" similarity, but avoids the singularity. The magnitude of it does however not change
the internal ordering of any user’s neighbours. Should there be no mutually rated items,
i.e |Iu ∩ Iv| = 0, the similarity s(u, v) was set to zero.

Many different similarity measures exists in the literature and the cosine vector is com-
monly used. However, the measures seems to be quite correlated and have similar perfor-
mance effects [7, 10]. As mentioned above, the IRMSD has been the similarity measure
mostly used in this thesis, partially because it is easy to work with non negative numbers.
These similarities are used as weights in the algorithm, and a similarity s(u, v) is denoted
wuv. These weights can be represented in a user-user matrix. An example is shown below
(1.6).

W =

Users︷ ︸︸ ︷
wu1u1 wu1u2 wu1u3

wu2u1 wu2u2 wu2u3

wu3u1 wu3u2 wu3u3

Users (1.6)

.
Note that the term metric is used as the colloquial meaning of a measurement, and not

in the sense of the mathematical definition (distance function).

Rating estimation
The input needed to create estimates/predictions of ratings is the similarity weights as well
as the original ratings. To create a rating estimate for a user u on an item i, the weights of
u are first sorted by size in descending order. The weights of u is meant as the weights wuv
for every user v ∈ U \ {u}, i.e., the weights that signify the similarity between u and the
other users. This corresponds to a row, or equivalently a column, in the weight matrix W.
This weight matrix is simply the set of weights organised in a matrix, where the weight
wuv is the element on the uth row and vth column.

The next step is to look at which users have rated the item in question, i, and use the
ratings made by the k nearest users (in terms of highest similarity) that have also rated i to
create an estimate. This essentially means that you look for other people who historically
have had similar preferences to a certain user, and use their ratings on an item to estimate
the value of a hypothetical future rating done by the user in question on that item. There
are a few ways of creating the rating estimates. One is by simply averaging the k nearest
ratings, i.e.,

12



1.3 The Nearest Neighbour-algorithm

r̂ui =
∑

v∈Ni(u)

1
|Ni(u)|

rvi (1.7)

where Ni(u) is the neighbourhood, a set of users that have rated item i and are the
closest in similarity to u. The cardinality is k, if possible, and smaller if less than k users
have rated the item.

One can also create the rating estimate as a weighted average of the neighbours’ ratings,
using the similarity weights,

r̂ui =

∑
v∈Ni(u)

wvirvi∑
v∈Ni(u)

|wvi |
. (1.8)

The value of k is normally chosen by cross-validation, tuning it by testing different
values on the data already available. Values above 50 are often used, but this may vary
between different recommender tasks [7].

Example

The Godfather Star Wars IV Schindlers List Casablanca LotR III
Johan 2 1 5 5 4
Søren 4 ? 1 ? 1
Magnus 2 ? 3 4 1
Andreas 5 1 5 3 2
Stefan 1 4 3 4 1

Table 1.1: Table showing ratings for five users and five movies

An example is shown in Table 1.1. A rating of 5 means the user loved the movie, 1
means a user disliked the movie, and a ’?’ means the movie has not yet been consumed or
rated by the user. If Magnus want to known whether or not to consume Star Wars Episode
4, he can do that by using collaborative filtering on the data available. The order of the
neighbours toMagnus in preference similarity are Stefan, Johan, Andreas and Søren, given
by (1.4). For a value of k = 2, the estimated predicted rating for Magnus and Star Wars
IV would be the average of Stefan’s and Johan’s ratings, which is 4+1

2 = 2.5.

Standard improvements
Normalisation of ratings is a further development that is not specific to neighbourhood
based algorithms but one that is commonly used when looking to improve one. It is a way
of pre-processing the rating data and compensating for differences in ways users use the
rating scale [2, 8]. A common way of doing this is mean centering the ratings for the users,
that is, subtracting the users’ rating means off the raw ratings. This simply means that the
recommender takes in the pre-processed ratings, and gives an output which is estimations
of the transformed ratings, to which the mean will be added back on. A raw rating rui is
transformed to a mean centered rating h(rui),
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1. Introduction

h(rui) = rui − ru, (1.9)

where ru is the mean of all of user u’s ratings. One can also mean centre around the
item averages, in which case ru is just substituted for ri above. The recommender runs the
transformed ratings, and the predictions are then transformed by the inverse, h−1, to create
the final ratings: r̂ui = h−1(ĥ(rui)).

A way of developing this further, that in a similar way to mean centering accounts for
variability is called z-score normalisation. This normalises the mean centered ratings in
the aspect of their variance. The transformation is,

h(rui) =
rui − ru

σu
, (1.10)

where σu is in practise replaced with the estimated variance of the ratings made by
user u. This can be developed further, such as the pre-processing transformations used in
the Netflix algorithm [9].

Sophisticated improvements
The kNN algorithm was one of the first algorithms proposed [7] and is still used because
of its simplicity and adequately good accuracy. As this has become an extensive field of
research, the state of the art has (in most cases) become other techniques. There is however
still a case for kNN-like algorithms’ possibility of outperforming other algorithms. A 2014
paper published at the ACM conference 2 made the case for a neighbourhood based algo-
rithm calledUnified Nearest Neighbour that outperformed the current matrix factorisation
techniques on some commonly used data sets [11].

The cold start problem
One specific problem is to create estimations when a new user, enters the system [2]. This
is know as the cold start problem. As this user has made no (or very few) ratings, one
does not have much to go by when calculating similarities. The cold start problem is
not specific to neighbourhood based algorithms. The proposed methods in chapter 2 may
be able to handle this situation well. Another, simple, way of dealing with the problem
is to use unpersonalised top lists in place of personalised recommendations. This is a
convenient and fairly effective way of recommending items to new users, but it may not
give an impressive first impression of the recommender system in question.

1.3.2 User- and item-based recommendations
User- and item-based kNN-recommenders are two methods with the same goal, to predict
howmuch a user will like an item. One is based on the relation between users and the other
is based on the relation between items [2]. A conceptual comparison would be if a user
asked its friends, who are known to have similar preferences, for recommendations for a

2Association for Computer Machinery
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1.3 The Nearest Neighbour-algorithm

book to read (User-based) versus if the basis for the evaluation of the book is how much
you like books that are considered (rated) the same as the book in question (Item-based).

The posed question here is usually when one should use one or the other, and the answer
depends on the ratio between the number of items and users, among other factors. If there
are more users than items, item-based is usually preferred as less memory is required to
store the W-matrix while the complexity is none the less the same [2]. Another aspect
to weigh in is the rate at which new items or users arrive, if content is changing on an
everyday basis a user-based recommender might be better and vice versa.

The advantage of using a user based recommender is that it builds up a neighbourhood
of users for you and have a higher probability of recommending serendipitous items to a
user as that kind of information can be caught in the behaviour of a users neighbourhood.
The diversity of the items recommended can be much higher, as an item based recom-
mender focuses on the similarities between items. However, a user based recommender
tends to not create as accurate recommendations leaving a larger error margin for the pre-
dictions. An item based recommender on the other hand does produce better and closer
predictions of items, but is not very good at serendipity. Item based recommenders tend
towards producing a homogeneous result set; that is, if a user likes action movies - action
movies will be suggested. A difference between how the methods are used is in how the
systems justifies the recommendations. An item can be recommended because it is similar
to an item a user has consumed (item based). An item can be recommended because other
users who are similar to the users in question have liked it (user based).
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Chapter 2
Nearest Neighbour’s Neighbours

There are manymethods one can apply to improve the standard kNN-algorithm for specific
uses, such as rating normalisation and wisely choosing the rating estimator. This chapter
presents a novel idea on how the accuracy of the kNN-algorithm can be improved by using
an intuitively reasonable idea. The idea is based on the hypothesis that high user-user
preference similarity is transitive.

2.1 The hypothesis
One important step in the kNN recommender system is to estimate similarities between
users by appropriately assigning pairs of users with similarity weights, which are used to
create the neighbourhoods. The resulting similarity weights, wuv, are usually represented
in the matrix W, where user u and user v correspond to a row and a column respectively.
The matrix has no values on the diagonal (users’ similarities with themselves) and are also
potentially "missing" values elsewhere, for pairs of users that have no common rated/con-
sumed items. The (estimated) similarity is then said to be zero.

One can think of this as there being some kind of true similarity between users, and
the computation of the weights is an attempt to estimate these similarities. Because of the
sparseness of the rating matrix, these estimations might be very poor, for some users. The
algorithm step proposed in this chapter, which is really a reweighing of the neighbours,
attempts to improve those similarity estimates.

In fact, this matrix is a representation of a graph. More specifically, an undirected and
weighted graph. It is a general example of an adjacency matrix. An intuitive way of think-
ing about the graph is that people to different degrees are similar to each other (the graph
is complete; all similarity edges are present, though some are incorrectly estimated to be
zero). However, there are several possible paths to take between two users if one allows
the path length to be longer than one edge long, and when estimating user similarities on
real data this leads to certain discrepancies. If user A gets a high similarity value to user B,

17



2. Nearest Neighbour’s Neighbours

and B has a height similarity value with C, then it is still very possible that the estimated
similarity between user A and C is low, due to estimation uncertainty, when they in fact
likely have similar preferences. This "noise" could potentially be reduced by making use
of other paths other than the direct edge between two users. The way to do this that is
presented in this thesis, is from here on referred to as the Nearest Neighbours’ Neighbours
(NNN).

2.2 Primary similarity weights
The proposed algorithmwill rely on the standard similarity weights, which we call primary
weights. These primary weights were created in accordance with what was described in
section 1.3.1, using the inverted root mean squared difference (1.5). This matrix, or set
of weights, is the fundamental building block for the rest of the algorithm. The idea is to
still primarily use these weights, but weigh in a "correction term" that might improve the
performance of the algorithm. We still denote these primary weights, as w. The set of all
weights, organised in a user-user matrix, is denoted W.

2.3 Creating alternative similarity weights
A few options when creating alternative similarity weights were tested. The equations in-
clude three users, u, x and v; where u is the user in question (the users whose similarity
weights we wish to update), x is the closest neighbour to u and v is the user to whom the
distance from u is estimated.

The proposed justification for this method is that the closest neighbour’s neighbour-
hood would include information that user u did not possess. If a u and x have an overlap
of a few items while x and v have another set of overlap, then v’s ratings could be used to
predict the ratings for items u have not consumed.

In all of the below proposals, x denotes the closest neighbour to u, i.e.,

x = arg max
y∈U

w(u, y). (2.1)

2.3.1 Proposal A
The first proposal is to construct a weight for a user u by multiplying the weight to their
closest neighbour with the weight between the nearest neighbour and the user to whom one
is estimating the similarity to. The (square) root of this is used as the alternative weight,
as it should in a sense recreate the appropriate variability (and magnitude) in the weights,

w′(u, v) =

√

w(u, x) × w(x, v), v 6= x
w(u, v), v = x

. (2.2)
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2.3 Creating alternative similarity weights

The latter factor w(x, v) simply acts as an indicator of similarity between u and v, and
the factor w(u, x) makes the alternative weights higher when that similarity is high, that is
when the neighbours u and x are very close to each other in estimated preference.

2.3.2 Proposal B
This proposal is similar to the first one, but possibly more intuitive and simple. One simply
substitutes a user’s weights for that user’s closest neighbour’s weights. The idea is that
most users have at least one close neighbour, whose weights would be almost as indicative
of similarity to other users as ones own weights:

w′(u, v) =
w(x, v), v 6= x
w(u, v), v = x

. (2.3)

2.3.3 Proposal C
This proposal is to make a weighted average of a user’s l closest neighbour’s corresponding
weights,

w′(u, v) =

l∑
i=1

(l + 1 − i) × wxiv

l∑
i=1

(l + 1 − i)
(2.4)

where xi is the ith closest neighbour to u, i.e., x1 is the same as x above, and

xi = arg max
y∈U\{xi−1,...x1}

w(u, y) (2.5)

for i > 1.

2.3.4 Proposal D
The last proposal just sets the alternative weight to a reweighing of the standard weight:

w′(u, v) =
w(u, v) × w(u, x) × w(x, v), v 6= x
w(u, v)3 v = x

(2.6)

A property of the weights in this set is that a weight w′(u, v) is zero if w(u, v) is zero. It
thus does nothing to order the user pairs’ weights that have zero similarity according to the
primary weights. The higher power results in a sharper discrimination between original
weights that are low and high.

2.3.5 Properties of the alternative weights
Note that these weights are not invariant to direction, i.e., w′uv is not necessarily the same as
w′vu. The alternative weight matrix is not symmetric. Hopefully, these alternative weights
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2. Nearest Neighbour’s Neighbours

u1   1 2 1 1 5 2 

u2            1 5 1 3 1 4 2

u3                     2 1 4 2 5 4 2

Figure 2.1: Example of a situationwhere two users aremost likely
very similar (u1 and u3) but do not share any mutually rated items

u

x

.

.

.

v1
v2
v3

vn-2

Figure 2.2: Representation of the similarities being calculated us-
ing a simple path.

is a good indicator of the true preference similarity - as the primary weights are. Realisti-
cally, no two users/people are the same, and thus it would introduce bias when weighing
in another user’s weights. However, calculating a similarity weight is merely an estimate
of true preference similarity, so if the offset that the bias introduces is low, compared to
the noise of the estimated similarity, one can still expect to gain in accuracy. The time
complexity of this step is O(n2) where n is the number of users.

The weights that are used for the experiments are non-symmetric. One could argue that
similarity is undirected, but the similarity weights are however usedwhen a neighbourhood
is chosen for a specific user. Your closest neighbour canmaybe saymore about how similar
the rest of the users are to you, than the closest the neighbours to the rest of the users can say.
It is however possible that it would be a good idea to average the weights, i.e., averaging
the matrix with its own transpose.

2.4 Combining the weights
Using the alternative weights alone when predicting ratings would probably result in a
slightly worse performance than using the original weights alone, as they are less accurate
estimates of preference similarity. The most natural way to use them would be to combine
them with the original primary weights, i.e., somehow adding them to make final weights
that are used for the rating estimation. The final weight will hereafter be denoted with a
star: W∗.

2.4.1 A linear combination
A simple and reasonable way of combining the two sets of weights is to just make a linear
combination, as displayed (2.7) below;
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2.5 Estimating the ratings

w∗ = w + βw′ (2.7)

where the most suitable value of β should reasonably be between 0 and 1, as they (the
weights) are postulated to correlate positively with true similarity but not carry as much
useful information as the original weights. This is something that is investigated in the
experiments, in particular Experiment 3.

It is worth to note that this way of constructing the weights make them non-symmetric,
i.e., the similarity between user u and user v depends on which direction one is looking.
This is of course something that could be averaged out, or one can argue that you can trust
your close neighbours weights more than users that are close neighbours to the users you
want to know you closeness to.

2.4.2 Combining conditionally
It is possible that the NNN offers improvement for some users, but not at all for others. It
is then reasonable to change similarity weights based on some conditions on the users,

w∗uv =

wuv if condition
w′uv else

(2.8)

The condition would be something concerning user u, for instance that |Iu| is smaller
than a certain threshold and that |Iu ∩ Ix | is big enough.
This is really just a problem of appropriately partitioning the set of users to choose between
β = 0 and β = φ for some φ > 0. One could also try to create a function that takes
some user information in and gives a dynamic value of β, which would potentially result
in lower errors than having an optimised fix β if that function is chosen well enough.
Possibly other machine learning algorithms could be used to design a function like that.
The first proposal, Proposal A, is a way to givemoreweight, when combining the similarity
weights, to users who are very similar to their nearest neighbour (because of the factor
wux). It may however, in retrospect, be more wise to give more weight for the users that
both have the high similarity weight to their closest neighbour as well as a high certainty
in this estimate of the similarity.

2.5 Estimating the ratings
The proposedNearest Neighbour’s Neighbour algorithm is different from the standard kNN
in the way the similarity weights are calculated, which is the first part of a neighbourhood
based algorithm. The second and final part is creating rating estimates/predictions. This
algorithm does not, as of now, offer any new way of doing this. A choice of what rating
estimator to use is nevertheless necessary. For most of the experiments, in the next chapter,
the simple averaging estimator is used, which is discussed in Sec. 2.5.1.
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2. Nearest Neighbour’s Neighbours

2.5.1 Standard kNN rating estimation method
A simple way of creating predictions by averaging the ratings in the neighbourhood (2.9),
wasmainly used in the experiments for a few reasons. Inmost cases it seemingly performed
as well as a weighted average estimator. Also, a difference in the rating predictions will
have to be the result in a different neighbourhood having been taken out, that is that the
similarity weights’ values has changed enough to result in a different order of them. If one
is able to choose better neighbourhood (giving better results using the chosen estimator),
then there are several possibilities in how to proceed from there, other than that it is good
in itself,

r̂ui =
1

|Ni(u)|

∑
v∈Ni(u)

rvi. (2.9)

2.5.2 Further alternatives
A common way of predicting the ratings is by computing a weighted average of the ratings
for the item in question, by the users in Ni(u). These weights are commonly set to be the
same as the similarity weights, as in (1.8). It would however be very coincidental if these
are the optimal weights for this purpose. It is natural to set it up as a standard regression
problem where you model a rating as,

rui = a1rv1i + a2rv2i + a3rv3i + ... + a jrv j i + ... + akrvk i, (2.10)

where rv j i is the j th neighbour in closeness to u that has also rated item i. One could
train the parameters a j on the existing data and use the resulting set to create the estimated
ratings, for instance with a least squares fitting, see appendix A. Another possibility is to
further develop the weighted average (1.8) by changing the weights proportions,

wuv = b1wuv + b2w2
uv + b1w3

uv, (2.11)

where the optimal vector containing the b-coefficients would be evaluated and cross
validated.
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Chapter 3
Experiments and results

This chapter contains experiments conducted on the NNN, evaluation and a discussion of
the outcome.

3.1 Implementation
3.1.1 Data
Two data sets were to be used, The MovieLens data set of 100k ratings and the MovieLens
data set of 1 million ratings. The data sets are data collected by the University of Min-
nesota 1, it is considered a standard within the machine learning (and thus recommenders)
community and have the advantage of being used as a basis for many published research
results. [1]. It is therefore a highly useful data set where the results can be compared to
other research results found online.

3.1.2 Parallelisation
For all experiments conducted in the thesis Matlab was utilized. Due to the size of the
matrices used, often above 3000 users and 1500 items, calculations tended to be slow.
This was primarily true for calculating distance metrics and estimating individual ratings
where the complexity always was O(n2), where n is the number of users. Calculation time
was improved by introducing Matlabs parallel toolbox.

To speed up the computation time even further, the computer cluster Alarik at Lunarc
was used. Lunarc is a High Performance Computing (HPC) Center at Lund University,
where Alarik is the latest cluster using a SLURM queueing system containing 208 nodes,
each with 2 8 core 64-bit processors (AMD6220), i.e., 3328 CPUs in total [5]. What was

1Data can be found at http://grouplens.org/
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3. Experiments and Results

new in Alarik was that Matlab could directly interface to the cluster without writing batch
scripts. With this interface, simulations with different parameters were run simultaneously.

3.2 Experiment 1
Experiment 1 is a simulation designed to compare a set of compound weights, w∗, and
standard weights, w, to the users’ theoretical true preference similarities. The aim is to
investigate whether a matrix W∗, as described in chapter 2, can be closer to the users’
true preference values than that of the standard W. As these preferences are naturally
unavailable, an attempt was made to generate a matrix of weights thought to be as accurate
as possible in actual similarity. The idea is to generate this matrix of weights, WGT, that
one can take as a ground truth for similarity, and then conduct an evaluation of how close
the estimated similarities (W and W∗) are to it. The WGT was constructed by computing
similarity weights of a very dense user-item matrix. Elements from this user-item matrix
were removed, to make it sparse, and the weight matrices W, W′ and W∗ were computed
from this sparse matrix. The two matrices (W and W∗) were then compared to the "truth",
the WGT, to see how well they coincided.

The MovieLens 100k data set was used for this experiment. It is a set of 943 users and
1682 items, and 100 000 ratings. The rating matrix thus consists to 93.7 % of non entries.
A sub-matrix of this matrix was created by eliminating rows and columns, namely the ones
containing the fewest entries, resulting in a 604 by 396 matrix with a denseness of 75 %.
This matrix was split into two sets, one for parameter training and one for evaluation, see
Fig. 3.3. The similarity metric of choice (1.5) was applied on each of these rating matrices
to create justifiably accurate matrices of similarities; WGT.

Next, the two rating matrices were sparsed to a high sparsity by eliminating circa 90 %
the last timestamped ratings, resulting in two matrices that were as sparse as the original
data set.

The same similarity metric (1.5) as just mentioned were applied to these rating sets,
creating sets of weights (see Fig. 3.3 boxesWtrain andWeval). From these weights, matrices
of alternative weights, W′

train and W′
eval, as described by Proposal A, were computed. A

graphical interpretation can be overviewed in Fig. 3.3 of the entire process.
A function describing the difference, or distance, between the ground truth and a com-

pound weight matrix is stated (3.1). This function’s minimum on (α, β) ∈ R2 as well as
β = 0, α ∈ R was evaluated (see Fig. 3.2),

f (α, β) =
∑
u∈U

∑
v∈U

(wGT (u, v) − (αw(u, v) + βw′(u, v)))2. (3.1)

This essentially compares the weights in a standard weight matrix W with that of the
WGT, simultaneously comparing the compound weight matrix W∗ with the WGT . The
reason a factor of α is present in both cases, is because there might be a difference in
for instance mean value in the matrices. These differences are not interesting, as what is
relevant to a kNN is the proportions of the weights in a row or column. Adding a factor of
α gives the script full freedom to fit the matrices together, without changing the internal
order or proportions of the weights.
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3.2 Experiment 1

Percentage of sparseness
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Figure 3.1: Comparison of the fit of W and W∗ to WGT, respec-
tively, over different levels of sparseness. Note the truncated axis.
The sparseness is simply a ratio and the unit of the root mean
square error is the same as the similarity.

The training data set supplied the appropriate values of α and β,while the other set was
used to evaluate the fit, the minimum of (3.1), for β > 0 and β = 0 respectively.

This setup was carried out over a range of sparsity levels. The rating matrices were
sparsed to different levels and the rest of the experiment was carried on. The results are
shown in Fig. 3.1.

One could question how well the WGT describes true similarity. Similarity is difficult
to quantise, or even define in an ordinal way. It can however be thought of as whatever
metric results in the overall best neighbourhood selection. As the neighbourhood is used
to create rating predictions, whose corresponding errors should be low, it is reasonable
that choosing them based on the lowest average squared error will result in low average
squared prediction errors. As more data is available if the matrix is dense, this should
result in a similarity matrix that is as accurate, in the sense described above, as possible.
The values of α and β used in the calculations in Fig. 3.1 are shown in Fig. 3.2.

The optimal values of β seem to lie above zero, except in extremely sparse situations.
This is reasonably interpreted as it being the result of having very little data present and
overfitting (or even rank deficiency). The previous positive values of beta indicates that
there is useful information in the matrix W′, and that this is not a case of overfitting data,
because of the additional parameter. These values of the coefficients were chosen because
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3. Experiments and Results

Percentage of sparseness
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Figure 3.2: The chosen (optimised) values of α and β.

they result in the best fit in training, and they do indeed result in a better fit to WGT than if
β had been fixed to 0, when evaluated on an validation set.

As one can see, the estimated optimal values of β look somewhat noisy over the span of
sparseness, so the fit could have been better with an averaged, smoothed, series of values
in the evaluation.

There does not really appear to be a trend (increasing β) as maybe one would hope and
expect.

The NNN-made weight matrix seems to be more coherent with the ground truth ma-
trix than how much the standard kNN weight matrix is, which is promising for the NNN
algorithm. They do however appear to converge as the sparseness of the data gets higher.
There is a small gap between the error values at low sparseness, that then gets smaller and
smaller as more data is removed. Ideally the case would be the other way around, as high
sparsity is a problem in recommender systems. Nevertheless, the values corresponding to
the NNN is consistently lower, justifying a further look into the potential of Neighbours’
Neighbours.
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3.2 Experiment 1

R
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W
′(1)
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W (1)
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W (1)
GT =

αW + βW ′

R(2)
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W (2)
eval

W
′(2)
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GT

W ∗
eval =

αW + βW ′
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Split set

kNN

NNN

make data sparse

kNN

NNN
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Figure 3.3: Flow chart describing process in Exp. 1. First a dense sub-
matrix is created from the original data (Rdense). The data set is split into
two sets (Rtraining and Revaluation. Entries are removed from the training
data to make it more sparse (Rsparse) before the similarity metric is ap-
plied, the result is W (1)

train. The W (1)
train is run through the NNN algorithm

and W
′(1)
train is created. From the block named Rtraining the similarity met-

ric is applied again to produce the W (1)
GT . A least squares fit is used to

compute α and β values in the bottom left block. Next the evaluation
data is used (Revaluation). Entries are once again removed for a higher
sparsity and the similarity metric is run (W (2)

eval). The same NNN algo-
rithm, as for the training data, is then run to get the W

′(2)
eval. The α and β

from the training set is then used to calculate theW∗. From the Revaluation
a W (2)

GT is created. The difference (RMSE) is then calculated between the
W∗ and W

′(2)
GT , as well as for the W (2)

eval and the W (2)
GT , to see how well the

new weights versus the standard ones fit with the ground truth matrix.
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3. Experiments and Results

3.3 Experiment 2
This experiment intended to investigate possible improvements, made by the NNN, of the
performance in predicting actual ratings. The four alternative weight proposals, as de-
scribed in the last chapter, were used in the NNN algorithm. The benchmark was the
standard kNN algorithm.

The same dense data set as used in Experiment 1, in Sec. 3.3, was used here. Half of
it was used to tune parameters (α and β) and the other half was used for the evaluation
(the exact same values as shown in Fig. 3.2). That data was made sparse by removing
the last made ratings, to different sparseness levels, and these ratings were later used in the
evaluation, to compute the error/difference between these actual values and the predictions
of them. The standard averaging rating estimator, as described in (2.9), was used. The
value of k was set to 5 by considering the size of the data set.

The result is shown in Fig. 3.4. The capabilities of the NNN looks very promising.
They do not seem to improve the performance when the rating matrix is on the denser side,
but appears to be better in high sparsity. Some of the methods seemed to be performing
well, others not much differently to the standard kNN.

Nevertheless, this justifies a further look into the performance of the NNN. This was
however done on a very small rating matrix, unrealistically small for most applications.
As the method of sparsing the rating matrix, as well as partitioning the ratings for the
validation set, were based on removing the fraction of the ratings made after a certain
point in time, it was not possible to cross validate the performance. In hindsight, removing
ratings like this is probably not more realistic than uniformly randomly removing them.
Furthermore, one could have switched the parameter calibration set and the set used for the
run. It does however seem appropriate to move on to a bigger data set, and that is exactly
what was done in Experiment 3.
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3.3 Experiment 2
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Figure 3.4: Performance on the rating accuracy, calculated over
an interval of rating data sparseness.
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3. Experiments and Results

3.4 Experiment 3
This experiment investigates the effects of weighing in the W′ when making predictions
on reasonably big data sets. TheMovieLens "1M" (one million ratings) set was used. This
set was split into four sets (to have some to work with and one for validation). The rating
matrix was simply divided into quarters and any empty rows or columns were removed.
This resulted in four rating matrices that were about 3000 by 2000 in size. One of these
matrices was used to run this experiment. Some of the ratings were removed randomly
to give the resulting matrix a sparseness of circa 99% (and the removed ratings were later
used for evaluation). The standard weights W were calculated. An option to create W′

was chosen and W∗ was calculated according to,

W∗ =W + βW′ (3.2)

for values of β in the range [−0.05, 0.50], with an increments of 1/100. These different
W∗-matrices were then used in the rating estimation, and resulted in a prediction matrix
and a corresponding value of total error for each value of β tested. The pairs of values for
β and the total prediction errors were then analysed, to see if the optimum (the beta value
resulting in the minimum error) was significantly higher than zero, and to get an idea of
the magnitude of the improvement (error reduction).

Again, the IRMSDwas used as a similarity measure and the averaging rating estimator
(2.9) was used. The value of k was set to 40 based on an evaluation of the distributions of
the number of ratings the items had. Furthermore, a run was made with the standard kNN
algorithm, and the optimum value of k appeared to be somewhere in that range. The total
error was quite constant in the range between 20 and 50. However, only one simulation
was made of this. The value of l in Propsal C was set to 3, as this seemed reasonable and
did not require time for optimisation.

The results has some variability to them so a cross validation was made, by running it
ten times in a Monte Carlo fashion, to get different random divisions and different outputs
that was averaged to get a smooth and more accurate curve. This is shown for the different
proposals in Fig. 3.5, Fig. 3.6, Fig. 3.7, and Fig. 3.8. The interval includes some negative
values of β, which was chosen with the intention of investigating the consequences of
removing what was considered useful information. Further more, it is necessary if one
wants to identify an optimum at β = 0, that is the original kNN.

Note the truncated vertical axis. Somewhat disappointingly, a value of β > 0 does
very little to improve the total error, though the optimum is clearly an improvement, for
proposal C, see Fig. 3.7. For the simulation involving proposal A, there is a very small dip
in error, for β > 0.

The statistical significance of the indications of these simulations is discussed in Sec. 3.4.1.

3.4.1 Testing of hypothesis
To evaluate the significance, the individual Monte Carlo simulations were looked upon.
The results are plotted in Fig. 3.9, Fig. 3.10, Fig. 3.11 and Fig. 3.12, intended to illustrate
the variability in the simulations.
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Figure 3.5: Rating prediction errors, using proposal A. The ver-
tical axis shows the resulting root mean squared error. The values
of β are the fractions of the added alternative similarity weights.
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Figure 3.6: Rating prediction errors, using proposal B. The ver-
tical axis shows the resulting root mean squared error. The values
of β are the fractions of the added alternative similarity weights.
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Figure 3.7: Rating prediction errors, using proposal C. The ver-
tical axis shows the resulting root mean squared error. The values
of β are the fractions of the added alternative similarity weights.
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Figure 3.8: Rating prediction errors, using proposal D. The ver-
tical axis shows the resulting root mean squared error. The values
of β are the fractions of the added alternative similarity weights.
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Figure 3.9: Rating prediction errors, using proposal A.
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Figure 3.10: Rating prediction errors, using proposal B.
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Figure 3.11: Rating prediction errors, using proposal C.
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Figure 3.12: Rating prediction errors, using proposal D.
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3.4 Experiment 3

A B C D
βcomp 0.1 0.1 0.1 0.1
MC1 0.0071 0.0309 0.5730 -0.0042
MC2 -0.6502 0.0865 0.3262 -0.0619
MC3 -0.7303 -0.0199 0.5983 -0.1294
MC4 -0.4177 0.2236 0.4236 0.0620
MC5 -0.3809 0.0678 0.4316 -0.0431
MC6 -0.6351 -0.1695 0.3153 -0.2148
MC7 -0.3057 0.0093 0.7696 0.0111
MC8 -0.4475 0.3415 0.6623 0.1379
MC9 -0.5508 0.2491 0.2671 0.0322
MC10 -0.5167 0.0550 0.3900 0.0641

Table 3.1: Showing the differences in each Monte Carlo simula-
tion for Proposal A - D for β = 0.1 compared to β = 0. Values
shown were scaled by a factor 103.

Onewouldwant to test whether the results that indicated an improvement (lower RMSE)
by using β > 0 were due to chance. A way to do this is to compare the difference in RMSE,
between the values corresponding to β = 0 and β = βcomp respectively. How βcomp is chosen
is discussed in details below. For a simulations, for one proposal, there are 10 individual
runs. We test the hypothesis:

H0: The difference RMSEβ=0 − RMSEβcomp is equally probable to be positive as nega-
tive.

Against the alternative hypothesis:

H1: The difference RMSEβ=0 − RMSEβcomp is more probable to be positive than nega-
tive.

The distribution of the outcome (number of runs where the difference is positive) is
then binomially distributed. For the simulation involving Proposal C, the probability that
the outcome would be what it is, or more extreme (which does not exist), is one in 210,
which equals 0.000977. This p-value certainly seems low, but as this is dealing with a
multiple testing problem, the significance level needs to be adjusted. One way of doing
this is by using the Bonferroini correction [4]. The experiment-wide significance level α
can be adjusted by setting the equality in (3.3).

α ≤ k · α{one comparison} (3.3)

For a level of significance, α = 0.05, a the new threshold for a single test would be
0.0125 as there are four tests (k). The test of Proposal C certainly achieves that, as its
p-value is lower. Sadly this is not true for the other proposals. Thus the null hypothesis
can be rejected while maintaining a familywise error rate of 0.05.

It is however mentionworty that H0 is not equivalent to saying that the expected value
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3. Experiments and Results

of a RMSE-result is the same for evaluations at β = 0 as β = 0.1. Assuming that the
distribution of these realisations of the RMSE is non-skewed however, it is implied by H0.

βcomp was chosen to be 0.1. This may seem unfair, looking at the plots of some of the
other proposals. There is however the problem that the information that was available about
the effects of β was the same information that the tests were supposed to run on. What
is left then, is to base it on a hunch. It would be interesting to choose the here observed
minima as values for βcomp, and run new simulations (preferably on a new data set, e.g.
another quadrant) where the hypothesis tests would be made again. This has however not
been done, due to time constraints. But there is at this point at least one conclusion one
can draw about one of the proposals, and some soft information in the results.

Another noteworthy assumption that is made for the hypothesis test is that the success
of the NNN was independent for each round. This is almost true but not quite. The ratings
were not removed randomly, but the percentage to be removed were removed from each
row (which preserves the proportions of the distribution of the number of ratings made by
users). Any columns that became empty were removed.

3.4.2 Further results
Themain results are presented above. But some additional runs weremade on variations of
the algorithm. An item based recommender was tested (which only involved transposing
the original rating matrix before using it as the input). A recommender using the cosine
similarity metric (1.2) was used, in place of the IRMSD (1.5). Also, four runs were made,
similar to the main runs in the previous section, using the weighted rating estimator (1.8)
in place of the averaging one (2.9). The results are shown in Fig. 3.13, Fig. 3.14, Fig. 3.15
and Fig. 3.16.

These last two figures 3.17 and 3.18 were just added as bonus simulations, just to see
how they turned out, without having any indication that these specific combinations would
be good or bad.

All of these appear to have promising results. The weights may be improved in the
sense that they aid the regression problem, when using them in the rating estimator, more
than the usefulness they have in choosing a neighbourhood.
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Figure 3.13: Rating prediction errors with weighted rating esti-
mator, using proposal A.
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Figure 3.14: Rating prediction errors with weighted rating esti-
mator, using proposal B.
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Figure 3.15: Rating prediction errors with weighted rating esti-
mator, using proposal C.
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Figure 3.16: Rating prediction errors with weighted rating esti-
mator, using proposal D.
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Figure 3.17: Rating prediction errors with averaging rating esti-
mator, using the cosine similarity and proposal C.
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Figure 3.18: Rating prediction errors with averaging rating esti-
mator, item-based, using proposal D.
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Chapter 4
Conclusions

The results in Experiment 3 shows that one of the proposals, Proposal C in Sec. 2.3, has
a positive effect on the prediction accuracy. The total error is lower when the algorithm
uses a value of β > 0 compared to β = 0. The improvement is small, but is statistically
significant, according to the reasoning in Sec. 3.4.1. The measured improvement here is
about 1 h.

It is important to bear in mind that this is not an improvement made on a nearest neigh-
bour algorithm that has first been tuned to push the limit of the RMSE down. In reality,
pre-processing using rating normalisation, just to name one, would certainly be explored
to optimise the recommender. However, if the step that is the NNN can improve a simple
algorithm like this, it is reasonable to think that it can improve, more or less, an algorithm
that has been well adapted to a specific problem.

As there is an improvement when the averaging rating estimator (2.9) is used, this indi-
cates that the neighbourhood that is chosen (i.e., the neighbours that have positive weights)
has changed, and that this new neighbourhood is better, if only slightly. Furthermore, the
fact that there is an improvement when the weighted rating estimator (2.9) is used could
depend on that the neighbourhood is better. But as the improvement is seemingly larger
using this estimator, it suggests that the actual values of the weights are more appropriate
when making the weighted average. However, the improvement is very small. This is rel-
ative to, for instance, how much of an effect a change in the level of sparsity can have on
the errors. There are essentially two steps to the kNN, and there is the problem of knowing
where the bottleneck is. This thesis has focused on improving the first step, the one that
orders the users in the neighbourhood, which has yielded a very small improvement. The
second step, the ratings estimator, could be further investigated, which has only lightly
been touched upon in App. A.

It is possible that the weight matrix is most often almost as good as it can be. In fact,
a quick test run was eventually made (based on Experiment 2) where the ground truth
matrix, WGT, replaced the weight matrix calculated from the sparse rating matrix - and
did not yield a noticeably better result.
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This was of course, again, under certain circumstances, but it is still reasonable to think
that an available perfect theoretical similarity matrix will not be the bottleneck, when there
are few ratings available for an item, or the neighbours are not very similar, even if you
know exactly how similar they are.

It would be preferable to find the subset of users that actually make best use of theNNN
part; however, due to the absence of patterns, as far as this thesis work has identified, no
further investigation was made other than looking at the number of neighbours users had
and their improvements. It turned out that the users on both sides, both those that improved
and worsened their scores the most, had the number of neighbours in the same range,
rendering the results inconclusive as to whether patterns were present or not concerning
the number of items the users had rated.

A special case where the NNN-algorithm is hypothetically better to the standard kNN
is when a user has rated only a few unusual items (items with few rating) but has one
neighbour that has rated these items, and rated them similar to the user in question (which
would imply a high similarity score, that is also trustworthy). When the user in question
takes out a neighbourhood to create an estimate of one of her unrated items, she only
has one "good" neighbour and only a few other ones with positive similarity weights -
weights that might be inaccurate. In this case, the "good" neighbour that is accurately close
possesses weights to other users, where these weights could be good proxy variables for
what the similarity should be for the user in question. These similarity weights would then
be used to take into account ratings made by users who the user originally (inaccurately)
had an estimated zero-similarity with. However no proof has been found or provided in
the thesis for this and the hypothesis is so far only speculative.

The method for sparsing the rating matrices that was used in Experiment 1 and 2 ren-
dered a problem. The method was simply to remove the most recently made ratings, based
on their timestamps. One problem was was that the MovieLens database is a fairly old one
(from the 90’s) which meant people did not watch a movie and then rate it immediately
afterwards (as today for HBO or Netflix) but rented physical copies of movies and rated
them after possibly having watched many of them. The data was furthermore collected
over several years. When ratings were removed by time, entire user profiles were removed
at once leaving only a few users with intact profiles while most were completely or almost
completely removed. This in turn created the scenario described in the previous para-
graph, but where all users, except for a few, had no ratings and thus would get the exact
same estimation. In Experiment 3, however, the ratings were removed at random causing
a more normal behaviour of a sparsed data set than was present in Experiment 1 and 2.
This may be part of an explanation of the results of Experiment 2.

Experiment 3 showed that exploiting user preference similarity transitivity is useful
in that it can yield better predictions. Experiment 1 and 2 are inconclusive as to if this
effect is greater for problems involving higher sparsity. However, because of the thought
experiment above, the transitivity usefulness could shine through more at higher sparsity
levels as information at hand becomes more scantly available.
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Chapter 5
Further work

This chapter contains some ideas for what potential future work this thesis could inspire.
General ideas regarding recommender systems are discussed and one concrete suggestion
is given.

5.1 Discussion
What has been presented in this thesis is a novel way of making use of preference similarity
transitivity in a neighbourhood based recommender system. It has been demonstrated that
some of the methods have some, albeit small, positive effect on prediction accuracy. There
are however most likely more sophisticated and potentially much better methods of doing
this. A natural step to take from this would be to calculate the similarity weights using
several steps through a neighbourhood. Thinking of the users as a big graph with similarity
edges opens up possibilities to reweigh edges using any paths that could be relevant. One
could also include the items, to think of it as a bipartite graph. Essentially, that is what
the data set is, a bipartite graph with two vertex sets, users and items. What the standard
kNN algorithm does, is to create weighted edges within one of these sets by using paths
that goes through the other, and applying a function to the values of the edges of the paths.
This creates the similarity weights. The step of estimating ratings, is in this representation,
a way of creating weighted edges between the two sets in this bipartite graph. The non-
existent edges between a pair of elements in the two sets are created by stepping to the
similar elements in ones own set, and weighing together the values of their edges across
to the element in the other set.

But this has potential to be improved, and this thesis is of course an attempt to do so
in the first part of the algorithm, by re-weighing the edges within one of these sets (users).
However, as stated before, there are some indication that this is not the most crucial step.
Similar ways of thinking could be applied to the creation of the rating estimation - maybe
one could somehow average, weightedly, (almost) all paths one could take between a user
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and an item. That is, the rating by a user of an item could be usedwhen a rating prediction is
made, for a very close user on an item if that item is also very similar to the first mentioned
item.

A first step in an approach based on graph theory would be to consider the W-matrix
as an adjacency matrix. A novel way to create the alternative weights could be to multiply
this matrix by itself, giving rise to a matrix containing representations of the strength
of the paths of length 2 between two users in the graph (the graph that is the users and
the similarity values). This is somewhat similar to proposal C. There are, in retrospect,
many simple alternatives like this that could easily have been tried, and potentially yielded
useful results. The resulting weights could element wise be raised to the power of a number
determined by cross-validation, to become better as weights for the rating estimator. These
suggestions require very few extra parameters in the model, and can potentially have a
significant improving effect on the errors (as the optimal value of the power in this case
is unlikely to be 1) without being prone to over modelling. Tricks like this can potentially
make the choice of a similarity metric arbitrary, which could save computational time.

A piece of potential further work that is close at hand, which was touched upon in
Experiment 3, is to combine the similarity weights conditionally. To have a dynamic β
(and k for that matter) probably results in better predictions, if the functions are chosenwell
enough. It is very possible that the alternative weights could be very useful in situations
where a user has few ratings, maybe mostly ratings done on "rare" items, but also at least
one accurately similar neighbour. To evaluate if a high similarity weight has confidence
to it may be important, as one can have a high estimated similarity to another user that
is mainly due to chance. Separating user-item pairs where the NNN is advantageous and
disadvantageous respectively, is a classification problem in itself.

5.1.1 A concrete piece of work
One concrete suggestion for a future project would be to implement for instance the Netflix
grand prize winning algorithm (from 2009) and add the NNN similarity weight reevalua-
tion step, to the neighbourhood based part of the algorithm. Running it on the same data
set, for a range of values of β (just like Experiment 3) would potentially answer whether
exploiting user preference similarity transitivity is useful, if these methods would be a way
to do that. Obviously, running these algorithms using the simplest form of a kNN does not
provide evidence for the usefulness of the proposed method, as they would not be used
anyway. That is why it would be important to evaluate the proposed methods, the pro-
posals of NNN, on a specific algorithm that is fairly up to date and has the potential to be
used. One important thing to consider is the sparseness of the data and the size of the data
space (number of items and users), as the Netflix data set was more dense than 1% entries
and the number of users and items were 480000 and 18000 respectively [3]. There may
be other current uses of a kNN (that are used on less data) which could be used to answer
whether the NNN proposed in this thesis has a practical role.
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Appendix A
Exploring the alternative regression ba-
sis for the rating estimator

This appendix contains a short discussion about the regression made, using the ratings
made by the neighbours in the neighbourhood, to predict ratings.

Making rating predictions is often made by using a weighted average of the sorre-
sponding ratings in ones neighbourhood,

r̂ui =
∑

v∈Ni(u)

wuv∑
v∈Ni(u)

|wu,v|
rvi, (A.1)

where wuv commonly is the Cosine Vector between the ratings made by user u and
user v respectively. This is however a completely heuristic option of choosing weights for
the regression. It makes sense that the ratings made by users that are deemed similar on
the rest of the ratings give more weight in the rating estimator. But what if one were to
try to optimise these weights? A suggestion of an attempt was made in (2.10), which is
a constrained way of doing it. One could also try to set it up as a standard sum of least
squares problem. As the kNN has two main steps to it (computing neighbourhoods and
estimating the ratings) and the main part of this thesis explores the first of these steps, some
work was put into investigating the latter step as well. This did however not yield results
that were organised enough to be presented here, but the thought presented just above here
can hopefully inspire a discussion, and maybe an experiment, in the future.
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Appendix B
Matlab Code

Listing B.1: Function that computes the W ′ from the proposals in
section 2.3.

1 function Wprime = NNNprime (W, option )
2 % Wprime = NNNprime (W, option )
3 % Options :
4 % 'A ' - Proposal A
5 % 'B ' - Proposal B
6 % 'C ' - Proposal C
7 % 'D ' - Proposal D
8
9 n = size (W ,1) ;

10 Wprime = zeros ( size (W));
11
12 if( option == 'A ')
13 for u = 1:n
14 [~ , sorted ] = sort (W(u ,:) , ' descend ')

;
15 x = sorted (1) ;
16 for v = 1:n
17 if(v == x)
18 Wprime (u,v) = W(u,v);
19 else
20 Wprime (u,v) = sqrt (W(u,x)*W(x

,v));
21 end
22 end
23 end
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24 end
25
26 if( option == 'B ')
27 for u = 1:n
28 [~ , sorted ] = sort (W(u ,:) , ' descend ')

;
29 x = sorted (1) ;
30 for v = 1:n
31 if(v == x)
32 Wprime (u,v) = W(u,v);
33 else
34 Wprime (u,v) = W(x,v);
35 end
36 end
37 end
38 end
39
40 if( option == 'C ')
41 l =3;
42 sumweights = 1/ sum ([l : -1:1]) *[l : -1:1];
43 for u =1: n
44 [ sortedweights , index ] = sort (W(u ,:) ,

' descend ');
45 for v =1: n
46 Wprime (u,v) = sumweights *W( index

(1: l),v);
47 end
48 end
49 end
50
51 if( option == 'D ')
52 for u = 1:n
53 [~ , sorted ] = sort (W(u ,:) , ' descend ')

;
54 x = sorted (1) ;
55 for v = 1:n
56 if(v == x)
57 Wprime (u,v) = W(u,v) ^3;
58 else
59 Wprime (u,v) = W(u,v)*W(u,x)*W

(x,v);
60 end
61 end
62 end
63 end
64

50



65
66
67
68 for i = 1:n
69 Wprime (i,i) =0;
70 end
71
72 end

Listing B.2: Function that creates the final weight matrix W ∗.
1 function Wstar = Wcombine (W, Wprim , alpha , beta )
2
3 Wstar = alpha *W+ beta * sqrt ( Wprim );
4
5 end
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