
Overview browser for PalCom assemblies

Vatan Bytyqi, Jonas Jinbäck

MASTER’S THESIS | LUND UNIVERSITY 2015

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2015-43

Overview browser for PalCom assemblies

(A Master’s Thesis at Lund University)

Vatan Bytyqi
ada10vby@student.lu.se

Jonas Jinbäck
ada10jji@student.lu.se

September 10, 2015

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisor: Boris Magnusson, Boris.Magnusson@cs.lth.se

Examiner: Görel Hedin, Gorel.Hedin@cs.lth.se

mailto:ada10vby@student.lu.se
mailto:ada10jji@student.lu.se
mailto:Boris.Magnusson@cs.lth.se
mailto:Gorel.Hedin@cs.lth.se

Abstract

Internet of Things (IoT) has become a frequent subject mentioned worldwide.
PalCom is a system for handling the problems that occurs in IoT applications
and is focused on the user groups that are developers and skilled PalCom par-
ticipants. This forecloses a higher level user group for managing their own
PalCom network, e.g. end users for a smart home where they build their own
smart home manager with PalCom.

In this Master’s Thesis we came up with a solution for a tool that shows an
overview of an assembly and that is able to edit such an assembly. The assem-
bly is used to create and manage the devices in the network. The evaluation
was done by letting people try our solution and the old one and then compare
the results.

Keywords: IoT, PalCom, overview browser, assembly editor, smart home

2

Acknowledgements

We would like to thank Boris Magnusson for his guidance throughout the work and for
providing us with material that we weren’t able to get. We would also like to thank Mattias
Nordahl and Björn A. Johnsson for their help in working and making changes in PalCom.
Lastly we would like to thank all the persons that were willingly to participate in our
experiment. Thank you all for your contributions that made this work possible.

3

4

Contents

1 Introduction 7
1.1 Problem statement . 7
1.2 Method . 8
1.3 Related work . 8
1.4 Approach . 9

1.4.1 Scenario experiment . 9
1.4.2 Smart home scenario . 9

1.5 Work responsibilities . 10

2 Background 13
2.1 Internet of Things (IoT) . 13
2.2 PalCom . 14

2.2.1 TheThing . 15
2.2.2 BrowserGUI . 15

3 Previous work 17
3.1 Assembly editor . 17

3.1.1 Devices . 17
3.1.2 Services . 18
3.1.3 Connections . 19
3.1.4 Script . 19
3.1.5 Synthesized Services . 20

3.2 PalCom overview browser (OVB) . 21
3.3 Control Builder Diagram Editor - ABB editor 21
3.4 If This Then That (IFTTT) . 22

4 New assembly editor with implementation 25
4.1 Assembly editor . 25

4.1.1 The workspace . 26
4.1.2 Variable handler . 29

5

CONTENTS

4.1.3 Synthesized service handler . 29
4.2 Services . 30

4.2.1 Philips TV service . 31
4.2.2 Tellstick service . 31
4.2.3 Linocell bluetooth camera shutter service 32

4.3 Graph implementation . 33
4.3.1 Java classes used from Jgraphx 34
4.3.2 Java classes from Palcom . 34
4.3.3 Java classes created . 34
4.3.4 Xml to graph . 36
4.3.5 Graph to xml . 36

5 Evaluation 37
5.1 Overview . 37
5.2 Create assembly . 39

5.2.1 The scenario setup . 39
5.2.2 Scenario experiment . 40

6 Discussion 43

7 Future work 45

8 Conclusion 47

Bibliography 49

Appendix A Manual for describing the devices and their services 53

Appendix B Manual for describing BrowserGUI 55

6

Chapter 1
Introduction

This chapter provides a brief introduction to our Master’s Thesis at Lund University. We
will describe the problem and the background to our work. This chapter also presents how
the responsibilities were divided between the two authors to complete this Master’s Thesis.

Internet of Things (IoT) is a very hot topic worldwide and there are many and increas-
ing devices that has enabled connectivity in all areas - industry, healthcare, private homes
etc. (more information about this can be found in section 2.1). A system that enables all
these connected devices to communicate is required and currently there are some solutions
developed for accomplishing these tasks. One of them is the PalCom system developed by
universities for over 10 years. The PalCom project was initiated in 2004 and funded by the
European Commission, within the Society Technologies priority in the Sixth Framework
Programme, for four years [3]. After these four years PalCom has been funded and devel-
oped mainly by Lund University consisting of professors, PhD students, Master’s Thesis
students etc. The PalCom system has been designed with the end-user in mind, but the
focus of the implementation work has not yet been on these aspects and in particular a
more intuitive GUI for end-user-composition was necessary. This has led to a Graphical
User Interface (GUI) that is difficult to handle for people outside the PalCom development
team.

1.1 Problem statement
PalCom is mainly handled by the professors and students developing the system. The im-
plementation is in most cases not carried out by the people using it but rather by a PalCom
developer. To open up the opportunity for other people, not the PalCom developers, to con-
nect the devices and make them communicate with each other, one need to have a system
that is easy to handle and to interact with.

There is also a problem for the PalCom developers when they make connections. The
problem is the lack of an overview of what the connections look like when there is a system

7

1. Introduction

consisting of many devices. The developers often need to draw on paper how the system
works since it is difficult to determine it by the current GUI.

The problem can be divided into two separate problems which require the same so-
lution. Therefore, it is convenient in this case to do one master thesis for solving two
problems.

1. It is difficult for non-technical users to create an assembly without a proper intro-
duction.

2. It is impossible to get an overview of how devices are connected in a PalCom as-
sembly.

Transforming these problems into questions that we will be answering with our thesis
will be:

• How can non-technical users create an assembly without a proper introduction?

• How can PalCom users get an overview of how devices are connected by applying
the same solution as for the first question?

1.2 Method
In this thesis similar editing tools and design approaches that can solve the stated prob-
lems will be evaluated, see chapter 3. The implementation of the new developed editing
tool during this thesis will then be based on the result of our previous evaluation. To fi-
nally evaluate the new editor and compare it to the old solution an experiment of a smart
home scenario (see section 1.4.2) will be conducted. In the scenario experiment the time
efficiency of the new editor will be measured, i.e. if the new editor is more time efficient
regarding users understanding how to create an assembly. In simple form the method will
be:

1. Evaluate similar tools

2. Implement a solution

3. Do an experiment on real test subjects with the two editors to see if problem 1 is
solved

4. Evaluate and compare our editor with the old assembly editor to see if problem 2 is
solved

1.3 Related work
There has been a previous overview browser [13] for PalCom but it is not compatible with
the current PalCom version, v3.1.12. This overview browser only solves one of the prob-
lems, namely the problem for palcom developers to get an overview of the assembly. It is
nevertheless possible to use this overview browser as a starting point in this thesis for solv-
ing the problems. The thesis is highly dependent on the work in the doctoral dissertation

8

1.4 Approach

by David Svensson Fors[4]. His thesis dissertation provides all the required information
regarding the assemblies and all the functions that the GUI needs to support to be fully
functional for PalCom.

1.4 Approach
Initially the authors will commence by stripping down the current PalCom editor to get all
the parts that the new editor needs to support. To solve the problems the previous browser
solution, that enabled an overview, will be studied and on similar solutions used in other
systems that solves the stated problems. To get an understanding if the developed solution
in this thesis is better for non-technical users an experiment will be performed, see section
1.4.1, on some random test persons.

1.4.1 Scenario experiment
One way to verify the work in this thesis and its improvement over the previous solution
is by applying some kind of measurement. The selected measurement that fulfills the re-
quirements of this thesis is the amount of time it takes for the test subjects to accomplish
a task, see section 1.4.2. The task will be conducted by the random test persons by us-
ing both the previous editor and the new solution, followed by comparing the time results
and lastly extracting an evaluation based on that. This will provide the conclusion if there
are any improvements and simplifications of the new editor. In comparison, by only con-
ducting observations and interviews of random persons to receive data for evaluation is
difficult, due to the reasons that measuring feelings and thoughts can result in skewed and
ambiguous results.

1.4.2 Smart home scenario
Internet of Things is wide spread also in home appliances. There are Smart TV’s, con-
nected refrigerators, connected light bulbs and much more. This is not what every home
has installed today, but the trend is going towards that every home will be connected. In
the experiment conducted in this thesis, it will be shown how PalCom can be used in a real
home scenario with some connected devices. The scenario consists of:

• 40" Philips Smart TV [14]

• 2 Tellstick on/off switches [11]

• Linocell Bluetooth camera shutter [9]

• Regular lamp for the living room.

All the devices are going to be used according to their manufactured purpose, i.e. the
TV is going to display a channel, the switch is going to turn on/off some lights etc. One
exception is the Linocell camera shutter, which is a bluetooth device that is connected to a
smart phone to take pictures remotely. This device will be used as a button to trigger some
event in your home.

9

1. Introduction

The scenario is as follows:
You come home from work and have an hour to rest before you need to cook dinner.

This is something that you do everyday. When you enter your home you have a physical
button (Linocell device) on the wall near your kitchen and living room. When you push
button number 1 on the Linocell device a reaction is started in your home

• The light in the living room is turned off (if it was off from the beginning nothing
will happen).

• The TV in your living room is turned on and set to your favorite channel which is
SVT2 in channel 2 (SVT1 is in channel 1 and TV4 is on channel 3).

After an hour you feel it is time to start making dinner. Then you leave the living room
and on your way to the kitchen you pass by that button that initialized the reaction earlier
(started the TV, etc.). But this time you push button number 2, which causes another
reaction in your home

• The TV is turned off.

• The light in the living room is turned on.

Now you have the energy to make dinner.

1.5 Work responsibilities
The two authors have been involved on all aspects within the scope of this thesis. Never-
theless, a division of the main responsibilities and the parts where each has contributed
the most can be made following.

Vatan was responsible for the following parts

• Development

– Data structure for the new GUI
– Function for creating Synthesized Services
– Function for creating variables
– Creating a service for the Bluetooth device

• Report

– Overall structure
– Chapter 1 - Introduction
– PalCom overview browser in 3.2
– ABB Editor in 3.3
– IFTTT in 3.4
– Solution of services in 4.2

10

1.5 Work responsibilities

Jonas was responsible for the following parts

• Development

– Creating Graph manager, which can be divided in a backend and frontend part.
– Connecting graph to the new assembly script
– Creating a new service for TellStick
– Creating services for the Philips TV

• Report

– Chapter 2 - Background
– Assembly editor in 3.1
– Graph implementation in 4.3

The following parts are where both have contributed equally and are equally responsi-
ble of:

• Development

– Handling the scenario experiment

• Report

– Solution of PalCom editor 4.1
– Evaluation
– Discussion
– Future work
– Conclusion

11

1. Introduction

12

Chapter 2
Background

This chapter will describe two major subjects in order to help the reader understand the
contents of this master’s thesis. The first subject to describe is Internet of Things (IoT) and
what problems have emerged regarding this. The next subject is PalCom, which solves the
problems emerged with IoT. Two PalCom programs will be used in this thesis, TheThing
and BrowserGUI. Therefore, a description of these two programs will be embraced in this
chapter as well.

2.1 Internet of Things (IoT)
The Internet of Things (IoT) is an expression that emerged during the time when RFIDwas
growing as a technical field and RFID devices began to connect to the Internet in 1999
[16]. IoT means that physical devices create a network with other devices so that they
can exchange data with each other. The possibility for many devices and sensors to send
data over the Internet opens up opportunities to create advanced distributed systems with
many different sensors/devices from different manufacturers. These networks of physical
devices can react when things happens in the physical world and notify each other of the
changes to perform different tasks in tandem.

The problem, however, is that even though the devices can be connected to Internet
and other networks, they are not constructed to communicate with each other. There must
be a mutual protocol so that everyone understands how to communicate with the devices.

The applications of IoT can be in almost every field. When you have a network con-
nected device with low CPU and power it can be made cheaply and portable to put any-
where. The devices can be used to send data for monitoring natural ecosystems or even
buildings and factories to help improve resource usage. IoT is used for environmental
monitoring to assist in protection of water and air pollution by collecting data and send-
ing it to a main controller. It is also used for infrastructure management in large cities to
assist in traffic or warn about dangers in the area. Another growing area is in healthcare

13

2. Background

where IoT is used for monitoring a patient’s health remotely. The doctors simultaneously
follow a large sample of patients’ health conditions without forcing the patients to leave
their homes.

Today we think of IoT also as Ambient Intelligence (AmI), even though AmI doesn’t
require any Internet connection. But we expect that our connected devices should be smart
enough and together with other connected devices learn patterns and help us in our every-
day life. This is a vision of the future in consumers electronics, telecommunications and
computing. But this future is present, considering the vast amount of smart smoke detec-
tors and alarm systems by NEST and others.

2.2 PalCom
PalCom is a system that tackles the problem that has emerged since IoT has become a
reality. PalCom is an abbreviation of Palpable Computing which is a concept for comput-
ing that will make technologies a lot easier to understand, use and to construct on the fly.
Palpable computing is about constructing IT that is easy to grasp, modify and understand
also for users that are not software developers.

PalCom began as a project from the European Union and was funded by the com-
mission for four years [3]. After that it was continued by Lund University and is now
applied in the areas within the academic world and in hospitals where different devices are
connected to monitor a patient’s health remotely. The remote monitoring in healthcare is
an area growing rapidly within PalCom. Therefore, a separate project named itACiH[6]
emerged to be able to fulfill the demands required within this area.

PalCom is now an open source architecture developed in Java for making different
devices on different datatransferprotocols (bluetooth, IP etc.) to be able to understand each
other and communicate. The PalCom architecture creates an application layer for the users
so that all devices are represented equally even though they run in different protocols. This
enables the users to only see the relevant part and make seamless integration of devices to
build up their distributed system.

The core components in the PalCom architecture consists of:

Devices corresponds to physical hardware or software that are thought of as objects. A
device has one or more services. They have a unique ID in the PalCom network and
the device will automatically be discovered when it is connected through its default
network connection (bluetooth, LAN, etc.).

Services have commands that can either receive or send. These are the commands that
are presented to the user so they can easily interact with the device.

Connections is the function that allows communication between services. If there is no
connection established between services on different devices there can’t be any com-
munication.

Assemblies are user defined rules and actions that tells which services are connected and
how they should behave together. These are created as a script by using an XML
editor or by using the Assembly Editor, see section 3.1. When you have created an

14

2.2 PalCom

assembly you need to load it into PalCom, this can be done with TheThing or with
the BrowserGUI.

2.2.1 TheThing
TheThing is a middleware where users can load assemblies and stand-alone services.
These are loaded as class files or jars and will then be available for users to interact with
through the BrowserGUI 2.2.2. TheThing is a Java program with a GUI, see figure 2.1,
and it will show up as a device in the PalCom network for other services to interact with
it.

A very neat feature in PalCom is that it is possible to make two PalCom devices in
different networks located in the opposite corner of the planet to be visible as if they were
on the same network. By creating an IP tunnel between TheThing and another TheThing
or BrowserGUI it will be possible to call the services running on the different places seam-
lessly.

Figure 2.1: TheThing running a service called "BluetoothBtnPal-
ComService"

2.2.2 BrowserGUI
The BrowserGUI is a manager for creating a complete distributed system that is easy to
grasp and overview. It is a java program that uses the Palcom system to find connected

15

2. Background

devices, run assemblies, create IP tunnels to other Palcom networks etc. The GUI can be
divided into three major parts:

Devices are shown as number 1 in figure 2.2. This area displays the current devices visible
in the PalCom network and their status. It is also possible to see what services the
devices are running and which commands that can be used for each service.

Assemblies are located at number 2 in figure 2.2. This area holds the scripts created with
this Browser and whether they are running or not. There can be multiple Browser-
GUI’s in the PalCom network but it is not possible to see what assemblies the other
browser has created. The assemblies are stored locally and will show up every time
when the BrowserGUI starts but an assembly can run on other PalCom devices as
long as the device has support for executing assemblies even if it hasn’t created it or
can’t create assemblies.

Assembly editor is located at number 3 in figure 2.2. This is where you will edit an as-
sembly that you have created. Furthermore, this is the area which causes the defined
problems in our thesis. We will thoroughly explain the editor in the next chapter.

Figure 2.2: The BrowserGUI with three major parts; 1. Devices,
2. Assemblies and 3. Assembly editor.

16

Chapter 3
Previous work

In this chapter some existing tools will be described and in what way their design approach
can be used to solve the defined problems from chapter 1. The mentioned work here will
set the base of the solution in the next chapter.

A definition of the main parts in the current assembly editor that the new solution needs
to support will initially be presented. Followed by examining the old PalCom overview
Browser and an ABB editor to see what can be useful to the new solution for solving the
stated problems. Furthermore, the design approach (IfThisThenThat) will also be exam-
ined in order to extract what can be useful for this thesis.

3.1 Assembly editor
The current PalCom editor will be stripped down in order to find some core parts that the
new editor also must support to be useful in real situations.

A Palcom Assembly is represented in XML format and is also managed and saved in
that format. The existing Assembly editor have two different ways to view an assembly.
The assembly can be viewed as a tree, as seen in 3.1 , or directly as the underlying XML
code as seen in fig 3.2. The tree view of the xml provides a better overview than the xml
view but the xml view provides more flexibility to the user. However, with the downside
of increased risk of error.

The assembly consists of five main parts; Devices, Services, Connections, Script and
Synthesized Services as seen in fig 3.1.

3.1.1 Devices
The device section of an assembly consists of every Palcom device that are to be used in
that assembly. It contains the name of the device as well as its device id. The underlying
XML for an example device has the following layout.

17

3. Previous work

Figure 3.1: An overview of an assembly’s tree view in the current
PalCom assembly editor

Figure 3.2: An overview of an assembly’s xml representation in
the current PalCom assembly editor

<DeviceDec l>
< I d e n t i f i e r i d =" GeotaggerCamera " / >
< i s t . palcom . r e s o u r c e . d e s c r i p t o r . Dev iceAddress >

<DID id =" C:43749ba6 −6495−4e9b−b028 −120374182845 " / >
< / i s t . palcom . r e s o u r c e . d e s c r i p t o r . Dev iceAddress >

< / Dev iceDec l>

3.1.2 Services
The services node contains all services that are used in the assembly. Each used service
is assigned a unique id within the assembly for references of the service in the connec-
tions and eventhandler described later. The underlying XML layout for a service has the
following format:
<Se r v i c eDe c l >

< I d e n t i f i e r i d =" s9 " / >
< S i n g l e S e r v i c eD e c l r u i d =" f a l s e ">

< I d e n t i f i e r i d =" Photo " / >
<DeviceUse>

18

3.1 Assembly editor

< I d e n t i f i e r i d =" GeotaggerCamera " / >
< / DeviceUse>
<SIID i n =" 1 ">

<SID cd i d ="X:1 " cn="TF37 " ud id="X:1 " un="TF37 " / >
< / SIID>

< / S i n g l e S e r v i c eD e c l >
< / S e r v i c eDe c l >

3.1.3 Connections
In the connections node all connections to the used services are set. The assembly need
the connections to enable communication to the corresponding service. A connection is
also assigned a unique id within the assembly like the services were. A connection has the
following XML layout.
<Connec t i onDec l c i d =" conn−2">

<Se rv i c eUse >
< I d e n t i f i e r i d =" s9 " / >

< / Se rv i c eUse >
<Th i s S e r v i c e / >

< / Connec t i onDec l >

3.1.4 Script
The Script node contains variables that are used within the assembly as well as even-
thandlers.

Script - Variable
The variable node inside script contains all the local variables which are to be used within
this assembly. A variable holds a name and a type. The XML layout for a variable has the
following format:
<Va r i a b l eDe c l t ype =" image / j p eg " i d e n t i f i e r =" imageVar " / >

Script - Eventhandlers
In the handler node all event triggers are handled and it is defined what corresponding
actions that should be triggered.

An event can be triggered by either a service from a device or a synthesized service
(described later) within the assembly. The triggering command can contain zero or one
parameter. A trigger command has the following format:
<CommandEvent commandName=" photoTaken ">

<Se rv i c eUse >
< I d e n t i f i e r i d =" s9 " / >

< / Se rv i c eUse >
<CmdI i d =" photoTaken " he l p =" S i g n a l s ␣ t h a t ␣a␣ pho to ␣was␣ t a k en " d i r e c t i o n

=" ou t " commandNumber=" 2 " / >
< / CommandEvent>

19

3. Previous work

In this case it’s a trigger without a parameter from a service in a device. The other types
have a slightly different appearance.

There are three types of actions that can be triggered from a commandevent. These are
the following:

• AssignAction that assigns a value on a variable from a parameter in the comman-
devent. The AssignAction contains a variablename to be used as well as a parameter
name which refers to the parameter name from the triggering command.
<Ass i gnAc t i on v a r i a b l eU s e =" imageVar " paramUse=" img " / >

• MessagAction which triggers a command on a service. MessageAction contains a
commandname, a serviceid and optionally a ParamUse or VariableUse. Command-
name refers to the command which should be triggered in the used service which in
turn is refered by the internal service id in serviceUse. ParamUse or VariableUse
is added if the command takes a parameter. ParamUse refers to the param from the
triggering command and VariableUse refers to a variable in the current assembly
where the value will be fetched.
<SendMessageAct ion command=" s t o r e P i c t u r e ">

<Se rv i c eUse >
< I d e n t i f i e r i d =" s12 " / >

< / Se rv i c eUse >
<ParamUse name=" img " / >

< / SendMessageAct ion>

• InvokeAction triggers a command on a synthesized service. InvokeAction is much
like theMessageAction but is used for synthesized services instead of a service from
a device. It contains a SynthesizedServiceUse which refers to a synthesized service
and a command that refers to a command in that specific service. InvokeAction also
contains an optional ParamUse or VariableUse that works exactly the same as above
in the MessageAction.
< InvokeAc t i on command=" img " add r e s s i n gType=" ">

<Syn t h e s i z e dS e r v i c eU s e >
< I d e n t i f i e r i d =" syn t h2 " / >

< / Syn t h e s i z e dS e r v i c eU s e >
<Va r i ab l eUse name=" imageVar " / >

< / I nvokeAc t i on >

3.1.5 Synthesized Services
This section contains all synthesized services in this assembly. A synthesized service is
a virtual service with its own commands which are defined by the assembly. The synthe-
sized service contains an id, commands and groups which contains other groups and/or
commands. The xml layout for a synthesized service has the following layout:
<Sy n t h e s i z e d S e r v i c e d i s t r i b u t i o n =" 1 " RemoteConnect=" f a l s e ">

<SD id =" syn t h2 " he l p =" ">
<CmdI i d =" img " he l p =" " d i r e c t i o n =" i n " commandNumber=" 1 ">

20

3.2 PalCom overview browser (OVB)

<PI i d =" image " he l p =" " t ype =" image / j p eg " da t aRe f =" 0 " / >
< / CmdI>

< /SD>
< / S y n t h e s i z e d S e r v i c e >

3.2 PalCom overview browser (OVB)
A similar attempt, to obtain an overview of how the assemblies are set up and the con-
nection between the devices, has been made previously. But it has not been made as an
editor for the assemblies but as an overview when all the assemblies are running [13]. This
browser has not been continued and is unfortunately not compatible with the latest PalCom
version, v3.1.12. However, a summary of it will be made in order to examine and select
the parts that will be useful for the new editor.

The OVB focuses on bringing a subset of the overall system and the developing tools
for PalCom to a user group that is non-technical. It allows users to inspect the topology
and some internal states of devices that are connected to the PalCom network. The browser
itself is a PalCom device with an assembly manager that maintains one assembly. This as-
sembly contains two services; Swing Display Service and a Visual Browser
Accomplice Service. These services will then provide the solution for updating the
graphics in OVB in real time. Figure 3.3 shows the graphical user interface of OVB and
the relationship between the services and the assembly that makes it possible for the OVB
to work properly and update all the connections in real time.

Figure 3.4 shows the overview of one example where three devices are used; My
server, My GPS, My camera. These device are then connected to My laptop
through an assembly. The connected services on each device are shown by lines going
from one end to another. If one thinks of a workspace where there are objects on the table
and requires to connect these to each other, they could be wired together. This metaphor
[12] can be used on the OVB as well where there are devices that are connected to each
other with some lines.

3.3 Control Builder Diagram Editor - ABB
editor

The Control Builder Diagram Editor[10], CBDE, is a tool used by ABB [1] for their own
product, AC 800M, which is a Programmable Automation Controller, PAC. A PAC is a
controller used in the process industry to handle digital, serial and analog signals from
different industrial applications and then process that data into some PID algorithm to
control some process in the manufacturing line. The same hardware can also be used in
other fields and not just for process control, but for collecting data, remote monitoring etc.

A PAC uses standard open protocols such as Ethernet to communicate with the differ-
ent applications. Ethernet is something most enterprise computer have support for. This
makes it easy for PACs to be integrated in already running systems.

The editor that ABB has for their PAC is a GUI running on Windows. This GUI is
used to create and monitor control systems for the process industry. Moreover, the editor

21

3. Previous work

Figure 3.3: The overview browser showing the topology of
the OVB device. It shows how the Swing Display Service and
Browser Accomplice Service are connected through an assembly,
VizBrowser3

uses Block Diagram[17] that represents the different functions and algorithms as blocks
and the relationship to other blocks are represented by lines through the ports that can go
in or out, see figure 3.5.

The diagram editor has a workspace on which users can drag and drop objects. Users
can drop the same object multiple times on the workspace to arrange interconnectivity
among objects and each object on the workspace can show different ports going in or out
to save space and make it easier to understand. See figure 3.6 that shows how the same
device is displayed on two blocks and with different ports visible.

3.4 If This Then That (IFTTT)
If This Then That (IFTTT) is a design approach that simplifies for non-programmers to
do chains of conditional statements. This is similar to an IF-statement in all common
programming languages. Today IFTTT is widely used in mobile applications were there
can be a web services that connect other services on your smart phone to do tasks when
some event occurs, e.g. If I post a picture on Instagram, save the photo on Dropbox as
seen in fig 3.7.

22

3.4 If This Then That (IFTTT)

Figure 3.4: The overview browser showing an example of three
devices (My server, My GPS, My camera) in the PalCom net-
work connected through one assembly running on another com-
puter (My laptop).

Figure 3.5: ABB editor with Block Diagram where relationship
between blocks are represented by lines.

In the current PalCom editor we have the same conceptual model where services and
commands on services are triggeredwhen some condition is met in a state. Instead of using
an IF-statement, which tells us that it may or it may not happen, the PalCom assembly
editor uses a When-statement, which tells us when the condition is met to do something
and as result invokes some action. These actions are managed by the assembly editor and
some parallels can be drawn between IFTTT and the contents of the assemblies. The THIS
part in IFTTT is the same as the triggering event in the assembly and THAT corresponds

23

3. Previous work

Figure 3.6: Two blocks for the same device but with different
ports that are visible.

Figure 3.7: If This Then That example where instagram photos
gets saved to dropbox.

to the actions which in Palcom can contain multiple actions instead of single one as in
IFTTT.

24

Chapter 4
New assembly editor with
implementation

In this chapter the emerged new solutionwill be presented, as a result from the observations
in the previous chapter. A description of the features of the final solution is set out, together
with the reason behind the made design choices.

Furthermore, a detailed description is provided on how the converting from a regu-
lar XML description of an assembly to a graph representation in our editor is done and
vice versa. This detailed description will be helpful when future research is conducted on
improvements of the new solution.

4.1 Assembly editor
The new solution must solve both of the defined problems, laid out in the beginning of this
thesis:

1. It is difficult for non-technical users to create an assembly without a proper intro-
duction.

2. It is impossible to derive an overview of how devices are connected in a PalCom
assembly.

To make it easier to create an overview of how the services are connected with each
other, i.e. solving the second problem, a solution that behaved like the OVB is intended.
The OVB has been used in previous PalCom versions and has fulfilled its purpose.

To solve the first problem a conceptual model of how people would think when con-
necting different devices with each other had to be created. The conceptual model that was
used in the OVB and ABB editor follows the natural description. By using a workspace

25

4. New assembly editor with implementation

with devices as objects and allow users to drag lines between commands, thus creating an
experience close to the real world.

The functionality that the previous assembly editor had was taken in consideration
whilst the new solution emerged. This resulted in a GUI, see figure 4.1, consisting of
three major parts:

• The workspace

• Variable handler

• Synthesized service handler

These will be explained in detail further on.

Figure 4.1: Our solution for editing assemblies and obtaining an
overview of the connections. Section 1 contains the Variable han-
dler. Section 2 is the workspace to make connections. Section 3
is the handler for synthesized services

4.1.1 The workspace
The whole solution was thought of as a workspace area where the user grabs devices and
drops them on theworkspace to establish interconnectivity. This enables a natural mapping
to a real physical workspace, where you have your physical devices and connect cords in
between to make some sort of connection. In this new solution the connection between a
service inside a device to another service on anther device was made by simply dragging

26

4.1 Assembly editor

a symbol from one command to another. This results in a better and simplified overview
of the complete system, compared to the existing solution where it is difficult to see how
the system is connected when there are many devices.

By dragging the devices, variables or synthesized services on the drop area a graph
object will be created and displayed on the workspace. Because of limitations in the soft-
ware and libraries a specific drop area had to be used for the objects, see figure 4.2. This
is less intuitive compared to having the whole workspace as a drop area. All the devices
will begin by not showing any service and the users will have to press the + sign to see
all the available services. The users then choose which services they need to use in this
assembly and all the commands will then be displayed in that graph object.

Figure 4.2: Drag device and drop them on the grey marked area
where it says drop device, variable or SS here. All the devices
have their services hidden and the user needs to press the + sign
to choose which services to display.

All the commands that go in to a service are on the left side of the object and all the
commands that go out are on the right side of the object. Each command is displayed with
a name and a circle with a specific color of what type of parameter that command can
obtain or send out (the color description can be found in 4.1.2). To connect a command
that goes out from a service to another command that goes in, the user drags the circle
from out command to in command. See figure 4.3 of how two devices are connected to
each other. If the connection is supported (the parameters are of the same type) a line will
be fixed between those commands, otherwise no line will be fixed and the circle will be
marked with a red border to indicate that this connection cannot be made.

We have three different objects that can be on the workspace; Devices, Synthesized
Services and Variables. To identify an object on the workspace, their name is displayed
on top in bold and each object type has also their specific color. This helps the user to
be able perceive a quicker overview and separate the devices from synthesized services
and variables. If a device is not available in the network, but it is used in the assembly, it
will be displayed as a dark graph object whilst as all the commands and connections still
remain on the workspace. See figure 4.4 for an overview of these types.

A variable has three different commands, see figure 4.5. Two of them that goes in
are set variable and get variable and one that goes out is variable. The
set variable is used to set a value and the get variable is used to trigger when
something happens get this variable and send it to some other command. The command

27

4. New assembly editor with implementation

Figure 4.3: This shows how the AxisCamera has three different
services visible and that it sends a photo from its photo command
to the store command on the Server, which only has one service
available, Photo DB

Figure 4.4: This shows how graph objects display different colors
depending of their type. From left is a Camera device that is not
available on the network but used in the assembly. On top, is an
object that is a variable with the name message. On the bottom, is
an object that is a synthesized service named SS. In addition there
is an AxisCamera device and last a Server device.

variable that goes out will only get the value of the variable and pass it over to a
command.

JgraphX
The workspace could be created by either developing a new graph tool or by using an ex-
isting tool. The latter was chosen due to the time to create a custom graph tool would be to
immense to fit within this thesis. After trying out several different graph visualisation li-
braries (JGraphT, JGraphX), the JGraphX[5] was chosen since it provides the best support
and documentation and is the one which was updated most recently. JGraphX is a Java
Swing graph visualisation library which is platform independent as well as open source

28

4.1 Assembly editor

Figure 4.5: This shows what a variable looks like when it is dis-
played on the workspace. The three commands can be used to set
and get the variable.

licensed under the BSD license. It is a library for visualizing and interacting node-edge
graphs by creating graph objects and adding coordinates for them to place them on the
workspace. It supports many default functions for visualizing different blocks and con-
nections. Our solution is highly dependent on this library and we have had the ability to
customize it for our purposes.

4.1.2 Variable handler
This area of the GUI, see figure 4.6, is required to make the variables that are used in an
assembly. A variable consists of a name and a type (like in a programming language). We
have defined some standard mime types that are used regularly in services and colorized
these in different groups.

• Image types are colored from the blue spectrum

• text types are from black/white area

• audio types are in green

• video types are in red/purple.

When a type, which is not defined in the standard list is used, a random color will be
picked. The predefined color description is always available in the variable area to help
users understand what the colors are used for. When a new variable is created it will get
assigned a color that is defined in the mentioned list. To use a variable (to assign it a value
and read it) the user drags it from the list and drops it on the workspace.

To assign a value to a variable users will only drag the symbol from a service to the
variable. Then that service output will be assigned to that variable.

4.1.3 Synthesized service handler
The Synthesized Service handler, figure 4.7, is very similar to the Variable handler regard-
ing the design. The SS handler is also hidden initially not to confuse the user with to much
functions and buttons. These synthesized services are also more likely to be used by the
more advanced user and therefore does not need to be visible initially.

29

4. New assembly editor with implementation

Figure 4.6: The variables are hidden and displayed by clicking
the big variable bar. A description of what the colors mean and
the ability to create a variable for later use in the workspace can
be found here.

The handler consists of a list where all the created SS are available for that assembly
and a button where the user can create new synthesized services. An SS can be very
complex since it can have many commands in a deep tree structure and this is solved by
creating an object of an SS that contains the same structure as the previous browser so that
the more advance users will feel familiar with the new design.

To use an synthesized service the same approach as in the previous areas has been
followed, where the user drags and drops things to the workspace to make the connections.
This is also done with the SS and when a user drops the service on the workspace they
will see the available commands for that service and initiate the connections.

Figure 4.7: The services are hidden and displayed by clicking the
Synthesized Service bar. Here it is possible to create new services.
The layout of a service is similar to the previous assembly editor
where a tree structure is used.

4.2 Services
To use the devices that were required according to the scenario, they were initially intro-
duced to the Palcom network since they are not directly built for this. A service controller
for Philips TVs and a service for the Linocell shutter device was created. The services for

30

4.2 Services

Tellstick were imported from a previous project, with a minor modification to simplify it
for the users when conducting the experiment.

4.2.1 Philips TV service
This PalCom service can handle multiple Philips TVs, but to add a Philips TV one has to
do this manually with the controller since the service does not support automatic discovery
of Philips TVs. The controller has three methods that can be invoked:

Add TV takes in an IP as a parameter and then adds that Philips TV that is referred by
the IP.

Remove TV takes in an IP as a parameter and removes that Philips TV that is referred by
that IP.

List all TVs lists all the Philips TVs that has been added.

All the added TVs will then be displayed on the network as separate devices with
unique DeviceIDs consisting of their IP. To use the Philips controller service one has to
load the jar-file into TheThing that will run the service. All the added TVs will be stored
in the file system so that every time TheThing is started all the TV devices will appear on
the network.

The Philips devices that are automatically created by the controller have the following
commands that can be invoked:

• Favorite channel 1

• Favorite channel 2

• Favorite channel 3

• Favorite channel 4

These commands will set the TV on the specific favorite channel.

4.2.2 Tellstick service
This service consists of a controller service that will find different tellstick devices (just
like the Philips service). It is loaded by adding the jar into the TheThing that will run the
service. To add devices the tellstick manual[2] has to be followed.

The difference from the previous tellstick service is that when a tellstick device is
visible it will not show up as a service in TheThing but a separate device will be displayed
on the network just like the Philips TV. This will simplify it for the users in the scenario
experiment since they will see every tellstick device as a separate device in the network and
not as services under TheThing. In figure 4.8 the difference of the result that our changes
made is visualized. The left view is the old tellstick service and the right view is the new
one.

The tellstick devices have many commands but the ones of interest are:

31

4. New assembly editor with implementation

Figure 4.8: The old tellstick service added each tellstick device
as a service in TheThing. The new service creates each device as
a separate PalCom device

• turn on

• turn off

These are the only commands that will be used in the scenario experiment for the two
tellstick switches.

4.2.3 Linocell bluetooth camera shutter service
This is a single Bluetooth service that will interact with a Linocell Bluetooth camera shut-
ter. It is loaded by inserting the jar-file into TheThing that will run the service. The camera
shutter is then displayed as a service under TheThing that is running its service. Due to
problems with paring bluetooth devices in the service, the service had to be made to listen
on key presses on the keyboard since the operating system running TheThing did connect
the camera shutter as a bluetooth keyboard. In other words the camera shutter service was
listening for the key presses Return and Volume_up and when the camera shutter was
not connected to bluetooth the service would be unavailable in PalCom.

The service has two commands that go outwards:

• button1pressed

• button2pressed

32

4.3 Graph implementation

These are the event triggering commands that will be listened in our scenario.

4.3 Graph implementation
In this section it will be described how the editor is built and how the different java-classes
are dependent of each other to help any future developer that is going to make any im-
provements. Figure 4.9 shows an overview of the classes in this solution.

Figure 4.9: An overview of the java classes used for the graph im-
plementation. The gray ones already existed in Palcom, blue ones
come from the Jgraphx library and the white ones were created for
this solution.

33

4. New assembly editor with implementation

4.3.1 Java classes used from Jgraphx
mxGraph The graph which AssemblyGraph extends. It represents the graph that is ren-

dered in the workspace and manages all interactions with the graph.

mxCell Represents a single object in the mxGraph. A device, service, command and
command-connection are all represented in the GUI by a mxCell.

4.3.2 Java classes from Palcom
The following existing classes in Palcom were used or modified to support the graph im-
plementation.

AddSynthServiceDialog This class was modified so it has support for opening the dialog
window for adding synthesized services in the graph editor as well.

AssemblyPanel One of the main classes for the complete assembly editor. This class
handles all the switching from the graph editor to the tree editor and to XML view.

4.3.3 Java classes created
The following classes were created to add the graph functionality to the assembly editor.
Each class has a short description of its purpose. The UML over the classes can be seen
in fig 4.9

AssemblyGraphTransferHandler This class handles the drag and drops from the pal-
com tree containing all available devices. It passes the object on to the GraphEditor
which in turn adds it to the graph.

AssemblyGraph This class extends the mxGraph from the jgraphx package. It holds all
graph information printed in the workspace, devices, variables, synthesized services
and events between these. AssemblyGraph also contains an important method that
translates a palcom assembly from a xml string to a graph object with all nodes and
connections belonging to it.

CellConnection A cellconnection is a connection in the graph and represents an event
in the Palcom assembly. This object is used within the AssemblyGraph to create
a connection between two nodes in the graph from the event parsed from the xml
string.

GraphDevice A GraphDevice is a graph representation of a Device or a Synthesized ser-
vice. It holds the graph object displayed in the GUI as well as a root Node containing
the Service(s) in the device/synthesized service. This object is rendered differently
when it’s a synthesized service or an online device or an offline device with some
color variation. GraphDevice objects are created from the GraphEditor when a user
drags a device or synthesized service into the drop area of the workspace. They
are also created when AssemblyGraph are parsing the used devices and synthesized
services from the xml string.

34

4.3 Graph implementation

Node The Node object are stored inside a GraphDevice object and contain nested Nodes
as well as in and out commands. They are the same as a PalCom service. Thus,
containing AbstractServiceDecl as well as the assemblies service id.

Command A command is a representation of a Palcom command and is either an in or
out command. They are stored inside the Node objects corresponding to the service
which the Palcom-command belongs to. These are the objects which the user drags
lines in between to create an event. Commands are created when a Device’s service
is displayed from the add menu or when an assembly is loaded in AssemblyGraph
between the different events.

GraphDeviceView GraphDeviceView is used to render a popup menu where the user can
select some options. It is used when the user wants to add more services from a
device by clicking on the + button inside the device in the graph GUI or when right
clicking a service or device to remove them from the graph GUI.

GraphEditor The GraphEditor class is the hub of the graph GUI. The interactions be-
tween the graph GUI and PalCom are all passed through this class. It contains all
objects which are rendered inside the graph as well as the variables and synthesized
services inside the current assembly. It manages what colors are to be used for the
known and unknown connection types. It creates all objects that needs to exist for
the graph to be rendered which includes AssemblyGraph, GraphDeviceView and
the panels for management of variables and synthesized services. It creates devices
when a user drags them into the drop area as well as services and connections that
the user wants to add. Lastly it creates the XML representation of the graph needed
when changing tabs of the assemblymanager.

GraphObjectPositioning This class contains the positioning data for the GraphDevice
and GraphVariable objects. The data is saved in a new file beside the original assem-
bly file to reduce the chance of error if opened in an older version. When opening an
old assembly lacking this information a counter is used to render the graph objects
on different positions to simplify reading.

GraphObjectsHandler This class is used to parse and create the xml string for all Gra-
phObjectPositioning objects. It contains all current position for the graph objects.
GraphObjectsHandler is initiated from the AssemblyPanel of Palcom before the
GraphEditor object is created.

GraphSynthServiceMenus This class is used to create popup menus for the different
parts in each tree node when creating a synthesized service.

GraphSynthServicePanel This is a JPanel for handling the synthesized services on the
GUI.

GraphVariablePanel This is a JPanel for handling the variables on the GUI.

35

4. New assembly editor with implementation

4.3.4 Xml to graph
The parsing from the xml-string to a graph is done inside the GraphHandler object. The
parsing is done from an existing method parseAssembly inside the class OldschoolAssem-
blyLoader. The .assgraph file (which holds all the positions of every object on theworkspace)
is also parsed containing all devices, synthesized services and variables positions in the
graph. The parser first retrieves all devices and for each one of them searches the PalCom
network if the device is online and adds it as a flag to the GraphDevice objects. If the
device is offline the whole assembly is iterated for all used services and connections for
this device. Otherwise, the device is added the same way as when a user drags it into the
droparea with the additional position information.

The variables are iterated through and if it has a position information from the .assgraph
file it’s added to the graph workspace.

The services are all iterated and added to a list containing all services that are going to
be extended inside the graph GUI.

All synthesized services are looped through and just like the variables, added to the
graph GUI if they have position data from the .assgraph file.

Last the events are iterated. The events consist of a command event that is the trigger
and one or more actions. The graph will create a line from the command event to each
of the actions unless the action uses a value from a variable. If that is the case a line is
drawn to the get variable command on a variable and then another is drawn from
the variable output to the action.

4.3.5 Graph to xml
The generation of the xml-string from the graph workspace is done inside the GraphEditor
object. It loops through the variables and synthesized services from the respective panels
and adds them to the PRDAssemblyVer object. PRDAssemblyVer is a representation
of an assembly that can directly be saved as a xml string. For every device shown in the
graph workspace they are added to the assemblies devices. For every extended node (aka
service) the service is added to the assembly. For every command in the node that have a
connection to another command, an event is createdwith a command event in the assembly.
This also creates a connection for each service used. For every action which points to get
variable on a variable an action event is created for each command connected to the
variable output from that variable.

36

Chapter 5
Evaluation

In this chapter we will evaluate the solution described in the previous chapter. The ques-
tions that needed to be answered in the theses were:

• How can non-technical users create an assembly without a proper introduction?

• How can PalCom users get an overview of how devices are connected in a PalCom
assembly with the same solutions as in first question?

The chapter will begin by discussing how the solution answered the second question (get-
ting an overview). This is due to the fact that to solve both of the problems with the same
solution - a solution to the second question must be found first.

To evaluate the solution regarding question one an experiment with the two editors will
be performed on users who have never used PalCom and don’t know how the editors work.
This is the user group that are not PalCom developers. Thus, it will be an evaluation to
see if the first problem is solved. At first we will describe the setup of the experiment and
then an evaluation on the findings will be conducted.

5.1 Overview
The assemblies are created by dragging and dropping devices on the workspace and the
altered solution is able to load already created assembly scripts to the workspace and dis-
play the devices accordingly as if the assembly was created by the new editor. This means
that support also is provided for already created scripts to be displayed in the new editor.
The connections are represented by a line between the two services that are communicat-
ing and the users only need to drag from one command to another to make a connection.
This is very similar to getting an overview with the OVB and the ABB editor since it is
very intuitive for the users. A difference of the OVB compared to the new solution is that
it shows in detail what is connected in the assembly. The OVB displays that some services

37

5. Evaluation

are connected to an assembly but not in which way and what commands are used to ac-
complish this. The new solution displays the devices inside an assembly while the OVB
displays the devices outside the assembly but connected with lines. This implies that the
solution gives an overview of the assembly itself while the OVB gives an overview of how
devices are used in the PalCom network, regardless of one specific assembly.

In ITTT it is easy for users to define what they want to do when some event occurs
but the problem is getting an overview. The current PalCom editor uses some kind of
ITTT design but it has been shown not to be sufficient for the more advanced PalCom
users when they create larger and more complicated connections. Therefore, this solution
is only based on Block Diagram [17] as in the ABB editor.

To not overwhelm the users with all the device specific data and their services, the
solution uses visibility of different parts to be highlighted when they are interesting for the
user.

• The users decide which services a device uses and not all of them are directly dis-
played.

• The manager for handling variables is only visible when the users want it to be
visible and same is valid for the synthesized service handler.

This provides an overview of what is actually used in an assembly and does not show the
complete available information contained in that assembly. Like the ABB editor this is
very good for the users and the difference from the new solution compared to the ABB
editor is that the users choose which services they wish to display whilst in ABB they
choose exactly which commands/ports because their objects can’t be divided into services
or groups. A solution where the users had to choose services instead of commands was
chosen, because a device can have many services containing commands with the same
names. This would be confusing for the end-user.

The devices in theABB editor can be displayedmultiple times as objects in theworkspace.
But in the new solution one can drag the device into the workspace only once because this
is more intuitive for the users that one can’t copy a physical device and say that it is equal
to the other copy. In the ABB editor they choose to have the ability of multiple copies
of the same device because it can simplify the overview of the connections. If there are
several connections going from one device to several other devices it can be favorable to
divide the device into two objects so the lines don’t cross all over the workspace.

Another improvement to obtain a faster overview of what exactly is happening in the
assembly is by using different shapes and colors. In the new solution all the objects are
rectangular like a class diagram in UML [8] and all the commands are circles with different
colors that tells what type they return or need as parameter. With this, one can get a quick
overview of which commands can interact with each other. In the ABB editor the same
concept is used with Block Diagram and different colors for the type of objects. In contrast
they haven’t chosen to use different colors in the ports that can communicate with each
other. This requires more knowledge from the user where he must know what connections
can go where instead of assigning the tool to handle that. In the long term by assigning
the tool to handle the connections, it reduces the risk for conducting any errors.

38

5.2 Create assembly

5.2 Create assembly
By conducting the experiment on persons with no previous experience of PalCom, data is
obtained to answer if the new solution works for question 1. An experiment on test persons
who had to try both of the editors was conducted. First the test persons began with one
editor to accomplish the task and when they felt done they switched to the other editor
where they had to accomplish the same task again. Both of the accomplishments were
timed and the results provided two types of data:

1. Data for how long it takes to accomplish the task with each editor

2. Data for how long it takes to go from editor 1 to editor 2 and vice versa, from editor
2 to editor 1.

This data enables evaluation over the editors with two different approaches which is more
accurate than only using one.

5.2.1 The scenario setup
The same computer with the same screen resolution on all our tests was used. All the
devices and their services were thoroughly explained, see appendix A. The test subjects
had time to familiarize with the physical devices prior the experiment began so that they felt
comfortable with everything. In addition, this gave all the test subjects the same starting
point, none having more necessary information than the other to carry out the test.

When they felt comfortable with the hardware the Palcom Browser was explained.
Only the common parts of the solution and the current GUI was explained so that the
measurements only involved the different GUIs and not the complete PalCom system, see
appendix B for the description.

Lastly the scenario 1.4.2 that they had to accomplish with the introduced devices and
browser was explained. A test subject was first instructed to only use either the new so-
lution or the current one. Then the test subject had to accomplish the same task with the
other editor as well.

Before the tests began, all devices were properly inspected and assuring they were
connected and functioning.

An internal PalCom network was created, disabling other devices to appear during the
test in order not to confuse the test subjects. Two computers were used to perform the
scenario, with the reason that the bluetooth device was not functioning properly on the
computer where everything was run. See figure 5.1 for an overview of the connections.

Computer 1 was aMacBook. This computer ran TheThingwith the PhilipsControllerSer-
vice and TellstickControllerService and the BrowserGUI. This is the computer that
the test subjects used to edit the assemblies.

Computer 2 was a Windows and it was running TheThing with a bluetooth service for
the buttons.

39

5. Evaluation

Figure 5.1: The overview of how all the devices to create the Pal-
Com network were set up.

5.2.2 Scenario experiment
The experiment was conducted on three different users U1-U3. This was sufficient for
spotting the most problematic usability problems, but to few for collecting any metrics.
The most usability problems will emerge after five tests[7] but since we did see a pattern
already after three we choose not to continue with more tests.

The results in table 5.1 show how long it took for each user to accomplish the task with
the different editors. Two users, U1 and U3, did the experiment by starting with the new
editor. All of them, U1-U3, failed running a working assembly when they felt done with
the task using the previous editor. The reason why not a single user managed to create a
working assembly was because they all forgot to add the services inside the connections
directory. This is a step that one can’t figure out by himself and further explanation is
required. Only by using this statement, that not a single assembly could run using the
previous editor and all the assemblies did function properly using the new solution, is
enough to draw the conclusion that the new editor does solve problem one. In all the test
cases the timer was stopped when the user felt that the scenario was completed.

The results clearly indicate that the time it takes to create the assembly to accomplish
the task is faster with the new editor by all the users regardless if they began testing the new

40

5.2 Create assembly

editor first or not. One can argue that if the test begins with one editor the other editor will
have a slightly greater advantage since the user already knows how to use the complete
BrowserGUI. Thus, it can be argued that it will go faster to finalize the test. This can be
the case here but it does not affect the result, since the test was performed significantly
faster with the new solution regardless of starting editor.

The time difference between the users when using the new editor is mainly due to how
fast the user understood that they had to drag the devices onto the special drop area in
the workspace. When this was known to the testers they all took about the same time to
complete the scenario.

Besides the fact that the users didn’t manage to create a functioning assembly with the
previous editor we think the editor performed well also for users that had not used PalCom
before. It uses a similar method to ITTT (with some modifications) and people seems to
be comfortable with that kind of thinking and solved it better than was initially anticipated.

Table 5.1: Result of the measured times in minutes for accom-
plishing the task.(S = started with this editor, F = Failed running a
working assembly which the user considered was completed)

User new solution previous editor
U1 10:23 (S) 15:05 (F)
U2 2:53 11:52 (SF)
U3 5:57 (S) 12:32 (F)

41

5. Evaluation

42

Chapter 6
Discussion

This chapter will be discussing the findings, if the study can be carried out in some other
way and if the conclusions can be altered differently using the same result but with a
different approach.

The approach was to observe previous editors to obtain what is useful to be included
in the new solution for solving the problems. To evaluate the solution an experiment on
three test persons was conducted. The test was a scenario that required to be solved with
Palcom.

Considering another approach for getting an overview browser, by doing a research in
cognitive science instead, could result in ending up having a completely different solution
if the previous editors that we observed didn’t follow any of the design principles of Donald
A. Norman [12] or the gestalt laws of perceptual organization[15]. Fortunately as the new
solution was developed, the principles ofmapping and consistency and the design laws re-
garding similarity, proximity and symmetrywere taken into consideration. Nevertheless, it
would be very interesting to conduct an evaluation completely based on interaction design
in cognitive science to see if it fulfills the requirements for human interaction.

To obtain an overview based on the previous browsers required thorough understanding
of them. What can be discussed here is that we didn’t have the actual tools to feel and test,
but we did get an understanding of them based on the images and text descriptions that
were available. To actually get an understanding of the user experience whilst using these
tools it is better to have the physical product for testing, but in our case we could get most of
the information we needed from the images because our user experience was not focused
on e.g. how smooth a transaction is when moving an object from one area to another. We
were more interested in the final view rather than the style effects in between.

For the experiment only three test persons were used. This can thus only result in con-
clusions that are not comparable but only indicative. The scenario can also be discussed
since it is adapted for a smart home that is not complicated. The users had one device
with two buttons that triggered some simple events like turn on/off some switch. What
if the scenario included some further steps that triggered other events in a smart home,

43

6. Discussion

e.g. when one enters the home the light turn on, but only if it is dark outside, and turn
on the TV but only if it isn’t weekend because weekends one listens to music through the
music system and play video game on the TV. Nevertheless, the target in the scenario were
people who haven’t used Palcom before and they will most likely not begin with creating
complicated assemblies immediately.

Can the scenario be conducted in another field beside a smart home? What if the
scenario was something commonly occurring in healthcare and where PalCom currently
is being applied? The solution should be field independent just as the current editor is
(which the solution is based on). This implies that it shouldn’t affect a user that is going to
use it for a smart home nor a doctor or nurse that is going to use it in health care. It would
however be interesting to use a scenario in the field of health care with the appropriate
users to see if the results will be the same.

44

Chapter 7
Future work

The solution to the PalCom editor is convenient to be used when editing an assembly to
obtain an overview of that particular setup. But what if one requires an overview of all the
connections of the complete system that contains many assemblies and many services con-
nected to each other? This is something that is currently not possible with the developed
solution. However, it can be implemented by using the same GUI. Instead of loading the
assembly script for editing, the assemblies that are running at the moment can be loaded.
Editing in this mode will not be possible since it will only show the current running state
of the system. This can also be taken a step further to help the PalCom users in debugging
the connection in the running mode. To visually show the user how the data is sent in real
time from one service to another can help them debug when an assembly is not working
properly.

This paper can also be evaluated through another perspective. In this thesis the so-
lution has been conducted based on similar graphical interfaces and evaluated with an
experiment. The research could be carried forward by the department of Design Sciences
and they could do further improvements regarding the interaction design. They could look
at guidelines for proper user interfaces and apply them to the Palcom assembly editor and
perhaps ascertain why the ABB editor doesn’t use multiple colors and how to handle user
disabilities such as color blindness in the editor.

It would be interesting to test a different scenario where more advanced PalCom users
would have to create an assembly which consist of variables and synthesized services as
well to see if this also is simplified.

Further work to be implemented in our editor that the previous editor does support are:

• Disconnected devices should be cached so all their commands are visible even though
they are offline.

• Make self. Function so that a service can be found on the running device without
specifying exactly which device.

45

7. Future work

• Set constants to variables. Our solution can only set a variable by getting the return
parameter from another command, sometimes a user needs to set a constant (user
defined value) in the variable.

• A command can have multiple parameters. Our solution is only a proof of concept,
thus only one parameter was implemented.

46

Chapter 8
Conclusion

IoT is a topic growing widely and there is an increasing amount of devices connected in
networks each day. This implies that an increasing amount of users will get in touch with
a system that combines all these devices and enables them to communicate. PalCom is
such a system, and some of the users will have to do combinations themselves. It is then
paramount that they can use such a system without being a professional user.

This thesis solved such a problem for PalCom. By observing similar tools and design
approaches and then create a new assembly editor that was based on Block Diagram. The
new solution was much more intuitive for new users and gave a better overview of the
assemblies for the professional users. By conducting an experiment where the test subjects
had to use the new solution and the previous editor it can be concluded that it has been a
significant improvement, especially in making the users feel comfortable and understand
what they are doing with the editor. There can be done further work in improving the
newly developed editor by focusing completely in user interaction and improve those parts
to make it even better. Our editor isn’t complete for usage in real applications since it
is lacking some functions. But the core design and functionality is there and it has been
tested on a few users and the experiment indicates that the new editor performs better.

A next step for this editor can be to make it more useful in debugging in real time.
When an assembly is running it is not possible to see exactly what and when something is
happening through the user interface.

47

8. Conclusion

48

Bibliography

[1] ABB. Power and productivity for a better world. http://www.abb.se/, 2015.
Accessed: 2015-08-31.

[2] Boris Magnusson, John Lindholm. Tellstick to palcom bridge users man-
ual. http://palcom.cs.lth.se/Palcom/Users_Manuals_files/
tellstick-users-manual-3.0.14.pdf, 2012. Accessed: 2015-08-31.

[3] European Comission. Community research and development service (cordis).
http://cordis.europa.eu/project/rcn/74625_en.html, 2008.
Accessed: 2015-08-31.

[4] David Svensson Fors. Assemblies of Pervasive Services. PhD thesis, LundUniversity,
2009.

[5] Gaudenz Alder. Jgraphx on github. https://github.com/jgraph/
jgraphx, 2008. Accessed: 2015-08-31.

[6] itACih. It-stöd för avancerad cancervård i hemmet. http://itacih.cs.lth.
se/itACiH/itACiH.html, 2015. Accessed: 2015-08-31.

[7] Jakob Nielsen. How many test users in a usability study? http://www.
nngroup.com/articles/how-many-test-users/, 2012. Accessed:
2015-08-31.

[8] Lennart Andersson, Datavetenskap, LTH. Uml-syntax. http://fileadmin.
cs.lth.se/cs/Education/EDAF10/documents/umlsyntax.pdf,
2013. Accessed: 2015-08-31.

[9] Linocell. Bluetooth camera shutter selfie remote. http://www.kjell.
com/sortiment/telefoni-kommunikation/mobiltelefon-
tillbehor/gadgets/selfie-tillbehor/linocell-bluetooth-
fjarrutlosare-for-foto-p96117, 2015. Accessed: 2015-08-31.

49

http://www.abb.se/
http://palcom.cs.lth.se/Palcom/Users_Manuals_files/tellstick-users-manual-3.0.14.pdf
http://palcom.cs.lth.se/Palcom/Users_Manuals_files/tellstick-users-manual-3.0.14.pdf
http://cordis.europa.eu/project/rcn/74625_en.html
https://github.com/jgraph/jgraphx
https://github.com/jgraph/jgraphx
http://itacih.cs.lth.se/itACiH/itACiH.html
http://itacih.cs.lth.se/itACiH/itACiH.html
http://www.nngroup.com/articles/how-many-test-users/
http://www.nngroup.com/articles/how-many-test-users/
http://fileadmin.cs.lth.se/cs/Education/EDAF10/documents/umlsyntax.pdf
http://fileadmin.cs.lth.se/cs/Education/EDAF10/documents/umlsyntax.pdf
http://www.kjell.com/sortiment/telefoni-kommunikation/mobiltelefon-tillbehor/gadgets/selfie-tillbehor/linocell-bluetooth-fjarrutlosare-for-foto-p96117
http://www.kjell.com/sortiment/telefoni-kommunikation/mobiltelefon-tillbehor/gadgets/selfie-tillbehor/linocell-bluetooth-fjarrutlosare-for-foto-p96117
http://www.kjell.com/sortiment/telefoni-kommunikation/mobiltelefon-tillbehor/gadgets/selfie-tillbehor/linocell-bluetooth-fjarrutlosare-for-foto-p96117
http://www.kjell.com/sortiment/telefoni-kommunikation/mobiltelefon-tillbehor/gadgets/selfie-tillbehor/linocell-bluetooth-fjarrutlosare-for-foto-p96117

BIBLIOGRAPHY

[10] Mikael Steiner, Product Group Extended Automation, ABB. The control
builder diagram editor. https://library.e.abb.com/public/
2806d5e53b87725cc1257b55001f08fd/3BSE074022_en_2013-
Apr_NEU_Partner_Day_-_Diagram_Editor_oversikt.pdf, 2013.
Accessed: 2015-08-31.

[11] Nexa. Nexa tellstick on/off switch. http://www.nexa.se/vara-
produkter/system-nexa/paket/eycr-2, 2015. Accessed: 2015-08-31.

[12] Donald A Norman. The Design of Everyday Things. Basic Books, 2002.

[13] Peter Andersen (ed.), Simon Bo Larsen (ed.). PalCom External Report #70: Devel-
oper’s Companion. 2009. IST-002057 PalCom.

[14] Philips. Philips smart tv - 40pfs6909. http://www.philips.se/c-
p/40PFS6909_12/6900-series-ultratunn-smart-led-tv-med-
full-hd-2-sidig-ambilight-och-smart-tv, 2015. Accessed:
2015-08-31.

[15] Soegaard, Mads. Gestalt principles of form perception. https:
//www.interaction-design.org/encyclopedia/gestalt_
principles_of_form_perception.html, 2015. Accessed: 2015-08-31.

[16] Computerworld Sue Bushell. M-commerce key to ubiquitous inter-
net. http://www.computerworld.com.au/article/84178/m-
commerce_key_ubiquitous_internet/, 2000. Accessed: 2015-08-31.

[17] Concordia University. Block diagram. http://web2.concordia.ca/
Quality/tools/3blockdiagram.pdf, 2015. Accessed: 2015-08-31.

50

https://library.e.abb.com/public/2806d5e53b87725cc1257b55001f08fd/3BSE074022_en_2013-Apr_NEU_Partner_Day_-_Diagram_Editor_oversikt.pdf
https://library.e.abb.com/public/2806d5e53b87725cc1257b55001f08fd/3BSE074022_en_2013-Apr_NEU_Partner_Day_-_Diagram_Editor_oversikt.pdf
https://library.e.abb.com/public/2806d5e53b87725cc1257b55001f08fd/3BSE074022_en_2013-Apr_NEU_Partner_Day_-_Diagram_Editor_oversikt.pdf
http://www.nexa.se/vara-produkter/system-nexa/paket/eycr-2
http://www.nexa.se/vara-produkter/system-nexa/paket/eycr-2
http://www.philips.se/c-p/40PFS6909_12/6900-series-ultratunn-smart-led-tv-med-full-hd-2-sidig-ambilight-och-smart-tv
http://www.philips.se/c-p/40PFS6909_12/6900-series-ultratunn-smart-led-tv-med-full-hd-2-sidig-ambilight-och-smart-tv
http://www.philips.se/c-p/40PFS6909_12/6900-series-ultratunn-smart-led-tv-med-full-hd-2-sidig-ambilight-och-smart-tv
https://www.interaction-design.org/encyclopedia/gestalt_principles_of_form_perception.html
https://www.interaction-design.org/encyclopedia/gestalt_principles_of_form_perception.html
https://www.interaction-design.org/encyclopedia/gestalt_principles_of_form_perception.html
http://www.computerworld.com.au/article/84178/m-commerce_key_ubiquitous_internet/
http://www.computerworld.com.au/article/84178/m-commerce_key_ubiquitous_internet/
http://web2.concordia.ca/Quality/tools/3blockdiagram.pdf
http://web2.concordia.ca/Quality/tools/3blockdiagram.pdf

Appendices

51

Appendix A
Manual for describing the devices and their
services

Philips Smart TV is a network connected TV, which means it can access services on the
network or on the Internet. It has some built in apps that one can launch and it also
have an open API one can use to send and read data from. The following commands
in service channels can be used with this TV.

• Favorite channel 1 - set the TV to channel 1
• Favorite channel 2 - set the TV to channel 2
• Favorite channel 3 - set the TV to channel 3
• Favorite channel 4 - set the TV to channel 4

Note that the TV does not have any on/off command, to accomplish this a tellstick
switch, TellstickTV, shall be used.
A Philips device is created by the PhilipsControllerService. This service is loaded
into TheThing and it will create Philips TV device and display them on the PalCom
network for easy interaction.
The TV to be used is calledPhilipsTV@192.168.43.153 and is shown on the network
as a PalCom device.

Tellstick switch is a network connected switch that is connected to a power supply. It
can then be used to switch on and off the power to a device connected to it. A
Tellstick device does have many other commands for different purposes but we are
only interested in the following:

• Turn on - a command to let power go through the switch.
• Turn off - a command to stop the power from getting through the switch.

53

A. Manual for describing the devices and their services

TellStick devices are created by a TellStickControllerService which is loaded into
TheThing. This controller service will display a tellstick device on the PalCom
network for easy interaction.
The switch for the lamp is called Lampa and the switch for the TV is called Tell-
stickTV

Linocell camera shutter is a bluetooth connected device that has two buttonswhich gives
different outputs when pressed.

• button1Pushed - is triggered when button number 1 is pushed.
• button2Pushed - is triggered when button number 2 is pushed.

This device is loaded as a service on a TheThing called BluetoothTheThing@Vatan

54

Appendix B
Manual for describing BrowserGUI

The BrowserGUI consists of three different parts. The devices, The assemblies and the
assembly editor. Only two of these parts will be described since the third part, the assembly
editor, is what is being evaluated and the users should figure out how to use.

Devices are things, physical or software simulated objects, which can do things in the
physical world or in the computer. A device can then be divided in services that it
supports and each service has commands. One can think of these as functions of the
services in the device. One can call these commands and they will give something
back or when something internally happens in the devices they will notify. Let’s
take a camera device as an example:

The device can have a service called Picture with these commands:

• TakePicture - when this command is called, the camera will open its lens and
grab the picture and return it.

• PictureTaken - This can be a service that is triggeredwhen something internally
in the device happens. Somebody pushed a button on the camera to take a
picture. Then whoever was waiting for this action will get notified with the
service that a picture was taken.

The users can drag and drop the devices from the list (Figure B.1) onto the assembly
editor to build their own assemblies and make the connections.

Assemblies are located in the left corner (Figure B.1). They define how the devices and
services are connected with each other and what will happen when commands are
triggered. You can create assemblies and when you have made your connections
of the devices you can run this assembly and when it is running it will perform the
connections that were defined.

55

B. Manual for describing BrowserGUI

Assembly editor is the tool that is used to modify the assemblies to perform the specific
tasks. This is the tool that is being evaluated. Therefore, it will not be shown nor
described here.

Figure B.1: The BrowserGUI showing where the devices and as-
semblies are listed

56

Ett krav för att den vanliga konsumenten ska använda sig av ett Internet of Things-
system är användarvänligheten. PalCom efterlevde inte detta krav, men numera kan
användarna genom vårt grafiska gränssnitt enkelt få en överblick över sina kopplingar.

Internet of Things, IoT, är ett hett ämne inom teknik-
branschen. IoT innebär att allt fler enheter ansluter sig till
Internet och andra nätverk för att kunna kommunicera
med varandra. Denna kommunikation i ett smart
system kan utnyttjas i bland annat sjukhus, industri
och privata hem. LTH har arbetat i över 10 år med en
lösning, PalCom, som möjliggör sådan kommunikation
oberoende av tillverkare och protokoll (IP, bluetooth
med mera). PalCom har börjat appliceras i verklig
miljö, på bland annat sjukhus för att möjliggöra för
patienter att hemifrån göra regelbundna kontroller som
vikt, blodtryck, blodsocker med mera. Dessa mätningar
kan sedan läkare och sjuksköterskor följa direkt från
sjukhuset. Om mätningarna visar tecken på sjukdomar
eller försämringar av patientens hälsotillstånd kan de
enkelt kalla in patienten för en grundligare kontroll på
sjukhuset.
  PalCom-användare som har satt upp assemblies för att
få dessa enheter (våg, blodtrycksmätare, insulinmätare
med mera) att kommunicera med en centralenhet
(sjukhuset) har problem med att få en överblick över vilka
enheter som är kopplade och hur kommunikationen
mellan dem sker. Tidigare har användare behövt rita upp,
på papper, hur de har kopplat de olika enheterna och
servicerna för att få en bättre överblick och förståelse för
vad som sker. Denna metod är varken användarvänlig

eller hanterbar när systemet utvidgas med personal som
använder det, antal produkter som kopplas, utökandet
av enheter på sjukhusen med mera.
  Vår lösning är ett nytt grafiskt gränssnitt som gör det
enkelt att få en överblick över hur man har gjort sina
kopplingar samt hantera sina kopplingar. Gränssnittet
gör det betydligt enklare att applicera PalCom till även
andra områden, som till exempel hemmen, för att
automatisera vardagliga sysslor.
  Komplexiteten i det befintliga verktyget är orsaken
till att man behöver vara en erfaren PalCom-användare
och att man får en introduktion till verktyget för att det
ska vara möjligt att skapa och redigera assemblies. Vi har
därför tagit fram ett gränssnitt som är väsentligt enklare
för den vanliga användaren och testat detta genom
att utföra ett scenario för smarta hem där användarna
kopplade ihop en TV, en lampa och en bluetooth-knapp.
Genom att mäta tiden för att utföra scenariot med det
gamla verktyget och det nya kunde vi jämföra vilket
verktyg som var bäst. Resultatet av mätningarna visar
att vårt nya verktyg är mycket bättre för användare som
aldrig tidigare har använt PalCom. Med vår lösning kan
nu PalCom distribueras till vanliga hemma-användare
som enkelt vill kunna koppla enheter så att de kan
kommunicera och på så sätt bygga sitt smarta hem.

EXAMENSARBETE Overview Browser for PalCom Assemblies

STUDENT Vatan Bytyqi, Jonas Jinbäck

HANDLEDARE Boris Magnusson (LTH)

EXAMINATOR Görel Hedin

Lösning för bättre överblick och snabbare
kom-igång-tid för ett Internet of Things-system
POPULÄRVETENSKAPLIG SAMMANFATTNING Vatan Bytyqi, Jonas Jinbäck

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2015-08-28

	2015-43 Framsida
	Tom sida
	2015-43 Rapport
	2015-43 Rapport
	Introduction
	Problem statement
	Method
	Related work
	Approach
	Scenario experiment
	Smart home scenario

	Work responsibilities

	Background
	Internet of Things (IoT)
	PalCom
	TheThing
	BrowserGUI

	Previous work
	Assembly editor
	Devices
	Services
	Connections
	Script
	Synthesized Services

	PalCom overview browser (OVB)
	Control Builder Diagram Editor - ABB editor
	If This Then That (IFTTT)

	New assembly editor with implementation
	Assembly editor
	The workspace
	Variable handler
	Synthesized service handler

	Services
	Philips TV service
	Tellstick service
	Linocell bluetooth camera shutter service

	Graph implementation
	Java classes used from Jgraphx
	Java classes from Palcom
	Java classes created
	Xml to graph
	Graph to xml

	Evaluation
	Overview
	Create assembly
	The scenario setup
	Scenario experiment

	Discussion
	Future work
	Conclusion
	Bibliography
	Appendix Manual for describing the devices and their services
	Appendix Manual for describing BrowserGUI

	Tom sida
	2015-43 Popvet

