Exploiting user preference similarity
transitivity in nearest neighbour
recommender algorithms

Johan Malmberg Magnus Oinert

August 3, 2015.

LUND UNIVERSITY

Master’s thesis work carried out at

the Department of Mathematical Statistics.

Supervisors: Prof. Sgren Vang Andersen, Dr. Stefan 1. Adalbjérnsson

Examiner: Prof. Andreas Jakobsson

Abstract

This thesis explores the Nearest Neighbour recommender algorithm and a
proposed way of recomputing the elements of a set, containing values from
a similarity metric. In essence, this extends the neighbourhood used in the
algorithm by making use of close neighbours’ neighbours. This proposal is
motivated by the hypothesis that high user preference similarity is transitive.
A programme was implemented in Matlab, and one of the MovieLens data
sets was used. Three experiments were run. These indicated that further ex-
ploration of this property and the proposed methods could be of interest. The
final experiment was run on the simplest form of a Nearest Neighbour rec-
ommender, with the added re-computational step, and suggests that there is a
small, but statistically significant, improvement due to this new step (for one
of the proposed methods) confirming the hypothesis. The improvement of the
errors of estimated rating predictions were in the order of magnitude 0.1 %.

Keywords: Recommender systems, Recommender algorithms, kNN, Nearest Neigh-
bour, MovieLens, Collaborative Filtering.

Acknowledgements

We would like to thank our research group at Lund University; Dr. Stefdn Adalbjornsson,
Magnus Orn Berg, Prof. Sgren Vang Andersen, Prof. Andreas Jakobsson, Johan Sviird,
Ted Kronvall and Simon Burgess, for interesting discussions and valuable feedback. We
would further like to thank QuanoX S.a.r.]l. for a valuable business cooperation. Addi-
tionally, we thank GroupLens at the University of Minnesota for conveniently providing
much needed data. Finally, we say thank you to our beloved friends and family, for having
helped us get to where we are.

Contents

(L__Introduction|

(1.2.3 History of recommender systems|.
(1.2.4 Techniques|

13

The Nearest Neighbour-algorithm|

(1.3.1 The standard algorithm|.
(1.3.2 User- and item-based recommendations|

[2° Nearest Neighbour’s Neighbours|

PR

The hypothesis|

)

Primary similarity weights|

n3

Creating alternative similarity weights|

2.3.1 Proposal A|o
2.3.2 Proposal B| o
2.3.3 Proposal C|o
2.3.4 Proposal D|
[2.3.5 Properties of the alternative weights|

!

Combining the weights|

.41 Alinearcombinationl
[2.4.2 Combining conditionally|

n3

Estimating the ratings|, .

[2.5.1 Standard kNN rating estimation method|
2.52 Further alternativesl

3 Experiments and Results|

B1

Implementation| oo

17
17
18
18
18
19
19
19
19
20
20
21
21
22
22

23
23
23

CONTENTS

3.1.2 Parallelisationl.
(3.2 Experiment 1|
(3.3 Experiment?2|
3.4 Experiment3|
[3.4.1 ‘Testing of hypothesis|
B.42 Furtherresults 0.
@ Conclusions
S Further workl
0.1 Discussionl.
[5.1.1 A concrete pieceof workl L.

A Alternative regression basis|

B~ Code Snippets

43

45
45
46

47

49

Chapter 1

Introduction

Two roads diverged in a wood, and I-
I took the one less traveled by,
And that has made all the difference.

- Robert Frost, The Road Not Taken

"Recommender Systems are software tools and techniques providing suggestions for
items to be of use to a user"” [2].

Recommender systems are found on numerous websites on the Internet. Companies
like Amazon, CDON, Youtube, Google, and Netflix use recommender systems. Whenever
you see a "people who bought this also bought: " or "you might also like this: " on a web
page those are recommendations based on your previous actions; may it be a view on
Youtube or a deal on Amazon. By incorporating what a user already has seen, bought or
rated (referred to as a user having consumed an item) the system is designed so that it can
predict what a person will watch next, wants to buy or will rate.

Recommender Systems are mostly implemented to:

¢ increase user satisfaction,

* better understanding what a user wants,
¢ increase the number of items consumed,
* exploit the full inventory [2].

This chapter introduces recommender systems as a concept. What makes a recommen-
dation good or bad is discussed, as well as an overview of neighbourhood based methods.

7

1. INTRODUCTION

1.1 Introduction to thesis

Chapter [I] introduces what a recommender system is, with an explanation of notations,
some history and older techniques. The Nearest Neighbour algorithm is also described in
this chapter.

In the next chapter, chapter [2] a new algorithm is proposed that explores the possi-
bilities of making use of the property of preference similarity transitivity in the Nearest
Neighbour algorithm. The chapter describes different alterations of the new proposals that
will be explored. Chapter 3| focuses on experiments conducted on the new proposals ex-
plained in chapter [2] also covering the data used in the process. In chapter @ conclusions
are drawn from the outcome of the experiments. In chapter [5| future work is discussed as
to what could be further explored down this path.

1.2 Recommender systems

1.2.1 General definition of recommender systems

A recommender system’s purpose is to make inference about the level of appreciation by
a user of an item, that has not had any previous interaction, typically by generating useful
personalised suggestions of some kind of items to users, based on the users’ preferences
[6]]. The items in question could be songs, news articles, restaurants, movies, or as they
often are: consumable products. A user is a human individual. The input to the recom-
mender system is information of previous interactions between users and items, consisting
of implicit consumption behaviour or explicit ratings. The outputs are lists, one for each
user, of items that by a heuristical justification is believed to be appreciated by the users.
Alternatively, or equivalently, the output can be a prediction of the consumption behaviour
or ratings made by the users on the items. The focus in this thesis is rating estimation.

1.2.2 Notation

Items is the general term which denotes what the system recommends to users, e.g. books,
songs, wines etc, and Users simply correspond to the individuals that receive recommen-
dations, e.g. a personal account on a web based music streaming service. Ratings refers to
what some of the users thinks of some of the items, in terms of appreciation, e.g. number
of times a song has been played by a user or number of "stars" given as a rating to a movie
by a user (implicit and explicit ratings respectively).

Let U be a set of users and I a set of items. We are given a set of ratings R € {S}
where S is the set of possible values a rating can take (scores). As the ratings r € R exists
for pairs of user and item, a rating by a user u € U on an item i € 7 is denoted r,;.

To identify the subset of users that have rated an item i, we use the notation U; .
Likewise, 7, represents the subset of items that have been rated by a user u. The similarity
weight between a user u and user v, calculated by applying a similarity metric s(u, v), is
denoted w,, or alternatively w(u, v).

When designing a recommender algorithm, we essentially seek to create a function
f U XTI — S thatis trained on the set R and will be able to create a set of predicted

[UIX|T]

1.2 RECOMMENDER SYSTEMS

ratings, R, for those pairs (u, i) for which r,; does not exist.

The ratings are often most represented as a matrix, where each column corresponds to
an item, and each row a user. Typically this matrix is sparse, as it only has entries in those
places that correspond to an already made rating,

Items
R = Puriv - Vuria - Tuyi (1.1)
Tiwsiv Vwsiy Vunis Users
Fusiv - Tusip Tusiz

1.2.3 History of recommender systems

The earliest recommenders that were made, back in the early 90s, utilized information
retrieval techniques [6]]. Information retrieval was considered as a large database, with
text based items, which was queried. By investing a lot of time indexing the database for
meta information and content occurrence, the most adequate items could be returned. This
demanded static content, or information that did not change often, which today could be
considered more or less a search engine. Term frequency - inverse document frequency;
the frequency by which a term appears in a text given the number of times it appears in
the corpus, was often used to establish how relevant an item was [2].

Recommenders evolved from there into handling non static content, i.e., handling
content changing from day to day such as newspaper articles [6]]. To adapt to this, rec-
ommenders built preference profiles for the users that were static instead of the content.
Thereby the cost changed from indexing the data to creating the profiles. These profiles
could be matched with the new information, filtering the content. At first these profiles
were done by hand, but as time passed it turned into a machine learning process where the
algorithm created the profiles. This is a way of making recommendations using meta data
and are thus content based recommenders, which is discussed below in section[1.2.4]

In turn this development of recommenders lead to what today is known as collaborative
filtering; where a user’s preferences are more elaborate than just a few key words. As it
easier to know if content belongs to a topic but harder if it belongs to a certain taste, profiles
thus became better at screening the data. Today collaborative filtering is the dominating
method in the recommender system industry [2]].

1.2.4 Techniques

Content-based recommenders

Content based filtering is the most intuitive approach to giving recommendations to a
user [2]]. This works by finding items with similar characteristics to that of those already
rated by a user. This approach can predict fairly accurate recommendations to a user by
simple mathematics. One way of doing this is by constructing a vector x; for an item an
informative schema is set up for that item describing its characteristics and the nature of
that item. Similarly a vector x, is set up and is assumed to contain information about each
user, seen as a preference profile. The profile for a user can be updated whenever a new
rating becomes available to the system.

1. INTRODUCTION

Essentially content based methods need some human made classification and profiling
of what an item is and creates a personality-containing vector of how these profiling ele-
ments are perceived to a user. Alternatively, this classification could be made by specific
machine learning algorithms, for instance using audio analysis when classifying music.

Collaborative filtering

Where as content based algorithms are useful, these only pick up on the characteristics of
a user and thus will recommend items similar to what has already been consumed [7]. A
user will not ever be recommended non-related items. Another approach is preferred in
order to increase the diversity, and the serendipity ', of the recommender system.

Collaborative filtering algorithms, in their simplest form, presume nothing about the
characteristics of the items or the users in the system [2]. The only input is a set of rat-
ings and the output is personalised recommendations. This is the core purpose of a rec-
ommender system, that it can tailor suggestions depending on the receiver, aiming to do
better than an unpersonalised top list.

Collaborative filtering essentially takes into account how items are rated by different
kinds of users, and fills in the gaps by predicting the scores of the missing ratings so that
these fit into the model. For collaborative filtering there are two main methods that are
used, the neighbourhood- and the model-based methods. This thesis will focus on the
neighbourhood based method and how to improve the existing algorithms.

The nearest neighbour is one of the earliest collaborative filtering algorithms [2, 7].
It is still popular due to its simplicity and sufficiently good performance. It is also cost
efficient in terms of computations [2]]. Furthermore, it has some additional benefits such as
being able to justify its recommendations: "others also looked at". The nearest neighbour
algorithm is discussed in detail in the next section.

1.3 The Nearest Neighbour-algorithm

One collaborative filtering algorithm, central to this thesis, is the Nearest Neighbour al-
gorithm (kNN). Neighbourhood based algorithms work much in the same way as peoples
own intuitive way of creating recommendations [2]]. To create predictions for a user’s ap-
preciation of an item, one finds a neighbourhood of users that are similar in preference to
the user in question, based on mutually rated items. The ratings made by the neighbours on
the item in question can then be used to make a prediction. These algorithms filter through
all the rating data and create predictions without knowing anything about the properties of
the items, or anything about the user’s preferences. The aim is to create recommendations
that are better than just suggesting overall popular items - i.e., recommending items that
would be rated highly, specific to a user.

I'Serendipity refers to a user finding an interesting item, through a recommendation, that she or he would
not have discovered otherwise.[2]

10

1.3 THE NEAREST NEIGHBOUR-ALGORITHM

1.3.1 The standard algorithm

There are two main steps to creating recommendations in the kNN-algorithm. The first
step is to calculate similarity values between users (or items, if it is item based) using
the existing ratings. The next step is to create rating predictions, commonly using those
similarity values together with the existing ratings. These steps are described in detail
below. A user-based system is described, which is what is used in this thesis work (see

section [[.3.2).

Similarity measure

To be able to choose a neighbourhood when estimating ratings, one needs a similarity mea-
sure. The similarity measure is used to compute a value that is an estimation of how similar
two users are in preference personality (or items are in similarity, if the recommender is
item-based).

There are several commonly used measures: cosine vector, Pearson correlation and
inverse root mean squared difference (IRMSD) [2]. The cosine vector similarity (1.2),
considers users’ ratings as vectors in a high dimensional space, where the items are the
dimensions, and calculates an (almost) analogous angle between these users in a subspace
of mutually rated items. The similarity calculation becomes:

20 Tuil'vi
ry-r, i€l
s(u,v) = = , (1.2)
lrullz NIl 2 2
“ Ve Z rui Z rvj
iel, jel,

where ||-|| is the L,-norm.

The Pearson correlation is the linear correlation between two users taking the effects of
mean and variation into consideration (1.3)), the Pearson correlation will give a similarity
range between -1 and 1. This is different from the other metrics mentioned here, which
could potentially have an improving effect on the prediction results.

Z (rui_fu)(rvi_fv)

i€l

S (=Pl 3 (ray = 7P

i€l, JjerI,

(1.3)

where 7 is the mean value of all ratings by user r.

The final metric, IRMSD (L.3), is the inverse of the root mean squared difference, with
the alteration that only the common items are considered.

The root mean squared difference, is defined in (I.4). The similarity metric used in
most of the work in this thesis is the inverted root mean squared difference with a slight
modification (1.5)),

11

1. INTRODUCTION

) Z (rui _rvi)2
d _ iel,nl, 14
(u,v) Nl (1.4)
0 f|ll,NI|=0
s(u,v) = | i1 | . (1.5
d(u,v)+e else

A term, €, is added in the denominator, to avoid computational problems should the
distance be zero. The value of € was set to 1. This introduces a bias in the estimation of
"true" similarity, but avoids the singularity. The magnitude of it does however not change
the internal ordering of any user’s neighbours. Should there be no mutually rated items,
i.e |, N I,| = 0, the similarity s(u, v) was set to zero.

Many different similarity measures exists in the literature and the cosine vector is com-
monly used. However, the measures seems to be quite correlated and have similar perfor-
mance effects [7,10]. As mentioned above, the IRMSD has been the similarity measure
mostly used in this thesis, partially because it is easy to work with non negative numbers.
These similarities are used as weights in the algorithm, and a similarity s(u, v) is denoted
w,,. These weights can be represented in a user-user matrix. An example is shown below

Users
W — Wu1u1 Wuluz Wu1u3 (1 6)
Wuqu Wuzuz WM2M3 US@I’S

Wisur Wiz, Wuzus

Note that the term metric is used as the colloquial meaning of a measurement, and not
in the sense of the mathematical definition (distance function).

Rating estimation

The input needed to create estimates/predictions of ratings is the similarity weights as well
as the original ratings. To create a rating estimate for a user « on an item i, the weights of
u are first sorted by size in descending order. The weights of « is meant as the weights w,,
for every user v € U \ {u}, i.e., the weights that signify the similarity between u and the
other users. This corresponds to a row, or equivalently a column, in the weight matrix W.
This weight matrix is simply the set of weights organised in a matrix, where the weight
w,, 18 the element on the uth row and vth column.

The next step is to look at which users have rated the item in question, 7, and use the
ratings made by the k nearest users (in terms of highest similarity) that have also rated i to
create an estimate. This essentially means that you look for other people who historically
have had similar preferences to a certain user, and use their ratings on an item to estimate
the value of a hypothetical future rating done by the user in question on that item. There
are a few ways of creating the rating estimates. One is by simply averaging the k nearest
ratings, i.e.,

12

1.3 THE NEAREST NEIGHBOUR-ALGORITHM

. o
= DL T (1.7)

veN;(u)

where N;(u) is the neighbourhood, a set of users that have rated item i and are the
closest in similarity to u. The cardinality is k, if possible, and smaller if less than k users
have rated the item.

One can also create the rating estimate as a weighted average of the neighbours’ ratings,
using the similarity weights,

Z Wyil'yi
veN;(u)
Fui = —————. (1.8)
“ Z |in|
VEN;(u)

The value of k is normally chosen by cross-validation, tuning it by testing different
values on the data already available. Values above 50 are often used, but this may vary
between different recommender tasks [7]].

Example
The Godfather | Star Wars IV | Schindlers List | Casablanca | LotR III
Johan 2 1 5 5 4
Sgren 4 ? 1 ? 1
Magnus 2 ? 3 4 1
Andreas 5 1 5 3 2
Stefan 1 4 3 4 1

Table 1.1: Table showing ratings for five users and five movies

An example is shown in Table[I.T] A rating of 5 means the user loved the movie, 1
means a user disliked the movie, and a ’?” means the movie has not yet been consumed or
rated by the user. If Magnus want to known whether or not to consume Star Wars Episode
4, he can do that by using collaborative filtering on the data available. The order of the
neighbours to Magnus in preference similarity are Stefan, Johan, Andreas and Sgren, given
by (1.4). For a value of k = 2, the estimated predicted rating for Magnus and Star Wars
IV would be the average of Stefan’s and Johan’s ratings, which is 4%1 =2.5.

Standard improvements

Normalisation of ratings is a further development that is not specific to neighbourhood
based algorithms but one that is commonly used when looking to improve one. It is a way
of pre-processing the rating data and compensating for differences in ways users use the
rating scale [2, 8]. A common way of doing this is mean centering the ratings for the users,
that is, subtracting the users’ rating means off the raw ratings. This simply means that the
recommender takes in the pre-processed ratings, and gives an output which is estimations
of the transformed ratings, to which the mean will be added back on. A raw rating r,; is
transformed to a mean centered rating A(r;),

13

1. INTRODUCTION

h(rui) = rui = Tu, (1.9)

where 7, is the mean of all of user u’s ratings. One can also mean centre around the
item averages, in which case r, is just substituted for r; above. The recommender runs the
transformed ratings, and the predictions are then transformed by the inverse, 2!, to create
the final ratings: 7y = i~ (h(ru)).

A way of developing this further, that in a similar way to mean centering accounts for
variability is called z-score normalisation. This normalises the mean centered ratings in
the aspect of their variance. The transformation is,

Ty =Ty

h(rui) = ’ (110)

u

where o, is in practise replaced with the estimated variance of the ratings made by
user u. This can be developed further, such as the pre-processing transformations used in
the Netflix algorithm [9].

Sophisticated improvements

The kNN algorithm was one of the first algorithms proposed [7]] and is still used because
of its simplicity and adequately good accuracy. As this has become an extensive field of
research, the state of the art has (in most cases) become other techniques. There is however
still a case for kNN-like algorithms’ possibility of outperforming other algorithms. A 2014
paper published at the ACM conference || made the case for a neighbourhood based algo-
rithm called Unified Nearest Neighbour that outperformed the current matrix factorisation
techniques on some commonly used data sets [11]].

The cold start problem

One specific problem is to create estimations when a new user, enters the system [2]. This
is know as the cold start problem. As this user has made no (or very few) ratings, one
does not have much to go by when calculating similarities. The cold start problem is
not specific to neighbourhood based algorithms. The proposed methods in chapter 2 may
be able to handle this situation well. Another, simple, way of dealing with the problem
is to use unpersonalised top lists in place of personalised recommendations. This is a
convenient and fairly effective way of recommending items to new users, but it may not
give an impressive first impression of the recommender system in question.

1.3.2 User- and item-based recommendations

User- and item-based kNN-recommenders are two methods with the same goal, to predict
how much a user will like an item. One is based on the relation between users and the other
is based on the relation between items [2]. A conceptual comparison would be if a user
asked its friends, who are known to have similar preferences, for recommendations for a

2 Association for Computer Machinery

14

1.3 THE NEAREST NEIGHBOUR-ALGORITHM

book to read (User-based) versus if the basis for the evaluation of the book is how much
you like books that are considered (rated) the same as the book in question (Item-based).

The posed question here is usually when one should use one or the other, and the answer
depends on the ratio between the number of items and users, among other factors. If there
are more users than items, item-based is usually preferred as less memory is required to
store the W-matrix while the complexity is none the less the same [2]. Another aspect
to weigh in is the rate at which new items or users arrive, if content is changing on an
everyday basis a user-based recommender might be better and vice versa.

The advantage of using a user based recommender is that it builds up a neighbourhood
of users for you and have a higher probability of recommending serendipitous items to a
user as that kind of information can be caught in the behaviour of a users neighbourhood.
The diversity of the items recommended can be much higher, as an item based recom-
mender focuses on the similarities between items. However, a user based recommender
tends to not create as accurate recommendations leaving a larger error margin for the pre-
dictions. An item based recommender on the other hand does produce better and closer
predictions of items, but is not very good at serendipity. Item based recommenders tend
towards producing a homogeneous result set; that is, if a user likes action movies - action
movies will be suggested. A difference between how the methods are used is in how the
systems justifies the recommendations. An item can be recommended because it is similar
to an item a user has consumed (item based). An item can be recommended because other
users who are similar to the users in question have liked it (user based).

15

1. INTRODUCTION

16

Chapter 2
Nearest Neighbour’s Neighbours

There are many methods one can apply to improve the standard kNN -algorithm for specific
uses, such as rating normalisation and wisely choosing the rating estimator. This chapter
presents a novel idea on how the accuracy of the kNN-algorithm can be improved by using
an intuitively reasonable idea. The idea is based on the hypothesis that high user-user
preference similarity is transitive.

2.1 The hypothesis

One important step in the kNN recommender system is to estimate similarities between
users by appropriately assigning pairs of users with similarity weights, which are used to
create the neighbourhoods. The resulting similarity weights, w,,, are usually represented
in the matrix W, where user u and user v correspond to a row and a column respectively.
The matrix has no values on the diagonal (users’ similarities with themselves) and are also
potentially "missing" values elsewhere, for pairs of users that have no common rated/con-
sumed items. The (estimated) similarity is then said to be zero.

One can think of this as there being some kind of true similarity between users, and
the computation of the weights is an attempt to estimate these similarities. Because of the
sparseness of the rating matrix, these estimations might be very poor, for some users. The
algorithm step proposed in this chapter, which is really a reweighing of the neighbours,
attempts to improve those similarity estimates.

In fact, this matrix is a representation of a graph. More specifically, an undirected and
weighted graph. Itis a general example of an adjacency matrix. An intuitive way of think-
ing about the graph is that people to different degrees are similar to each other (the graph
is complete; all similarity edges are present, though some are incorrectly estimated to be
zero). However, there are several possible paths to take between two users if one allows
the path length to be longer than one edge long, and when estimating user similarities on
real data this leads to certain discrepancies. If user A gets a high similarity value to user B,

17

2. NEAREST NEIGHBOUR’S NEIGHBOURS

and B has a height similarity value with C, then it is still very possible that the estimated
similarity between user A and C is low, due to estimation uncertainty, when they in fact
likely have similar preferences. This "noise" could potentially be reduced by making use
of other paths other than the direct edge between two users. The way to do this that is
presented in this thesis, is from here on referred to as the Nearest Neighbours’ Neighbours
(NNN).

2.2 Primary similarity weights

The proposed algorithm will rely on the standard similarity weights, which we call primary
weights. These primary weights were created in accordance with what was described in
section [[.3.1] using the inverted root mean squared difference (I.5). This matrix, or set
of weights, is the fundamental building block for the rest of the algorithm. The idea is to
still primarily use these weights, but weigh in a "correction term" that might improve the
performance of the algorithm. We still denote these primary weights, as w. The set of all
weights, organised in a user-user matrix, is denoted W.

2.3 Creating alternative similarity weights

A few options when creating alternative similarity weights were tested. The equations in-
clude three users, u, x and v; where u is the user in question (the users whose similarity
weights we wish to update), x is the closest neighbour to u# and v is the user to whom the
distance from u is estimated.

The proposed justification for this method is that the closest neighbour’s neighbour-
hood would include information that user u did not possess. If a u and x have an overlap
of a few items while x and v have another set of overlap, then v’s ratings could be used to
predict the ratings for items u have not consumed.

In all of the below proposals, x denotes the closest neighbour to u, i.e.,

x = argmax w(u, y). 2.1
yeU

2.3.1 Proposal A

The first proposal is to construct a weight for a user # by multiplying the weight to their
closest neighbour with the weight between the nearest neighbour and the user to whom one
is estimating the similarity to. The (square) root of this is used as the alternative weight,
as it should in a sense recreate the appropriate variability (and magnitude) in the weights,

(2.2)

w(u,v), v=x

, {\/w(u,x) Xw(x,v), v#x
w(u,v) =

18

2.3 CREATING ALTERNATIVE SIMILARITY WEIGHTS

The latter factor w(x, v) simply acts as an indicator of similarity between u and v, and
the factor w(u, x) makes the alternative weights higher when that similarity is high, that is
when the neighbours u and x are very close to each other in estimated preference.

2.3.2 Proposal B

This proposal is similar to the first one, but possibly more intuitive and simple. One simply
substitutes a user’s weights for that user’s closest neighbour’s weights. The idea is that
most users have at least one close neighbour, whose weights would be almost as indicative
of similarity to other users as ones own weights:

W) = {w(x, V), V#X 2.3)

w(u,v), v=2x ’

2.3.3 Proposal C

This proposal is to make a weighted average of a user’s / closest neighbour’s corresponding
weights,

1
Y+ 1—i)Xw,,
=1

w(u,v) = = z (2.4)
>U+1-10)
i=1
where x; is the i closest neighbour to u, i.e., x; is the same as x above, and
x; = argmax w(u,y) (2.5

YEUN{xi-1,...x1}

fori > 1.

2.3.4 Proposal D

The last proposal just sets the alternative weight to a reweighing of the standard weight:

W) = {w(u, V) X w(u, x) X w(x,v), v#Xx 2.6)

w(u, v)? V=X
A property of the weights in this set is that a weight w’(u, v) is zero if w(u, v) is zero. It
thus does nothing to order the user pairs’ weights that have zero similarity according to the

primary weights. The higher power results in a sharper discrimination between original
weights that are low and high.

2.3.5 Properties of the alternative weights

Note that these weights are not invariant to direction, i.e., w;, is not necessarily the same as
wy,,. The alternative weight matrix is not symmetric. Hopefully, these alternative weights

19

2. NEAREST NEIGHBOUR’S NEIGHBOURS

ul |121152
u2 1513142
u3 2142542

Figure 2.1: Example of a situation where two users are most likely
very similar (#; and u3) but do not share any mutually rated items

X

Vn-2

Figure 2.2: Representation of the similarities being calculated us-
ing a simple path.

is a good indicator of the true preference similarity - as the primary weights are. Realisti-
cally, no two users/people are the same, and thus it would introduce bias when weighing
in another user’s weights. However, calculating a similarity weight is merely an estimate
of true preference similarity, so if the offset that the bias introduces is low, compared to
the noise of the estimated similarity, one can still expect to gain in accuracy. The time
complexity of this step is O(n?) where n is the number of users.

The weights that are used for the experiments are non-symmetric. One could argue that
similarity is undirected, but the similarity weights are however used when a neighbourhood
is c