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Abstract 

To increase the efficiency of the product development process at Volvo Car Group, 

knowledge accumulation is central in the early strategy and concept phase. 

Within the department for Research and Development, the unit responsible for 

powertrain engineering desires a process to document system interfaces, in order to 

reuse what they do already know in new applications.  

This thesis presents a process how to capture systems knowledge; i.e. interactions 

within system structure, functions and behavior with the use of object-process 

oriented modeling. Included in the process is also ideas presented how to manage and 

maintain as well as interpret and reuse captured knowledge. 

During the first part of the project, literature of theory and previous empiric was 

explored, in order to understand principles of knowledge based development and 

systems engineering. 

To identify needs of the desired process, system engineers responsible for the 

complete powertrain were interviewed. Thereafter, the interpreted needs were 

translated to a functional analysis of the desired process.  

A case study was conducted at different developing units across Powertrain 

Engineering. The purpose was to map system knowledge with object-process 

methodology.  

The result was a mapped system architecture based on the vehicle response attribute, 

where captured system knowledge is connected to the development phases as well as 

the system responsible.   

The object-process oriented model of the system architecture included qualitative 

traceability between system requirements, decomposed functions, product structure 

with physical interface as well as resources defining who is owner of the system 

knowledge. 

To illustrate how to interpret and make the captured system knowledge reusable, 

structural relations within three systems was mapped in a domain mapping matrix, 

which is a matrix mapping the dependencies between two data types. In this case 

requirements and functions, as well as functions and hardware components.  

Keywords:  

knowledge based development, systems engineering, object-process methodology, 

powertrain engineering; system architecture; capture, reuse 
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Sammanfattning 

För att effektivisera produktutvecklingen på Volvo Car Group, är ackumulering av 

kunskap nödvändigt, bl.a. i den tidiga strategi och konceptfasen.   

Enheten Powertrain Engineering inom avdelningen för Research & Development, 

önskar en process för att dokumentera gränssnitten mellan olika system på 

drivlivlinan. Detta för att minska omarbete och återanvända viktig kunskap i nya 

applikationer.  

Det här examensarbetet presenterar en process i att fånga systemkunskap med objekt-

processorienterad modellering. Idéer presenteras också för hur man ska hantera och 

underhålla denna kunskap samt hur man skulle kunna tolka och återanvända den 

fångade kunskapen.  

Under den första delen av projektet genomfördes en litteraturstudie över teori och 

tidigare empiriska studier, i syfte att förstå principerna med kunskapsbaserad 

utveckling samt systems engineering. 

För att identifiera behov för den önskade processen, intervjuades systemansvariga för 

komplett drivlina. Därefter översattes de tolkade behoven till en funktionsanalys över 

processen. 

En fallstudie genomfördes på tvärfunktionella utvecklande avdelningar på Powertrain 

Engineering. Syftet var att kartlägga kunskap kring systemen med object-process 

methodology.  

Resultatet blev en kartlagd systemarkitektur, baserat på hur drivlinan påverkar 

egenskapen vagnsrespons för en komplett bil. Den dokumenterade kunskapen är 

kopplad till de olika utvecklingsfaserna samt organisationsstrukturen och dess 

systemansvariga.  

De objekt-processorienterade modellerna över systemarkitekturen inkluderade 

kvalitativ spårbarhet mellan system- och funktionella krav, funktioner, 

produktstruktur samt resurser integrerade i utvecklingen, dvs. den som är ägare av 

systemkunskapen. 

En del av systemarkitekturens strukturella relationer översattes i en domain mapping 

matrix, dvs en matris som mappar beroenden mellan två data typer. I detta fall krav 

mot funktioner samt funktioner mot hårdvarukomponenter. Syftet var att illustrera hur 

man skulle kunna tolka den dokumenterade kunskapen i modellerna och återanvända 

den i nya applikationer.  
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Abbreviations and Glossary 

The following abbreviations are used in the report. Table 1.1 describes general 

abbreviations while table 1.2 describes abbreviations within Volvo Car Group. 

Table 1.1 Abbreviations used in the report. 

CA Customer Attribute 

CAE Computed Aided Engineering 

DP Design Parameter 

DMM Domain Mapping Matrix 

FR Functional Requirement 

HW Hardware 

KBD Knowledge Based Development 

KM Knowledge Management 

LPD Lean Product Development 

MBSE Model Based Systems Engineering 

OPD Object-Process Diagram 

OPM Object-Process Methodology 

PLM Product Lifecycle Management 

R&D Research and Development 

SE Systems Engineering 

SW Software 

 

Table 1.2 Abbreviations used within Volvo Car Group. 

AL Attribute Leader 

DLI Powertrain  Installation  

KD Complete Powertrain  

MU Engine Development 
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NVH Noise Vibration and Harshness 

P/T Powertrain 

PSS Product System Structure 

SA System Responsible  

SDA System Design Alternative 

TU Transmission Development 

VCG Volvo Car Group 

VPDS Volvo Product Development System 

 

The following glossary in table 1.3 are frequent used in the report and therefore 

explained for better comprehension while reading the report.  

Table 1.3 Explanation of frequent used glossary. 

Attribute Within VCG, an attribute describes how the customer 

perceives the car with their senses, such as behaviour and 

performance. An attribute has a value to the customer, 

considered critical to quality. An attribute can be achieved 

with the help of one or more system solutions and/or 

functions.  

Behaviour 
In this project, behaviour refers to how processes (within a 

system) may transform objects and how objects could enable 

processes, without being transformed.     

Domain  In this project, a domain refers to views in a system model. It 

could be the customer domain with user requirements, 

functional domain or the physical domain with the product 

structure.   

Function Within VCG, a function describe what the product does i.e. 

their purpose. It is a value providing process for the 

beneficiary i.e. the customer or driver of the car  

Explicit In this project, the term refers to knowledge stated and 

documented clearly, thus leaving no room for confusion. 

Knowledge  Know-how for application of data and information. 

Understanding gained through experience, the sum of what 

have been perceived, discovered or learnt. 

There are two types of knowledge: tacit and explicit. In this 

project “knowledge”, refers to systems and their structure, 

function, dynamic and interaction with the surroundings. 
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Model A model is an abstraction of reality designed to answer 

specific questions. A system model is comprised of multiple 

views/domains. In this project model refers to a graphical 

representation displaying domains, communicating a process 

and product system structure. 

Object An object is a thing that exists or can exist physically.   

Process A process is a transformation that an object undergoes during 

a time. A series of actions, changes or functions bringing a 

result. Express the dynamics. Without processes, the objects 

are static.  

Reuse In this project “reuse” refers to explicit documented system 

knowledge for new applications, which will reduce re-work 

and focus development efforts.  

System A system is a set of interacting elements creating an 

integrated whole. A system may be decomposed via sub-

systems. A system exhibits:  

 Structure of objects. 

 Processes that fulfil its function.  

 Behaviour 

 Boundary to the surrounding environment. 

 Exchange of input and outputs.  

 Interface to other systems.  

System Architecture The embodiment of concept, the allocation of function to 

elements of form, the definition of interfaces among the 

elements and with the surrounding context.  

Tacit In this project, the term refers to knowledge understood or 

implied without being stated. 





xi 

Table of Contents 

 
1 Introduction ............................................................................................... 1 

1.1 Volvo Car Group ..................................................................................................... 1 

1.1.1 Transformation towards knowledge based development ................................................... 2 

1.2 Problem identification .............................................................................................. 3 

1.2.1 Desired process for capture and reuse system knowledge ................................................ 3 

1.3 Project description ................................................................................................... 6 

1.3.1 Purpose.............................................................................................................................. 6 

1.3.2 Problem formulation ........................................................................................................... 6 

1.3.3 General approach .............................................................................................................. 6 

1.3.4 Delimitations ...................................................................................................................... 6 

1.3.5 Deliverables ....................................................................................................................... 6 

1.4 Thesis outline .......................................................................................................... 7 

2 Research approach ................................................................................... 9 

2.1 Qualitative research ................................................................................................ 9 

2.2 Applied research methods ...................................................................................... 9 

2.2.1 Literature review ................................................................................................................ 9 

2.2.2 Interviews ........................................................................................................................... 9 

2.2.3 Identify needs for desired process of capture knowledge ................................................ 10 

2.2.4 Case study ....................................................................................................................... 10 

2.2.5 Object-Process oriented modeling with OPM ................................................................... 11 

3 Theory ...................................................................................................... 13 

3.1 Knowledge based development ............................................................................ 13 

3.1.1 KM contribution to KBD .................................................................................................... 14 

3.1.2 LPD contribution to KBD .................................................................................................. 14 

3.1.3 SE contribution to KBD .................................................................................................... 15 

3.2 Representing context of structural knowledge ...................................................... 16 

3.2.1 Object-Process Methodology ........................................................................................... 17 



 xii 

3.2.2 Matrix methodology .......................................................................................................... 20 

3.3 Systems engineering ............................................................................................. 21 

3.4 Requirements engineering within SE .................................................................... 22 

3.5 System architecture .............................................................................................. 23 

3.5.1 Decomposition of a system .............................................................................................. 23 

4 Powertrain systems engineering at Volvo Cars .................................... 27 

4.1 VPDS and organization ......................................................................................... 27 

4.2 System Responsible (SA) ..................................................................................... 28 

4.3 Attribute, Function and System ............................................................................. 29 

4.4 Requirements engineering .................................................................................... 31 

4.4.1 Requirement decomposition ............................................................................................ 32 

4.4.2 Balancing process ............................................................................................................ 34 

5 Need findings ........................................................................................... 35 

5.1 Need statements for knowledge capture .............................................................. 35 

5.2 Functional analysis of interpreted needs .............................................................. 37 

6 Knowledge mapping of a system architecture with OPM. .................... 41 

6.1 Capture knowledge ............................................................................................... 41 

6.1.1 Drafting of an object-process diagram ............................................................................. 43 

6.1.2 An A3 based hierarchical structure of object-process diagrams ...................................... 46 

6.1.3 Traceability ....................................................................................................................... 49 

6.1.4 Nomenclature ................................................................................................................... 49 

6.1.5 Reflections from the process of capture knowledge ......................................................... 52 

6.2 Manage and maintain captured knowledge .......................................................... 53 

6.2.1 Support for the process .................................................................................................... 53 

6.2.2 A3 / object-process model management .......................................................................... 53 

6.3 Interpret and reuse captured knowledge .............................................................. 54 

6.3.1 Interpretation .................................................................................................................... 54 

6.3.2 Searchability .................................................................................................................... 56 

7 Conclusions ............................................................................................. 57 

8 References ............................................................................................... 61 

Appendix A : Interviews ............................................................................. 65 

Appendix B : Questions addressed to SA1 for need findings ................. 67 

Appendix C : Interview guide used in case study .................................... 69 

Appendix D : Gantt chart for thesis project .............................................. 71 

 



xiii 

Figure 1.1 Mapping of systems interfaces, own figure. ............................................... 3 
Figure 1.2 Object-process oriented model of desired process...................................... 5 
Figure 2.1 Case study process. ................................................................................... 11 
Figure 2.2 Research approach described with an object-process oriented model. ..... 12 
Figure 3.1 DIKW hierarchy ....................................................................................... 13 
Figure 3.2 Knowledge value stream in LPD .............................................................. 15 
Figure 3.3 Example of an object-process diagram with OPM. .................................. 19 
Figure 3.4 Mapping of domains in axiomatic design. ................................................ 20 
Figure 3.5 V-model of system life cycle .................................................................... 21 
Figure 3.6 Requirement decomposition and balancing process. ................................ 22 
Figure 3.7 Decompositional view of a medium system, ............................................ 23 
Figure 3.8 Generic OPD template for Whats and Hows ............................................ 25 
Figure 4.1 VPDS and the system engineering activities. ........................................... 27 
Figure 4.2 Organization of Powertrain Engineering within VCG R&D .................... 28 
Figure 4.3 Kano model of powertrain attributes, ....................................................... 29 
Figure 4.4 Powertrain function model ....................................................................... 30 
Figure 4.5 Requirement cascading between attribute, function and system. ............. 30 
Figure 4.6 Powertrain systems engineering with the V-model .................................. 31 
Figure 4.7 Flow of communication and deliveries between SAs. .............................. 32 
Figure 6.1 Generalized structure for documenting knowledge in an OPD ................ 42 
Figure 6.2 Example of drafted model, with questions for decomposition  ................ 45 
Figure 6.3 Hierarchical structure of OPDs. ................................................................ 46 
Figure 6.4 Eight OPDs merged to a knowledge mapped system architecture. .......... 47 
Figure 6.5 Output from one model provides input to next system model. ................. 48 
Figure 6.6 Footer with meta-information. .................................................................. 54 
Figure 6.7 Traceability table between decomposed functions and HW components. 55 
Figure 6.8 Traceability table between decomposed functions and requirements. ...... 55 
Figure 6.9 Traceability and searchability may generate requested knowledge. ......... 56 
Figure 7.1 Summary of capture, transfer and reuse system knowledge. .................... 59 
Figure 7.2 Capture, manage, interpret and reuse system knowledge with an OPD ... 60 





1 

1 Introduction 

In this chapter, a background of Volvo Car Group (VCG) is presented and their 

transformation journey toward knowledge based development. Then follows a 

problem identification and project description with the objectives of the investigation 

as well as the target group. Finally, the problem definition with research questions is 

outlined as well as delimitations and deliverables.  

 

1.1 Volvo Car Group 

Volvo Car Group, also referred to as “Volvo Cars”, is a Swedish premium car 

manufacturer founded in 1927. Since 2010 VCG is owned by Zhejiang Geely Holding 

Group of China, after acquisition from American Ford Motor Company [1]. 

Volvo Cars is on a major transformation journey in line with the corporate and brand 

strategy “Designed Around You”, which describes the customer and a human centric 

focus. A strategic project toward 2020 is to shorten the lead-time to 20 months from 

program start to production ramp up. A faster renewal of products but also products in 

new segments will be a key factor for reaching the long-term goal to sell 800,000 cars 

per year globally [2]. 

The department of Research & Development (R&D) is responsible for the 

development of Volvo Cars product portfolio. This is enabled with the use of Volvo 

Product Development System (VPDS). It is the cross-functional development process 

at VCG, aiming to develop vehicles in time with the right quality [3]. 

 

 

  



1 Introduction 

 

 2 

 

1.1.1 Transformation towards knowledge based development 

“New knowledge leads into new areas of exploration” [4] 

Knowledge-based development (KBD) is a general expression that relates to a set of 

principles, methods and tools to increase the efficiency of the product development 

process.  

This means streamlining of the processes including resources and lead times. Fast and 

efficient product development enables VCG to broaden the product portfolio with 

reduced development times; which in turn contributes to a better competitiveness and 

profitability.  

To reach the 20 months objectives towards year 2020, knowledge accumulation is 

central in the early strategy and concept phase. In this phase, it is a balancing act 

between business goals and technical capabilities.  

Therefore a necessity is: 

 Knowledge about customer and market requirements and furthermore the 

content of the car.  

 Knowledge about product attributes and how these may be improved.  

 Knowledge about options available and solutions that need to be developed 

outside the car program.  

To increase the output from product development, the organization wants to front 

load the engineering effort in strategy and concept phase to learn and gain knowledge 

before program start. This implies increasing virtual development, simulation and 

verification of vehicle concept before integrating in the design phase. Efforts are 

believed to reduce expensive rework loops and firefighting when design is complete, 

close to production ramp up [5]. 

It also requires a major change in how to manage knowledge within the organization. 

How to capture, store and re-use general knowledge as well as improve 

communication between team members and cross-functional collaboration [5].   

Currently there are many initiatives within VCG to adapt principles from KBD, using 

working processes with methods and tools from fields such as systems engineering 

(SE).  

 

  



1 Introduction 

 

3 

 

1.2 Problem identification  

1.2.1 Desired process for capture and reuse system knowledge 

Powertrain Strategy & Concept is responsible for the Powertrain unit deliveries to the 

car program. This implies balanced cost-efficient concept of the powertrain between 

entry-level performance cars to premium high quality performance cars.  

In order to deliver concepts with a certain bandwidth on the performance it is 

necessary to explore the design space, simulate the trade-offs between different 

design proposals and optimize system functions to achieve given requirements.  

To facilitate the work, they need to reuse systems knowledge i.e. know-how of 

interactions between functions, structure and dynamics with the system environment 

[6], in new applications. Currently this knowledge is volatile and tacit. It exists in the 

minds of engineers and may disappear when team members change project, 

department or leave their employment, for example. 

Currently, the efforts of documenting the relations are done manually. However, 

captured knowledge is limited to different development teams at each system level, 

with varying focus due to previous firefighting operations. This contributes only to a 

narrow view of system interfaces. The current knowledge reuse of system interactions 

is ad-hoc, based on carry over from previous project.  

There is an ongoing work with strategies supporting documentations of systems 

interactions. Today the relations are described with a matrix-based method, with 

means to analyse and improve interfaces in the system architecture. This results in an 

overall mapping of the product system structure (PSS) related to attributes of a 

complete vehicle, figure 1.1.  

 

Figure 1.1 Mapping of systems interfaces, own figure. 

It is a time-consuming manual work with knowledge input from several system 

design leaders. However, no one is responsible for maintenance so the knowledge 

becomes obsolete more or less, as soon the matrix has been published.  
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Powertrain Strategy & Concept desires a process that: 

• Captures system knowledge by mapping the interactions between multiple 

domains in a system architecture.  

• Is managed and maintained with a clear ownership of captured knowledge.  

• Facilitates communication and shared understanding between development 

teams to support knowledge transfer.  

• Supports systematic knowledge reuse of system interactions and structural 

relations in new applications.  

Knowledge gap to fill: 

• How to capture tacit system knowledge and make it explicit. 

• How to manage and maintain captured system knowledge. 

• How to interpret and reuse captured system knowledge. 

Earlier investigation made by the department of Powertrain Strategy & Concept in 

2013 concluded that object-process methodology (OPM) [7] is a promising method 

for model-based systems engineering and knowledge mapping, but further 

investigation of use-cases was recommended [8].  

The overall vision is that with a firm base of captured and maintained system 

knowledge in a model, the data could be interpreted with use of plug-in tool and 

matrix based methodologies to display clustered system relations. Efforts are believed 

to facilitate focus of development activities and use of CAE tools. In the long term, 

captured system interactions could provide input for better confidence between 

simulated and measured test data for system simulation and optimization, according 

to technical expert at Powertrain Engineering, VCG [9].  

Figure 1.2 describes the vision of desired process with an object-process oriented 

model. The building blocks of OPM are described in chapter 3.2.1. 
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Figure 1.2 Object-process oriented model of desired process for capture knowledge, 

own model. 
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1.3 Project description 

1.3.1 Purpose 

The purpose of this master thesis is to investigate a process to capture and reuse 

powertrain system knowledge, with the use of object-process oriented modeling and 

supporting methods and tools. The goal is to present conclusions and 

recommendations supporting the desired process. 

 

1.3.2 Problem formulation 

In order to ensure that the objectives will be achieved, the following research 

questions (RQ) were formulated:  

RQ1: What are the needs for the process of system knowledge capture and reuse? 

RQ2: How can system knowledge be captured and reused by OPM? 

 

1.3.3 General approach 

Analysis is based on theory and previous research of KBD, SE and OPM, as well as 

current empirical studies at VCG. The empirical studies consist of: 

 A background of powertrain system engineering processes at Volvo Cars,  

 Need findings for the desired process of knowledge capture with OPM. 

 Case study of mapping system knowledge, captured in a model. 

 

1.3.4 Delimitations 

The desired capture and reuse process requires (among other things) software for 

creating models, plug-in and clustering algorithms that interprets data in models as 

well as integration with existing PLM systems. This is assumed to be available. These 

assumed prerequisites are therefore not investigated in current empiric study.   

 

1.3.5 Deliverables  

Outcome of this project is a report including: 

 Described relevant theory. 

 Described result, analysis and conclusions of the research questions.  

 Recommendations for implementation of desired process. 
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1.4 Thesis outline 

The outline of the thesis is structured around the following chapters. 

Chapter 1 – Introduction:  

In this chapter, a background of VCG is presented and the organization’s 

transformation journey toward knowledge based development. Thereafter a brief 

presentation of desired process of knowledge capture at Powertrain Engineering 

including knowledge gap to fill of desired process. The background is followed by a 

project description with the objectives. Problem definition with research questions is 

outlined as well as delimitations and deliverables.  

Chapter 2 – Applied methods 

This chapter describes the research approach for the project and applied methods. 

Chapter 3 – Theory 

This chapter describes the theoretical framework of the thesis. Initially principles for 

knowledge based development are explored with means to investigate methods for 

capture, store, and reuse knowledge. Furthermore, theory of systems engineering is 

described. As a support for model based systems engineering, object-process 

methodology is described. Comprised is a summary of the most important theory 

from the literature review. 

Chapter 4 – Powertrain systems engineering at Volvo Cars 

This chapter describes the background of the powertrain system engineering process 

at VCG, with means to describe how and with whom the system responsible 

communicate as well as their deliverables within the development process.  

Chapter 5 – Need Findings 

This chapter begins with collected need statements from the SAs, referring to the 

desired process for knowledge capture in object-process oriented models. The need 

statements are interpreted with a functional analysis of the process.  

Chapter 6 – Case Study: Knowledge mapping of a system architecture with OPM 

This chapter describes the conducted case study and the process of mapping 

knowledge of a system architecture with OPM. Furthermore, the result is analyzed 

based on the functional analysis of interpreted needs, with focus on the ones with high 

importance. Included is a discussion with recommendations for an implementation of 

process. 

Chapter 7 – Conclusions 

This chapter concludes the research and answering the research questions. 
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2 Research approach 

This chapter describes the approach for the project and applied methods used in the 

research.  

2.1 Qualitative research 

The data is collected with qualitative research methods. Denzin and Lincoln [10] 

defines qualitative research as an approach to examine peoples experiences in detail 

by using a collection of empirical material and methods such as interviews, focus 

group, case studies, discussion, observations, visual methods etc. Figure 2.2 describes 

the research approach with an object-process oriented model. 

 

2.2 Applied research methods 

2.2.1 Literature review 

Webster and Watson [11] emphasizes that “a review of prior relevant literature is an 

essential feature of any academic project. An effective review creates a firm 

foundation for advancing knowledge.”  

Ridley [12] express that the literature review contextualizing the work, describing the 

bigger picture that provides the background and creates the space or gap for the 

research.  

In order to address the research questions, a literature review was conducted to 

facilitate theory development, identify potential methods and tools to support the 

desired process. 

 

2.2.2 Interviews 

Hove et al. [13] states that the purpose of using interviews in empirical studies, 

is to collect data that cannot be acquired using quantitative methods. Interviewing 

people gives an insight into their opinions, thoughts and problems. 

 

Fontana and Frey [14] describes three types of interviews:  
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 Structured: All respondents are asked a standard list of questions in a 

standard order. Reduces the risk of interviewer bias and increase the 

reliability.   

 Un-structured: Few specific questions, free to ask and be responded in any 

way.  Collected data may be too unorganized to be analyzed.   

 Semi-structured: is a combination of un-structured and structured interview. 

Created around a core of standard questions, however the investigator may 

expand on any question in order to explore a given response in depth. 

Nonetheless, interviews are a time consuming data collection method. Hove et al.  

experiences that required effort for an interview includes activities such as scheduling 

of appointments, collecting background information, preparing interview guides, 

discussion and meeting with the actual interview, summary writing as well as 

transcribing the answers of the respondents. 

In this project both un-structured and semi-structured interview have been used to 

collect qualitative data from interviewees. A compilation of conducted interviews can 

be found in appendix A. 

 

2.2.3 Identify needs for desired process of capture knowledge 

To identify needs for structured system knowledge, a five step process by Ulrich and 

Eppinger [15] was used. The steps are: 

1. Gather raw data from target group. 

2. Interpret the raw data in terms of needs. 

3. Organize the needs into a hierarchy of primary, secondary and tertiary needs. 

4. Establish the relative importance of the needs. 

5. Reflect on the results and the process. 

The raw data is gathered through un-structured interviews with the target group while 

studying their work processes. Thereafter interpreted and compiled in a list of need 

statements that can be found in table 5.1 in chapter 5.  

The interpreted needs are translated to a functional analysis [16] of the process 

needed to capture knowledge. The functional analysis can be found in table 5.2 in 

chapter 5.  

 

2.2.4 Case study 

Yin [17] points out that doing a case study is a linear but iterative process following 

the model illustrated in figure 2.1. Further Yin expresses that a case study can be 

conducted when investigating a contemporary phenomenon in depth and within its 

real world context. I.e. a case research is performed when you want to understand an 

actual case and assume that such understanding contain important contextual settings 

to your case.   
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Figure 2.1 Case study process. Adapted from [17]. 

In this research, a case study has been applied in order to capture knowledge from 

system responsible, in object-process oriented models describing a system 

architecture. 

 

2.2.5 Object-process oriented modeling with OPM 

For model based systems engineering object-process methodology (OPM) is a 

modeling language that combines a set of building blocks – objects and processes. 

This is modelled with a graphic-textual representation in a diagram type called object-

process diagram (OPD) [7].  

In this project, the data is gathered by interviews, later on categorized and stored for 

each interviewee, respectively, in an OPD. To draft the models Microsoft Visio was 

used. Templates with OPM building blocks were used, developed by VCG. 
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Figure 2.2 Research approach described with an object-process oriented model.
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3 Theory 

This chapter describes the theoretical framework of the thesis. Initially principles for 

knowledge based development are explored with means to investigate methods for 

capture, store, and re-use knowledge. Furthermore, theories for systems engineering 

are described including processes for requirements engineering and architectural 

design. As a tool for model based systems engineering, principles for object-process 

methodology is described. Each section is a summary of the most important theory 

from the literature review. 

 

3.1 Knowledge based development 

In an empirical study, Ulonska [18] investigated cornerstones for KBD with means to 

capture, store and re-use structured product knowledge.   

The study concluded that KBD is a field based on processes, methodologies, tools and 

theories from systems engineering (SE), lean product development (LPD) and 

knowledge management (KM).  

What is Knowledge? Knowledge is understanding gained through experience, the sum 

of what have been perceived, discovered or learnt [19]. Rowley [20] discusses the 

knowledge hierarchy, originated from Ackoff’s paper of 1989 [21] and explaining 

relationship between Data-Information-Knowledge-Wisdom. The hierarchy are 

summarized in figure 3.1 as a pyramid. 

 

 

Figure 3.1 DIKW hierarchy adapted [20]. 
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3.1.1 KM contribution to KBD 

There are two types of knowledge; tacit and explicit knowledge accordingly to 

Nonaka and Teece [22]. Explicit knowledge is expressed in formal language and 

shared in forms of data, formulas and specifications that can be processed, transmitted 

and stored easily. Tacit knowledge is personal such as subjective insights and 

intuitions that are hard to formalize because it is deeply rooted in commitment, ideals 

and values. Tacit and explicit knowledge are complementary and both are essential 

for knowledge creation [23]. 

Nonaka & Takeuchi [24] describes the knowledge conversion within an organization 

based on interactions between tacit and explicit knowledge. Externalization is the 

mode where tacit knowledge is articulated into explicit, allowing it to be shared by 

others and become the basis for new knowledge. 

Essential for knowledge transfer is shared understanding between individuals within a 

team, this includes that team members make it explicit with tools and visualizations 

with the use of a transfer media. To enable application and reuse of stored knowledge, 

it is important that the transfer media support smooth information flow between 

individuals within a system development team and transparency of system 

dependencies. This will facilitate finding the needed information and a shared 

understanding of the systems context [18].  

The previous part clarifies central concepts that will recur in the report. In addition, 

the definitions concerning "knowledge" facilitates consistent use of terminology. 

In this project object-process oriented models (see Section 3.3) will be investigated as 

a transfer media to support explicit information flow and visualize system 

dependencies. 

 

3.1.2 LPD contribution to KBD 

Kennedy, Harmon and Minnock [25] describes that the knowledge flow across 

different projects representing the knowledge and product value stream within the 

organization, illustrated in figure 3.2. The knowledge serves as a base for project 

execution and integration of new learnings update current knowledge. Grant [26] 

views organizational capability as the outcome of knowledge integration. This means 

that the knowledge evolves during product development and the organizational 

capability increases over time.  
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Figure 3.2 Knowledge value stream in LPD, adapted from [25]. 

Shook [27] emphasizes A3 analysis as a tool for organizational learning. An A3 is 

brief and precise, documenting only one problem and its solution. This makes it easy 

to read and grasp the context. A3 sheets that are linked in hierarchical structure can 

facilitate understanding of a complex problems and interrelations [18]. The A3 

process for problem solving engages as well as aligns the organization by facilitating 

understanding and consensus of complex problem. Each person on each level in the 

organization have explicit responsibility and ownership. The A3 process clarifies 

responsibilities by placing ownership directly to the author of the A3, the one whose 

initials written on the paper. The structured process force team members to observe 

the reality and present the facts.  

The figure of the “knowledge value stream” has an utmost central role in the VCG 

organization and represents the change process towards a knowledge-based product 

development. Nor is A3 management with documented knowledge new for the 

organization. Previous investigations have been made to use the method to a greater 

extent. Therefore, it could be appropriate to adapt this method to manage 

documented knowledge in object-process oriented models. 

 

3.1.3 SE contribution to KBD 

A complex system is managed with thorough information created in a suitable 

structure, in an appropriate order, and with traceability between different elements. 

Only the right people can see and change that information. The approach encourages 

teamwork with integrated product teams, yet ensures personal responsibility [28].  

SE contributes KBD with methods to manage complexity by system decomposition 

and visual modelling [18]. SE is an enabler to solve problem of increasing complex 
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and multidisciplinary products, with the goal to meet user needs and reduce risk by 

supporting products life cycle processes [29].  

Further reading about the general systems engineering process is described in 

section 3.3 and theory about system decomposition in section 3.4 Background about 

the powertrain systems engineering process at Volvo Cars is described in chapter 4. 

 

3.2 Representing context of structural knowledge 

System knowledge includes architectural aspects, performance, quality, principal 

components, functionalities, concept choices and design parameters, etc. However, it 

is also related to the individuals in the company processing the product engineering 

knowledge [18]. 

In engineering, the context of structural knowledge may be represented with 

functional models and system architectures for example. An approach for this 

representation is with Model-Based System Engineering (MBSE) techniques [18].  

Gianni, D'Ambrogio and Tolk [30] describes MBSE as a methodology which focuses 

on creating and using models as the primary means for information exchange between 

engineers. Recently focus has also covered model execution and simulation. An 

approach for MBSE is OPM, described in section 3.2.1. 

Bruun [31] emphasizes the role of visualization in a model. A visual context makes it 

easier to obtain an overview of the model. A graphical representation of systems with 

a diagram for example is a powerful way to hold information and to share knowledge 

between designers and decision makers. However, a difficulty can be to present data 

and information visually without losing the depth of information.  

Another approach for representing structural knowledge is with matrix 

methodologies. This is described in section 3.2.2. 

Product Lifecycle Management (PLM) systems integrates management of all product 

related information and processes through the entire product life cycle. PLM systems 

supports KBD by improving knowledge access and maintenance. Furthermore, PLM 

serves as communication channel, making knowledge available for application and 

reuse [18]. 

It seems that SE is also about the interactions between people i.e. resources within 

the organisation and the development process. Hence, it is important to integrate the 

role of the resources when documenting system knowledge. This will facilitate to find 

the owner of the system knowledge.  
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3.2.1 Object-process methodology 

System knowledge is defined in its architecture. Dori [6] claims that systems will be 

increasingly knowledge driven. He emphasizes the need for tools and environment for 

extracting existing knowledge, and generating new knowledge. Furthermore, Dori 

argues that a consistent and comprehensive mapping of knowledge about systems 

must account for their function, structure, dynamics as well as the interaction with 

environment, creating a collection of systems. 

According to Dori [6] “object-process methodology has been developed as a holistic 

approach to the study and development of systems, integrating object-oriented and 

process-oriented models into a single frame of reference.” OPM integrates function, 

structure and behavior in one model. Dori [7] express that OPM is a departure from 

object-oriented approach when it premises that processes as entities in addition to objects. 

According to Dori, objects and processes are both equally important to describe a system. 

OPM is a modeling language that combines a set of building blocks – objects, which 

may have different states and processes that transform an object from one state to 

another. This is modelled with a graphical-textual representation in a single system 

diagram called object-process diagram (OPD).  

The elements of OPM are divided into three categories [7]: 

 Entities: object (rectangles); states (rounded corner rectangles within objects) 

and processes (ellipses) 

 Procedural links: Directed lines connecting processes to objects. Express 

transformation of the system made by process enablers.   

 Structural relations: Set of triangular symbols representing fundamental 

structural representations.  

Table 3.1 Building blocks in OPM and figure 3.3 illustrates an example of an OPD of 

a system with OPM. 
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Table 3.1 Building blocks in OPM [7].  

E
n

ti
ti

es
 

Object 

 

An object is a static thing that exists. Can be 

generated, changed or consumed by processes 

during a time. 

Process 

 

A process is a dynamic thing, defining how an 

object is transformed. 

State 

 

A state is a situation an object can be. A 

process can change an object’s state. 

P
ro

ce
d
u
ra

l 
li

n
ks

 

Consumption  Processing consumes object, uses entirely 

under its occurrence. 

Processing yields object and creates an 

entirely new object under its occurrence. 

Processing changes object input state to 

output state. The object is at input state prior 

to the process occurrence and at output state 

as a result of its occurrence. 

Result 

Input / Output 

Agent  Object manages processing. Object is a 

human, not changed by the process. Process 

needs human agent in order to occur. 

Instrument  Processing requires object. Object is a non-

human, not changed by the process. Process 

needs an instrument in order to occur. 

S
tr

u
ct

u
ra

l 
re

la
ti

o
n
s 

 

Aggregation / 

Participation 

 

A consists of B and C.  

B and C are parts of the whole A. 

Exhibition / 

Characterization 

 

A exhibits B as well as C. 

B and C are attributes of A. 

Generalization / 

Specialization 

 

B is an A, as well as C is an A. 

B and C are types of A. 

Structural link  Relation between objects. 
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Figure 3.3 Example of an object-process diagram with OPM. Own figure. 
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3.2.2 Matrix methodology 

Börjesson’s [32] study describes domain mapping matrix (DMM) as a matrix that 

maps the relation between two different data types (domains). Börjesson describes 

that DMM is an inter-domain matrix, accordingly to Malmqvist’s [33] categorization 

of matrix-based product modeling methods. The matrix describes different types of 

elements in rows and colums. The relations between this elements is marked in the 

cells.  

Axiomatic design is a system design methodology, using a matrix to analyze the 

transformation of customer needs into functional requirements, design parameters, 

and process variables according to Suh [34]. Functional requirements (FRs) are 

related to design parameters (DPs):  

[
𝐹𝑅1
𝐹𝑅2

] = [
𝐴11 𝐴12
𝐴21 𝐴22

] [
𝐷𝑃1
𝐷𝑃2

] 

The four domains of axiomatic design are the customer domain, the functional 

domain, the physical domain and the process domain [35].  

Customer attribute [CA]: what a customer desires from a product. 

Functional requirement [FR]: minimum set of independent requirements that 

completely characterize the functional needs of the product in the functional domain. 

Design parameter [DP]: Key physical variables in the physical domain that 

characterize the design that satisfies the specified FRs. 

Process variables [PV]: key variables in the process domain that characterize the 

process that can generate the specified DPs [36].  

 What should be accomplished?  

 How should this be accomplished?  

 Why should this be accomplished?  

These are all adequate questions when moving back and forth between these domains. 

Figure 3.4 describes the mapping of the domains including the design phases. 

.  

Figure 3.4 Mapping of domains in Axiomatic design. Adapted from [35]. 

In this project, a matrix method is used to map dependencies between different 

domains expressed in an object-process oriented model. 
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3.3 Systems engineering 

This section about processes within SE provides a basis to understand the work at 

Powertrain Strategy and Concept at VCG.  

Systems engineering describes as follows: 

"An interdisciplinary approach and means to enable the realization of successful 

systems" by INCOSE SE handbook [29]. 

"Systems engineering is a robust approach to the design, creation, and operation of 

systems. In simple terms, the approach consists of identification and quantification of 

system goals, creation of alternative system design concepts, performance of design 

trades, selection and implementation of the best design, verification that the design is 

properly built and integrated, and post-implementation assessment of how well the 

system meets (or met) the goals." By NASA’s Systems engineering handbook [37]. 

"The systems engineering process recognizes each system is an integrated whole even 

though composed of diverse, specialized structures and sub-functions. It further 

recognizes that any system has a number of objectives and that the balance between 

them may differ widely from system to system. The process seeks to optimize the 

overall system functions according to the weighted objectives and to achieve 

maximum compatibility of its parts." Systems engineering tools by Harold Chestnut 

[38]. 

Figure 3.5 describes the system engineering process with the V-model. 

 

 

Figure 3.5 V-model of system life cycle, adapted from [28]. 
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3.4 Requirements engineering within SE 

Requirements engineering is part of the SE process. In requirements engineering, 

traceability refers to the understanding how high-level requirements - objectives, 

goals, needs etc. are transformed into lower level requirements - product specification 

and solution. In engineering, the interest may focus on how user requirements are met 

by system requirements that are partitioned into sub-system that are implemented into 

components.  

Traceability could be implemented by linking requirements from one level to another 

level in the design process [39]. Almefelt [40] distinguishes in his study various 

degrees of traceability and defined two extremes of a scale. Qualitative traceability 

enables identification of parts that for example are related to a requirement. These 

requirements can simply be met or not. Almefelt argues that quantitative traceability 

is a more efficient with ability to clarify how much a change or a design solution or 

attribute affects a certain requirement. 

Figure 3.6 shows a general model of the requirement decomposition and balancing 

process within SE. It may present the left side of the V-model in figure 3.5. 

 

Figure 3.6 Requirement decomposition and balancing process. Adapted from [41].  
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3.5 System architecture 

Ulrich [42] defines the essential elements of an architecture including: 

 The arrangement of functional elements. 

 The mapping of functional elements to physical components. 

 The specification of interfaces between components.  

Crawley [43] defines an architecture as: “An abstract description of the entities of a 

system and the relationship between those entities. “The embodiment of concept, and 

the allocation of physical function to elements of form, and definition of interfaces 

among the elements and with the surrounding context.” 

Dori [7] defines the architecture of a system as the combination of the system’s 

structure and behavior that enables it to perform its function. 

 

3.5.1 Decomposition of a system 

 

 

Figure 3.7 Decompositional view of a medium system, adapted from [43]. 

The purpose of decomposition by functional analysis is to develop a system 

architecture. The importance of the process is to identify what the system must 

perform to fulfill its objectives. The three key steps in the decomposition process are: 

1. Translating top level requirements into functions and derived technical 

requirements 

2. Decompose and allocate the functions to lower levels of product system 

structure. 

3. Identify and describe functional and sub-system interfaces. 
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The decomposition facilitates understanding of the system relations between 

requirements and furthermore ensures that all the requirements are allocated to at 

least one function. Conflicts can be identified an resolved [44].  

Soderborg’s [45] study describes the “What and How” decomposition as one 

approach for system architecture design.  

 “What” refers to what is desired, an objective or requirement.  

 “How” refers to how the objective or requirement is fullified.  

4 basic questions for good What and How decomposition of a system (46) 

1. What should the system affect? 

2. What effect should the system cause? 

3. How does the system behave? 

4. How is the system structured? 

Soderborg et al [46] organizes WHATs and HOWs by OPM concepts in accordance 

to table 3.2. Figure 3.8 illustrates a generic OPD template for Whats and Hows.  

Table 3.2 Organizing of Whats and Hows by OPM. 

WHAT? 

What result is desired? 

HOW? 

How does the system achieve it? 

Function: 

operand-use combination 

Architecture: 

dynamics-structure combination 

Object element Process element Process element Object element 

What should be 

affected? 

What is the 

desired effect? 

How does the 

system operate? 

How is the system 

structured? 

Operand-state 

transformee 

Use, service Behavior, 

pperation 

Structure, form 
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Figure 3.8 Generic OPD template for Whats and Hows, adapted from [46].  
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4 Powertrain systems engineering at Volvo Cars 

This chapter describes the background of powertrain systems engineering process at 

VCG, with means to describe how and with whom the system responsible 

communicate with  as well as their deliverables within the development process.  

4.1 VPDS and organization 

 

Figure 4.1 illustrates VPDS and the system engineering activities. 

Powertrain Engineering is a unit within the department of R&D, responsible for 

delivering verified complete powertrains to the vehicle projects (figure 4.2). The unit 

consists of:  

 Powertrain Strategy and Concept: responsible for powertrain attributes and 

unit deliveries in strategy and concept phase. 

 Complete Powertrain: develop electronic hardware/software (HW/SW) 

control system and calibration with respect to powertrain attributes. 

 Engine Development: develop diesel and petrol engines. 

 Transmission Development; develop gearbox, shifter, clutch, all wheel drive 

system, drive shaft etc. 

 Powertrain Installation: develop fuel, cooling, exhaust, air intake systems etc. 

Each developing unit within Powertrain Engineering is divided into product system 

structure (PSS) areas. Each PSS may consists of several sub-systems. 
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Figure 4.2 Organization of Powertrain Engineering within the R&D Department. 

 

4.2 System Responsible (SA) 

With constantly increasing demands on passenger cars, regarding emissions, fuel 

consumption, performance, driveability, noise, vibration and harshness (NVH), 

quality and cost; it is mandatory to use all available and effective methods for systems 

engineering in early phases to quickly find an optimal solution for the system 

architecture. VCG has a group of system responsible (SA) working with system 

engineering on different levels [47].  

 SA 0 Complete vehicle (cv) 

 SA 1 Complete powertrain (unit) 

 SA 2 Combustion engine (pss) 

 SA 3 Combustion system (sub-system) 
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4.3 Attribute, Function and System 

Following is an explanation of an attribute, a system and a function at VCG. 

According to VCG business management system [48], an attribute describes how the 

customer perceives the car with their senses, such as composition, behavior and 

performance. An attribute can be achieved with the help of one or more system 

solutions and/or functions. Attributes has a special value to the customer and 

considered as critical to quality. An attribute is managed by an attribute leader [48]. 

Figure 4.3 illustrates a Kano model of powertrain attributes [47].  

 

Figure 4.3 Kano model of powertrain attributes, by technical specialist, VCG. 

 

A function describes something that the product does. There are two types of 

functions: customer function, used by the customer and base function, needed by the 

vehicle but not always apparent for the customer. A function shall be decomposed 

into function partitions. Each partition represents a logical step to the function 

solution. A function can be achieved by support from one or more PSSs [48]. Figure 

4.4 illustrates a functional model of a powertrain [47].  

There are many definitions used for a system. Within the requirement processes and 

system development, a system is defined as a cluster of complete components – 

hardware and software, which only can be attached to one PSS. A PSS is managed by 

a SA2 [48].  
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Figure 4.4 Powertrain function model, by technical specialist at VCG. 

 

Figure 4.5 describes the relation between attribute, functions and systems. Attribute 

requirements for a complete vehicle are customer requirements. These are derived as 

technical and quantified functional requirements. At a system level these 

requirements are derived so that the system can fulfill its part in the complete vehicle 

within given restrictions and contribute to the entire customer experience [48].  

 

 

Figure 4.5 Requirement cascading between attribute, function and system. 

 

  



4 Powertrain systems engineering at Volvo Cars 

 

31 

 

4.4 Requirements engineering 

 

 

Figure 4.6 Powertrain systems engineering with the V-model [48].  

Main goal with the requirements engineering process is to measure and secure that 

each vehicle program will meet their requirements and target levels [48].  

This means that a SA manages and secures deliveries for one system area before 

industrialization where each attribute target of quality, cost, weight and functional 

performance is aligned and balanced [48].  

At the department for Powertrain Strategy and Concept, SA1 is responsible for 

presenting alternatives for set based design. This implies balanced cost-efficient 

concepts of the powertrain between entry-level performance cars to premium high-

quality performance cars. The work of SA1 involves a continuous communication 

between attribute- and function leaders, to ensure how changes in prerequisites affect 

the performance and cost of the concept.  

In order to deliver concepts with a certain bandwidth on the performance it is 

necessary to explore the different system configurations and their design space, 

simulate the trade-off between different design proposals and optimize system to 

achieve given requirements.  

The main task of the SA1 is to identify all requirements within the system area and by 

using systems engineering methods, develop a complete powertrain system, which 

works as a whole with the underlying product system structure (PSS) areas [48].  
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4.4.1 Requirement decomposition 

Figure 4.7 mapping the flow of communication of requirements between different 

roles in the process. Briefly, it begins with customer needs and a benchmarking of 

competitors performance. Then Product Strategy decide within which attributes the 

Volvo brand should be leading, be among leaders, be competitive and un-competitive 

i.e. non-dimensioning requirements, according to SA1 at Powertrain Strategy & 

Concept. 

For example, the safety and fuel-economy are attributes strongly coupled to the Volvo 

core values, therefore it is required to be among leaders. The top speed performance 

is not as important which results that the attribute is weighted as among leaders, 

according to SA1 at PT Strategy & Concept.  

Product Strategy is responsible and delivers target specifications for a complete 

vehicle to SA0. The SA0 cascading the functional requirements to the managers of 

attributes effecting the powertrain. The Attribute leaders quantifies the targets and 

deliver both functional and system requirement to the SA1 of complete powertrain. 

Some requirements is directly passed on to the PSS areas [48]. 

 

Figure 4.7 Flow of communication and deliveries. Own model. 

According to SA1 at PT Strategy & Concept, system status is currently 

communicated through trade-off graphs in PowerPoints or data summarized in Excel, 

continuously updated. The communication is only stored at individuals emails or at 

the intranets SharePoint. The communication does not allow easy search- or 

traceability, neither is it indicating the relevance of the information.   
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There are two sets of requirements. The base requirements are always the same for a 

powertrain thus should not have to be structured, documented and cascaded once 

more for each new project. Project requirements, which are unique, always cascade 

for a new project and accounts for 10-30% of total. Subjective requirements are 

traditionally verified by driving the cars and objective requirements are measured on 

various system levels [47].  

SA1 explain that it is impossible to optimize everything in a powertrain project. Due 

to the complexity, typically, a subset of the system is changed at time and the rest is 

carry over from a previous project.  

Table 4.1 summarizes the decomposition of requirements from product planning with 

user requirement of complete vehicle, to functional- and system requirement for 

underlying subsystems within powertrain engineering. It also points out which unit is 

responsible for deliveries and what SA level is managing the process. 

Table 4.1 Decomposition of requirements and deliverables in PT SE process. Own 

summary. 

SA  Unit Responsibilities and Deliverables SE phase 

 Product 

Strategy 

Brand- and attribute strategy targets to 

SA0. 

Product 

planning 

SA0 Complete 

vehicle 

 

Attribute requirements to SA1 via attribute 

leader for powertrain attributes: 

• NVH: ex sound quality,  

• Performance: ex effect engine 

• Driveability: ex acc. take off 0-100 km/h 

• Emissions: ex g KNOX / km  

• Fuel-Economy: ex g CO2 / km 

Req. setting 

SA1 Complete 

powertrain 

 

Quantified functional requirements 

cascaded to SA2 for PSS areas. 

System Design Alternatives to the concept 

leader 

System 

architecture 

Function and 

system 

selection 

Balancing 

req. 

SA2 Product 

system 

structure 

(PSS)  

System requirement cascaded to SA3 

within: MU, TU, DLI and KD. 

SA3 Sub-system/ System and functional description back to 

SA2. 

Principal  

solution 

SA4 Components  Detailed 

design 
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4.4.2 Balancing process 

According to SA1 at PT Strategy and Concept [49], balancing refers to the 

management of vehicle attributes of a system design alternative, a concept, in order to 

provide user value in a cost, weight and performance efficient way.  

SA1 is responsible for the system optimization for complete powertrain and multi 

domain optimization with the most coupled attributes. It is a complex task since there 

are many degrees of freedom when several systems interact with multiple attributes 

[47].  

According to Almefelt [40], requirements are not independent. Conflicts between 

requirements do exists due to the complexity of a powertrain system. Trade-offs are 

likely to emerge during the design process. A balanced development project means 

that all the internal requirements conflicts are resolved, which implies a compromised 

and well-balanced product. However during a project many sub-systems and 

components are developed or changed, considered in an isolated context not 

interrelations in an overall powertrain system. Since requirements often are 

incomplete, efforts with sub-system optimization is needed. 

Cost, weight and performance are the most important attributes according to SA1 at 

PT Strategy and Concept [49]. Performance refers to functions of the complete 

vehicle and their quality perceived by the user. Cost concerns the economic resources 

used to provide the functions. Weight refers to the total weight of the car, which 

should be as low as possible for best resulting fuel economy. Table 4.2 shows an 

example of attribute balancing, explained by SA1.  

Table 4.2 Balancing turbo configurations. 

Configuration Attributes 

 Cost Perform. Driveab. Fuel-eco. NVH 

(Set of possible 

design 

solutions) 

 (SEK) Effect (hk) Response 

(sec) 

CO2 

(g/km) 

Sound, 

vibration. 

(dB, Hz) 

Small turbo 0 0 0 0 0 

Large turbo - + - - - 

Large turbo + 

mech. 

compressor 

- + + + - 

Large turbo +  

e-compressor  

- + + + + 
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5 Need findings 

This chapter begins with collected need statements from SA1, referring to the desired 

process for knowledge capture in object-process oriented models. Thereafter, the 

need statements are interpreted and translated to a functional analysis of the desired 

process.  

  

5.1 Need statements for knowledge capture 

Raw data was gathered through un-structured interviews (appendix A) during three 

occasions from SA1 at Powertrain Strategy & Concept. Questions addressed to the 

target group can be found in appendix B.  

The need statements compiled in table 5.1 were noted during the interview. 

Table 5.1 Need statements from SA1. 

 Need Statement 

Knowledge 

transfer 

1 Be able to easily communicate a system between SAs. 

2 Be able to easily transfer their knowledge to new team 

members or stakeholders.  

3 Easily determine which relevant responsible stakeholders 

in the SE process should be convened for issues related to 

balancing attributes. 

 

Management 

/ 

maintenance 

4 Be able to store model. 

5 Be able to update model. 

6 Be able to reuse model. 

7 Have a generic model of a system. 

8 Be confident that the information in the model is correct. 

 

Purpose 9 Display different views of the same system such as 

requirements, functions, behavior and layout.  

10 A model that displays a system based on either customer- 

or legal requirement or corporate business level brand and 

strategy attributes. 

 

Balancing 11 A "tick in the box", a checklist pointing at where in the 
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system calibration is needed and in what order operations 

need to be performed. 

 

Traceability 12 Know how much something in the system affects or is 

affected. 

13 Know what affects the most in the system 

14 Know where changes hit further up or down the system 

architecture. 

15 Know how changes hit further up or down the system 

architecture. 

16 Know which SDA exists. 

   

Searchability 17 Be able to search for a specific purpose among different 

models. Ex: search for "improve vehicle response" or 

“reduce booming noise” 

 

Notify 18 Know when changes have been made in the system 

model. 

 

Display 19 Be able to easily orient themselves in the system model. 

20 Highlight features in the model that affects or are affected 

in the system. 

21 Know if there is documents, reports, patents etc. that 

support link between requirement and function. 

22 Know where in the system critical trade-off between 

design proposals exists.  

23 Select how much is displayed in a model: adjacent 

systems, subsystems and components.   

 

Drafting 24 It is important to be consistent when creating the system 

model. 

25 Know how a system model is quickly an easy drafted. 

 

Interpret 26 A plug-in must be able to interpret the data in the model 

to generate new information. 

 

Value 27 The output from the model is bigger than the required 

effort with input. 
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5.2 Functional analysis of interpreted needs 

The need statements were translated in to a functional analysis [16] of the desired 

process of knowledge capture. The relative importance was established, on a scale of 

1 to 3, where: 

1. Function would be great but not necessary. 

2. Function is highly desirable. 

3. Function is critical. 

Table 5.2 Functional analysis of interpreted needs. 

  Function  

 Need Verb Noun Note Imp. 

Knowledge 

transfer 

1 enables  easily communication with 

stakeholders 

3 

2 enables  knowledge transfer with 

stakeholders 

3 

2 facilitate shared understanding of 

system  

between 

stakeholders 

2 

3 admits  listing  of 

stakeholders 

2 

3 admits  structure to connect each system 

level 

3 

 

Management/ 

Maintenance 

4 enables storing of model 3 

5 allows updates of model 3 

6 displays current knowledge  in model 3 

7 enables reuse of data, 

information and 

knowledge 

in model 3 

8 enables ownership of model 3 

 

Purpose 9 displays multi domain views in model 2 

10 provides need-based views in model 2 

 

Balancing 11 highlights balancing situations of 

requirements 

in model 1 

11 enables compilation of  

calibration activities 

at each 

system level 

1 

11 enables sequential steps of  

calibration activities 

at each 

system level 

1 

 

Traceability 12 displays dependency weigh- in model 1 
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factor 

13 highlights feature with most 

dependency 

in model 1 

14 links requirements to 

function to HW/SW 

in model 3 

14 alerts owner of model when 

last link is deleted  

between 

systems 

2 

14 enables qualitative traceability inter/intra 

model 

3 

15 enables quantitative traceability inter/intra 

model 

2 

16 displaying  SDA in model,  2 

 

Searchability 17 enables searchability in supporting 

tool for 

managing 

models 

3 

 

Notify 18 notifies responsible 

stakeholders when 

changes has been made 

in model, 

system 

2 

 

Display 19; 

20 

facilitate  traceability between 

dependencies  

in model 2 

21 links relevant documents in model 1 

22 highlights existence of trade-offs in model 1 

23 offer  option to choose how 

many levels of 

dependencies to display 

of the system 

architecture  

2 

 

Draft 24; 

26 

uses equal nomenclature of 

element  

in model 3 

24 defining name space for 

elements 

in model 3 

24 facilitate  drafting/development of model 1 

24 admits a structure/format for the model 2 

25 admits clear approach for 

drafting 

of model 2 

 

Interpret 26 enables interpreting of data in model 3 

 

Value 27 offer added value  to stakeholder 3 
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6 Knowledge mapping of a system architecture 
with OPM. 

This chapter describes the case study and the process of mapping knowledge of a 

system architecture with OPM. Furthermore, the result is analyzed based on the 

functional analysis of interpreted needs. 

Included is a discussion with recommendations for the process of capturing 

knowledge, managing and maintaining captured knowledge as well as interpreting 

and reusing captured knowledge. 

6.1 Capture knowledge 

In order to investigate how to map knowledge from multiple system levels, with input 

from several SAs, a case study was conducted.  

The knowledge mapping visualizes a system architecture based on the overall 

customer attribute vehicle response. The result shows how the attribute is affected by 

the powertrain and how that affects the driveability of the car. 

Data was gathered through semi-structured interviews from eight SAs (compiled list 

of interviewees can be found in appendix A), operating across the different 

developing units at Powertrain Engineering, at multiple system levels. 

Each interview was documented and analysed in order to create a model (an OPD) of 

the system with OPM, at an A3 sheet. In total, nine models were created. A 

generalized structure of an OPD, including models from three system levels is shown 

in figure 6.1. An example is shown in figure 6.2. 

The structure of the model is to some extent based on the outcome from previous 

investigation made by PT Strategy & Concept in 2013.  

Before the interview with the system responsible, questions were prepared and 

adapted to the specific system observed. A theoretical background of the current 

system was also studied to facilitate the understanding of discussion in the upcoming 

interview. 
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Figure 6.1 Generalized structure for documenting knowledge through design phases 

in an object-process model. 
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6.1.1 Drafting of an object-process diagram 

The questions in the interviews were based on Soderborg’s template (see table 3.2 in 

chapter 3) for “What and How” decomposition of a system architecture, however, the 

questions differed depending on SA level interviewed. Compiled interview guide can 

be found in appendix C. Answers were noted directly in the interview guide. 

Example of the What and How decomposition: From SA1 complete powertrain to 

SA2 Engine HW system, to SA3 Turbo system, see related model in figure 6.2. It 

describes the communication and knowledge transfer between three SAs at three 

system level design. 

 What should the system affect? (Static, object related) 

o The driver (operand) experience of the vehicle response.  

 What transformation should the system cause? (dynamic, process related) 

o Changing the vehicle response from un-acceptable to acceptable 

(attribute with two states). 

 How does the system behave? (dynamic, process related)  

o Operating vehicle response  operating engine response  

supplying boost pressure/charged air flow to engine  reducing 

turbo lag  reducing inertia of rotating parts in turbo system  

Translating exhaust flow to rotational movement (decomposed 

functions). 

 How is the system structured? (static, object related)  

o Turbine (component, part of the product structure) 

Included in the interviews were also questions expressed in terms of: 

 Why does these functions exist, i.e. which derived requirements are related to 

the decomposed functions? 

 Who is the resource delivering or receiving the requirements? 

o Who is the owner of system knowledge? From which developing 

unit?  

 Which are the system design alternatives? 

o Other configurations with different performances? 

The discussion during the interviews was made easier by a schematic illustration of 

the system. This illustration was used to point at essential components in the 

hardware structure of the system, as well as to discuss their function and derived 

requirements. 

Approximate time required to create a model of a system took less than an hour at a 

SA3 level, depending on accuracy of decomposition, i.e. how many elements with 

objects and processes that describes the system. However, it required less time to 

model the system at a SA2 and SA1 level.  

After completing the system model with an OPD, the A3 sheet was send for a review 

at the responsible SA for current system. This to ensure a correct content.  
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During the case study, it was found that some of the mapped systems do not need 

further decomposition of functions and derived requirement to a SA3 level. Air intake 

system is a PSS area within driveline installation exemplifying this. Other PSS-areas 

with increased complexity requires further decomposition.  

Decomposition to a SA4 level (component owner) was not carried out in the case 

study. During interviews number 6 and 9 it was told that many of the requirements on 

a detailed level design is an extra-communication between the component owner and 

the supplier. 
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Figure 6.2 An example of drafted model, with the use of “What, How, Why, Who” – 

questions decomposition of system. 
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6.1.2 An A3 based hierarchical structure of object-process diagrams 

In the case study, the documentation of system knowledge in OPDs follows a 

hierarchical structure accordingly to figure 6.3. This structure is closely connected to 

the systems engineering phases as well as the system responsible. The tree structure is 

symbolic, and may or may not represent the actual connectivity of the object and 

processes. Each element on a level can interface, but do not necessarily do.  

The documented knowledge includes:  

 System requirements, defining why the product is developed.  

 Functions explaining what the solution is going to do. 

 Product structure describing how the functions are accomplished. 

 Resources expressing who is owner of the knowledge.  

 System interfaces placing the system in a context to its surroundings.  

The left side in figure 6.3 describes the communication and knowledge transfer 

between systems responsible. The right side describes the connections between 

different models at multiple system levels. 

 

 

Figure 6.3 Hierarchical structure of OPDs, following the system engineering phases 

in powertrain development. 

With this approach, a complete system will consist of a certain setup of A3s, 

reflecting the considered concepts for a certain attribute 

Just to illustrate the total sum of captured knowledge in the case study, the models 

with different owners were merged manually to one complete system architecture. 

The dashed lines in figure 6.4 illustrate the different A3’s and clarifies sub-systems 

interfaces. Similar models could exist for other attributes, for example booming noise 

within NVH. 

In total the merged complete system architecture consists of:  
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 27 components in the product structure 41 decomposed function from the 

main function, transforming the attribute.  

 3 top-level requirements concerning the main function of the complete 

system. In the case study the top-level requirements describes load cases. Ex. 

take-off acceleration and road load acceleration.  

 22 derived requirements from the top-level requirements.  

 10 identified SAs delivering or receiving decomposed function and derived 

requirements.  

 

Figure 6.4 Eight object-process models merged to a complete knowledge mapped 

system architecture. 
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To enable this fusion of models, duplicated elements with equivalent data content 

created an overlap between two systems at the same or different system level design. 

The function with a bold blue contour in figure 6.5 illustrates an example with output 

data from one model that is also input data to another model of interfacing system.  

 

Figure 6.5 Output from one model provides input to next system model. 

Output from one model provides input to the next model through the decomposition. 

This overlap with duplication of the same elements, containing the equivalent 

information enables knowledge flow between systems, at same level or different 

system level design.  

Recommendation: Send a notification to the receivers of the decomposed 

requirements and functions from delivering SA further up in the tree structure. 

Likewise, when a SA further down changes anything traced to element further up or 

at the same level but adjacent system. The notification is necessary so that the SA 

know when to loop the drafting process and continue the creation of a complete 

knowledge map of the system architecture.  

In the case study, a function could exist in multiple systems, however the requirement 

or component attached to the function may differ. Example “Reducing pressure drop 

after compression” can be found in both air intake system and cooling system, 

however the required pressure drop differ. It was found that a function could be 

solved by multiple components and vice versa that a component could solve several 

functions.  

Each system is responsible for some components, however several components can 

co- exist in several systems. Ex the component “compressor” could be found in both 

air intake system and turbo system. To indicate that the component belongs to an 

interfacing sub-system the objects was marked in a different colour.  

A majority of the derived requirements were expressed explicit as f(x,y @ z1; z2; z3), 

i.e. a curve from a simulation describing a multi-dimensional function, which could 
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facilitating tracing of trade-offs between design parameters. The requirements could 

also be extracted from mails, excel sheets, internal documents or simply expressed as 

tacit know-how. 

This illustrates that it is difficult to show the complete picture of all interactions and 

structural relations in a complex system. Therefore the data and information in the 

models should be interpreted with queries. 

 

6.1.3 Traceability 

The object-process oriented model may provide qualitative traceability between 

multiple domains (described in chapter 3.4).  

Traceability from vehicle attributes in the customer domain to decomposed functions 

and derived requirements in the functional domain. Furthermore, traceability to the 

product structure with hardware components in the physical domain as well as 

traceability to resources responsible for the development.  

The models may provide qualitative traceability between systems at multiple system 

level design. However, a quantitative traceability, i.e. how much a change affect a 

system, the model will not provide. According to Almefelt [40], a quantitative 

traceability will require sophisticated models with integrated simulations and analysis 

models. Furthermore, Almefelt concludes that quantitative traceability also could be 

used for trade-off studies and balancing of attributes. 

 

6.1.4 Nomenclature 

To facilitate drafting of a model and ensure consistent nomenclature of the objects 

and processes, the following elements in table 6.1 may be used as templates. The 

templates ought to be drawn from a sideboard and dropped to the drawing board.  

Tagged elements could enable search ability in a database storing the models and 

including data. 

Structures for tagged nomenclature need to be aligned with existing structures within 

the organization, according to technical experts within Powertrain Engineering. 

 

Table 6.1 Templates and guidelines for nomenclature. 

 

Tagged [attribute] ex vehicle response (driveability).  

The states expresses current state of the attribute and 

the desired state of the attribute. Ex: un-acceptable, 

acceptable.  A numeric value could be included in the 

attribute. Ex fuel-economy xx g CO2 / km. 
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Tagged [fnc] The process element express a function 

necessary to meet a given requirement. Expressed as 

“Verb(…ing) + attribute”, more specific for each 

system level closer to product structure.  

Since the structured links provide traceability between 

the functions in different systems, numbering of 

functions not necessary. 

The functions with interface to the product structure 

are generic and expressed in a solution neutral way, 

I.e. they will be expressed in the same way regardless 

attribute described in the model, therefore 

requirement for different attributes may be attached to 

the same function. This makes them re-useable, 

however new functions may be included when 

describing another attribute.  

Recommendation:  

For an implementation, a recommendation is that the 

supporting program suggest a named function when 

the author starts typing. Similar to auto-fill in excel. 

Another approach could be that program ask, “did you 

mean…” ex reducing turbo lag when author types 

something with maximizing turbo response. 

 

Tagged [req] number according to: 

1. Top-level requirement from AL for complete 

vehicle to SA1 at complete powertrain. 

1.1 Decomposed requirement from SA1 to SA2 at 

PSS area within units for powertrain engineering.   

1.1.1 Decomposed requirement from SA2 to SA3 at 

sub-system. 

Recommendation: if an official explicit requirement 

can be retrieved elsewhere, refer with a URL to a 

sharepoint or to the PLM system for example.  
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Tagged [HW] or [SW] (capital letters, to distinguish 

from other objects in the model). 

During the case study, no structural links between 

software and hardware were mapped out. However, 

the method provides possibility to link software in the 

control system to the hardware structure.  

Recommendation: The [HW] and [SW] ought to 

managed by SA, which give the component an official 

name including tags for similar names referring to an 

equivalent component. 

Recommendation: The product structure for the 

software and hardware could be linked to the 

engineering database (KDP) for VCG. 

 

Tagged with [owner] = name of the author to 

corresponding system model; [role] = the SA level (1, 

2, 3 or 4); @ [dep] = name of department, number. 

The object expresses resources within the 

organization required for a system function.  

Recommendation: Name and number of the 

departments should be linked with existing structures 

for business functions within the organization.  

Recommendation: The resources may be traced to 

required process required to satisfy a function. Further 

investigation how to align the structures for activity 

modeling within VCG need to be investigated. 
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6.1.5 Reflections from the process of capture knowledge 

Interviewee [4.2] expressed difficulties to find explicit written requirements, as they 

were communicated through multiple channels.  

Interviewee [7] expressed that a function may be called differently even though the 

names aiming at an equivalent function. During the case study, equivalent functions 

were copied from one system and pasted in another. In addition, the nomenclature 

was saved in an excel file together with similar names aimed at equivalent function. 

Interviewee [9] expressed that it was a useful exercise to describe their system and its 

functions to someone less familiar with the system. Furthermore, the interviewee 

expressed that the model with its OPD had similarities with boundary diagram, a 

method used to illustrate interface between different sub-systems.  

A major difficulty during the sessions with SAs was to define the functions of the 

system as well as to define which requirements that are related to a specific function. 

Instead of defining the purpose of the system with a functional analysis the SA 

defined their system based on its product structure, i.e. a solution oriented approach. 

A solution oriented approach that may be useful when documenting a system that has 

been developed, however the approach contributes less to generate new ideas for 

principal solution.  

However, the process of conducting the eight interviews and document the result in 

an object-process model was an iterative process that and therefore the outcome had 

higher quality from the last sessions.  

Another area within R&D at VCG where system knowledge could be captured in an 

object-process model is the vehicle electrical network. A network with highly 

intertwined software functions with corresponding input- and output signals, 

according to technical expert within Powertrain Strategy and Concept. 

During the project, there was a discussion whether the knowledge owners actually 

were willing to share their knowledge explicit. A consult hired for their expertise 

might not be willing to share their specific knowledge explicitly. In fact, if each 

individual share essential knowledge explicitly, this will mean that the owner of 

knowledge gets less indispensable. A conclusion is that it requires an open culture 

within the organization. 

Another question that was brought up during discussion: “What happens if a 

structural link with dependency to a function is wrong? This may affect the entire 

system architecture in some way. However, if the system models are used as an 

everyday tool between the engineers, this will be brought up for discussion. The 

system models should be a living document that will change over time when 

knowledge evolves. 
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6.2 Manage and maintain captured knowledge 

6.2.1 Support for the process  

Important to clarify is that the models alone could not enable important needs such as 

knowledge transfer, traceability and searchability for example. Assumed is that the 

models are supported by a program for managing the models, such as drafting and 

maintenance. Furthermore, a plug-in is needed for interpreting of the data in the 

models. 

 

A PLM system is needed to simplify access of models an making the knowledge 

available for new applications, i.e. reusable. The PLM system also facilitate version 

management. Ulonska [18] concluded in his study that a single place or less places for 

documented knowledge improves the possibility to find desired knowledge for reuse, 

therefore a PLM system would be appropriate.  

 

6.2.2 A3 / object-process model management  

In the case study, an A3 sheet with object-process diagram describes: 

 One attribute, ex. vehicle response (driveability)  

 One system design alternative. In this case it could be a SDA of: 

o Diesel or petrol powertrain 

o Current or next generation of powertrain  

o Configurations from entry-level design, medium performance or 

design for high performance.   

 One knowledge owner: a SA1, SA2, SA3 or SA4.  

The approach with an A3 sheet for a single system model means that each system 

responsible could be owner of many A3 sheets. To illustrate this approach one sub-

system at a SA2 level was modelled with two different configurations. A major of the 

elements in the object-process model remained the same; however, expressed was the 

differences in component structure, additional functions and their related 

requirements. 

To clarify the ownership of an A3 sheet, i.e. the responsibility for maintenance of 

data, information and knowledge in the model, a footer may be placed in the lower 

right corner. The footer ought to be tagged with meta-information accordingly to the 

example in figure 6.6. The footer inform who is owner of the captured knowledge and 

has the right competence for the system development. The information describes 

current system, SDA, attribute, version, last update as well as the source of 

information i.e. owner, role, department.  
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[system] complete powertrain
[SDA] MP gen 3
[attribute] vehicle respons (driveability)
[owner] name
[role] SA1 @
[dep] P/T Strategy and Concept, 97xxx
[ver] 2 
[date] 2015-03-17; 2015-03-27

 

Figure 6.6 Footer with meta-information about current object-process model. 

Important to clarify is that the A3 approach does not mean that the model is drafted 

on a physical paper passed on to next SA. As Shook [27] describes, the A3 

management means that the author or owner of knowledge and related OPD, have the 

explicit responsibility to describe their system area and context. The owner also has 

the responsibility for maintenance and updates of the content. 

The decomposition of the system force the owner of the A3 to describe the reality of 

the system and present facts. The owner will ensure that the transferred knowledge 

has high technical reliability, correct data content and logical structure. If each SA 

creates their models it will provides many A3 sheets with explicit knowledge and 

contribute to the hierarchical structure of captured knowledge. 

 

6.3 Interpret and reuse captured knowledge 

If all the object-process oriented models with captured knowledge are merged, they 

will create a large system architecture. However, it can be challenging for the user to 

orient themselves in all data and information displayed in these merged models.  

Recommendation: Captured knowledge should exist in a database and only relevant 

system area should appear on request. 

6.3.1 Interpretation 

One type of query may be to interpret the trace links in the model and show 

dependencies in a traceability tables. According to Almefelt [40] traceability tables 

could be used to maintain traceability information.  

Three systems in the case study were mapped manually in a traceability table. This is 

a DMM, displaying cross-references between two domains, with “X” to indicate trace 

links between items in the rows and in the columns. Due to confidentiality, the data in 

the tables are censored. Figure 6.7 maps links between system function and hardware 

components. Figure 6.8 maps links between system functions and their related 

requirements.  

However, it is not possible to do this operation manually, when the data amount to 

interpret is bigger. Therefore, a plug-in is necessary to interpret the models and create 

the DMM.   
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Figure 6.7 Traceability table between decomposed functions and HW components.  

 

 

Figure 6.8 Traceability table between decomposed functions and requirements. 
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6.3.2 Searchability 

One query may be to search in the database storing the information. With 

interpretation of trace-links this could extract dependencies for only requested explicit 

system knowledge, based on multiple attributes.  

 

Figure 6.9 Traceability and searchability may generate requested knowledge. 

This means that an object-process diagram could be generated on demand, based on 

the searched tags, displaying only what is relevant documented knowledge. 

Every system operates as an element of a larger system and is itself composed of 

smaller systems [43]. The searchability implies to choose how much should be 

displayed in the model. Traceability to the extent of only searched element, one 

system, surrounding system at the same level or further up/down in system structure. 

According to system architects at the unit Strategy & Vehicle Concepts within R&D, 

VCG (50), the queries may be formulated as: 

 Which object/processes of type [tag] depends on type [tag]?  

 Choose level: ex. first or second order of dependency.  

Example (see figure 6.9), if only interested in what the compressor in the turbo 

system is affected by, or affect in the immediate surrounding it is not necessary to 

display the complete system architecture. That will display too much information and 

complicate for the user to orient themselves in the system landscape. 
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7 Conclusions 

This chapter concludes the research and answering the research questions. 

 

In this research, a process for capture and reuse system knowledge at Powertrain 

Engineering within R&D at Volvo Car Group has been investigated. This with the use 

of object-process methodology as a tool for model based systems engineering.  

 

RQ1: What are the needs for the process of system knowledge capture and reuse? 

Need findings from the target group within VCG, concluded that important for the 

process is methods and tools supporting communication with stakeholders as well as 

shared understanding of a complex system. Furthermore is both traceability and 

searchability necessary for managing the system knowledge. 

 

RQ2: How can system knowledge be captured and reused by OPM? 

Capture knowledge  

The case study of mapping system knowledge with OPM concluded that conversion 

of tacit to explicit system engineering knowledge could be enabled by object-process 

oriented modeling.   

The documentation of captured system knowledge should follow a hierarchical tree 

structure that is closely connected to the development phases as well as the system 

responsible. 

Value offered with the object-process oriented models of a system architecture is 

qualitative traceability between: 

 System requirements, defining why the solution is developed.  

 Decomposed functions explaining what the solution is going to do. 

 Product structure describing how the functions are accomplished. 

 Resources expressing who is owner of the knowledge.  

 System interfaces placing the system in a context to its surroundings.  

A generalized structure for the decomposition of a system architecture has been 

presented, following VCG developing organisation within R&D. 



7 Conclusions 
 

 58 

Drafting of the model could be facilitated with “what” and “how” questions [46], as 

well as the additional “who” and “why” questions for decomposition of the system. 

 What should the system affect? 

 What transformation should the system cause?  

 How does the system behave? 

 How is the system structured?  

 Why does a function exist/ 

o Which derived requirements are related to the decomposed 

functions? 

 Who is the resource delivering/receiving the requirements? 

Templates with guidelines for defining namespace and managing an equal 

nomenclature of the object-process element has been discussed. Suggested is that the 

nomenclature is aligned with existing business structures, however it needs further 

investigation for a robust implementation. 

 

Manage and maintain captured knowledge 

To transfer the system knowledge, models are stored suitably in existing PLM 

system, which will facilitate access and version management.  

Proposed is that the model is maintained by the system responsible with A3/OPM 

management, i.e. the owner of knowledge. This will ensure correct content.  

 

Interpret and reuse captured knowledge 

To support reuse of captured system knowledge and searchability, suggested is that a 

plug-in tool should interpret data and information in the models based on queries. 

Proposed is that the interpreted system knowledge is presented with: 

• A traceability table, a DMM displaying dependencies between two domains. 

• An object-process model generated on demand, based on searched tags and 

dependency order. 

The models could be used as an everyday tool for the engineers to orient in the 

architecture while discussing the concerned systems.   

When documented explicit knowledge is transferred between SAs, the tool may 

provide a holistic view of the overall system architecture. 

It could also support shared understanding and facilitate consensus about a complex 

problem when communicating the system with stakeholders.  

Figure 7.1 concludes the process of capture, transfer and re-use system knowledge. 

Figure 7.2 concludes the process with an object process oriented model. 
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Figure 7.1 Capture, transfer and reuse system knowledge. 
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Figure 7.2 Process of capture, manage, maintain, interpret and reuse system 

knowledge with an object-process model.  
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Appendix A: Interviews 

No. Role  Occ. Date 

1.1  SA1 (phase A) Strategy and Concept,  

Complete powertrain 

Un-

structured 

3 15-02-18; 

15-03-04; 

15-03-16 

1.2  SA1 (phase B) Strategy and Concept,  

Complete powertrain 

Un-

structured 

3 15-02-18; 

15-03-04; 

15-03-16 

2 SA2 Air Intake System, DLI Semi-

structured 

1 15-03-16 

3 SA2 Complete drivetrain, KD Semi-

structured 

1 15-03-20 

4.1 SA2 Propulsive drive and torque, TU Semi-

structured 

1 15-03-23 

4.2 SA2 Automatic Transmission Design, TU Semi-

structured 

1 15-03-23 

5 SA3 Ratio Management, KD Semi-

structured 

1 15-03-23 

6 SA2 Cooling System, DLI Semi-

structured 

1 15-03-24 

7 SA3 Calibrator, former Attribute Leader 

Driveability, KD 

Semi-

structured 

1 15-03-27 

8.1 SA2 Diesel Engine, MU Semi-

structured 

1 15-04-08 

8.2 SA2 Petrol Engine, MU Semi-

structured 

1 15-04-08 

9 SA3 Turbo system, MU Semi-

structured 

1 15-04-15 
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Appendix B: Questions addressed to SA1 for 
need findings 

Question addressed to the target group with means to find needs: 

What do you want to communicate with the model? 

With whom do you communicate? 

What do you want to document in the model? 

When do you want to use the model? 

How do you want to use the model? 

What is important when maintaining the model? 
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Appendix C: Interview guide used in case study 

Interview with SA1:    

 What is the overall attribute for complete vehicle from the Attribute Leader? 

o Ex. Vehicle response (driveability).  

 Who or What perceives/experiences the value of this attribute?  

o Example: the driver. 

 How are the states of the attributes expressed?  

o Before and after desired state has been fulfilled.  

o Ex acceptable or un-acceptable. Premium or non-premium. 

 What transformation of attribute should occur to reach desired state?  

o Ex operating engine response within acceptable time frame. 

 What are the main requirements for the transformation of the attribute? What 

are the use cases when the transformation is needed? 

o Ex different road load accelerations. 

 How are these requirements decomposed to development units and/or PSS 

areas? 

 How are these requirements expressed? 

o Ex as a curve. 

 Is there any trade-offs regarding these requirements?  

o Ex time to torque vs CO2 levels. 

 What function is the SA2 responsible of? 

o Ex operating engine hardware for reducing time to torque. 

 What are the major system design alternatives for this PSS area? 

o Ex diesel or petrol engine. 

o Entry level, medium performance or high level performance. 

o Current or next generation. 
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 Interview with SA2: 

(Sketch a schematic illustration of the system) 

 Regarding the overall attribute (ex vehicle response  engine response) and 

current PSS area, which sub-systems provides a direct or indirect impact on 

the attribute? 

 What are the main purposes of these systems? What is the main function of 

the sub-system/what does the system perform?  

o Ex provide charged air and boost pressure to engine.  

 What are the system design alternatives for this sub-system? 

 Which function has the biggest impact on the attribute? 

 Does other SA2s deliver requirements for the current sub-system? 

 How are these requirements expressed? 

 Is there any trade-offs regarding these requirements?  

 Who (name/SA2 role/department) is responsible for delivering these 

requirements? 

 Who (name/SA3/department) is receiving these requirements? 

 If the subsystem is complex, is there any function owners responsible for 

development of a specific function? 

 Which are the SDAs’? 

 

Interview with SA3: 

(Sketch a schematic illustration of the system) 

 What is the main purpose/function of the systems?  

 Regarding attribute (vehicle response  engine response  turbo response) 

How does the system need to be operated? 

o Ex. Reducing turbo lag, reducing inertia of rotating parts. 

 Which function has the biggest impact on the attribute?   

 How is the product structure decomposed? 

 What is the function/task/goal of the parts?  

 What is the excitation to the part? 

 How does the part transfer energy?  

 What is the physical interface between the parts? 

o Ex mass flow, pressure, force, etc. 

 Is there any derived requirements concerning these parts and their functions? 

 How are these requirements expressed? 

 Are there any trade-offs? 

o Ex inertia vs structure borne vibration and booming noise. 

 Which are the SDAs? 
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Appendix D: Gantt chart for thesis project 

 

 

Gantt chart for estimated time (20 weeks) required for master thesis project.  

  

Gantt chart for actual time (23 weeks) required for maser thesis project. 

 

Analysis and conclusions required more time than expected. A structured approach, 

defined at an early stage for this part of the project, would have been useful. 

 

 

 

 

 

 

 

 


